1 // Copyright 2018 Ulf Adams
2 //
3 // The contents of this file may be used under the terms of the Apache License,
4 // Version 2.0.
5 //
6 //    (See accompanying file LICENSE-Apache or copy at
7 //     http://www.apache.org/licenses/LICENSE-2.0)
8 //
9 // Alternatively, the contents of this file may be used under the terms of
10 // the Boost Software License, Version 1.0.
11 //    (See accompanying file LICENSE-Boost or copy at
12 //     https://www.boost.org/LICENSE_1_0.txt)
13 //
14 // Unless required by applicable law or agreed to in writing, this software
15 // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16 // KIND, either express or implied.
17 
18 // Runtime compiler options:
19 // -DRYU_DEBUG Generate verbose debugging output to stdout.
20 
21 #define _NEED_IO_FLOAT32
22 
23 #include "dtoa.h"
24 #include "ryu/ryu.h"
25 
26 #include "ryu/common.h"
27 #include "ryu/f2s_intrinsics.h"
28 #include "ryu/digit_table.h"
29 
30 #define FLOAT_MANTISSA_BITS 23
31 #define FLOAT_EXPONENT_BITS 8
32 #define FLOAT_BIAS 127
33 
34 // Returns the number of decimal digits in v, which must not contain more than 9 digits.
decimalLength9(const uint32_t v)35 static int decimalLength9(const uint32_t v) {
36 	int len = 1;
37 	uint32_t c = 10;
38 	while (c <= v) {
39 		len++;
40 		c = (c << 3) + (c << 1);
41 	}
42 	return len;
43 }
44 
45 // A floating decimal representing m * 10^e.
46 typedef struct floating_decimal_32 {
47 	uint32_t mantissa;
48 	// Decimal exponent's range is -45 to 38
49 	// inclusive, and can fit in a short if needed.
50 	int16_t exponent;
51 	int16_t olength;
52 } floating_decimal_32;
53 
54 static inline floating_decimal_32
f2d(const uint32_t ieeeMantissa,const uint32_t ieeeExponent,int max_digits,bool fmode,int max_decimals)55 f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, int max_digits, bool fmode, int max_decimals)
56 {
57 	int32_t e2;
58 	uint32_t m2;
59 	if (ieeeExponent == 0) {
60 		// We subtract 2 so that the bounds computation has 2 additional bits.
61 		e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
62 		m2 = ieeeMantissa;
63 	} else {
64 		e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2;
65 		m2 = ((uint32_t)1u << FLOAT_MANTISSA_BITS) | ieeeMantissa;
66 	}
67 	const bool even = (m2 & 1) == 0;
68 	const bool acceptBounds = even;
69 	bool truncate_max = false;
70 
71 #ifdef RYU_DEBUG
72 	printf("-> %u * 2^%d\n", m2, e2 + 2);
73 #endif
74 
75 	// Step 2: Determine the interval of valid decimal representations.
76 	const uint32_t mv = 4 * m2;
77 	const uint32_t mp = 4 * m2 + 2;
78 	// Implicit bool -> int conversion. True is 1, false is 0.
79 	const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
80 	const uint32_t mm = 4 * m2 - 1 - mmShift;
81 
82 	// Step 3: Convert to a decimal power base using 64-bit arithmetic.
83 	uint32_t vr, vp, vm;
84 	int32_t e10;
85 	bool vmIsTrailingZeros = false;
86 	bool vrIsTrailingZeros = false;
87 	uint8_t lastRemovedDigit = 0;
88 	if (e2 >= 0) {
89 		const uint32_t q = log10Pow2(e2);
90 		e10 = (int32_t) q;
91 		const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1;
92 		const int32_t i = -e2 + (int32_t) q + k;
93 		vr = mulPow5InvDivPow2(mv, q, i);
94 		vp = mulPow5InvDivPow2(mp, q, i);
95 		vm = mulPow5InvDivPow2(mm, q, i);
96 #ifdef RYU_DEBUG
97 		printf("%u * 2^%d / 10^%u\n", mv, e2, q);
98 		printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
99 #endif
100 		if (q != 0 && (vp - 1) / 10 <= vm / 10) {
101 			// We need to know one removed digit even if we are not going to loop below. We could use
102 			// q = X - 1 above, except that would require 33 bits for the result, and we've found that
103 			// 32-bit arithmetic is faster even on 64-bit machines.
104 			const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1;
105 			lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10);
106 		}
107 		if (q <= 9) {
108 			// The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well.
109 			// Only one of mp, mv, and mm can be a multiple of 5, if any.
110 			if (mv % 5 == 0) {
111 				vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q);
112 			} else if (acceptBounds) {
113 				vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q);
114 			} else {
115 				vp -= multipleOfPowerOf5_32(mp, q);
116 			}
117 		}
118 	} else {
119 		const uint32_t q = log10Pow5(-e2);
120 		e10 = (int32_t) q + e2;
121 		const int32_t i = -e2 - (int32_t) q;
122 		const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT;
123 		int32_t j = (int32_t) q - k;
124 		vr = mulPow5divPow2(mv, (uint32_t) i, j);
125 		vp = mulPow5divPow2(mp, (uint32_t) i, j);
126 		vm = mulPow5divPow2(mm, (uint32_t) i, j);
127 #ifdef RYU_DEBUG
128 		printf("%u * 5^%d / 10^%u\n", mv, -e2, q);
129 		printf("%u %d %d %d\n", q, i, k, j);
130 		printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
131 #endif
132 		if (q != 0 && (vp - 1) / 10 <= vm / 10) {
133 			j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT);
134 			lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10);
135 		}
136 		if (q <= 1) {
137 			// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
138 			// mv = 4 * m2, so it always has at least two trailing 0 bits.
139 			vrIsTrailingZeros = true;
140 			if (acceptBounds) {
141 				// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
142 				vmIsTrailingZeros = mmShift == 1;
143 			} else {
144 				// mp = mv + 2, so it always has at least one trailing 0 bit.
145 				--vp;
146 			}
147 		} else if (q < 31) { // TODO(ulfjack): Use a tighter bound here.
148 			vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1);
149 #ifdef RYU_DEBUG
150 			printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
151 #endif
152 		}
153 	}
154 #ifdef RYU_DEBUG
155 	printf("e10=%d\n", e10);
156 	printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
157 	printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false");
158 	printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
159 #endif
160 
161 	// Step 4: Find the shortest decimal representation in the interval of valid representations.
162 	int32_t removed = 0;
163 	uint32_t output;
164 
165 	/* If limiting decimals, then limit the max digits
166 	 * to no more than the number of digits left of the decimal
167 	 * plus the number of digits right of the decimal
168 	 *
169 	 * exp:          exponent value. If negative, there are
170 	 *		 -exp - 1 zeros left of the first non-zero
171 	 *               digit in 'f' format. If non-negative,
172 	 *               there are exp digits to the left of
173 	 *               the decimal point
174 	 *
175 	 * max_decimals: Only used in 'f' format. Round to this many
176 	 *               digits to the right of the decimal point
177 	 *               (left if negative)
178 	 *
179 	 * max_digits:	 We can't convert more than this number of digits given
180 	 *               the limits of the buffer
181 	 */
182 
183 	int save_max_digits = max_digits;
184 	if(fmode) {
185 		int exp = e10 + decimalLength9(vr) - 1;
186 		/*
187 		 * This covers two cases:
188 		 *
189 		 * When exp is < 0, there are -exp-1 zeros taking up
190 		 * space before we can display any of the real digits,
191 		 * so we have to subtract those off max_decimals before
192 		 * we round that (max_decimals - (-exp - 1)). This
193 		 * may end up less than zero, in which case we have
194 		 * no digits to display.
195 		 *
196 		 * When exp >= 0, there are exp + 1 digits left of the
197 		 * decimal point *plus* max_decimals right of the
198 		 * decimal point that need to be generated
199 		 *
200 		 * A single expression gives the right answer in both
201 		 * cases, which is kinda cool
202                  *
203                  * When called from fcvt, max_decimals may be less
204                  * than zero, indicating that we want to round left of
205                  * the decimal point. In that case, make sure we generate
206                  * at least one digit
207 		 */
208 		max_digits = min_int(max_digits, max_int(max_decimals<0, max_decimals + exp + 1));
209 	}
210 
211 	for (;;) {
212 		if (vp / 10 <= vm / 10) {
213 			if (decimalLength9(vr) <= max_digits || (max_digits == 0 && vr == 0))
214 				break;
215 			else
216 				truncate_max = true;
217 		}
218 #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106
219 		// The compiler does not realize that vm % 10 can be computed from vm / 10
220 		// as vm - (vm / 10) * 10.
221 		vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0;
222 #else
223 		vmIsTrailingZeros &= vm % 10 == 0;
224 #endif
225 		vrIsTrailingZeros &= lastRemovedDigit == 0;
226 		lastRemovedDigit = (uint8_t) (vr % 10);
227 		vr /= 10;
228 		vp /= 10;
229 		vm /= 10;
230 		++removed;
231 	}
232 #ifdef RYU_DEBUG
233 	printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
234 	printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false");
235 #endif
236 	if (vmIsTrailingZeros) {
237 		while (vm % 10 == 0) {
238 			vrIsTrailingZeros &= lastRemovedDigit == 0;
239 			lastRemovedDigit = (uint8_t) (vr % 10);
240 			vr /= 10;
241 			vp /= 10;
242 			vm /= 10;
243 			++removed;
244 		}
245 	}
246 #ifdef RYU_DEBUG
247 	printf("%u %d\n", vr, lastRemovedDigit);
248 	printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false");
249 #endif
250 	if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) {
251 		// Round even if the exact number is .....50..0.
252 		lastRemovedDigit = 4;
253 	}
254 	// We need to take vr + 1 if vr is outside bounds or we need to round up.
255 	output = vr;
256 	e10 += removed;
257 
258 	uint8_t carry = ((!truncate_max && vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
259 	output += carry;
260 
261 	int len = decimalLength9(output);
262 
263 	if (carry) {
264 		/* This can only happen if output has carried out of the top digit */
265 		if (len > max_digits) {
266 
267 			/* Recompute max digits in this case */
268                         if(fmode) {
269 				int exp = e10 + len - 1;
270 				max_digits = min_int(save_max_digits, max_int(1, max_decimals + exp + 1));
271 			}
272 
273 			if (len > max_digits) {
274 				output += 5;
275 				output /= 10;
276 				e10++;
277 				len--;
278 			}
279 		}
280 	}
281 	if (len > max_digits)
282 		len = max_digits;
283 
284 
285 #ifdef RYU_DEBUG
286 	printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm);
287 	printf("O=%u\n", output);
288 	printf("EXP=%d\n", exp);
289 #endif
290 
291 	floating_decimal_32 fd;
292 	fd.exponent = e10;
293 	fd.olength = len;
294 	fd.mantissa = output;
295 	return fd;
296 }
297 
298 int
__ftoa_engine(float x,struct dtoa * dtoa,int max_digits,bool fmode,int max_decimals)299 __ftoa_engine(float x, struct dtoa *dtoa, int max_digits, bool fmode, int max_decimals)
300 {
301 	// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
302 	const uint32_t bits = float_to_bits(x);
303 
304 	// Decode bits into sign, mantissa, and exponent.
305 	const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0;
306 	const uint64_t ieeeMantissa = bits & ((1ull << FLOAT_MANTISSA_BITS) - 1);
307 	const uint32_t ieeeExponent = (uint32_t) ((bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1));
308 
309 	uint8_t	flags = 0;
310 
311 	if (ieeeSign)
312 		flags |= DTOA_MINUS;
313 
314 	if (ieeeExponent == 0 && ieeeMantissa == 0) {
315 		flags |= DTOA_ZERO;
316 		dtoa->digits[0] = '0';
317 		dtoa->flags = flags;
318 		dtoa->exp = 0;
319 		return 1;
320 	}
321 	if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u)) {
322 		if (ieeeMantissa) {
323 			flags |= DTOA_NAN;
324 		} else {
325 			flags |= DTOA_INF;
326 		}
327 		dtoa->flags = flags;
328 		return 0;
329 	}
330 
331 	floating_decimal_32 v;
332 
333 	v = f2d(ieeeMantissa, ieeeExponent, max_digits, fmode, max_decimals);
334 
335 	uint32_t mant = v.mantissa;
336 	int32_t olength = v.olength;
337 	int32_t exp = v.exponent + olength - 1;
338 
339 	int i;
340 
341 	for (i = 0; i < olength; i++) {
342 		dtoa->digits[olength - i - 1] = (mant % 10) + '0';
343 		mant /= 10;
344 	}
345 
346 	dtoa->exp = exp;
347 	dtoa->flags = flags;
348 	return olength;
349 }
350