1 /*
2 * Copyright (c) 2017 - 2018, Nordic Semiconductor ASA
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <zephyr/drivers/spi.h>
8 #include <zephyr/drivers/spi/rtio.h>
9 #include <zephyr/cache.h>
10 #include <zephyr/pm/device.h>
11 #include <zephyr/pm/device_runtime.h>
12 #include <zephyr/drivers/clock_control/nrf_clock_control.h>
13 #include <zephyr/drivers/pinctrl.h>
14 #include <zephyr/mem_mgmt/mem_attr.h>
15 #include <soc.h>
16 #ifdef CONFIG_SOC_NRF54H20_GPD
17 #include <nrf/gpd.h>
18 #endif
19 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
20 #include <nrfx_ppi.h>
21 #endif
22 #ifdef CONFIG_SOC_NRF5340_CPUAPP
23 #include <hal/nrf_clock.h>
24 #endif
25 #include <nrfx_spim.h>
26 #include <string.h>
27 #include <zephyr/linker/devicetree_regions.h>
28
29 #include <zephyr/logging/log.h>
30 #include <zephyr/irq.h>
31 LOG_MODULE_REGISTER(spi_nrfx_spim, CONFIG_SPI_LOG_LEVEL);
32
33 #include "spi_context.h"
34 #include "spi_nrfx_common.h"
35
36 #if defined(CONFIG_SOC_NRF52832) && !defined(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58)
37 #error This driver is not available by default for nRF52832 because of Product Anomaly 58 \
38 (SPIM: An additional byte is clocked out when RXD.MAXCNT == 1 and TXD.MAXCNT <= 1). \
39 Use CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58=y to override this limitation.
40 #endif
41
42 #if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0)
43 #define SPI_BUFFER_IN_RAM 1
44 #endif
45
46 #if defined(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL) && \
47 (defined(CONFIG_HAS_HW_NRF_SPIM120) || \
48 defined(CONFIG_HAS_HW_NRF_SPIM121))
49 #define SPIM_REQUESTS_CLOCK(idx) UTIL_OR(IS_EQ(idx, 120), \
50 IS_EQ(idx, 121))
51 #define USE_CLOCK_REQUESTS 1
52 #else
53 #define SPIM_REQUESTS_CLOCK(idx) 0
54 #endif
55
56 struct spi_nrfx_data {
57 struct spi_context ctx;
58 const struct device *dev;
59 size_t chunk_len;
60 bool busy;
61 bool initialized;
62 #ifdef SPI_BUFFER_IN_RAM
63 uint8_t *tx_buffer;
64 uint8_t *rx_buffer;
65 #endif
66 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
67 bool anomaly_58_workaround_active;
68 uint8_t ppi_ch;
69 uint8_t gpiote_ch;
70 #endif
71 #ifdef USE_CLOCK_REQUESTS
72 bool clock_requested;
73 #endif
74 };
75
76 struct spi_nrfx_config {
77 nrfx_spim_t spim;
78 uint32_t max_freq;
79 nrfx_spim_config_t def_config;
80 void (*irq_connect)(void);
81 uint16_t max_chunk_len;
82 const struct pinctrl_dev_config *pcfg;
83 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
84 bool anomaly_58_workaround;
85 #endif
86 uint32_t wake_pin;
87 nrfx_gpiote_t wake_gpiote;
88 #ifdef CONFIG_DCACHE
89 uint32_t mem_attr;
90 #endif
91 #ifdef USE_CLOCK_REQUESTS
92 const struct device *clk_dev;
93 struct nrf_clock_spec clk_spec;
94 #endif
95 };
96
97 static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context);
98
request_clock(const struct device * dev)99 static inline int request_clock(const struct device *dev)
100 {
101 #ifdef USE_CLOCK_REQUESTS
102 struct spi_nrfx_data *dev_data = dev->data;
103 const struct spi_nrfx_config *dev_config = dev->config;
104 int error;
105
106 if (!dev_config->clk_dev) {
107 return 0;
108 }
109
110 error = nrf_clock_control_request_sync(
111 dev_config->clk_dev, &dev_config->clk_spec,
112 K_MSEC(CONFIG_SPI_COMPLETION_TIMEOUT_TOLERANCE));
113 if (error < 0) {
114 LOG_ERR("Failed to request clock: %d", error);
115 return error;
116 }
117
118 dev_data->clock_requested = true;
119 #else
120 ARG_UNUSED(dev);
121 #endif
122
123 return 0;
124 }
125
release_clock(const struct device * dev)126 static inline void release_clock(const struct device *dev)
127 {
128 #ifdef USE_CLOCK_REQUESTS
129 struct spi_nrfx_data *dev_data = dev->data;
130 const struct spi_nrfx_config *dev_config = dev->config;
131
132 if (!dev_data->clock_requested) {
133 return;
134 }
135
136 dev_data->clock_requested = false;
137
138 nrf_clock_control_release(dev_config->clk_dev, &dev_config->clk_spec);
139 #else
140 ARG_UNUSED(dev);
141 #endif
142 }
143
finalize_spi_transaction(const struct device * dev,bool deactivate_cs)144 static inline void finalize_spi_transaction(const struct device *dev, bool deactivate_cs)
145 {
146 struct spi_nrfx_data *dev_data = dev->data;
147 const struct spi_nrfx_config *dev_config = dev->config;
148 void *reg = dev_config->spim.p_reg;
149
150 if (deactivate_cs) {
151 spi_context_cs_control(&dev_data->ctx, false);
152 }
153
154 if (NRF_SPIM_IS_320MHZ_SPIM(reg) && !(dev_data->ctx.config->operation & SPI_HOLD_ON_CS)) {
155 nrfy_spim_disable(reg);
156 }
157
158 if (!IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) {
159 release_clock(dev);
160 }
161
162 pm_device_runtime_put_async(dev, K_NO_WAIT);
163 }
164
get_nrf_spim_frequency(uint32_t frequency)165 static inline uint32_t get_nrf_spim_frequency(uint32_t frequency)
166 {
167 /* Get the highest supported frequency not exceeding the requested one.
168 */
169 if (frequency >= MHZ(32) && (NRF_SPIM_HAS_32_MHZ_FREQ || NRF_SPIM_HAS_PRESCALER)) {
170 return MHZ(32);
171 } else if (frequency >= MHZ(16) && (NRF_SPIM_HAS_16_MHZ_FREQ || NRF_SPIM_HAS_PRESCALER)) {
172 return MHZ(16);
173 } else if (frequency >= MHZ(8)) {
174 return MHZ(8);
175 } else if (frequency >= MHZ(4)) {
176 return MHZ(4);
177 } else if (frequency >= MHZ(2)) {
178 return MHZ(2);
179 } else if (frequency >= MHZ(1)) {
180 return MHZ(1);
181 } else if (frequency >= KHZ(500)) {
182 return KHZ(500);
183 } else if (frequency >= KHZ(250)) {
184 return KHZ(250);
185 } else {
186 return KHZ(125);
187 }
188 }
189
get_nrf_spim_mode(uint16_t operation)190 static inline nrf_spim_mode_t get_nrf_spim_mode(uint16_t operation)
191 {
192 if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) {
193 if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
194 return NRF_SPIM_MODE_3;
195 } else {
196 return NRF_SPIM_MODE_2;
197 }
198 } else {
199 if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) {
200 return NRF_SPIM_MODE_1;
201 } else {
202 return NRF_SPIM_MODE_0;
203 }
204 }
205 }
206
get_nrf_spim_bit_order(uint16_t operation)207 static inline nrf_spim_bit_order_t get_nrf_spim_bit_order(uint16_t operation)
208 {
209 if (operation & SPI_TRANSFER_LSB) {
210 return NRF_SPIM_BIT_ORDER_LSB_FIRST;
211 } else {
212 return NRF_SPIM_BIT_ORDER_MSB_FIRST;
213 }
214 }
215
configure(const struct device * dev,const struct spi_config * spi_cfg)216 static int configure(const struct device *dev,
217 const struct spi_config *spi_cfg)
218 {
219 struct spi_nrfx_data *dev_data = dev->data;
220 const struct spi_nrfx_config *dev_config = dev->config;
221 struct spi_context *ctx = &dev_data->ctx;
222 uint32_t max_freq = dev_config->max_freq;
223 nrfx_spim_config_t config;
224 nrfx_err_t result;
225
226 if (dev_data->initialized && spi_context_configured(ctx, spi_cfg)) {
227 /* Already configured. No need to do it again. */
228 return 0;
229 }
230
231 if (spi_cfg->operation & SPI_HALF_DUPLEX) {
232 LOG_ERR("Half-duplex not supported");
233 return -ENOTSUP;
234 }
235
236 if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) {
237 LOG_ERR("Slave mode is not supported on %s", dev->name);
238 return -EINVAL;
239 }
240
241 if (spi_cfg->operation & SPI_MODE_LOOP) {
242 LOG_ERR("Loopback mode is not supported");
243 return -EINVAL;
244 }
245
246 if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
247 (spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
248 LOG_ERR("Only single line mode is supported");
249 return -EINVAL;
250 }
251
252 if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) {
253 LOG_ERR("Word sizes other than 8 bits are not supported");
254 return -EINVAL;
255 }
256
257 if (spi_cfg->frequency < 125000) {
258 LOG_ERR("Frequencies lower than 125 kHz are not supported");
259 return -EINVAL;
260 }
261
262 #if defined(CONFIG_SOC_NRF5340_CPUAPP)
263 /* On nRF5340, the 32 Mbps speed is supported by the application core
264 * when it is running at 128 MHz (see the Timing specifications section
265 * in the nRF5340 PS).
266 */
267 if (max_freq > 16000000 &&
268 nrf_clock_hfclk_div_get(NRF_CLOCK) != NRF_CLOCK_HFCLK_DIV_1) {
269 max_freq = 16000000;
270 }
271 #endif
272
273 config = dev_config->def_config;
274
275 /* Limit the frequency to that supported by the SPIM instance. */
276 config.frequency = get_nrf_spim_frequency(MIN(spi_cfg->frequency,
277 max_freq));
278 config.mode = get_nrf_spim_mode(spi_cfg->operation);
279 config.bit_order = get_nrf_spim_bit_order(spi_cfg->operation);
280
281 nrfy_gpio_pin_write(nrfy_spim_sck_pin_get(dev_config->spim.p_reg),
282 spi_cfg->operation & SPI_MODE_CPOL ? 1 : 0);
283
284 if (dev_data->initialized) {
285 nrfx_spim_uninit(&dev_config->spim);
286 dev_data->initialized = false;
287 }
288
289 result = nrfx_spim_init(&dev_config->spim, &config,
290 event_handler, (void *)dev);
291 if (result != NRFX_SUCCESS) {
292 LOG_ERR("Failed to initialize nrfx driver: %08x", result);
293 return -EIO;
294 }
295
296 dev_data->initialized = true;
297
298 ctx->config = spi_cfg;
299
300 return 0;
301 }
302
303 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
304 static const nrfx_gpiote_t gpiote = NRFX_GPIOTE_INSTANCE(0);
305
306 /*
307 * Brief Workaround for transmitting 1 byte with SPIM.
308 *
309 * Derived from the setup_workaround_for_ftpan_58() function from
310 * the nRF52832 Rev 1 Errata v1.6 document anomaly 58 workaround.
311 *
312 * Warning Must not be used when transmitting multiple bytes.
313 *
314 * Warning After this workaround is used, the user must reset the PPI
315 * channel and the GPIOTE channel before attempting to transmit multiple
316 * bytes.
317 */
anomaly_58_workaround_setup(const struct device * dev)318 static void anomaly_58_workaround_setup(const struct device *dev)
319 {
320 struct spi_nrfx_data *dev_data = dev->data;
321 const struct spi_nrfx_config *dev_config = dev->config;
322 NRF_SPIM_Type *spim = dev_config->spim.p_reg;
323 uint32_t ppi_ch = dev_data->ppi_ch;
324 uint32_t gpiote_ch = dev_data->gpiote_ch;
325 uint32_t eep = (uint32_t)&gpiote.p_reg->EVENTS_IN[gpiote_ch];
326 uint32_t tep = (uint32_t)&spim->TASKS_STOP;
327
328 dev_data->anomaly_58_workaround_active = true;
329
330 /* Create an event when SCK toggles */
331 nrf_gpiote_event_configure(gpiote.p_reg, gpiote_ch, spim->PSEL.SCK,
332 GPIOTE_CONFIG_POLARITY_Toggle);
333 nrf_gpiote_event_enable(gpiote.p_reg, gpiote_ch);
334
335 /* Stop the spim instance when SCK toggles */
336 nrf_ppi_channel_endpoint_setup(NRF_PPI, ppi_ch, eep, tep);
337 nrf_ppi_channel_enable(NRF_PPI, ppi_ch);
338
339 /* The spim instance cannot be stopped mid-byte, so it will finish
340 * transmitting the first byte and then stop. Effectively ensuring
341 * that only 1 byte is transmitted.
342 */
343 }
344
anomaly_58_workaround_clear(struct spi_nrfx_data * dev_data)345 static void anomaly_58_workaround_clear(struct spi_nrfx_data *dev_data)
346 {
347 uint32_t ppi_ch = dev_data->ppi_ch;
348 uint32_t gpiote_ch = dev_data->gpiote_ch;
349
350 if (dev_data->anomaly_58_workaround_active) {
351 nrf_ppi_channel_disable(NRF_PPI, ppi_ch);
352 nrf_gpiote_task_disable(gpiote.p_reg, gpiote_ch);
353
354 dev_data->anomaly_58_workaround_active = false;
355 }
356 }
357
anomaly_58_workaround_init(const struct device * dev)358 static int anomaly_58_workaround_init(const struct device *dev)
359 {
360 struct spi_nrfx_data *dev_data = dev->data;
361 const struct spi_nrfx_config *dev_config = dev->config;
362 nrfx_err_t err_code;
363
364 dev_data->anomaly_58_workaround_active = false;
365
366 if (dev_config->anomaly_58_workaround) {
367 err_code = nrfx_ppi_channel_alloc(&dev_data->ppi_ch);
368 if (err_code != NRFX_SUCCESS) {
369 LOG_ERR("Failed to allocate PPI channel");
370 return -ENODEV;
371 }
372
373 err_code = nrfx_gpiote_channel_alloc(&gpiote, &dev_data->gpiote_ch);
374 if (err_code != NRFX_SUCCESS) {
375 LOG_ERR("Failed to allocate GPIOTE channel");
376 return -ENODEV;
377 }
378 LOG_DBG("PAN 58 workaround enabled for %s: ppi %u, gpiote %u",
379 dev->name, dev_data->ppi_ch, dev_data->gpiote_ch);
380 }
381
382 return 0;
383 }
384 #endif
385
finish_transaction(const struct device * dev,int error)386 static void finish_transaction(const struct device *dev, int error)
387 {
388 struct spi_nrfx_data *dev_data = dev->data;
389 struct spi_context *ctx = &dev_data->ctx;
390
391 LOG_DBG("Transaction finished with status %d", error);
392
393 spi_context_complete(ctx, dev, error);
394 dev_data->busy = false;
395
396 finalize_spi_transaction(dev, true);
397 }
398
transfer_next_chunk(const struct device * dev)399 static void transfer_next_chunk(const struct device *dev)
400 {
401 struct spi_nrfx_data *dev_data = dev->data;
402 const struct spi_nrfx_config *dev_config = dev->config;
403 struct spi_context *ctx = &dev_data->ctx;
404 int error = 0;
405
406 size_t chunk_len = spi_context_max_continuous_chunk(ctx);
407
408 if (chunk_len > 0) {
409 nrfx_spim_xfer_desc_t xfer;
410 nrfx_err_t result;
411 const uint8_t *tx_buf = ctx->tx_buf;
412 uint8_t *rx_buf = ctx->rx_buf;
413
414 if (chunk_len > dev_config->max_chunk_len) {
415 chunk_len = dev_config->max_chunk_len;
416 }
417
418 #ifdef SPI_BUFFER_IN_RAM
419 if (spi_context_tx_buf_on(ctx) &&
420 !nrf_dma_accessible_check(&dev_config->spim.p_reg, tx_buf)) {
421
422 if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) {
423 chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE;
424 }
425
426 memcpy(dev_data->tx_buffer, tx_buf, chunk_len);
427 #ifdef CONFIG_DCACHE
428 if (dev_config->mem_attr & DT_MEM_CACHEABLE) {
429 sys_cache_data_flush_range(dev_data->tx_buffer, chunk_len);
430 }
431 #endif
432 tx_buf = dev_data->tx_buffer;
433 }
434
435 if (spi_context_rx_buf_on(ctx) &&
436 !nrf_dma_accessible_check(&dev_config->spim.p_reg, rx_buf)) {
437
438 if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) {
439 chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE;
440 }
441
442 rx_buf = dev_data->rx_buffer;
443 }
444 #endif
445
446 dev_data->chunk_len = chunk_len;
447
448 xfer.p_tx_buffer = tx_buf;
449 xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0;
450 xfer.p_rx_buffer = rx_buf;
451 xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0;
452
453 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
454 if (xfer.rx_length == 1 && xfer.tx_length <= 1) {
455 if (dev_config->anomaly_58_workaround) {
456 anomaly_58_workaround_setup(dev);
457 } else {
458 LOG_WRN("Transaction aborted since it would trigger "
459 "nRF52832 PAN 58");
460 error = -EIO;
461 }
462 }
463 #endif
464 if (error == 0) {
465 result = nrfx_spim_xfer(&dev_config->spim, &xfer, 0);
466 if (result == NRFX_SUCCESS) {
467 return;
468 }
469 error = -EIO;
470 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
471 anomaly_58_workaround_clear(dev_data);
472 #endif
473 }
474 }
475
476 finish_transaction(dev, error);
477 }
478
event_handler(const nrfx_spim_evt_t * p_event,void * p_context)479 static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context)
480 {
481 const struct device *dev = p_context;
482 struct spi_nrfx_data *dev_data = dev->data;
483 #ifdef CONFIG_DCACHE
484 const struct spi_nrfx_config *dev_config = dev->config;
485 #endif
486
487 if (p_event->type == NRFX_SPIM_EVENT_DONE) {
488 /* Chunk length is set to 0 when a transaction is aborted
489 * due to a timeout.
490 */
491 if (dev_data->chunk_len == 0) {
492 finish_transaction(dev_data->dev, -ETIMEDOUT);
493 return;
494 }
495
496 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
497 anomaly_58_workaround_clear(dev_data);
498 #endif
499 #ifdef SPI_BUFFER_IN_RAM
500 if (spi_context_rx_buf_on(&dev_data->ctx) &&
501 p_event->xfer_desc.p_rx_buffer != NULL &&
502 p_event->xfer_desc.p_rx_buffer != dev_data->ctx.rx_buf) {
503 #ifdef CONFIG_DCACHE
504 if (dev_config->mem_attr & DT_MEM_CACHEABLE) {
505 sys_cache_data_invd_range(dev_data->rx_buffer, dev_data->chunk_len);
506 }
507 #endif
508 (void)memcpy(dev_data->ctx.rx_buf,
509 dev_data->rx_buffer,
510 dev_data->chunk_len);
511 }
512 #endif
513 spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len);
514 spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len);
515
516 transfer_next_chunk(dev_data->dev);
517 }
518 }
519
transceive(const struct device * dev,const struct spi_config * spi_cfg,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,bool asynchronous,spi_callback_t cb,void * userdata)520 static int transceive(const struct device *dev,
521 const struct spi_config *spi_cfg,
522 const struct spi_buf_set *tx_bufs,
523 const struct spi_buf_set *rx_bufs,
524 bool asynchronous,
525 spi_callback_t cb,
526 void *userdata)
527 {
528 struct spi_nrfx_data *dev_data = dev->data;
529 const struct spi_nrfx_config *dev_config = dev->config;
530 void *reg = dev_config->spim.p_reg;
531 int error;
532
533 pm_device_runtime_get(dev);
534 spi_context_lock(&dev_data->ctx, asynchronous, cb, userdata, spi_cfg);
535
536 error = configure(dev, spi_cfg);
537
538 if (error == 0 && !IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) {
539 error = request_clock(dev);
540 }
541
542 if (error == 0) {
543 dev_data->busy = true;
544
545 if (dev_config->wake_pin != WAKE_PIN_NOT_USED) {
546 error = spi_nrfx_wake_request(&dev_config->wake_gpiote,
547 dev_config->wake_pin);
548 if (error == -ETIMEDOUT) {
549 LOG_WRN("Waiting for WAKE acknowledgment timed out");
550 /* If timeout occurs, try to perform the transfer
551 * anyway, just in case the slave device was unable
552 * to signal that it was already awaken and prepared
553 * for the transfer.
554 */
555 }
556 }
557
558 spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1);
559 if (NRF_SPIM_IS_320MHZ_SPIM(reg)) {
560 nrfy_spim_enable(reg);
561 }
562 spi_context_cs_control(&dev_data->ctx, true);
563
564 transfer_next_chunk(dev);
565
566 error = spi_context_wait_for_completion(&dev_data->ctx);
567 if (error == -ETIMEDOUT) {
568 /* Set the chunk length to 0 so that event_handler()
569 * knows that the transaction timed out and is to be
570 * aborted.
571 */
572 dev_data->chunk_len = 0;
573 /* Abort the current transfer by deinitializing
574 * the nrfx driver.
575 */
576 nrfx_spim_uninit(&dev_config->spim);
577 dev_data->initialized = false;
578
579 /* Make sure the transaction is finished (it may be
580 * already finished if it actually did complete before
581 * the nrfx driver was deinitialized).
582 */
583 finish_transaction(dev, -ETIMEDOUT);
584
585 /* Clean up the driver state. */
586 k_sem_reset(&dev_data->ctx.sync);
587 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
588 anomaly_58_workaround_clear(dev_data);
589 #endif
590 } else if (error) {
591 finalize_spi_transaction(dev, true);
592 }
593 } else {
594 pm_device_runtime_put(dev);
595 }
596
597 spi_context_release(&dev_data->ctx, error);
598
599 return error;
600 }
601
spi_nrfx_transceive(const struct device * dev,const struct spi_config * spi_cfg,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs)602 static int spi_nrfx_transceive(const struct device *dev,
603 const struct spi_config *spi_cfg,
604 const struct spi_buf_set *tx_bufs,
605 const struct spi_buf_set *rx_bufs)
606 {
607 return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
608 }
609
610 #ifdef CONFIG_SPI_ASYNC
spi_nrfx_transceive_async(const struct device * dev,const struct spi_config * spi_cfg,const struct spi_buf_set * tx_bufs,const struct spi_buf_set * rx_bufs,spi_callback_t cb,void * userdata)611 static int spi_nrfx_transceive_async(const struct device *dev,
612 const struct spi_config *spi_cfg,
613 const struct spi_buf_set *tx_bufs,
614 const struct spi_buf_set *rx_bufs,
615 spi_callback_t cb,
616 void *userdata)
617 {
618 return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
619 }
620 #endif /* CONFIG_SPI_ASYNC */
621
spi_nrfx_release(const struct device * dev,const struct spi_config * spi_cfg)622 static int spi_nrfx_release(const struct device *dev,
623 const struct spi_config *spi_cfg)
624 {
625 struct spi_nrfx_data *dev_data = dev->data;
626
627 if (!spi_context_configured(&dev_data->ctx, spi_cfg)) {
628 return -EINVAL;
629 }
630
631 if (dev_data->busy) {
632 return -EBUSY;
633 }
634
635 spi_context_unlock_unconditionally(&dev_data->ctx);
636 finalize_spi_transaction(dev, false);
637
638 return 0;
639 }
640
641 static DEVICE_API(spi, spi_nrfx_driver_api) = {
642 .transceive = spi_nrfx_transceive,
643 #ifdef CONFIG_SPI_ASYNC
644 .transceive_async = spi_nrfx_transceive_async,
645 #endif
646 #ifdef CONFIG_SPI_RTIO
647 .iodev_submit = spi_rtio_iodev_default_submit,
648 #endif
649 .release = spi_nrfx_release,
650 };
651
spim_resume(const struct device * dev)652 static int spim_resume(const struct device *dev)
653 {
654 const struct spi_nrfx_config *dev_config = dev->config;
655
656 (void)pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT);
657 /* nrfx_spim_init() will be called at configuration before
658 * the next transfer.
659 */
660
661 #ifdef CONFIG_SOC_NRF54H20_GPD
662 nrf_gpd_retain_pins_set(dev_config->pcfg, false);
663 #endif
664
665 return IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME) ? request_clock(dev) : 0;
666 }
667
spim_suspend(const struct device * dev)668 static void spim_suspend(const struct device *dev)
669 {
670 const struct spi_nrfx_config *dev_config = dev->config;
671 struct spi_nrfx_data *dev_data = dev->data;
672
673 if (dev_data->initialized) {
674 nrfx_spim_uninit(&dev_config->spim);
675 dev_data->initialized = false;
676 }
677
678 if (IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) {
679 release_clock(dev);
680 }
681
682 #ifdef CONFIG_SOC_NRF54H20_GPD
683 nrf_gpd_retain_pins_set(dev_config->pcfg, true);
684 #endif
685
686 (void)pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_SLEEP);
687 }
688
spim_nrfx_pm_action(const struct device * dev,enum pm_device_action action)689 static int spim_nrfx_pm_action(const struct device *dev, enum pm_device_action action)
690 {
691 if (action == PM_DEVICE_ACTION_RESUME) {
692 return spim_resume(dev);
693 } else if (IS_ENABLED(CONFIG_PM_DEVICE) && (action == PM_DEVICE_ACTION_SUSPEND)) {
694 spim_suspend(dev);
695 } else {
696 return -ENOTSUP;
697 }
698
699 return 0;
700 }
701
spi_nrfx_init(const struct device * dev)702 static int spi_nrfx_init(const struct device *dev)
703 {
704 const struct spi_nrfx_config *dev_config = dev->config;
705 struct spi_nrfx_data *dev_data = dev->data;
706 int err;
707
708 err = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT);
709 if (err < 0) {
710 return err;
711 }
712
713 if (dev_config->wake_pin != WAKE_PIN_NOT_USED) {
714 err = spi_nrfx_wake_init(&dev_config->wake_gpiote, dev_config->wake_pin);
715 if (err == -ENODEV) {
716 LOG_ERR("Failed to allocate GPIOTE channel for WAKE");
717 return err;
718 }
719 if (err == -EIO) {
720 LOG_ERR("Failed to configure WAKE pin");
721 return err;
722 }
723 }
724
725 dev_config->irq_connect();
726
727 err = spi_context_cs_configure_all(&dev_data->ctx);
728 if (err < 0) {
729 return err;
730 }
731
732 spi_context_unlock_unconditionally(&dev_data->ctx);
733
734 #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58
735 err = anomaly_58_workaround_init(dev);
736 if (err < 0) {
737 return err;
738 }
739 #endif
740 return pm_device_driver_init(dev, spim_nrfx_pm_action);
741 }
742 /*
743 * We use NODELABEL here because the nrfx API requires us to call
744 * functions which are named according to SoC peripheral instance
745 * being operated on. Since DT_INST() makes no guarantees about that,
746 * it won't work.
747 */
748 #define SPIM(idx) DT_NODELABEL(spi##idx)
749 #define SPIM_PROP(idx, prop) DT_PROP(SPIM(idx), prop)
750 #define SPIM_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(SPIM(idx), prop)
751 #define SPIM_MEM_REGION(idx) DT_PHANDLE(SPIM(idx), memory_regions)
752
753 #define SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
754 IF_ENABLED(NRFX_SPIM_EXTENDED_ENABLED, \
755 (.dcx_pin = NRF_SPIM_PIN_NOT_CONNECTED, \
756 COND_CODE_1(SPIM_PROP(idx, rx_delay_supported), \
757 (.rx_delay = SPIM_PROP(idx, rx_delay),), \
758 ()) \
759 ))
760
761 #define SPIM_GET_MEM_ATTR(idx) \
762 COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \
763 (COND_CODE_1(DT_NODE_HAS_PROP(SPIM_MEM_REGION(idx), zephyr_memory_attr), \
764 (DT_PROP(SPIM_MEM_REGION(idx), zephyr_memory_attr)), \
765 (0))), \
766 (0))
767
768 /* Fast instances depend on the global HSFLL clock controller (as they need
769 * to request the highest frequency from it to operate correctly), so they
770 * must be initialized after that controller driver, hence the default SPI
771 * initialization priority may be too early for them.
772 */
773 #if defined(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY) && \
774 CONFIG_SPI_INIT_PRIORITY < CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY
775 #define SPIM_INIT_PRIORITY(idx) \
776 COND_CODE_1(SPIM_REQUESTS_CLOCK(idx), \
777 (UTIL_INC(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY)), \
778 (CONFIG_SPI_INIT_PRIORITY))
779 #else
780 #define SPIM_INIT_PRIORITY(idx) CONFIG_SPI_INIT_PRIORITY
781 #endif
782
783 #define SPI_NRFX_SPIM_DEFINE(idx) \
784 NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(SPIM(idx)); \
785 static void irq_connect##idx(void) \
786 { \
787 IRQ_CONNECT(DT_IRQN(SPIM(idx)), DT_IRQ(SPIM(idx), priority), \
788 nrfx_isr, nrfx_spim_##idx##_irq_handler, 0); \
789 } \
790 IF_ENABLED(SPI_BUFFER_IN_RAM, \
791 (static uint8_t spim_##idx##_tx_buffer \
792 [CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \
793 SPIM_MEMORY_SECTION(idx); \
794 static uint8_t spim_##idx##_rx_buffer \
795 [CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \
796 SPIM_MEMORY_SECTION(idx);)) \
797 static struct spi_nrfx_data spi_##idx##_data = { \
798 SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \
799 SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \
800 SPI_CONTEXT_CS_GPIOS_INITIALIZE(SPIM(idx), ctx) \
801 IF_ENABLED(SPI_BUFFER_IN_RAM, \
802 (.tx_buffer = spim_##idx##_tx_buffer, \
803 .rx_buffer = spim_##idx##_rx_buffer,)) \
804 .dev = DEVICE_DT_GET(SPIM(idx)), \
805 .busy = false, \
806 }; \
807 PINCTRL_DT_DEFINE(SPIM(idx)); \
808 static const struct spi_nrfx_config spi_##idx##z_config = { \
809 .spim = { \
810 .p_reg = (NRF_SPIM_Type *)DT_REG_ADDR(SPIM(idx)), \
811 .drv_inst_idx = NRFX_SPIM##idx##_INST_IDX, \
812 }, \
813 .max_freq = SPIM_PROP(idx, max_frequency), \
814 .def_config = { \
815 .skip_gpio_cfg = true, \
816 .skip_psel_cfg = true, \
817 .ss_pin = NRF_SPIM_PIN_NOT_CONNECTED, \
818 .orc = SPIM_PROP(idx, overrun_character), \
819 SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \
820 }, \
821 .irq_connect = irq_connect##idx, \
822 .pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPIM(idx)), \
823 .max_chunk_len = BIT_MASK(SPIM_PROP(idx, easydma_maxcnt_bits)),\
824 COND_CODE_1(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58, \
825 (.anomaly_58_workaround = \
826 SPIM_PROP(idx, anomaly_58_workaround),), \
827 ()) \
828 .wake_pin = NRF_DT_GPIOS_TO_PSEL_OR(SPIM(idx), wake_gpios, \
829 WAKE_PIN_NOT_USED), \
830 .wake_gpiote = WAKE_GPIOTE_INSTANCE(SPIM(idx)), \
831 IF_ENABLED(CONFIG_DCACHE, \
832 (.mem_attr = SPIM_GET_MEM_ATTR(idx),)) \
833 IF_ENABLED(USE_CLOCK_REQUESTS, \
834 (.clk_dev = SPIM_REQUESTS_CLOCK(idx) \
835 ? DEVICE_DT_GET(DT_CLOCKS_CTLR(SPIM(idx))) \
836 : NULL, \
837 .clk_spec = { \
838 .frequency = NRF_CLOCK_CONTROL_FREQUENCY_MAX, \
839 },)) \
840 }; \
841 BUILD_ASSERT(!SPIM_HAS_PROP(idx, wake_gpios) || \
842 !(DT_GPIO_FLAGS(SPIM(idx), wake_gpios) & GPIO_ACTIVE_LOW),\
843 "WAKE line must be configured as active high"); \
844 PM_DEVICE_DT_DEFINE(SPIM(idx), spim_nrfx_pm_action); \
845 SPI_DEVICE_DT_DEFINE(SPIM(idx), \
846 spi_nrfx_init, \
847 PM_DEVICE_DT_GET(SPIM(idx)), \
848 &spi_##idx##_data, \
849 &spi_##idx##z_config, \
850 POST_KERNEL, SPIM_INIT_PRIORITY(idx), \
851 &spi_nrfx_driver_api)
852
853 #define SPIM_MEMORY_SECTION(idx) \
854 COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \
855 (__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \
856 SPIM_MEM_REGION(idx)))))), \
857 ())
858
859 #ifdef CONFIG_HAS_HW_NRF_SPIM0
860 SPI_NRFX_SPIM_DEFINE(0);
861 #endif
862
863 #ifdef CONFIG_HAS_HW_NRF_SPIM1
864 SPI_NRFX_SPIM_DEFINE(1);
865 #endif
866
867 #ifdef CONFIG_HAS_HW_NRF_SPIM2
868 SPI_NRFX_SPIM_DEFINE(2);
869 #endif
870
871 #ifdef CONFIG_HAS_HW_NRF_SPIM3
872 SPI_NRFX_SPIM_DEFINE(3);
873 #endif
874
875 #ifdef CONFIG_HAS_HW_NRF_SPIM4
876 SPI_NRFX_SPIM_DEFINE(4);
877 #endif
878
879 #ifdef CONFIG_HAS_HW_NRF_SPIM00
880 SPI_NRFX_SPIM_DEFINE(00);
881 #endif
882
883 #ifdef CONFIG_HAS_HW_NRF_SPIM20
884 SPI_NRFX_SPIM_DEFINE(20);
885 #endif
886
887 #ifdef CONFIG_HAS_HW_NRF_SPIM21
888 SPI_NRFX_SPIM_DEFINE(21);
889 #endif
890
891 #ifdef CONFIG_HAS_HW_NRF_SPIM22
892 SPI_NRFX_SPIM_DEFINE(22);
893 #endif
894
895 #ifdef CONFIG_HAS_HW_NRF_SPIM30
896 SPI_NRFX_SPIM_DEFINE(30);
897 #endif
898
899 #ifdef CONFIG_HAS_HW_NRF_SPIM120
900 SPI_NRFX_SPIM_DEFINE(120);
901 #endif
902
903 #ifdef CONFIG_HAS_HW_NRF_SPIM121
904 SPI_NRFX_SPIM_DEFINE(121);
905 #endif
906
907 #ifdef CONFIG_HAS_HW_NRF_SPIM130
908 SPI_NRFX_SPIM_DEFINE(130);
909 #endif
910
911 #ifdef CONFIG_HAS_HW_NRF_SPIM131
912 SPI_NRFX_SPIM_DEFINE(131);
913 #endif
914
915 #ifdef CONFIG_HAS_HW_NRF_SPIM132
916 SPI_NRFX_SPIM_DEFINE(132);
917 #endif
918
919 #ifdef CONFIG_HAS_HW_NRF_SPIM133
920 SPI_NRFX_SPIM_DEFINE(133);
921 #endif
922
923 #ifdef CONFIG_HAS_HW_NRF_SPIM134
924 SPI_NRFX_SPIM_DEFINE(134);
925 #endif
926
927 #ifdef CONFIG_HAS_HW_NRF_SPIM135
928 SPI_NRFX_SPIM_DEFINE(135);
929 #endif
930
931 #ifdef CONFIG_HAS_HW_NRF_SPIM136
932 SPI_NRFX_SPIM_DEFINE(136);
933 #endif
934
935 #ifdef CONFIG_HAS_HW_NRF_SPIM137
936 SPI_NRFX_SPIM_DEFINE(137);
937 #endif
938