/* * Copyright (c) 2017 - 2018, Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SOC_NRF54H20_GPD #include #endif #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 #include #endif #ifdef CONFIG_SOC_NRF5340_CPUAPP #include #endif #include #include #include #include #include LOG_MODULE_REGISTER(spi_nrfx_spim, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" #include "spi_nrfx_common.h" #if defined(CONFIG_SOC_NRF52832) && !defined(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58) #error This driver is not available by default for nRF52832 because of Product Anomaly 58 \ (SPIM: An additional byte is clocked out when RXD.MAXCNT == 1 and TXD.MAXCNT <= 1). \ Use CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58=y to override this limitation. #endif #if (CONFIG_SPI_NRFX_RAM_BUFFER_SIZE > 0) #define SPI_BUFFER_IN_RAM 1 #endif #if defined(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL) && \ (defined(CONFIG_HAS_HW_NRF_SPIM120) || \ defined(CONFIG_HAS_HW_NRF_SPIM121)) #define SPIM_REQUESTS_CLOCK(idx) UTIL_OR(IS_EQ(idx, 120), \ IS_EQ(idx, 121)) #define USE_CLOCK_REQUESTS 1 #else #define SPIM_REQUESTS_CLOCK(idx) 0 #endif struct spi_nrfx_data { struct spi_context ctx; const struct device *dev; size_t chunk_len; bool busy; bool initialized; #ifdef SPI_BUFFER_IN_RAM uint8_t *tx_buffer; uint8_t *rx_buffer; #endif #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 bool anomaly_58_workaround_active; uint8_t ppi_ch; uint8_t gpiote_ch; #endif #ifdef USE_CLOCK_REQUESTS bool clock_requested; #endif }; struct spi_nrfx_config { nrfx_spim_t spim; uint32_t max_freq; nrfx_spim_config_t def_config; void (*irq_connect)(void); uint16_t max_chunk_len; const struct pinctrl_dev_config *pcfg; #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 bool anomaly_58_workaround; #endif uint32_t wake_pin; nrfx_gpiote_t wake_gpiote; #ifdef CONFIG_DCACHE uint32_t mem_attr; #endif #ifdef USE_CLOCK_REQUESTS const struct device *clk_dev; struct nrf_clock_spec clk_spec; #endif }; static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context); static inline int request_clock(const struct device *dev) { #ifdef USE_CLOCK_REQUESTS struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; int error; if (!dev_config->clk_dev) { return 0; } error = nrf_clock_control_request_sync( dev_config->clk_dev, &dev_config->clk_spec, K_MSEC(CONFIG_SPI_COMPLETION_TIMEOUT_TOLERANCE)); if (error < 0) { LOG_ERR("Failed to request clock: %d", error); return error; } dev_data->clock_requested = true; #else ARG_UNUSED(dev); #endif return 0; } static inline void release_clock(const struct device *dev) { #ifdef USE_CLOCK_REQUESTS struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; if (!dev_data->clock_requested) { return; } dev_data->clock_requested = false; nrf_clock_control_release(dev_config->clk_dev, &dev_config->clk_spec); #else ARG_UNUSED(dev); #endif } static inline void finalize_spi_transaction(const struct device *dev, bool deactivate_cs) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; void *reg = dev_config->spim.p_reg; if (deactivate_cs) { spi_context_cs_control(&dev_data->ctx, false); } if (NRF_SPIM_IS_320MHZ_SPIM(reg) && !(dev_data->ctx.config->operation & SPI_HOLD_ON_CS)) { nrfy_spim_disable(reg); } if (!IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) { release_clock(dev); } pm_device_runtime_put_async(dev, K_NO_WAIT); } static inline uint32_t get_nrf_spim_frequency(uint32_t frequency) { /* Get the highest supported frequency not exceeding the requested one. */ if (frequency >= MHZ(32) && (NRF_SPIM_HAS_32_MHZ_FREQ || NRF_SPIM_HAS_PRESCALER)) { return MHZ(32); } else if (frequency >= MHZ(16) && (NRF_SPIM_HAS_16_MHZ_FREQ || NRF_SPIM_HAS_PRESCALER)) { return MHZ(16); } else if (frequency >= MHZ(8)) { return MHZ(8); } else if (frequency >= MHZ(4)) { return MHZ(4); } else if (frequency >= MHZ(2)) { return MHZ(2); } else if (frequency >= MHZ(1)) { return MHZ(1); } else if (frequency >= KHZ(500)) { return KHZ(500); } else if (frequency >= KHZ(250)) { return KHZ(250); } else { return KHZ(125); } } static inline nrf_spim_mode_t get_nrf_spim_mode(uint16_t operation) { if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPIM_MODE_3; } else { return NRF_SPIM_MODE_2; } } else { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPIM_MODE_1; } else { return NRF_SPIM_MODE_0; } } } static inline nrf_spim_bit_order_t get_nrf_spim_bit_order(uint16_t operation) { if (operation & SPI_TRANSFER_LSB) { return NRF_SPIM_BIT_ORDER_LSB_FIRST; } else { return NRF_SPIM_BIT_ORDER_MSB_FIRST; } } static int configure(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; struct spi_context *ctx = &dev_data->ctx; uint32_t max_freq = dev_config->max_freq; nrfx_spim_config_t config; nrfx_err_t result; if (dev_data->initialized && spi_context_configured(ctx, spi_cfg)) { /* Already configured. No need to do it again. */ return 0; } if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) { LOG_ERR("Slave mode is not supported on %s", dev->name); return -EINVAL; } if (spi_cfg->operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -EINVAL; } if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) && (spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -EINVAL; } if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) { LOG_ERR("Word sizes other than 8 bits are not supported"); return -EINVAL; } if (spi_cfg->frequency < 125000) { LOG_ERR("Frequencies lower than 125 kHz are not supported"); return -EINVAL; } #if defined(CONFIG_SOC_NRF5340_CPUAPP) /* On nRF5340, the 32 Mbps speed is supported by the application core * when it is running at 128 MHz (see the Timing specifications section * in the nRF5340 PS). */ if (max_freq > 16000000 && nrf_clock_hfclk_div_get(NRF_CLOCK) != NRF_CLOCK_HFCLK_DIV_1) { max_freq = 16000000; } #endif config = dev_config->def_config; /* Limit the frequency to that supported by the SPIM instance. */ config.frequency = get_nrf_spim_frequency(MIN(spi_cfg->frequency, max_freq)); config.mode = get_nrf_spim_mode(spi_cfg->operation); config.bit_order = get_nrf_spim_bit_order(spi_cfg->operation); nrfy_gpio_pin_write(nrfy_spim_sck_pin_get(dev_config->spim.p_reg), spi_cfg->operation & SPI_MODE_CPOL ? 1 : 0); if (dev_data->initialized) { nrfx_spim_uninit(&dev_config->spim); dev_data->initialized = false; } result = nrfx_spim_init(&dev_config->spim, &config, event_handler, (void *)dev); if (result != NRFX_SUCCESS) { LOG_ERR("Failed to initialize nrfx driver: %08x", result); return -EIO; } dev_data->initialized = true; ctx->config = spi_cfg; return 0; } #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 static const nrfx_gpiote_t gpiote = NRFX_GPIOTE_INSTANCE(0); /* * Brief Workaround for transmitting 1 byte with SPIM. * * Derived from the setup_workaround_for_ftpan_58() function from * the nRF52832 Rev 1 Errata v1.6 document anomaly 58 workaround. * * Warning Must not be used when transmitting multiple bytes. * * Warning After this workaround is used, the user must reset the PPI * channel and the GPIOTE channel before attempting to transmit multiple * bytes. */ static void anomaly_58_workaround_setup(const struct device *dev) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; NRF_SPIM_Type *spim = dev_config->spim.p_reg; uint32_t ppi_ch = dev_data->ppi_ch; uint32_t gpiote_ch = dev_data->gpiote_ch; uint32_t eep = (uint32_t)&gpiote.p_reg->EVENTS_IN[gpiote_ch]; uint32_t tep = (uint32_t)&spim->TASKS_STOP; dev_data->anomaly_58_workaround_active = true; /* Create an event when SCK toggles */ nrf_gpiote_event_configure(gpiote.p_reg, gpiote_ch, spim->PSEL.SCK, GPIOTE_CONFIG_POLARITY_Toggle); nrf_gpiote_event_enable(gpiote.p_reg, gpiote_ch); /* Stop the spim instance when SCK toggles */ nrf_ppi_channel_endpoint_setup(NRF_PPI, ppi_ch, eep, tep); nrf_ppi_channel_enable(NRF_PPI, ppi_ch); /* The spim instance cannot be stopped mid-byte, so it will finish * transmitting the first byte and then stop. Effectively ensuring * that only 1 byte is transmitted. */ } static void anomaly_58_workaround_clear(struct spi_nrfx_data *dev_data) { uint32_t ppi_ch = dev_data->ppi_ch; uint32_t gpiote_ch = dev_data->gpiote_ch; if (dev_data->anomaly_58_workaround_active) { nrf_ppi_channel_disable(NRF_PPI, ppi_ch); nrf_gpiote_task_disable(gpiote.p_reg, gpiote_ch); dev_data->anomaly_58_workaround_active = false; } } static int anomaly_58_workaround_init(const struct device *dev) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; nrfx_err_t err_code; dev_data->anomaly_58_workaround_active = false; if (dev_config->anomaly_58_workaround) { err_code = nrfx_ppi_channel_alloc(&dev_data->ppi_ch); if (err_code != NRFX_SUCCESS) { LOG_ERR("Failed to allocate PPI channel"); return -ENODEV; } err_code = nrfx_gpiote_channel_alloc(&gpiote, &dev_data->gpiote_ch); if (err_code != NRFX_SUCCESS) { LOG_ERR("Failed to allocate GPIOTE channel"); return -ENODEV; } LOG_DBG("PAN 58 workaround enabled for %s: ppi %u, gpiote %u", dev->name, dev_data->ppi_ch, dev_data->gpiote_ch); } return 0; } #endif static void finish_transaction(const struct device *dev, int error) { struct spi_nrfx_data *dev_data = dev->data; struct spi_context *ctx = &dev_data->ctx; LOG_DBG("Transaction finished with status %d", error); spi_context_complete(ctx, dev, error); dev_data->busy = false; finalize_spi_transaction(dev, true); } static void transfer_next_chunk(const struct device *dev) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; struct spi_context *ctx = &dev_data->ctx; int error = 0; size_t chunk_len = spi_context_max_continuous_chunk(ctx); if (chunk_len > 0) { nrfx_spim_xfer_desc_t xfer; nrfx_err_t result; const uint8_t *tx_buf = ctx->tx_buf; uint8_t *rx_buf = ctx->rx_buf; if (chunk_len > dev_config->max_chunk_len) { chunk_len = dev_config->max_chunk_len; } #ifdef SPI_BUFFER_IN_RAM if (spi_context_tx_buf_on(ctx) && !nrf_dma_accessible_check(&dev_config->spim.p_reg, tx_buf)) { if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) { chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE; } memcpy(dev_data->tx_buffer, tx_buf, chunk_len); #ifdef CONFIG_DCACHE if (dev_config->mem_attr & DT_MEM_CACHEABLE) { sys_cache_data_flush_range(dev_data->tx_buffer, chunk_len); } #endif tx_buf = dev_data->tx_buffer; } if (spi_context_rx_buf_on(ctx) && !nrf_dma_accessible_check(&dev_config->spim.p_reg, rx_buf)) { if (chunk_len > CONFIG_SPI_NRFX_RAM_BUFFER_SIZE) { chunk_len = CONFIG_SPI_NRFX_RAM_BUFFER_SIZE; } rx_buf = dev_data->rx_buffer; } #endif dev_data->chunk_len = chunk_len; xfer.p_tx_buffer = tx_buf; xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0; xfer.p_rx_buffer = rx_buf; xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0; #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 if (xfer.rx_length == 1 && xfer.tx_length <= 1) { if (dev_config->anomaly_58_workaround) { anomaly_58_workaround_setup(dev); } else { LOG_WRN("Transaction aborted since it would trigger " "nRF52832 PAN 58"); error = -EIO; } } #endif if (error == 0) { result = nrfx_spim_xfer(&dev_config->spim, &xfer, 0); if (result == NRFX_SUCCESS) { return; } error = -EIO; #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 anomaly_58_workaround_clear(dev_data); #endif } } finish_transaction(dev, error); } static void event_handler(const nrfx_spim_evt_t *p_event, void *p_context) { const struct device *dev = p_context; struct spi_nrfx_data *dev_data = dev->data; #ifdef CONFIG_DCACHE const struct spi_nrfx_config *dev_config = dev->config; #endif if (p_event->type == NRFX_SPIM_EVENT_DONE) { /* Chunk length is set to 0 when a transaction is aborted * due to a timeout. */ if (dev_data->chunk_len == 0) { finish_transaction(dev_data->dev, -ETIMEDOUT); return; } #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 anomaly_58_workaround_clear(dev_data); #endif #ifdef SPI_BUFFER_IN_RAM if (spi_context_rx_buf_on(&dev_data->ctx) && p_event->xfer_desc.p_rx_buffer != NULL && p_event->xfer_desc.p_rx_buffer != dev_data->ctx.rx_buf) { #ifdef CONFIG_DCACHE if (dev_config->mem_attr & DT_MEM_CACHEABLE) { sys_cache_data_invd_range(dev_data->rx_buffer, dev_data->chunk_len); } #endif (void)memcpy(dev_data->ctx.rx_buf, dev_data->rx_buffer, dev_data->chunk_len); } #endif spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len); spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len); transfer_next_chunk(dev_data->dev); } } static int transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; void *reg = dev_config->spim.p_reg; int error; pm_device_runtime_get(dev); spi_context_lock(&dev_data->ctx, asynchronous, cb, userdata, spi_cfg); error = configure(dev, spi_cfg); if (error == 0 && !IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) { error = request_clock(dev); } if (error == 0) { dev_data->busy = true; if (dev_config->wake_pin != WAKE_PIN_NOT_USED) { error = spi_nrfx_wake_request(&dev_config->wake_gpiote, dev_config->wake_pin); if (error == -ETIMEDOUT) { LOG_WRN("Waiting for WAKE acknowledgment timed out"); /* If timeout occurs, try to perform the transfer * anyway, just in case the slave device was unable * to signal that it was already awaken and prepared * for the transfer. */ } } spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1); if (NRF_SPIM_IS_320MHZ_SPIM(reg)) { nrfy_spim_enable(reg); } spi_context_cs_control(&dev_data->ctx, true); transfer_next_chunk(dev); error = spi_context_wait_for_completion(&dev_data->ctx); if (error == -ETIMEDOUT) { /* Set the chunk length to 0 so that event_handler() * knows that the transaction timed out and is to be * aborted. */ dev_data->chunk_len = 0; /* Abort the current transfer by deinitializing * the nrfx driver. */ nrfx_spim_uninit(&dev_config->spim); dev_data->initialized = false; /* Make sure the transaction is finished (it may be * already finished if it actually did complete before * the nrfx driver was deinitialized). */ finish_transaction(dev, -ETIMEDOUT); /* Clean up the driver state. */ k_sem_reset(&dev_data->ctx.sync); #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 anomaly_58_workaround_clear(dev_data); #endif } else if (error) { finalize_spi_transaction(dev, true); } } else { pm_device_runtime_put(dev); } spi_context_release(&dev_data->ctx, error); return error; } static int spi_nrfx_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_nrfx_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int spi_nrfx_release(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_nrfx_data *dev_data = dev->data; if (!spi_context_configured(&dev_data->ctx, spi_cfg)) { return -EINVAL; } if (dev_data->busy) { return -EBUSY; } spi_context_unlock_unconditionally(&dev_data->ctx); finalize_spi_transaction(dev, false); return 0; } static DEVICE_API(spi, spi_nrfx_driver_api) = { .transceive = spi_nrfx_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_nrfx_transceive_async, #endif #ifdef CONFIG_SPI_RTIO .iodev_submit = spi_rtio_iodev_default_submit, #endif .release = spi_nrfx_release, }; static int spim_resume(const struct device *dev) { const struct spi_nrfx_config *dev_config = dev->config; (void)pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT); /* nrfx_spim_init() will be called at configuration before * the next transfer. */ #ifdef CONFIG_SOC_NRF54H20_GPD nrf_gpd_retain_pins_set(dev_config->pcfg, false); #endif return IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME) ? request_clock(dev) : 0; } static void spim_suspend(const struct device *dev) { const struct spi_nrfx_config *dev_config = dev->config; struct spi_nrfx_data *dev_data = dev->data; if (dev_data->initialized) { nrfx_spim_uninit(&dev_config->spim); dev_data->initialized = false; } if (IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) { release_clock(dev); } #ifdef CONFIG_SOC_NRF54H20_GPD nrf_gpd_retain_pins_set(dev_config->pcfg, true); #endif (void)pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_SLEEP); } static int spim_nrfx_pm_action(const struct device *dev, enum pm_device_action action) { if (action == PM_DEVICE_ACTION_RESUME) { return spim_resume(dev); } else if (IS_ENABLED(CONFIG_PM_DEVICE) && (action == PM_DEVICE_ACTION_SUSPEND)) { spim_suspend(dev); } else { return -ENOTSUP; } return 0; } static int spi_nrfx_init(const struct device *dev) { const struct spi_nrfx_config *dev_config = dev->config; struct spi_nrfx_data *dev_data = dev->data; int err; err = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } if (dev_config->wake_pin != WAKE_PIN_NOT_USED) { err = spi_nrfx_wake_init(&dev_config->wake_gpiote, dev_config->wake_pin); if (err == -ENODEV) { LOG_ERR("Failed to allocate GPIOTE channel for WAKE"); return err; } if (err == -EIO) { LOG_ERR("Failed to configure WAKE pin"); return err; } } dev_config->irq_connect(); err = spi_context_cs_configure_all(&dev_data->ctx); if (err < 0) { return err; } spi_context_unlock_unconditionally(&dev_data->ctx); #ifdef CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58 err = anomaly_58_workaround_init(dev); if (err < 0) { return err; } #endif return pm_device_driver_init(dev, spim_nrfx_pm_action); } /* * We use NODELABEL here because the nrfx API requires us to call * functions which are named according to SoC peripheral instance * being operated on. Since DT_INST() makes no guarantees about that, * it won't work. */ #define SPIM(idx) DT_NODELABEL(spi##idx) #define SPIM_PROP(idx, prop) DT_PROP(SPIM(idx), prop) #define SPIM_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(SPIM(idx), prop) #define SPIM_MEM_REGION(idx) DT_PHANDLE(SPIM(idx), memory_regions) #define SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \ IF_ENABLED(NRFX_SPIM_EXTENDED_ENABLED, \ (.dcx_pin = NRF_SPIM_PIN_NOT_CONNECTED, \ COND_CODE_1(SPIM_PROP(idx, rx_delay_supported), \ (.rx_delay = SPIM_PROP(idx, rx_delay),), \ ()) \ )) #define SPIM_GET_MEM_ATTR(idx) \ COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \ (COND_CODE_1(DT_NODE_HAS_PROP(SPIM_MEM_REGION(idx), zephyr_memory_attr), \ (DT_PROP(SPIM_MEM_REGION(idx), zephyr_memory_attr)), \ (0))), \ (0)) /* Fast instances depend on the global HSFLL clock controller (as they need * to request the highest frequency from it to operate correctly), so they * must be initialized after that controller driver, hence the default SPI * initialization priority may be too early for them. */ #if defined(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY) && \ CONFIG_SPI_INIT_PRIORITY < CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY #define SPIM_INIT_PRIORITY(idx) \ COND_CODE_1(SPIM_REQUESTS_CLOCK(idx), \ (UTIL_INC(CONFIG_CLOCK_CONTROL_NRF2_GLOBAL_HSFLL_INIT_PRIORITY)), \ (CONFIG_SPI_INIT_PRIORITY)) #else #define SPIM_INIT_PRIORITY(idx) CONFIG_SPI_INIT_PRIORITY #endif #define SPI_NRFX_SPIM_DEFINE(idx) \ NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(SPIM(idx)); \ static void irq_connect##idx(void) \ { \ IRQ_CONNECT(DT_IRQN(SPIM(idx)), DT_IRQ(SPIM(idx), priority), \ nrfx_isr, nrfx_spim_##idx##_irq_handler, 0); \ } \ IF_ENABLED(SPI_BUFFER_IN_RAM, \ (static uint8_t spim_##idx##_tx_buffer \ [CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \ SPIM_MEMORY_SECTION(idx); \ static uint8_t spim_##idx##_rx_buffer \ [CONFIG_SPI_NRFX_RAM_BUFFER_SIZE] \ SPIM_MEMORY_SECTION(idx);)) \ static struct spi_nrfx_data spi_##idx##_data = { \ SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(SPIM(idx), ctx) \ IF_ENABLED(SPI_BUFFER_IN_RAM, \ (.tx_buffer = spim_##idx##_tx_buffer, \ .rx_buffer = spim_##idx##_rx_buffer,)) \ .dev = DEVICE_DT_GET(SPIM(idx)), \ .busy = false, \ }; \ PINCTRL_DT_DEFINE(SPIM(idx)); \ static const struct spi_nrfx_config spi_##idx##z_config = { \ .spim = { \ .p_reg = (NRF_SPIM_Type *)DT_REG_ADDR(SPIM(idx)), \ .drv_inst_idx = NRFX_SPIM##idx##_INST_IDX, \ }, \ .max_freq = SPIM_PROP(idx, max_frequency), \ .def_config = { \ .skip_gpio_cfg = true, \ .skip_psel_cfg = true, \ .ss_pin = NRF_SPIM_PIN_NOT_CONNECTED, \ .orc = SPIM_PROP(idx, overrun_character), \ SPI_NRFX_SPIM_EXTENDED_CONFIG(idx) \ }, \ .irq_connect = irq_connect##idx, \ .pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPIM(idx)), \ .max_chunk_len = BIT_MASK(SPIM_PROP(idx, easydma_maxcnt_bits)),\ COND_CODE_1(CONFIG_SOC_NRF52832_ALLOW_SPIM_DESPITE_PAN_58, \ (.anomaly_58_workaround = \ SPIM_PROP(idx, anomaly_58_workaround),), \ ()) \ .wake_pin = NRF_DT_GPIOS_TO_PSEL_OR(SPIM(idx), wake_gpios, \ WAKE_PIN_NOT_USED), \ .wake_gpiote = WAKE_GPIOTE_INSTANCE(SPIM(idx)), \ IF_ENABLED(CONFIG_DCACHE, \ (.mem_attr = SPIM_GET_MEM_ATTR(idx),)) \ IF_ENABLED(USE_CLOCK_REQUESTS, \ (.clk_dev = SPIM_REQUESTS_CLOCK(idx) \ ? DEVICE_DT_GET(DT_CLOCKS_CTLR(SPIM(idx))) \ : NULL, \ .clk_spec = { \ .frequency = NRF_CLOCK_CONTROL_FREQUENCY_MAX, \ },)) \ }; \ BUILD_ASSERT(!SPIM_HAS_PROP(idx, wake_gpios) || \ !(DT_GPIO_FLAGS(SPIM(idx), wake_gpios) & GPIO_ACTIVE_LOW),\ "WAKE line must be configured as active high"); \ PM_DEVICE_DT_DEFINE(SPIM(idx), spim_nrfx_pm_action); \ SPI_DEVICE_DT_DEFINE(SPIM(idx), \ spi_nrfx_init, \ PM_DEVICE_DT_GET(SPIM(idx)), \ &spi_##idx##_data, \ &spi_##idx##z_config, \ POST_KERNEL, SPIM_INIT_PRIORITY(idx), \ &spi_nrfx_driver_api) #define SPIM_MEMORY_SECTION(idx) \ COND_CODE_1(SPIM_HAS_PROP(idx, memory_regions), \ (__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \ SPIM_MEM_REGION(idx)))))), \ ()) #ifdef CONFIG_HAS_HW_NRF_SPIM0 SPI_NRFX_SPIM_DEFINE(0); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM1 SPI_NRFX_SPIM_DEFINE(1); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM2 SPI_NRFX_SPIM_DEFINE(2); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM3 SPI_NRFX_SPIM_DEFINE(3); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM4 SPI_NRFX_SPIM_DEFINE(4); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM00 SPI_NRFX_SPIM_DEFINE(00); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM20 SPI_NRFX_SPIM_DEFINE(20); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM21 SPI_NRFX_SPIM_DEFINE(21); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM22 SPI_NRFX_SPIM_DEFINE(22); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM30 SPI_NRFX_SPIM_DEFINE(30); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM120 SPI_NRFX_SPIM_DEFINE(120); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM121 SPI_NRFX_SPIM_DEFINE(121); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM130 SPI_NRFX_SPIM_DEFINE(130); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM131 SPI_NRFX_SPIM_DEFINE(131); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM132 SPI_NRFX_SPIM_DEFINE(132); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM133 SPI_NRFX_SPIM_DEFINE(133); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM134 SPI_NRFX_SPIM_DEFINE(134); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM135 SPI_NRFX_SPIM_DEFINE(135); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM136 SPI_NRFX_SPIM_DEFINE(136); #endif #ifdef CONFIG_HAS_HW_NRF_SPIM137 SPI_NRFX_SPIM_DEFINE(137); #endif