1 /*
2 * Copyright (c) 2020 Bose Corporation
3 * Copyright (c) 2021-2022 Nordic Semiconductor ASA
4 *
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * The static functions in this file operate on Big Endian (BE) as the
8 * underlying encryption library is BE as well. Furthermore, the sample data
9 * in the CSIS spec is also provided as BE, and logging values as BE will make
10 * it easier to compare.
11 */
12 #include <stddef.h>
13 #include <stdint.h>
14 #include <string.h>
15
16 #include <zephyr/autoconf.h>
17 #include <zephyr/bluetooth/audio/csip.h>
18 #include <zephyr/bluetooth/crypto.h>
19 #include <zephyr/logging/log.h>
20 #include <zephyr/sys/byteorder.h>
21 #include <zephyr/sys/util.h>
22 #include <zephyr/sys/util_macro.h>
23
24 #include "crypto/bt_crypto.h"
25
26 #include "common/bt_str.h"
27
28 #include "csip_crypto.h"
29
30 LOG_MODULE_REGISTER(bt_csip_crypto, CONFIG_BT_CSIP_SET_MEMBER_CRYPTO_LOG_LEVEL);
31
32 #define BT_CSIP_CRYPTO_PADDING_SIZE 13
33 #define BT_CSIP_PADDED_RAND_SIZE (BT_CSIP_CRYPTO_PADDING_SIZE + BT_CSIP_CRYPTO_PRAND_SIZE)
34 #define BT_CSIP_R_MASK BIT_MASK(24) /* r is 24 bit / 3 octet */
35
bt_csip_sih(const uint8_t sirk[BT_CSIP_SIRK_SIZE],uint8_t r[BT_CSIP_CRYPTO_PRAND_SIZE],uint8_t out[BT_CSIP_CRYPTO_HASH_SIZE])36 int bt_csip_sih(const uint8_t sirk[BT_CSIP_SIRK_SIZE], uint8_t r[BT_CSIP_CRYPTO_PRAND_SIZE],
37 uint8_t out[BT_CSIP_CRYPTO_HASH_SIZE])
38 {
39 uint8_t res[BT_CSIP_PADDED_RAND_SIZE]; /* need to store 128 bit */
40 int err;
41
42 if ((r[BT_CSIP_CRYPTO_PRAND_SIZE - 1] & BIT(7)) ||
43 ((r[BT_CSIP_CRYPTO_PRAND_SIZE - 1] & BIT(6)) == 0)) {
44 LOG_DBG("Invalid r %s", bt_hex(r, BT_CSIP_CRYPTO_PRAND_SIZE));
45 }
46
47 LOG_DBG("SIRK %s", bt_hex(sirk, BT_CSIP_SIRK_SIZE));
48 LOG_DBG("r %s", bt_hex(r, BT_CSIP_CRYPTO_PRAND_SIZE));
49
50 /* r' = padding || r */
51 (void)memset(res + BT_CSIP_CRYPTO_PRAND_SIZE, 0, BT_CSIP_CRYPTO_PADDING_SIZE);
52 memcpy(res, r, BT_CSIP_CRYPTO_PRAND_SIZE);
53
54 LOG_DBG("r' %s", bt_hex(res, sizeof(res)));
55
56 err = bt_encrypt_le(sirk, res, res);
57
58 if (err != 0) {
59 return err;
60 }
61
62 /* The output of the function sih is:
63 * sih(k, r) = e(k, r') mod 2^24
64 * The output of the security function e is then truncated to 24 bits
65 * by taking the least significant 24 bits of the output of e as the
66 * result of sih.
67 */
68
69 LOG_DBG("res %s", bt_hex(res, sizeof(res)));
70
71 /* Result is the lowest 3 bytes */
72 memcpy(out, res, BT_CSIP_CRYPTO_HASH_SIZE);
73
74 LOG_DBG("sih %s", bt_hex(out, BT_CSIP_CRYPTO_HASH_SIZE));
75
76 return 0;
77 }
78
79 /**
80 * @brief k1 derivation function
81 *
82 * The key derivation function k1 is used to derive a key. The derived key is
83 * used to encrypt and decrypt the value of the Set Identity Resolving Key
84 * characteristic.
85 *
86 * @param n n is 0 or more bytes.
87 * @param n_size Number of bytes in @p n.
88 * @param salt A 16-byte salt.
89 * @param p p is 0 or more bytes.
90 * @param p_size Number of bytes in @p p.
91 * @param out A 16-byte output buffer.
92 * @return int 0 on success, any other value indicates a failure.
93 */
k1(const uint8_t * n,size_t n_size,const uint8_t salt[BT_CSIP_CRYPTO_SALT_SIZE],const uint8_t * p,size_t p_size,uint8_t out[16])94 static int k1(const uint8_t *n, size_t n_size,
95 const uint8_t salt[BT_CSIP_CRYPTO_SALT_SIZE],
96 const uint8_t *p, size_t p_size, uint8_t out[16])
97 {
98 /* TODO: This is basically a duplicate of bt_mesh_k1 - Perhaps they can
99 * be merged
100 */
101 uint8_t t[16];
102 int err;
103
104 /*
105 * T = AES_CMAC_SALT(N)
106 *
107 * k1(N, SALT, P) = AES-CMAC_T(P)
108 */
109
110 LOG_DBG("BE: n %s", bt_hex(n, n_size));
111 LOG_DBG("BE: salt %s", bt_hex(salt, BT_CSIP_CRYPTO_SALT_SIZE));
112 LOG_DBG("BE: p %s", bt_hex(p, p_size));
113
114 err = bt_crypto_aes_cmac(salt, n, n_size, t);
115
116 LOG_DBG("BE: t %s", bt_hex(t, sizeof(t)));
117
118 if (err) {
119 return err;
120 }
121
122 err = bt_crypto_aes_cmac(t, p, p_size, out);
123
124 LOG_DBG("BE: out %s", bt_hex(out, 16));
125
126 return err;
127 }
128
129 /**
130 * @brief s1 SALT generation function
131 *
132 * @param m A non-zero length octet array or ASCII encoded string
133 * @param m_size Size of @p m.
134 * @param out 16-byte output buffer.
135 * @return int 0 on success, any other value indicates a failure.
136 */
s1(const uint8_t * m,size_t m_size,uint8_t out[BT_CSIP_CRYPTO_SALT_SIZE])137 static int s1(const uint8_t *m, size_t m_size,
138 uint8_t out[BT_CSIP_CRYPTO_SALT_SIZE])
139 {
140 uint8_t zero[16];
141 int err;
142
143 /*
144 * s1(M) = AES-CMAC_zero(M)
145 */
146
147 LOG_DBG("BE: m %s", bt_hex(m, m_size));
148
149 memset(zero, 0, sizeof(zero));
150
151 err = bt_crypto_aes_cmac(zero, m, m_size, out);
152
153 LOG_DBG("BE: out %s", bt_hex(out, 16));
154
155 return err;
156 }
157
bt_csip_sef(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE],const uint8_t sirk[BT_CSIP_SIRK_SIZE],uint8_t out_sirk[BT_CSIP_SIRK_SIZE])158 int bt_csip_sef(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE], const uint8_t sirk[BT_CSIP_SIRK_SIZE],
159 uint8_t out_sirk[BT_CSIP_SIRK_SIZE])
160 {
161 const uint8_t m[] = {'S', 'I', 'R', 'K', 'e', 'n', 'c'};
162 const uint8_t p[] = {'c', 's', 'i', 's'};
163 uint8_t s1_out[BT_CSIP_CRYPTO_SALT_SIZE];
164 uint8_t k1_out[BT_CSIP_CRYPTO_KEY_SIZE];
165 uint8_t k1_tmp[BT_CSIP_CRYPTO_KEY_SIZE];
166 int err;
167
168 /*
169 * sef(K, SIRK) = k1(K, s1("SIRKenc"), "csis") ^ SIRK
170 */
171
172 LOG_DBG("SIRK %s", bt_hex(sirk, BT_CSIP_SIRK_SIZE));
173
174 if (IS_ENABLED(CONFIG_LITTLE_ENDIAN)) {
175 /* Swap because aes_cmac is big endian
176 * and we are little endian
177 */
178 sys_memcpy_swap(k1_tmp, k, sizeof(k1_tmp));
179 } else {
180 (void)memcpy(k1_tmp, k, sizeof(k1_tmp));
181 }
182 LOG_DBG("BE: k %s", bt_hex(k1_tmp, sizeof(k1_tmp)));
183
184 err = s1(m, sizeof(m), s1_out);
185 if (err) {
186 return err;
187 }
188
189 LOG_DBG("BE: s1 result %s", bt_hex(s1_out, sizeof(s1_out)));
190
191 err = k1(k1_tmp, sizeof(k1_tmp), s1_out, p, sizeof(p), k1_out);
192 if (err) {
193 return err;
194 }
195
196 LOG_DBG("BE: k1 result %s", bt_hex(k1_out, sizeof(k1_out)));
197
198 if (IS_ENABLED(CONFIG_LITTLE_ENDIAN)) {
199 /* Swap result back to little endian */
200 sys_mem_swap(k1_out, sizeof(k1_out));
201 }
202
203 mem_xor_128(out_sirk, k1_out, sirk);
204 LOG_DBG("out %s", bt_hex(out_sirk, BT_CSIP_SIRK_SIZE));
205
206 return 0;
207 }
208
bt_csip_sdf(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE],const uint8_t enc_sirk[BT_CSIP_SIRK_SIZE],uint8_t out_sirk[BT_CSIP_SIRK_SIZE])209 int bt_csip_sdf(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE], const uint8_t enc_sirk[BT_CSIP_SIRK_SIZE],
210 uint8_t out_sirk[BT_CSIP_SIRK_SIZE])
211 {
212 /* SIRK encryption is currently symmetric, which means that we can
213 * simply apply the sef function to decrypt it.
214 */
215
216 /*
217 * sdf(K, EncSIRK) = k1(K, s1("SIRKenc"), "csis") ^ EncSIRK
218 */
219
220 LOG_DBG("Running SDF as SEF");
221 return bt_csip_sef(k, enc_sirk, out_sirk);
222 }
223