/* * Copyright (c) 2020 Bose Corporation * Copyright (c) 2021-2022 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 * * The static functions in this file operate on Big Endian (BE) as the * underlying encryption library is BE as well. Furthermore, the sample data * in the CSIS spec is also provided as BE, and logging values as BE will make * it easier to compare. */ #include #include #include #include #include #include #include #include #include #include #include "crypto/bt_crypto.h" #include "common/bt_str.h" #include "csip_crypto.h" LOG_MODULE_REGISTER(bt_csip_crypto, CONFIG_BT_CSIP_SET_MEMBER_CRYPTO_LOG_LEVEL); #define BT_CSIP_CRYPTO_PADDING_SIZE 13 #define BT_CSIP_PADDED_RAND_SIZE (BT_CSIP_CRYPTO_PADDING_SIZE + BT_CSIP_CRYPTO_PRAND_SIZE) #define BT_CSIP_R_MASK BIT_MASK(24) /* r is 24 bit / 3 octet */ int bt_csip_sih(const uint8_t sirk[BT_CSIP_SIRK_SIZE], uint8_t r[BT_CSIP_CRYPTO_PRAND_SIZE], uint8_t out[BT_CSIP_CRYPTO_HASH_SIZE]) { uint8_t res[BT_CSIP_PADDED_RAND_SIZE]; /* need to store 128 bit */ int err; if ((r[BT_CSIP_CRYPTO_PRAND_SIZE - 1] & BIT(7)) || ((r[BT_CSIP_CRYPTO_PRAND_SIZE - 1] & BIT(6)) == 0)) { LOG_DBG("Invalid r %s", bt_hex(r, BT_CSIP_CRYPTO_PRAND_SIZE)); } LOG_DBG("SIRK %s", bt_hex(sirk, BT_CSIP_SIRK_SIZE)); LOG_DBG("r %s", bt_hex(r, BT_CSIP_CRYPTO_PRAND_SIZE)); /* r' = padding || r */ (void)memset(res + BT_CSIP_CRYPTO_PRAND_SIZE, 0, BT_CSIP_CRYPTO_PADDING_SIZE); memcpy(res, r, BT_CSIP_CRYPTO_PRAND_SIZE); LOG_DBG("r' %s", bt_hex(res, sizeof(res))); err = bt_encrypt_le(sirk, res, res); if (err != 0) { return err; } /* The output of the function sih is: * sih(k, r) = e(k, r') mod 2^24 * The output of the security function e is then truncated to 24 bits * by taking the least significant 24 bits of the output of e as the * result of sih. */ LOG_DBG("res %s", bt_hex(res, sizeof(res))); /* Result is the lowest 3 bytes */ memcpy(out, res, BT_CSIP_CRYPTO_HASH_SIZE); LOG_DBG("sih %s", bt_hex(out, BT_CSIP_CRYPTO_HASH_SIZE)); return 0; } /** * @brief k1 derivation function * * The key derivation function k1 is used to derive a key. The derived key is * used to encrypt and decrypt the value of the Set Identity Resolving Key * characteristic. * * @param n n is 0 or more bytes. * @param n_size Number of bytes in @p n. * @param salt A 16-byte salt. * @param p p is 0 or more bytes. * @param p_size Number of bytes in @p p. * @param out A 16-byte output buffer. * @return int 0 on success, any other value indicates a failure. */ static int k1(const uint8_t *n, size_t n_size, const uint8_t salt[BT_CSIP_CRYPTO_SALT_SIZE], const uint8_t *p, size_t p_size, uint8_t out[16]) { /* TODO: This is basically a duplicate of bt_mesh_k1 - Perhaps they can * be merged */ uint8_t t[16]; int err; /* * T = AES_CMAC_SALT(N) * * k1(N, SALT, P) = AES-CMAC_T(P) */ LOG_DBG("BE: n %s", bt_hex(n, n_size)); LOG_DBG("BE: salt %s", bt_hex(salt, BT_CSIP_CRYPTO_SALT_SIZE)); LOG_DBG("BE: p %s", bt_hex(p, p_size)); err = bt_crypto_aes_cmac(salt, n, n_size, t); LOG_DBG("BE: t %s", bt_hex(t, sizeof(t))); if (err) { return err; } err = bt_crypto_aes_cmac(t, p, p_size, out); LOG_DBG("BE: out %s", bt_hex(out, 16)); return err; } /** * @brief s1 SALT generation function * * @param m A non-zero length octet array or ASCII encoded string * @param m_size Size of @p m. * @param out 16-byte output buffer. * @return int 0 on success, any other value indicates a failure. */ static int s1(const uint8_t *m, size_t m_size, uint8_t out[BT_CSIP_CRYPTO_SALT_SIZE]) { uint8_t zero[16]; int err; /* * s1(M) = AES-CMAC_zero(M) */ LOG_DBG("BE: m %s", bt_hex(m, m_size)); memset(zero, 0, sizeof(zero)); err = bt_crypto_aes_cmac(zero, m, m_size, out); LOG_DBG("BE: out %s", bt_hex(out, 16)); return err; } int bt_csip_sef(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE], const uint8_t sirk[BT_CSIP_SIRK_SIZE], uint8_t out_sirk[BT_CSIP_SIRK_SIZE]) { const uint8_t m[] = {'S', 'I', 'R', 'K', 'e', 'n', 'c'}; const uint8_t p[] = {'c', 's', 'i', 's'}; uint8_t s1_out[BT_CSIP_CRYPTO_SALT_SIZE]; uint8_t k1_out[BT_CSIP_CRYPTO_KEY_SIZE]; uint8_t k1_tmp[BT_CSIP_CRYPTO_KEY_SIZE]; int err; /* * sef(K, SIRK) = k1(K, s1("SIRKenc"), "csis") ^ SIRK */ LOG_DBG("SIRK %s", bt_hex(sirk, BT_CSIP_SIRK_SIZE)); if (IS_ENABLED(CONFIG_LITTLE_ENDIAN)) { /* Swap because aes_cmac is big endian * and we are little endian */ sys_memcpy_swap(k1_tmp, k, sizeof(k1_tmp)); } else { (void)memcpy(k1_tmp, k, sizeof(k1_tmp)); } LOG_DBG("BE: k %s", bt_hex(k1_tmp, sizeof(k1_tmp))); err = s1(m, sizeof(m), s1_out); if (err) { return err; } LOG_DBG("BE: s1 result %s", bt_hex(s1_out, sizeof(s1_out))); err = k1(k1_tmp, sizeof(k1_tmp), s1_out, p, sizeof(p), k1_out); if (err) { return err; } LOG_DBG("BE: k1 result %s", bt_hex(k1_out, sizeof(k1_out))); if (IS_ENABLED(CONFIG_LITTLE_ENDIAN)) { /* Swap result back to little endian */ sys_mem_swap(k1_out, sizeof(k1_out)); } mem_xor_128(out_sirk, k1_out, sirk); LOG_DBG("out %s", bt_hex(out_sirk, BT_CSIP_SIRK_SIZE)); return 0; } int bt_csip_sdf(const uint8_t k[BT_CSIP_CRYPTO_KEY_SIZE], const uint8_t enc_sirk[BT_CSIP_SIRK_SIZE], uint8_t out_sirk[BT_CSIP_SIRK_SIZE]) { /* SIRK encryption is currently symmetric, which means that we can * simply apply the sef function to decrypt it. */ /* * sdf(K, EncSIRK) = k1(K, s1("SIRKenc"), "csis") ^ EncSIRK */ LOG_DBG("Running SDF as SEF"); return bt_csip_sef(k, enc_sirk, out_sirk); }