1Runtime Security Engine (RSE)
2=============================
3
4Introduction
5------------
6
7Runtime Security Engine (RSE) is an Arm subsystem that provides a reference
8implementation of the HES Host in the
9`Arm Confidential Compute Architecture (CCA) <https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture>`_.
10It is designed to be integrated into A-profile compute subsystems that implement
11Arm CCA, where it serves as the Root of Trust.
12
13RSE initially boots from immutable code (BL1_1) in its internal ROM, before
14jumping to BL1_2, which is provisioned and hash-locked in RSE OTP. The updatable
15MCUBoot BL2 boot stage is loaded from host system flash into RSE SRAM, where it
16is authenticated. BL2 loads and authenticates the TF-M runtime into RSE SRAM
17from host flash. BL2 is also responsible for loading initial boot code into
18other subsystems within the host.
19
20The RSE platform port supports the TF-M Crypto, TF-M Initial Attestation,
21Measured Boot and TF-M Platform services along with the corresponding
22regression tests. It supports the IPC model in multi-core topology with
23Isolation Level 1 and 2.
24
25Building TF-M
26-------------
27
28Follow the instructions in :doc:`Build instructions </building/tfm_build_instruction>`.
29Build TF-M with platform name: `arm/rse/<rse platform name>`
30
31For example for building RSE for Total Compute platforms:
32``-DTFM_PLATFORM=arm/rse/tc``
33
34Signing host images
35-------------------
36
37RSE BL2 can load boot images into other subsystems within the host system. It
38expects images to be signed, with the signatures attached to the images in the
39MCUBoot metadata format.
40
41The `imgtool Python package <https://pypi.org/project/imgtool/>`_ can be used to
42sign images in the required format. To sign a host image using the development
43key distributed with TF-M, use the following command::
44
45    imgtool sign \
46        -k <TF-M base directory>/bl2/ext/mcuboot/root-RSA-3072.pem \
47        --public-key-format full \
48        --max-align 8 \
49        --align 1 \
50        -v "0.0.1" \
51        -s 1 \
52        -H 0x2000 \
53        --pad-header \
54        -S 0x80000 \
55        --pad \
56        -L <load address> \
57        <binary infile> \
58        <signed binary outfile>
59
60The ``load address`` is the logical address in the RSE memory map to which BL2
61will load the image. RSE FW expects the first host image to be loaded to address
62``0x70000000`` (the beginning of the RSE ATU host access region), and each
63subsequent host image to be loaded at an offset of ``0x1000000`` from the
64previous image. The RSE ATU should be configured to map these logical addresses
65to the physical addresses in the host system that the images need to be loaded
66to.
67
68For more information on the ``imgtool`` parameters, see the MCUBoot
69`imgtool documentation <https://docs.mcuboot.com/imgtool.html>`_.
70
71.. warning::
72
73    The TF-M development key must never be used in production. To generate a
74    production key, follow the imgtool documentation.
75
76Running the code
77----------------
78
79To run the built images, first the ROM image must be created from the bl1_1
80binary and the ROM DMA Initial Command Sequence (ICS).::
81
82    srec_cat \
83            bl1_1.bin -Binary     -offset 0x0 \
84            rom_dma_ics.bin -Binary -offset 0x1F000 \
85            -o rom.bin -Binary
86
87Then, the flash image must be created by concatenating the images that are
88output from the build. To create the flash image, the following ``fiptool``
89command should be run. ``fiptool`` documentation can be found `here
90<https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/tools-build.html?highlight=fiptool#building-and-using-the-fip-tool>`_.
91Note that an up-to-date fiptool that supports the RSE UUIDs must be used.::
92
93    fiptool create \
94        --align 8192 --rss-bl2     bl2_signed.bin \
95        --align 8192 --rss-ns      tfm_ns_signed.bin \
96        --align 8192 --rss-s       tfm_s_signed.bin \
97        --align 8192 --rss-scp-bl1 <signed Host SCP BL1 image> \
98        --align 8192 --rss-ap-bl1  <signed Host AP BL1 image> \
99        fip.bin
100
101If you already have a ``fip.bin`` containing host firmware images, RSE FIP
102images can be patched in::
103
104    fiptool update --align 8192 --rss-bl2 bl2_signed.bin fip.bin
105    fiptool update --align 8192 --rss-ns  tfm_ns.bin fip.bin
106    fiptool update --align 8192 --rss-s   tfm_s.bin fip.bin
107
108If XIP mode is enabled, the following ``fiptool`` command should be run to
109create the flash image::
110
111    fiptool create \
112        --align 8192 --rss-bl2           bl2_signed.bin \
113        --align 8192 --rss-ns            tfm_ns_encrypted.bin \
114        --align 8192 --rss-s             tfm_s_encrypted.bin \
115        --align 8192 --rss-sic-tables-ns tfm_ns_sic_tables_signed.bin \
116        --align 8192 --rss-sic-tables-s  tfm_s_sic_tables_signed.bin \
117        --align 8192 --rss-scp-bl1       <signed Host SCP BL1 image> \
118        --align 8192 --rss-ap-bl1        <signed Host AP BL1 image> \
119        fip.bin
120
121Once the FIP is prepared, a host flash image can be created using ``srec_cat``::
122
123    srec_cat \
124            fip.bin -Binary -offset 0x0 \
125            -o host_flash.bin -Binary
126
127If GPT support is enabled, and a host ``fip.bin`` and ``fip_gpt.bin`` has been
128obtained, RSE images can be inserted by first patching the host FIP and then
129inserting that patched FIP into the GPT image::
130
131    sector_size=$(gdisk -l fip_gpt.bin | grep -i "sector size (logical):" | \
132                sed 's/.*logical): \([0-9]*\) bytes/\1/')
133
134    fip_label=" FIP_A$"
135    fip_start_sector=$(gdisk -l fip_gpt.bin | grep "$fip_label" | awk '{print $2}')
136    fip_sector_am=$(gdisk -l fip_gpt.bin | grep "$fip_label" | awk '{print $3 - $2}')
137
138    dd if=fip.bin of=fip_gpt.bin bs=$sector_size seek=$fip_start_sector \
139        count=$fip_sector_am conv=notrunc
140
141    fip_label = " FIP_B$"
142    fip_start_sector = $(gdisk -l fip_gpt.bin | grep "$fip_label" | awk '{print $2}')
143    fip_sector_am = $(gdisk -l fip_gpt.bin | grep "$fip_label" | awk '{print $3 - $2}')
144
145    dd if=fip.bin of=fip_gpt.bin bs=$sector_size seek=$fip_start_sector \
146        count=$fip_sector_am conv=notrunc
147
148To patch a ``fip_gpt.bin`` without having an initial ``fip.bin``, the FIP can be
149extracted from the GPT image using the following commands (and can then be
150patched and reinserted using the above commands)::
151
152    sector_size=$(gdisk -l fip_gpt.bin | grep -i "sector size (logical):" | \
153                sed 's/.*logical): \([0-9]*\) bytes/\1/')
154
155    fip_label=" FIP_A$"
156    fip_start_sector=$(gdisk -l fip_gpt.bin | grep "$fip_label" | awk '{print $2}')
157    fip_sector_am=$(gdisk -l fip_gpt.bin | grep "$fip_label" | awk '{print $3 - $2}')
158
159    dd if=fip_gpt.bin of=fip.bin bs=$sector_size skip=$fip_start_sector \
160        count=$fip_sector_am conv=notrunc
161
162Once the ``fip_gpt.bin`` is prepared, it is placed at the base of the host flash
163image::
164
165    srec_cat \
166            fip_gpt.bin -Binary -offset 0x0 \
167            -o host_flash.bin -Binary
168
169The RSE ROM binary should be placed in RSE ROM at ``0x11000000`` and the host
170flash binary should be placed at the base of the host flash. For the TC
171platform, this is at ``0x80000000``.
172
173The RSE OTP must be provisioned. On a development platform with
174``TFM_DUMMY_PROVISIONING`` enabled, BL1_1 expects provisioning bundles to be
175preloaded into SRAM. Preload ``encrypted_cm_provisioning_bundle_0.bin`` to the
176base of VM0, and ``encrypted_dm_provisioning_bundle.bin`` to the base of VM1.
177
178If ``TFM_DUMMY_PROVISIONING`` is disabled and provisioning is required, then
179BL1_1 will first wait for the TP mode to be set by a debugger (setting the
180``tp_mode`` variable in the current stack frame is easiest). BL1_1 will then
181wait for provisioning bundles to be loaded to VM0 and VM1 in the same way as
182when ``TFM_DUMMY_PROVISIONING`` is enabled, except that it will not
183automatically perform the reset once each provisioning state is complete. For
184more details about provisioning flows, see
185:doc:`RSE provisioning </platform/arm/rse/rse_provisioning>`.
186
187--------------
188
189*Copyright (c) 2022-2023, Arm Limited. All rights reserved.*
190