// Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. // Runtime compiler options: // -DRYU_DEBUG Generate verbose debugging output to stdout. #define _NEED_IO_FLOAT32 #include "dtoa.h" #include "ryu/ryu.h" #include "ryu/common.h" #include "ryu/f2s_intrinsics.h" #include "ryu/digit_table.h" #define FLOAT_MANTISSA_BITS 23 #define FLOAT_EXPONENT_BITS 8 #define FLOAT_BIAS 127 // Returns the number of decimal digits in v, which must not contain more than 9 digits. static int decimalLength9(const uint32_t v) { int len = 1; uint32_t c = 10; while (c <= v) { len++; c = (c << 3) + (c << 1); } return len; } // A floating decimal representing m * 10^e. typedef struct floating_decimal_32 { uint32_t mantissa; // Decimal exponent's range is -45 to 38 // inclusive, and can fit in a short if needed. int16_t exponent; int16_t olength; } floating_decimal_32; static inline floating_decimal_32 f2d(const uint32_t ieeeMantissa, const uint32_t ieeeExponent, int max_digits, bool fmode, int max_decimals) { int32_t e2; uint32_t m2; if (ieeeExponent == 0) { // We subtract 2 so that the bounds computation has 2 additional bits. e2 = 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2; m2 = ieeeMantissa; } else { e2 = (int32_t) ieeeExponent - FLOAT_BIAS - FLOAT_MANTISSA_BITS - 2; m2 = ((uint32_t)1u << FLOAT_MANTISSA_BITS) | ieeeMantissa; } const bool even = (m2 & 1) == 0; const bool acceptBounds = even; bool truncate_max = false; #ifdef RYU_DEBUG printf("-> %u * 2^%d\n", m2, e2 + 2); #endif // Step 2: Determine the interval of valid decimal representations. const uint32_t mv = 4 * m2; const uint32_t mp = 4 * m2 + 2; // Implicit bool -> int conversion. True is 1, false is 0. const uint32_t mmShift = ieeeMantissa != 0 || ieeeExponent <= 1; const uint32_t mm = 4 * m2 - 1 - mmShift; // Step 3: Convert to a decimal power base using 64-bit arithmetic. uint32_t vr, vp, vm; int32_t e10; bool vmIsTrailingZeros = false; bool vrIsTrailingZeros = false; uint8_t lastRemovedDigit = 0; if (e2 >= 0) { const uint32_t q = log10Pow2(e2); e10 = (int32_t) q; const int32_t k = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) q) - 1; const int32_t i = -e2 + (int32_t) q + k; vr = mulPow5InvDivPow2(mv, q, i); vp = mulPow5InvDivPow2(mp, q, i); vm = mulPow5InvDivPow2(mm, q, i); #ifdef RYU_DEBUG printf("%u * 2^%d / 10^%u\n", mv, e2, q); printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); #endif if (q != 0 && (vp - 1) / 10 <= vm / 10) { // We need to know one removed digit even if we are not going to loop below. We could use // q = X - 1 above, except that would require 33 bits for the result, and we've found that // 32-bit arithmetic is faster even on 64-bit machines. const int32_t l = FLOAT_POW5_INV_BITCOUNT + pow5bits((int32_t) (q - 1)) - 1; lastRemovedDigit = (uint8_t) (mulPow5InvDivPow2(mv, q - 1, -e2 + (int32_t) q - 1 + l) % 10); } if (q <= 9) { // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well. // Only one of mp, mv, and mm can be a multiple of 5, if any. if (mv % 5 == 0) { vrIsTrailingZeros = multipleOfPowerOf5_32(mv, q); } else if (acceptBounds) { vmIsTrailingZeros = multipleOfPowerOf5_32(mm, q); } else { vp -= multipleOfPowerOf5_32(mp, q); } } } else { const uint32_t q = log10Pow5(-e2); e10 = (int32_t) q + e2; const int32_t i = -e2 - (int32_t) q; const int32_t k = pow5bits(i) - FLOAT_POW5_BITCOUNT; int32_t j = (int32_t) q - k; vr = mulPow5divPow2(mv, (uint32_t) i, j); vp = mulPow5divPow2(mp, (uint32_t) i, j); vm = mulPow5divPow2(mm, (uint32_t) i, j); #ifdef RYU_DEBUG printf("%u * 5^%d / 10^%u\n", mv, -e2, q); printf("%u %d %d %d\n", q, i, k, j); printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); #endif if (q != 0 && (vp - 1) / 10 <= vm / 10) { j = (int32_t) q - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT); lastRemovedDigit = (uint8_t) (mulPow5divPow2(mv, (uint32_t) (i + 1), j) % 10); } if (q <= 1) { // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. // mv = 4 * m2, so it always has at least two trailing 0 bits. vrIsTrailingZeros = true; if (acceptBounds) { // mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1. vmIsTrailingZeros = mmShift == 1; } else { // mp = mv + 2, so it always has at least one trailing 0 bit. --vp; } } else if (q < 31) { // TODO(ulfjack): Use a tighter bound here. vrIsTrailingZeros = multipleOfPowerOf2_32(mv, q - 1); #ifdef RYU_DEBUG printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); #endif } } #ifdef RYU_DEBUG printf("e10=%d\n", e10); printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); printf("vm is trailing zeros=%s\n", vmIsTrailingZeros ? "true" : "false"); printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); #endif // Step 4: Find the shortest decimal representation in the interval of valid representations. int32_t removed = 0; uint32_t output; /* If limiting decimals, then limit the max digits * to no more than the number of digits left of the decimal * plus the number of digits right of the decimal * * exp: exponent value. If negative, there are * -exp - 1 zeros left of the first non-zero * digit in 'f' format. If non-negative, * there are exp digits to the left of * the decimal point * * max_decimals: Only used in 'f' format. Round to this many * digits to the right of the decimal point * (left if negative) * * max_digits: We can't convert more than this number of digits given * the limits of the buffer */ int save_max_digits = max_digits; if(fmode) { int exp = e10 + decimalLength9(vr) - 1; /* * This covers two cases: * * When exp is < 0, there are -exp-1 zeros taking up * space before we can display any of the real digits, * so we have to subtract those off max_decimals before * we round that (max_decimals - (-exp - 1)). This * may end up less than zero, in which case we have * no digits to display. * * When exp >= 0, there are exp + 1 digits left of the * decimal point *plus* max_decimals right of the * decimal point that need to be generated * * A single expression gives the right answer in both * cases, which is kinda cool * * When called from fcvt, max_decimals may be less * than zero, indicating that we want to round left of * the decimal point. In that case, make sure we generate * at least one digit */ max_digits = min_int(max_digits, max_int(max_decimals<0, max_decimals + exp + 1)); } for (;;) { if (vp / 10 <= vm / 10) { if (decimalLength9(vr) <= max_digits || (max_digits == 0 && vr == 0)) break; else truncate_max = true; } #ifdef __clang__ // https://bugs.llvm.org/show_bug.cgi?id=23106 // The compiler does not realize that vm % 10 can be computed from vm / 10 // as vm - (vm / 10) * 10. vmIsTrailingZeros &= vm - (vm / 10) * 10 == 0; #else vmIsTrailingZeros &= vm % 10 == 0; #endif vrIsTrailingZeros &= lastRemovedDigit == 0; lastRemovedDigit = (uint8_t) (vr % 10); vr /= 10; vp /= 10; vm /= 10; ++removed; } #ifdef RYU_DEBUG printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); printf("d-10=%s\n", vmIsTrailingZeros ? "true" : "false"); #endif if (vmIsTrailingZeros) { while (vm % 10 == 0) { vrIsTrailingZeros &= lastRemovedDigit == 0; lastRemovedDigit = (uint8_t) (vr % 10); vr /= 10; vp /= 10; vm /= 10; ++removed; } } #ifdef RYU_DEBUG printf("%u %d\n", vr, lastRemovedDigit); printf("vr is trailing zeros=%s\n", vrIsTrailingZeros ? "true" : "false"); #endif if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0) { // Round even if the exact number is .....50..0. lastRemovedDigit = 4; } // We need to take vr + 1 if vr is outside bounds or we need to round up. output = vr; e10 += removed; uint8_t carry = ((!truncate_max && vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5); output += carry; int len = decimalLength9(output); if (carry) { /* This can only happen if output has carried out of the top digit */ if (len > max_digits) { /* Recompute max digits in this case */ if(fmode) { int exp = e10 + len - 1; max_digits = min_int(save_max_digits, max_int(1, max_decimals + exp + 1)); } if (len > max_digits) { output += 5; output /= 10; e10++; len--; } } } if (len > max_digits) len = max_digits; #ifdef RYU_DEBUG printf("V+=%u\nV =%u\nV-=%u\n", vp, vr, vm); printf("O=%u\n", output); printf("EXP=%d\n", exp); #endif floating_decimal_32 fd; fd.exponent = e10; fd.olength = len; fd.mantissa = output; return fd; } int __ftoa_engine(float x, struct dtoa *dtoa, int max_digits, bool fmode, int max_decimals) { // Step 1: Decode the floating-point number, and unify normalized and subnormal cases. const uint32_t bits = float_to_bits(x); // Decode bits into sign, mantissa, and exponent. const bool ieeeSign = ((bits >> (FLOAT_MANTISSA_BITS + FLOAT_EXPONENT_BITS)) & 1) != 0; const uint64_t ieeeMantissa = bits & ((1ull << FLOAT_MANTISSA_BITS) - 1); const uint32_t ieeeExponent = (uint32_t) ((bits >> FLOAT_MANTISSA_BITS) & ((1u << FLOAT_EXPONENT_BITS) - 1)); uint8_t flags = 0; if (ieeeSign) flags |= DTOA_MINUS; if (ieeeExponent == 0 && ieeeMantissa == 0) { flags |= DTOA_ZERO; dtoa->digits[0] = '0'; dtoa->flags = flags; dtoa->exp = 0; return 1; } if (ieeeExponent == ((1u << FLOAT_EXPONENT_BITS) - 1u)) { if (ieeeMantissa) { flags |= DTOA_NAN; } else { flags |= DTOA_INF; } dtoa->flags = flags; return 0; } floating_decimal_32 v; v = f2d(ieeeMantissa, ieeeExponent, max_digits, fmode, max_decimals); uint32_t mant = v.mantissa; int32_t olength = v.olength; int32_t exp = v.exponent + olength - 1; int i; for (i = 0; i < olength; i++) { dtoa->digits[olength - i - 1] = (mant % 10) + '0'; mant /= 10; } dtoa->exp = exp; dtoa->flags = flags; return olength; }