1 /*
2 * Copyright (c) 2022-2023, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6 #include <assert.h>
7 #include <errno.h>
8 #include <inttypes.h>
9
10 #include <common/debug.h>
11 #include <common/runtime_svc.h>
12 #include <lib/object_pool.h>
13 #include <lib/spinlock.h>
14 #include <lib/xlat_tables/xlat_tables_v2.h>
15 #include <services/ffa_svc.h>
16 #include "spmc.h"
17 #include "spmc_shared_mem.h"
18
19 #include <platform_def.h>
20
21 /**
22 * struct spmc_shmem_obj - Shared memory object.
23 * @desc_size: Size of @desc.
24 * @desc_filled: Size of @desc already received.
25 * @in_use: Number of clients that have called ffa_mem_retrieve_req
26 * without a matching ffa_mem_relinquish call.
27 * @desc: FF-A memory region descriptor passed in ffa_mem_share.
28 */
29 struct spmc_shmem_obj {
30 size_t desc_size;
31 size_t desc_filled;
32 size_t in_use;
33 struct ffa_mtd desc;
34 };
35
36 /*
37 * Declare our data structure to store the metadata of memory share requests.
38 * The main datastore is allocated on a per platform basis to ensure enough
39 * storage can be made available.
40 * The address of the data store will be populated by the SPMC during its
41 * initialization.
42 */
43
44 struct spmc_shmem_obj_state spmc_shmem_obj_state = {
45 /* Set start value for handle so top 32 bits are needed quickly. */
46 .next_handle = 0xffffffc0U,
47 };
48
49 /**
50 * spmc_shmem_obj_size - Convert from descriptor size to object size.
51 * @desc_size: Size of struct ffa_memory_region_descriptor object.
52 *
53 * Return: Size of struct spmc_shmem_obj object.
54 */
spmc_shmem_obj_size(size_t desc_size)55 static size_t spmc_shmem_obj_size(size_t desc_size)
56 {
57 return desc_size + offsetof(struct spmc_shmem_obj, desc);
58 }
59
60 /**
61 * spmc_shmem_obj_alloc - Allocate struct spmc_shmem_obj.
62 * @state: Global state.
63 * @desc_size: Size of struct ffa_memory_region_descriptor object that
64 * allocated object will hold.
65 *
66 * Return: Pointer to newly allocated object, or %NULL if there not enough space
67 * left. The returned pointer is only valid while @state is locked, to
68 * used it again after unlocking @state, spmc_shmem_obj_lookup must be
69 * called.
70 */
71 static struct spmc_shmem_obj *
spmc_shmem_obj_alloc(struct spmc_shmem_obj_state * state,size_t desc_size)72 spmc_shmem_obj_alloc(struct spmc_shmem_obj_state *state, size_t desc_size)
73 {
74 struct spmc_shmem_obj *obj;
75 size_t free = state->data_size - state->allocated;
76 size_t obj_size;
77
78 if (state->data == NULL) {
79 ERROR("Missing shmem datastore!\n");
80 return NULL;
81 }
82
83 /* Ensure that descriptor size is aligned */
84 if (!is_aligned(desc_size, 16)) {
85 WARN("%s(0x%zx) desc_size not 16-byte aligned\n",
86 __func__, desc_size);
87 return NULL;
88 }
89
90 obj_size = spmc_shmem_obj_size(desc_size);
91
92 /* Ensure the obj size has not overflowed. */
93 if (obj_size < desc_size) {
94 WARN("%s(0x%zx) desc_size overflow\n",
95 __func__, desc_size);
96 return NULL;
97 }
98
99 if (obj_size > free) {
100 WARN("%s(0x%zx) failed, free 0x%zx\n",
101 __func__, desc_size, free);
102 return NULL;
103 }
104 obj = (struct spmc_shmem_obj *)(state->data + state->allocated);
105 obj->desc = (struct ffa_mtd) {0};
106 obj->desc_size = desc_size;
107 obj->desc_filled = 0;
108 obj->in_use = 0;
109 state->allocated += obj_size;
110 return obj;
111 }
112
113 /**
114 * spmc_shmem_obj_free - Free struct spmc_shmem_obj.
115 * @state: Global state.
116 * @obj: Object to free.
117 *
118 * Release memory used by @obj. Other objects may move, so on return all
119 * pointers to struct spmc_shmem_obj object should be considered invalid, not
120 * just @obj.
121 *
122 * The current implementation always compacts the remaining objects to simplify
123 * the allocator and to avoid fragmentation.
124 */
125
spmc_shmem_obj_free(struct spmc_shmem_obj_state * state,struct spmc_shmem_obj * obj)126 static void spmc_shmem_obj_free(struct spmc_shmem_obj_state *state,
127 struct spmc_shmem_obj *obj)
128 {
129 size_t free_size = spmc_shmem_obj_size(obj->desc_size);
130 uint8_t *shift_dest = (uint8_t *)obj;
131 uint8_t *shift_src = shift_dest + free_size;
132 size_t shift_size = state->allocated - (shift_src - state->data);
133
134 if (shift_size != 0U) {
135 memmove(shift_dest, shift_src, shift_size);
136 }
137 state->allocated -= free_size;
138 }
139
140 /**
141 * spmc_shmem_obj_lookup - Lookup struct spmc_shmem_obj by handle.
142 * @state: Global state.
143 * @handle: Unique handle of object to return.
144 *
145 * Return: struct spmc_shmem_obj_state object with handle matching @handle.
146 * %NULL, if not object in @state->data has a matching handle.
147 */
148 static struct spmc_shmem_obj *
spmc_shmem_obj_lookup(struct spmc_shmem_obj_state * state,uint64_t handle)149 spmc_shmem_obj_lookup(struct spmc_shmem_obj_state *state, uint64_t handle)
150 {
151 uint8_t *curr = state->data;
152
153 while (curr - state->data < state->allocated) {
154 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
155
156 if (obj->desc.handle == handle) {
157 return obj;
158 }
159 curr += spmc_shmem_obj_size(obj->desc_size);
160 }
161 return NULL;
162 }
163
164 /**
165 * spmc_shmem_obj_get_next - Get the next memory object from an offset.
166 * @offset: Offset used to track which objects have previously been
167 * returned.
168 *
169 * Return: the next struct spmc_shmem_obj_state object from the provided
170 * offset.
171 * %NULL, if there are no more objects.
172 */
173 static struct spmc_shmem_obj *
spmc_shmem_obj_get_next(struct spmc_shmem_obj_state * state,size_t * offset)174 spmc_shmem_obj_get_next(struct spmc_shmem_obj_state *state, size_t *offset)
175 {
176 uint8_t *curr = state->data + *offset;
177
178 if (curr - state->data < state->allocated) {
179 struct spmc_shmem_obj *obj = (struct spmc_shmem_obj *)curr;
180
181 *offset += spmc_shmem_obj_size(obj->desc_size);
182
183 return obj;
184 }
185 return NULL;
186 }
187
188 /*******************************************************************************
189 * FF-A memory descriptor helper functions.
190 ******************************************************************************/
191 /**
192 * spmc_shmem_obj_get_emad - Get the emad from a given index depending on the
193 * clients FF-A version.
194 * @desc: The memory transaction descriptor.
195 * @index: The index of the emad element to be accessed.
196 * @ffa_version: FF-A version of the provided structure.
197 * @emad_size: Will be populated with the size of the returned emad
198 * descriptor.
199 * Return: A pointer to the requested emad structure.
200 */
201 static void *
spmc_shmem_obj_get_emad(const struct ffa_mtd * desc,uint32_t index,uint32_t ffa_version,size_t * emad_size)202 spmc_shmem_obj_get_emad(const struct ffa_mtd *desc, uint32_t index,
203 uint32_t ffa_version, size_t *emad_size)
204 {
205 uint8_t *emad;
206
207 assert(index < desc->emad_count);
208
209 /*
210 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
211 * format, otherwise assume it is a v1.1 format.
212 */
213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
214 emad = (uint8_t *)desc + offsetof(struct ffa_mtd_v1_0, emad);
215 *emad_size = sizeof(struct ffa_emad_v1_0);
216 } else {
217 assert(is_aligned(desc->emad_offset, 16));
218 emad = ((uint8_t *) desc + desc->emad_offset);
219 *emad_size = desc->emad_size;
220 }
221
222 assert(((uint64_t)index * (uint64_t)*emad_size) <= UINT32_MAX);
223 return (emad + (*emad_size * index));
224 }
225
226 /**
227 * spmc_shmem_obj_get_comp_mrd - Get comp_mrd from a mtd struct based on the
228 * FF-A version of the descriptor.
229 * @obj: Object containing ffa_memory_region_descriptor.
230 *
231 * Return: struct ffa_comp_mrd object corresponding to the composite memory
232 * region descriptor.
233 */
234 static struct ffa_comp_mrd *
spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj * obj,uint32_t ffa_version)235 spmc_shmem_obj_get_comp_mrd(struct spmc_shmem_obj *obj, uint32_t ffa_version)
236 {
237 size_t emad_size;
238 /*
239 * The comp_mrd_offset field of the emad descriptor remains consistent
240 * between FF-A versions therefore we can use the v1.0 descriptor here
241 * in all cases.
242 */
243 struct ffa_emad_v1_0 *emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
244 ffa_version,
245 &emad_size);
246
247 /* Ensure the composite descriptor offset is aligned. */
248 if (!is_aligned(emad->comp_mrd_offset, 8)) {
249 WARN("Unaligned composite memory region descriptor offset.\n");
250 return NULL;
251 }
252
253 return (struct ffa_comp_mrd *)
254 ((uint8_t *)(&obj->desc) + emad->comp_mrd_offset);
255 }
256
257 /**
258 * spmc_shmem_obj_validate_id - Validate a partition ID is participating in
259 * a given memory transaction.
260 * @sp_id: Partition ID to validate.
261 * @obj: The shared memory object containing the descriptor
262 * of the memory transaction.
263 * Return: true if ID is valid, else false.
264 */
spmc_shmem_obj_validate_id(struct spmc_shmem_obj * obj,uint16_t sp_id)265 bool spmc_shmem_obj_validate_id(struct spmc_shmem_obj *obj, uint16_t sp_id)
266 {
267 bool found = false;
268 struct ffa_mtd *desc = &obj->desc;
269 size_t desc_size = obj->desc_size;
270
271 /* Validate the partition is a valid participant. */
272 for (unsigned int i = 0U; i < desc->emad_count; i++) {
273 size_t emad_size;
274 struct ffa_emad_v1_0 *emad;
275
276 emad = spmc_shmem_obj_get_emad(desc, i,
277 MAKE_FFA_VERSION(1, 1),
278 &emad_size);
279 /*
280 * Validate the calculated emad address resides within the
281 * descriptor.
282 */
283 if ((emad == NULL) || (uintptr_t) emad >=
284 (uintptr_t)((uint8_t *) desc + desc_size)) {
285 VERBOSE("Invalid emad.\n");
286 break;
287 }
288 if (sp_id == emad->mapd.endpoint_id) {
289 found = true;
290 break;
291 }
292 }
293 return found;
294 }
295
296 /*
297 * Compare two memory regions to determine if any range overlaps with another
298 * ongoing memory transaction.
299 */
300 static bool
overlapping_memory_regions(struct ffa_comp_mrd * region1,struct ffa_comp_mrd * region2)301 overlapping_memory_regions(struct ffa_comp_mrd *region1,
302 struct ffa_comp_mrd *region2)
303 {
304 uint64_t region1_start;
305 uint64_t region1_size;
306 uint64_t region1_end;
307 uint64_t region2_start;
308 uint64_t region2_size;
309 uint64_t region2_end;
310
311 assert(region1 != NULL);
312 assert(region2 != NULL);
313
314 if (region1 == region2) {
315 return true;
316 }
317
318 /*
319 * Check each memory region in the request against existing
320 * transactions.
321 */
322 for (size_t i = 0; i < region1->address_range_count; i++) {
323
324 region1_start = region1->address_range_array[i].address;
325 region1_size =
326 region1->address_range_array[i].page_count *
327 PAGE_SIZE_4KB;
328 region1_end = region1_start + region1_size;
329
330 for (size_t j = 0; j < region2->address_range_count; j++) {
331
332 region2_start = region2->address_range_array[j].address;
333 region2_size =
334 region2->address_range_array[j].page_count *
335 PAGE_SIZE_4KB;
336 region2_end = region2_start + region2_size;
337
338 /* Check if regions are not overlapping. */
339 if (!((region2_end <= region1_start) ||
340 (region1_end <= region2_start))) {
341 WARN("Overlapping mem regions 0x%lx-0x%lx & 0x%lx-0x%lx\n",
342 region1_start, region1_end,
343 region2_start, region2_end);
344 return true;
345 }
346 }
347 }
348 return false;
349 }
350
351 /*******************************************************************************
352 * FF-A v1.0 Memory Descriptor Conversion Helpers.
353 ******************************************************************************/
354 /**
355 * spmc_shm_get_v1_1_descriptor_size - Calculate the required size for a v1.1
356 * converted descriptor.
357 * @orig: The original v1.0 memory transaction descriptor.
358 * @desc_size: The size of the original v1.0 memory transaction descriptor.
359 *
360 * Return: the size required to store the descriptor store in the v1.1 format.
361 */
362 static uint64_t
spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 * orig,size_t desc_size)363 spmc_shm_get_v1_1_descriptor_size(struct ffa_mtd_v1_0 *orig, size_t desc_size)
364 {
365 uint64_t size = 0;
366 struct ffa_comp_mrd *mrd;
367 struct ffa_emad_v1_0 *emad_array = orig->emad;
368
369 /* Get the size of the v1.1 descriptor. */
370 size += sizeof(struct ffa_mtd);
371
372 /* Add the size of the emad descriptors. */
373 size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
374
375 /* Add the size of the composite mrds. */
376 size += sizeof(struct ffa_comp_mrd);
377
378 /* Add the size of the constituent mrds. */
379 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
380 emad_array[0].comp_mrd_offset);
381
382 /* Add the size of the memory region descriptors. */
383 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
384
385 return size;
386 }
387
388 /**
389 * spmc_shm_get_v1_0_descriptor_size - Calculate the required size for a v1.0
390 * converted descriptor.
391 * @orig: The original v1.1 memory transaction descriptor.
392 * @desc_size: The size of the original v1.1 memory transaction descriptor.
393 *
394 * Return: the size required to store the descriptor store in the v1.0 format.
395 */
396 static size_t
spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd * orig,size_t desc_size)397 spmc_shm_get_v1_0_descriptor_size(struct ffa_mtd *orig, size_t desc_size)
398 {
399 size_t size = 0;
400 struct ffa_comp_mrd *mrd;
401 struct ffa_emad_v1_0 *emad_array = (struct ffa_emad_v1_0 *)
402 ((uint8_t *) orig +
403 orig->emad_offset);
404
405 /* Get the size of the v1.0 descriptor. */
406 size += sizeof(struct ffa_mtd_v1_0);
407
408 /* Add the size of the v1.0 emad descriptors. */
409 size += orig->emad_count * sizeof(struct ffa_emad_v1_0);
410
411 /* Add the size of the composite mrds. */
412 size += sizeof(struct ffa_comp_mrd);
413
414 /* Add the size of the constituent mrds. */
415 mrd = (struct ffa_comp_mrd *) ((uint8_t *) orig +
416 emad_array[0].comp_mrd_offset);
417
418 /* Check the calculated address is within the memory descriptor. */
419 if (((uintptr_t) mrd + sizeof(struct ffa_comp_mrd)) >
420 (uintptr_t)((uint8_t *) orig + desc_size)) {
421 return 0;
422 }
423 size += mrd->address_range_count * sizeof(struct ffa_cons_mrd);
424
425 return size;
426 }
427
428 /**
429 * spmc_shm_convert_shmem_obj_from_v1_0 - Converts a given v1.0 memory object.
430 * @out_obj: The shared memory object to populate the converted descriptor.
431 * @orig: The shared memory object containing the v1.0 descriptor.
432 *
433 * Return: true if the conversion is successful else false.
434 */
435 static bool
spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj * out_obj,struct spmc_shmem_obj * orig)436 spmc_shm_convert_shmem_obj_from_v1_0(struct spmc_shmem_obj *out_obj,
437 struct spmc_shmem_obj *orig)
438 {
439 struct ffa_mtd_v1_0 *mtd_orig = (struct ffa_mtd_v1_0 *) &orig->desc;
440 struct ffa_mtd *out = &out_obj->desc;
441 struct ffa_emad_v1_0 *emad_array_in;
442 struct ffa_emad_v1_0 *emad_array_out;
443 struct ffa_comp_mrd *mrd_in;
444 struct ffa_comp_mrd *mrd_out;
445
446 size_t mrd_in_offset;
447 size_t mrd_out_offset;
448 size_t mrd_size = 0;
449
450 /* Populate the new descriptor format from the v1.0 struct. */
451 out->sender_id = mtd_orig->sender_id;
452 out->memory_region_attributes = mtd_orig->memory_region_attributes;
453 out->flags = mtd_orig->flags;
454 out->handle = mtd_orig->handle;
455 out->tag = mtd_orig->tag;
456 out->emad_count = mtd_orig->emad_count;
457 out->emad_size = sizeof(struct ffa_emad_v1_0);
458
459 /*
460 * We will locate the emad descriptors directly after the ffa_mtd
461 * struct. This will be 8-byte aligned.
462 */
463 out->emad_offset = sizeof(struct ffa_mtd);
464
465 emad_array_in = mtd_orig->emad;
466 emad_array_out = (struct ffa_emad_v1_0 *)
467 ((uint8_t *) out + out->emad_offset);
468
469 /* Copy across the emad structs. */
470 for (unsigned int i = 0U; i < out->emad_count; i++) {
471 /* Bound check for emad array. */
472 if (((uint8_t *)emad_array_in + sizeof(struct ffa_emad_v1_0)) >
473 ((uint8_t *) mtd_orig + orig->desc_size)) {
474 VERBOSE("%s: Invalid mtd structure.\n", __func__);
475 return false;
476 }
477 memcpy(&emad_array_out[i], &emad_array_in[i],
478 sizeof(struct ffa_emad_v1_0));
479 }
480
481 /* Place the mrd descriptors after the end of the emad descriptors.*/
482 mrd_in_offset = emad_array_in->comp_mrd_offset;
483 mrd_out_offset = out->emad_offset + (out->emad_size * out->emad_count);
484 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
485
486 /* Add the size of the composite memory region descriptor. */
487 mrd_size += sizeof(struct ffa_comp_mrd);
488
489 /* Find the mrd descriptor. */
490 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
491
492 /* Add the size of the constituent memory region descriptors. */
493 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
494
495 /*
496 * Update the offset in the emads by the delta between the input and
497 * output addresses.
498 */
499 for (unsigned int i = 0U; i < out->emad_count; i++) {
500 emad_array_out[i].comp_mrd_offset =
501 emad_array_in[i].comp_mrd_offset +
502 (mrd_out_offset - mrd_in_offset);
503 }
504
505 /* Verify that we stay within bound of the memory descriptors. */
506 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
507 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
508 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
509 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
510 ERROR("%s: Invalid mrd structure.\n", __func__);
511 return false;
512 }
513
514 /* Copy the mrd descriptors directly. */
515 memcpy(mrd_out, mrd_in, mrd_size);
516
517 return true;
518 }
519
520 /**
521 * spmc_shm_convert_mtd_to_v1_0 - Converts a given v1.1 memory object to
522 * v1.0 memory object.
523 * @out_obj: The shared memory object to populate the v1.0 descriptor.
524 * @orig: The shared memory object containing the v1.1 descriptor.
525 *
526 * Return: true if the conversion is successful else false.
527 */
528 static bool
spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj * out_obj,struct spmc_shmem_obj * orig)529 spmc_shm_convert_mtd_to_v1_0(struct spmc_shmem_obj *out_obj,
530 struct spmc_shmem_obj *orig)
531 {
532 struct ffa_mtd *mtd_orig = &orig->desc;
533 struct ffa_mtd_v1_0 *out = (struct ffa_mtd_v1_0 *) &out_obj->desc;
534 struct ffa_emad_v1_0 *emad_in;
535 struct ffa_emad_v1_0 *emad_array_in;
536 struct ffa_emad_v1_0 *emad_array_out;
537 struct ffa_comp_mrd *mrd_in;
538 struct ffa_comp_mrd *mrd_out;
539
540 size_t mrd_in_offset;
541 size_t mrd_out_offset;
542 size_t emad_out_array_size;
543 size_t mrd_size = 0;
544 size_t orig_desc_size = orig->desc_size;
545
546 /* Populate the v1.0 descriptor format from the v1.1 struct. */
547 out->sender_id = mtd_orig->sender_id;
548 out->memory_region_attributes = mtd_orig->memory_region_attributes;
549 out->flags = mtd_orig->flags;
550 out->handle = mtd_orig->handle;
551 out->tag = mtd_orig->tag;
552 out->emad_count = mtd_orig->emad_count;
553
554 /* Determine the location of the emad array in both descriptors. */
555 emad_array_in = (struct ffa_emad_v1_0 *)
556 ((uint8_t *) mtd_orig + mtd_orig->emad_offset);
557 emad_array_out = out->emad;
558
559 /* Copy across the emad structs. */
560 emad_in = emad_array_in;
561 for (unsigned int i = 0U; i < out->emad_count; i++) {
562 /* Bound check for emad array. */
563 if (((uint8_t *)emad_in + sizeof(struct ffa_emad_v1_0)) >
564 ((uint8_t *) mtd_orig + orig_desc_size)) {
565 VERBOSE("%s: Invalid mtd structure.\n", __func__);
566 return false;
567 }
568 memcpy(&emad_array_out[i], emad_in,
569 sizeof(struct ffa_emad_v1_0));
570
571 emad_in += mtd_orig->emad_size;
572 }
573
574 /* Place the mrd descriptors after the end of the emad descriptors. */
575 emad_out_array_size = sizeof(struct ffa_emad_v1_0) * out->emad_count;
576
577 mrd_out_offset = (uint8_t *) out->emad - (uint8_t *) out +
578 emad_out_array_size;
579
580 mrd_out = (struct ffa_comp_mrd *) ((uint8_t *) out + mrd_out_offset);
581
582 mrd_in_offset = mtd_orig->emad_offset +
583 (mtd_orig->emad_size * mtd_orig->emad_count);
584
585 /* Add the size of the composite memory region descriptor. */
586 mrd_size += sizeof(struct ffa_comp_mrd);
587
588 /* Find the mrd descriptor. */
589 mrd_in = (struct ffa_comp_mrd *) ((uint8_t *) mtd_orig + mrd_in_offset);
590
591 /* Add the size of the constituent memory region descriptors. */
592 mrd_size += mrd_in->address_range_count * sizeof(struct ffa_cons_mrd);
593
594 /*
595 * Update the offset in the emads by the delta between the input and
596 * output addresses.
597 */
598 emad_in = emad_array_in;
599
600 for (unsigned int i = 0U; i < out->emad_count; i++) {
601 emad_array_out[i].comp_mrd_offset = emad_in->comp_mrd_offset +
602 (mrd_out_offset -
603 mrd_in_offset);
604 emad_in += mtd_orig->emad_size;
605 }
606
607 /* Verify that we stay within bound of the memory descriptors. */
608 if ((uintptr_t)((uint8_t *) mrd_in + mrd_size) >
609 (uintptr_t)((uint8_t *) mtd_orig + orig->desc_size) ||
610 ((uintptr_t)((uint8_t *) mrd_out + mrd_size) >
611 (uintptr_t)((uint8_t *) out + out_obj->desc_size))) {
612 ERROR("%s: Invalid mrd structure.\n", __func__);
613 return false;
614 }
615
616 /* Copy the mrd descriptors directly. */
617 memcpy(mrd_out, mrd_in, mrd_size);
618
619 return true;
620 }
621
622 /**
623 * spmc_populate_ffa_v1_0_descriptor - Converts a given v1.1 memory object to
624 * the v1.0 format and populates the
625 * provided buffer.
626 * @dst: Buffer to populate v1.0 ffa_memory_region_descriptor.
627 * @orig_obj: Object containing v1.1 ffa_memory_region_descriptor.
628 * @buf_size: Size of the buffer to populate.
629 * @offset: The offset of the converted descriptor to copy.
630 * @copy_size: Will be populated with the number of bytes copied.
631 * @out_desc_size: Will be populated with the total size of the v1.0
632 * descriptor.
633 *
634 * Return: 0 if conversion and population succeeded.
635 * Note: This function invalidates the reference to @orig therefore
636 * `spmc_shmem_obj_lookup` must be called if further usage is required.
637 */
638 static uint32_t
spmc_populate_ffa_v1_0_descriptor(void * dst,struct spmc_shmem_obj * orig_obj,size_t buf_size,size_t offset,size_t * copy_size,size_t * v1_0_desc_size)639 spmc_populate_ffa_v1_0_descriptor(void *dst, struct spmc_shmem_obj *orig_obj,
640 size_t buf_size, size_t offset,
641 size_t *copy_size, size_t *v1_0_desc_size)
642 {
643 struct spmc_shmem_obj *v1_0_obj;
644
645 /* Calculate the size that the v1.0 descriptor will require. */
646 *v1_0_desc_size = spmc_shm_get_v1_0_descriptor_size(
647 &orig_obj->desc, orig_obj->desc_size);
648
649 if (*v1_0_desc_size == 0) {
650 ERROR("%s: cannot determine size of descriptor.\n",
651 __func__);
652 return FFA_ERROR_INVALID_PARAMETER;
653 }
654
655 /* Get a new obj to store the v1.0 descriptor. */
656 v1_0_obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state,
657 *v1_0_desc_size);
658
659 if (!v1_0_obj) {
660 return FFA_ERROR_NO_MEMORY;
661 }
662
663 /* Perform the conversion from v1.1 to v1.0. */
664 if (!spmc_shm_convert_mtd_to_v1_0(v1_0_obj, orig_obj)) {
665 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
666 return FFA_ERROR_INVALID_PARAMETER;
667 }
668
669 *copy_size = MIN(v1_0_obj->desc_size - offset, buf_size);
670 memcpy(dst, (uint8_t *) &v1_0_obj->desc + offset, *copy_size);
671
672 /*
673 * We're finished with the v1.0 descriptor for now so free it.
674 * Note that this will invalidate any references to the v1.1
675 * descriptor.
676 */
677 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_0_obj);
678
679 return 0;
680 }
681
682 static int
spmc_validate_mtd_start(struct ffa_mtd * desc,uint32_t ffa_version,size_t fragment_length,size_t total_length)683 spmc_validate_mtd_start(struct ffa_mtd *desc, uint32_t ffa_version,
684 size_t fragment_length, size_t total_length)
685 {
686 unsigned long long emad_end;
687 unsigned long long emad_size;
688 unsigned long long emad_offset;
689 unsigned int min_desc_size;
690
691 /* Determine the appropriate minimum descriptor size. */
692 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
693 min_desc_size = sizeof(struct ffa_mtd_v1_0);
694 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
695 min_desc_size = sizeof(struct ffa_mtd);
696 } else {
697 return FFA_ERROR_INVALID_PARAMETER;
698 }
699 if (fragment_length < min_desc_size) {
700 WARN("%s: invalid length %zu < %u\n", __func__, fragment_length,
701 min_desc_size);
702 return FFA_ERROR_INVALID_PARAMETER;
703 }
704
705 if (desc->emad_count == 0U) {
706 WARN("%s: unsupported attribute desc count %u.\n",
707 __func__, desc->emad_count);
708 return FFA_ERROR_INVALID_PARAMETER;
709 }
710
711 /*
712 * If the caller is using FF-A v1.0 interpret the descriptor as a v1.0
713 * format, otherwise assume it is a v1.1 format.
714 */
715 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
716 emad_offset = emad_size = sizeof(struct ffa_emad_v1_0);
717 } else {
718 if (!is_aligned(desc->emad_offset, 16)) {
719 WARN("%s: Emad offset %" PRIx32 " is not 16-byte aligned.\n",
720 __func__, desc->emad_offset);
721 return FFA_ERROR_INVALID_PARAMETER;
722 }
723 if (desc->emad_offset < sizeof(struct ffa_mtd)) {
724 WARN("%s: Emad offset too small: 0x%" PRIx32 " < 0x%zx.\n",
725 __func__, desc->emad_offset,
726 sizeof(struct ffa_mtd));
727 return FFA_ERROR_INVALID_PARAMETER;
728 }
729 emad_offset = desc->emad_offset;
730 if (desc->emad_size < sizeof(struct ffa_emad_v1_0)) {
731 WARN("%s: Bad emad size (%" PRIu32 " < %zu).\n", __func__,
732 desc->emad_size, sizeof(struct ffa_emad_v1_0));
733 return FFA_ERROR_INVALID_PARAMETER;
734 }
735 if (!is_aligned(desc->emad_size, 16)) {
736 WARN("%s: Emad size 0x%" PRIx32 " is not 16-byte aligned.\n",
737 __func__, desc->emad_size);
738 return FFA_ERROR_INVALID_PARAMETER;
739 }
740 emad_size = desc->emad_size;
741 }
742
743 /*
744 * Overflow is impossible: the arithmetic happens in at least 64-bit
745 * precision, but all of the operands are bounded by UINT32_MAX, and
746 * ((2^32 - 1) * (2^32 - 1) + (2^32 - 1) + (2^32 - 1))
747 * = ((2^32 - 1) * ((2^32 - 1) + 1 + 1))
748 * = ((2^32 - 1) * (2^32 + 1))
749 * = (2^64 - 1).
750 */
751 CASSERT(sizeof(desc->emad_count) == 4, assert_emad_count_max_too_large);
752 emad_end = (desc->emad_count * (unsigned long long)emad_size) +
753 (unsigned long long)sizeof(struct ffa_comp_mrd) +
754 (unsigned long long)emad_offset;
755
756 if (emad_end > total_length) {
757 WARN("%s: Composite memory region extends beyond descriptor: 0x%llx > 0x%zx\n",
758 __func__, emad_end, total_length);
759 return FFA_ERROR_INVALID_PARAMETER;
760 }
761
762 return 0;
763 }
764
765 static inline const struct ffa_emad_v1_0 *
emad_advance(const struct ffa_emad_v1_0 * emad,size_t offset)766 emad_advance(const struct ffa_emad_v1_0 *emad, size_t offset)
767 {
768 return (const struct ffa_emad_v1_0 *)((const uint8_t *)emad + offset);
769 }
770
771 /**
772 * spmc_shmem_check_obj - Check that counts in descriptor match overall size.
773 * @obj: Object containing ffa_memory_region_descriptor.
774 * @ffa_version: FF-A version of the provided descriptor.
775 *
776 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if
777 * constituent_memory_region_descriptor offset or count is invalid.
778 */
spmc_shmem_check_obj(struct spmc_shmem_obj * obj,uint32_t ffa_version)779 static int spmc_shmem_check_obj(struct spmc_shmem_obj *obj,
780 uint32_t ffa_version)
781 {
782 unsigned long long total_page_count;
783 const struct ffa_emad_v1_0 *first_emad;
784 const struct ffa_emad_v1_0 *end_emad;
785 size_t emad_size;
786 uint32_t comp_mrd_offset;
787 size_t header_emad_size;
788 size_t size;
789 size_t count;
790 size_t expected_size;
791 const struct ffa_comp_mrd *comp;
792
793 if (obj->desc_filled != obj->desc_size) {
794 ERROR("BUG: %s called on incomplete object (%zu != %zu)\n",
795 __func__, obj->desc_filled, obj->desc_size);
796 panic();
797 }
798
799 if (spmc_validate_mtd_start(&obj->desc, ffa_version,
800 obj->desc_filled, obj->desc_size)) {
801 ERROR("BUG: %s called on object with corrupt memory region descriptor\n",
802 __func__);
803 panic();
804 }
805
806 first_emad = spmc_shmem_obj_get_emad(&obj->desc, 0,
807 ffa_version, &emad_size);
808 end_emad = emad_advance(first_emad, obj->desc.emad_count * emad_size);
809 comp_mrd_offset = first_emad->comp_mrd_offset;
810
811 /* Loop through the endpoint descriptors, validating each of them. */
812 for (const struct ffa_emad_v1_0 *emad = first_emad; emad < end_emad;) {
813 ffa_endpoint_id16_t ep_id;
814
815 /*
816 * If a partition ID resides in the secure world validate that
817 * the partition ID is for a known partition. Ignore any
818 * partition ID belonging to the normal world as it is assumed
819 * the Hypervisor will have validated these.
820 */
821 ep_id = emad->mapd.endpoint_id;
822 if (ffa_is_secure_world_id(ep_id)) {
823 if (spmc_get_sp_ctx(ep_id) == NULL) {
824 WARN("%s: Invalid receiver id 0x%x\n",
825 __func__, ep_id);
826 return FFA_ERROR_INVALID_PARAMETER;
827 }
828 }
829
830 /*
831 * The offset provided to the composite memory region descriptor
832 * should be consistent across endpoint descriptors.
833 */
834 if (comp_mrd_offset != emad->comp_mrd_offset) {
835 ERROR("%s: mismatching offsets provided, %u != %u\n",
836 __func__, emad->comp_mrd_offset, comp_mrd_offset);
837 return FFA_ERROR_INVALID_PARAMETER;
838 }
839
840 /* Advance to the next endpoint descriptor */
841 emad = emad_advance(emad, emad_size);
842
843 /*
844 * Ensure neither this emad nor any subsequent emads have
845 * the same partition ID as the previous emad.
846 */
847 for (const struct ffa_emad_v1_0 *other_emad = emad;
848 other_emad < end_emad;
849 other_emad = emad_advance(other_emad, emad_size)) {
850 if (ep_id == other_emad->mapd.endpoint_id) {
851 WARN("%s: Duplicated endpoint id 0x%x\n",
852 __func__, emad->mapd.endpoint_id);
853 return FFA_ERROR_INVALID_PARAMETER;
854 }
855 }
856 }
857
858 header_emad_size = (size_t)((const uint8_t *)end_emad -
859 (const uint8_t *)&obj->desc);
860
861 /*
862 * Check that the composite descriptor
863 * is after the endpoint descriptors.
864 */
865 if (comp_mrd_offset < header_emad_size) {
866 WARN("%s: invalid object, offset %u < header + emad %zu\n",
867 __func__, comp_mrd_offset, header_emad_size);
868 return FFA_ERROR_INVALID_PARAMETER;
869 }
870
871 /* Ensure the composite descriptor offset is aligned. */
872 if (!is_aligned(comp_mrd_offset, 16)) {
873 WARN("%s: invalid object, unaligned composite memory "
874 "region descriptor offset %u.\n",
875 __func__, comp_mrd_offset);
876 return FFA_ERROR_INVALID_PARAMETER;
877 }
878
879 size = obj->desc_size;
880
881 /* Check that the composite descriptor is in bounds. */
882 if (comp_mrd_offset > size) {
883 WARN("%s: invalid object, offset %u > total size %zu\n",
884 __func__, comp_mrd_offset, obj->desc_size);
885 return FFA_ERROR_INVALID_PARAMETER;
886 }
887 size -= comp_mrd_offset;
888
889 /* Check that there is enough space for the composite descriptor. */
890 if (size < sizeof(struct ffa_comp_mrd)) {
891 WARN("%s: invalid object, offset %u, total size %zu, no header space.\n",
892 __func__, comp_mrd_offset, obj->desc_size);
893 return FFA_ERROR_INVALID_PARAMETER;
894 }
895 size -= sizeof(*comp);
896
897 count = size / sizeof(struct ffa_cons_mrd);
898
899 comp = (const struct ffa_comp_mrd *)
900 ((const uint8_t *)(&obj->desc) + comp_mrd_offset);
901
902 if (comp->address_range_count != count) {
903 WARN("%s: invalid object, desc count %u != %zu\n",
904 __func__, comp->address_range_count, count);
905 return FFA_ERROR_INVALID_PARAMETER;
906 }
907
908 /* Ensure that the expected and actual sizes are equal. */
909 expected_size = comp_mrd_offset + sizeof(*comp) +
910 count * sizeof(struct ffa_cons_mrd);
911
912 if (expected_size != obj->desc_size) {
913 WARN("%s: invalid object, computed size %zu != size %zu\n",
914 __func__, expected_size, obj->desc_size);
915 return FFA_ERROR_INVALID_PARAMETER;
916 }
917
918 total_page_count = 0;
919
920 /*
921 * comp->address_range_count is 32-bit, so 'count' must fit in a
922 * uint32_t at this point.
923 */
924 for (size_t i = 0; i < count; i++) {
925 const struct ffa_cons_mrd *mrd = comp->address_range_array + i;
926
927 if (!is_aligned(mrd->address, PAGE_SIZE)) {
928 WARN("%s: invalid object, address in region descriptor "
929 "%zu not 4K aligned (got 0x%016llx)",
930 __func__, i, (unsigned long long)mrd->address);
931 }
932
933 /*
934 * No overflow possible: total_page_count can hold at
935 * least 2^64 - 1, but will be have at most 2^32 - 1.
936 * values added to it, each of which cannot exceed 2^32 - 1.
937 */
938 total_page_count += mrd->page_count;
939 }
940
941 if (comp->total_page_count != total_page_count) {
942 WARN("%s: invalid object, desc total_page_count %u != %llu\n",
943 __func__, comp->total_page_count, total_page_count);
944 return FFA_ERROR_INVALID_PARAMETER;
945 }
946
947 return 0;
948 }
949
950 /**
951 * spmc_shmem_check_state_obj - Check if the descriptor describes memory
952 * regions that are currently involved with an
953 * existing memory transactions. This implies that
954 * the memory is not in a valid state for lending.
955 * @obj: Object containing ffa_memory_region_descriptor.
956 *
957 * Return: 0 if object is valid, FFA_ERROR_INVALID_PARAMETER if invalid memory
958 * state.
959 */
spmc_shmem_check_state_obj(struct spmc_shmem_obj * obj,uint32_t ffa_version)960 static int spmc_shmem_check_state_obj(struct spmc_shmem_obj *obj,
961 uint32_t ffa_version)
962 {
963 size_t obj_offset = 0;
964 struct spmc_shmem_obj *inflight_obj;
965
966 struct ffa_comp_mrd *other_mrd;
967 struct ffa_comp_mrd *requested_mrd = spmc_shmem_obj_get_comp_mrd(obj,
968 ffa_version);
969
970 if (requested_mrd == NULL) {
971 return FFA_ERROR_INVALID_PARAMETER;
972 }
973
974 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
975 &obj_offset);
976
977 while (inflight_obj != NULL) {
978 /*
979 * Don't compare the transaction to itself or to partially
980 * transmitted descriptors.
981 */
982 if ((obj->desc.handle != inflight_obj->desc.handle) &&
983 (obj->desc_size == obj->desc_filled)) {
984 other_mrd = spmc_shmem_obj_get_comp_mrd(inflight_obj,
985 FFA_VERSION_COMPILED);
986 if (other_mrd == NULL) {
987 return FFA_ERROR_INVALID_PARAMETER;
988 }
989 if (overlapping_memory_regions(requested_mrd,
990 other_mrd)) {
991 return FFA_ERROR_INVALID_PARAMETER;
992 }
993 }
994
995 inflight_obj = spmc_shmem_obj_get_next(&spmc_shmem_obj_state,
996 &obj_offset);
997 }
998 return 0;
999 }
1000
spmc_ffa_fill_desc(struct mailbox * mbox,struct spmc_shmem_obj * obj,uint32_t fragment_length,ffa_mtd_flag32_t mtd_flag,uint32_t ffa_version,void * smc_handle)1001 static long spmc_ffa_fill_desc(struct mailbox *mbox,
1002 struct spmc_shmem_obj *obj,
1003 uint32_t fragment_length,
1004 ffa_mtd_flag32_t mtd_flag,
1005 uint32_t ffa_version,
1006 void *smc_handle)
1007 {
1008 int ret;
1009 uint32_t handle_low;
1010 uint32_t handle_high;
1011
1012 if (mbox->rxtx_page_count == 0U) {
1013 WARN("%s: buffer pair not registered.\n", __func__);
1014 ret = FFA_ERROR_INVALID_PARAMETER;
1015 goto err_arg;
1016 }
1017
1018 CASSERT(sizeof(mbox->rxtx_page_count) == 4, assert_bogus_page_count);
1019 if (fragment_length > (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB) {
1020 WARN("%s: bad fragment size %u > %" PRIu64 " buffer size\n", __func__,
1021 fragment_length, (uint64_t)mbox->rxtx_page_count * PAGE_SIZE_4KB);
1022 ret = FFA_ERROR_INVALID_PARAMETER;
1023 goto err_arg;
1024 }
1025
1026 if (fragment_length > obj->desc_size - obj->desc_filled) {
1027 WARN("%s: bad fragment size %u > %zu remaining\n", __func__,
1028 fragment_length, obj->desc_size - obj->desc_filled);
1029 ret = FFA_ERROR_INVALID_PARAMETER;
1030 goto err_arg;
1031 }
1032
1033 memcpy((uint8_t *)&obj->desc + obj->desc_filled,
1034 (uint8_t *) mbox->tx_buffer, fragment_length);
1035
1036 /* Ensure that the sender ID resides in the normal world. */
1037 if (ffa_is_secure_world_id(obj->desc.sender_id)) {
1038 WARN("%s: Invalid sender ID 0x%x.\n",
1039 __func__, obj->desc.sender_id);
1040 ret = FFA_ERROR_DENIED;
1041 goto err_arg;
1042 }
1043
1044 /* Ensure the NS bit is set to 0. */
1045 if ((obj->desc.memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1046 WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1047 ret = FFA_ERROR_INVALID_PARAMETER;
1048 goto err_arg;
1049 }
1050
1051 /*
1052 * We don't currently support any optional flags so ensure none are
1053 * requested.
1054 */
1055 if (obj->desc.flags != 0U && mtd_flag != 0U &&
1056 (obj->desc.flags != mtd_flag)) {
1057 WARN("%s: invalid memory transaction flags %u != %u\n",
1058 __func__, obj->desc.flags, mtd_flag);
1059 ret = FFA_ERROR_INVALID_PARAMETER;
1060 goto err_arg;
1061 }
1062
1063 if (obj->desc_filled == 0U) {
1064 /* First fragment, descriptor header has been copied */
1065 ret = spmc_validate_mtd_start(&obj->desc, ffa_version,
1066 fragment_length, obj->desc_size);
1067 if (ret != 0) {
1068 goto err_bad_desc;
1069 }
1070
1071 obj->desc.handle = spmc_shmem_obj_state.next_handle++;
1072 obj->desc.flags |= mtd_flag;
1073 }
1074
1075 obj->desc_filled += fragment_length;
1076
1077 handle_low = (uint32_t)obj->desc.handle;
1078 handle_high = obj->desc.handle >> 32;
1079
1080 if (obj->desc_filled != obj->desc_size) {
1081 SMC_RET8(smc_handle, FFA_MEM_FRAG_RX, handle_low,
1082 handle_high, obj->desc_filled,
1083 (uint32_t)obj->desc.sender_id << 16, 0, 0, 0);
1084 }
1085
1086 /* The full descriptor has been received, perform any final checks. */
1087
1088 ret = spmc_shmem_check_obj(obj, ffa_version);
1089 if (ret != 0) {
1090 goto err_bad_desc;
1091 }
1092
1093 ret = spmc_shmem_check_state_obj(obj, ffa_version);
1094 if (ret) {
1095 ERROR("%s: invalid memory region descriptor.\n", __func__);
1096 goto err_bad_desc;
1097 }
1098
1099 /*
1100 * Everything checks out, if the sender was using FF-A v1.0, convert
1101 * the descriptor format to use the v1.1 structures.
1102 */
1103 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1104 struct spmc_shmem_obj *v1_1_obj;
1105 uint64_t mem_handle;
1106
1107 /* Calculate the size that the v1.1 descriptor will required. */
1108 uint64_t v1_1_desc_size =
1109 spmc_shm_get_v1_1_descriptor_size((void *) &obj->desc,
1110 obj->desc_size);
1111
1112 if (v1_1_desc_size > UINT32_MAX) {
1113 ret = FFA_ERROR_NO_MEMORY;
1114 goto err_arg;
1115 }
1116
1117 /* Get a new obj to store the v1.1 descriptor. */
1118 v1_1_obj =
1119 spmc_shmem_obj_alloc(&spmc_shmem_obj_state, (size_t)v1_1_desc_size);
1120
1121 if (!v1_1_obj) {
1122 ret = FFA_ERROR_NO_MEMORY;
1123 goto err_arg;
1124 }
1125
1126 /* Perform the conversion from v1.0 to v1.1. */
1127 v1_1_obj->desc_size = (uint32_t)v1_1_desc_size;
1128 v1_1_obj->desc_filled = (uint32_t)v1_1_desc_size;
1129 if (!spmc_shm_convert_shmem_obj_from_v1_0(v1_1_obj, obj)) {
1130 ERROR("%s: Could not convert mtd!\n", __func__);
1131 spmc_shmem_obj_free(&spmc_shmem_obj_state, v1_1_obj);
1132 goto err_arg;
1133 }
1134
1135 /*
1136 * We're finished with the v1.0 descriptor so free it
1137 * and continue our checks with the new v1.1 descriptor.
1138 */
1139 mem_handle = obj->desc.handle;
1140 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1141 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1142 if (obj == NULL) {
1143 ERROR("%s: Failed to find converted descriptor.\n",
1144 __func__);
1145 ret = FFA_ERROR_INVALID_PARAMETER;
1146 return spmc_ffa_error_return(smc_handle, ret);
1147 }
1148 }
1149
1150 /* Allow for platform specific operations to be performed. */
1151 ret = plat_spmc_shmem_begin(&obj->desc);
1152 if (ret != 0) {
1153 goto err_arg;
1154 }
1155
1156 SMC_RET8(smc_handle, FFA_SUCCESS_SMC32, 0, handle_low, handle_high, 0,
1157 0, 0, 0);
1158
1159 err_bad_desc:
1160 err_arg:
1161 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1162 return spmc_ffa_error_return(smc_handle, ret);
1163 }
1164
1165 /**
1166 * spmc_ffa_mem_send - FFA_MEM_SHARE/LEND implementation.
1167 * @client: Client state.
1168 * @total_length: Total length of shared memory descriptor.
1169 * @fragment_length: Length of fragment of shared memory descriptor passed in
1170 * this call.
1171 * @address: Not supported, must be 0.
1172 * @page_count: Not supported, must be 0.
1173 * @smc_handle: Handle passed to smc call. Used to return
1174 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1175 *
1176 * Implements a subset of the FF-A FFA_MEM_SHARE and FFA_MEM_LEND calls needed
1177 * to share or lend memory from non-secure os to secure os (with no stream
1178 * endpoints).
1179 *
1180 * Return: 0 on success, error code on failure.
1181 */
spmc_ffa_mem_send(uint32_t smc_fid,bool secure_origin,uint64_t total_length,uint32_t fragment_length,uint64_t address,uint32_t page_count,void * cookie,void * handle,uint64_t flags)1182 long spmc_ffa_mem_send(uint32_t smc_fid,
1183 bool secure_origin,
1184 uint64_t total_length,
1185 uint32_t fragment_length,
1186 uint64_t address,
1187 uint32_t page_count,
1188 void *cookie,
1189 void *handle,
1190 uint64_t flags)
1191
1192 {
1193 long ret;
1194 struct spmc_shmem_obj *obj;
1195 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1196 ffa_mtd_flag32_t mtd_flag;
1197 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1198 size_t min_desc_size;
1199
1200 if (address != 0U || page_count != 0U) {
1201 WARN("%s: custom memory region for message not supported.\n",
1202 __func__);
1203 return spmc_ffa_error_return(handle,
1204 FFA_ERROR_INVALID_PARAMETER);
1205 }
1206
1207 if (secure_origin) {
1208 WARN("%s: unsupported share direction.\n", __func__);
1209 return spmc_ffa_error_return(handle,
1210 FFA_ERROR_INVALID_PARAMETER);
1211 }
1212
1213 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1214 min_desc_size = sizeof(struct ffa_mtd_v1_0);
1215 } else if (ffa_version == MAKE_FFA_VERSION(1, 1)) {
1216 min_desc_size = sizeof(struct ffa_mtd);
1217 } else {
1218 WARN("%s: bad FF-A version.\n", __func__);
1219 return spmc_ffa_error_return(handle,
1220 FFA_ERROR_INVALID_PARAMETER);
1221 }
1222
1223 /* Check if the descriptor is too small for the FF-A version. */
1224 if (fragment_length < min_desc_size) {
1225 WARN("%s: bad first fragment size %u < %zu\n",
1226 __func__, fragment_length, sizeof(struct ffa_mtd_v1_0));
1227 return spmc_ffa_error_return(handle,
1228 FFA_ERROR_INVALID_PARAMETER);
1229 }
1230
1231 if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_SHARE) {
1232 mtd_flag = FFA_MTD_FLAG_TYPE_SHARE_MEMORY;
1233 } else if ((smc_fid & FUNCID_NUM_MASK) == FFA_FNUM_MEM_LEND) {
1234 mtd_flag = FFA_MTD_FLAG_TYPE_LEND_MEMORY;
1235 } else {
1236 WARN("%s: invalid memory management operation.\n", __func__);
1237 return spmc_ffa_error_return(handle,
1238 FFA_ERROR_INVALID_PARAMETER);
1239 }
1240
1241 spin_lock(&spmc_shmem_obj_state.lock);
1242 obj = spmc_shmem_obj_alloc(&spmc_shmem_obj_state, total_length);
1243 if (obj == NULL) {
1244 ret = FFA_ERROR_NO_MEMORY;
1245 goto err_unlock;
1246 }
1247
1248 spin_lock(&mbox->lock);
1249 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, mtd_flag,
1250 ffa_version, handle);
1251 spin_unlock(&mbox->lock);
1252
1253 spin_unlock(&spmc_shmem_obj_state.lock);
1254 return ret;
1255
1256 err_unlock:
1257 spin_unlock(&spmc_shmem_obj_state.lock);
1258 return spmc_ffa_error_return(handle, ret);
1259 }
1260
1261 /**
1262 * spmc_ffa_mem_frag_tx - FFA_MEM_FRAG_TX implementation.
1263 * @client: Client state.
1264 * @handle_low: Handle_low value returned from FFA_MEM_FRAG_RX.
1265 * @handle_high: Handle_high value returned from FFA_MEM_FRAG_RX.
1266 * @fragment_length: Length of fragments transmitted.
1267 * @sender_id: Vmid of sender in bits [31:16]
1268 * @smc_handle: Handle passed to smc call. Used to return
1269 * FFA_MEM_FRAG_RX or SMC_FC_FFA_SUCCESS.
1270 *
1271 * Return: @smc_handle on success, error code on failure.
1272 */
spmc_ffa_mem_frag_tx(uint32_t smc_fid,bool secure_origin,uint64_t handle_low,uint64_t handle_high,uint32_t fragment_length,uint32_t sender_id,void * cookie,void * handle,uint64_t flags)1273 long spmc_ffa_mem_frag_tx(uint32_t smc_fid,
1274 bool secure_origin,
1275 uint64_t handle_low,
1276 uint64_t handle_high,
1277 uint32_t fragment_length,
1278 uint32_t sender_id,
1279 void *cookie,
1280 void *handle,
1281 uint64_t flags)
1282 {
1283 long ret;
1284 uint32_t desc_sender_id;
1285 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1286 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1287
1288 struct spmc_shmem_obj *obj;
1289 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1290
1291 spin_lock(&spmc_shmem_obj_state.lock);
1292
1293 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1294 if (obj == NULL) {
1295 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1296 __func__, mem_handle);
1297 ret = FFA_ERROR_INVALID_PARAMETER;
1298 goto err_unlock;
1299 }
1300
1301 desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1302 if (sender_id != desc_sender_id) {
1303 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1304 sender_id, desc_sender_id);
1305 ret = FFA_ERROR_INVALID_PARAMETER;
1306 goto err_unlock;
1307 }
1308
1309 if (obj->desc_filled == obj->desc_size) {
1310 WARN("%s: object desc already filled, %zu\n", __func__,
1311 obj->desc_filled);
1312 ret = FFA_ERROR_INVALID_PARAMETER;
1313 goto err_unlock;
1314 }
1315
1316 spin_lock(&mbox->lock);
1317 ret = spmc_ffa_fill_desc(mbox, obj, fragment_length, 0, ffa_version,
1318 handle);
1319 spin_unlock(&mbox->lock);
1320
1321 spin_unlock(&spmc_shmem_obj_state.lock);
1322 return ret;
1323
1324 err_unlock:
1325 spin_unlock(&spmc_shmem_obj_state.lock);
1326 return spmc_ffa_error_return(handle, ret);
1327 }
1328
1329 /**
1330 * spmc_ffa_mem_retrieve_set_ns_bit - Set the NS bit in the response descriptor
1331 * if the caller implements a version greater
1332 * than FF-A 1.0 or if they have requested
1333 * the functionality.
1334 * TODO: We are assuming that the caller is
1335 * an SP. To support retrieval from the
1336 * normal world this function will need to be
1337 * expanded accordingly.
1338 * @resp: Descriptor populated in callers RX buffer.
1339 * @sp_ctx: Context of the calling SP.
1340 */
spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd * resp,struct secure_partition_desc * sp_ctx)1341 void spmc_ffa_mem_retrieve_set_ns_bit(struct ffa_mtd *resp,
1342 struct secure_partition_desc *sp_ctx)
1343 {
1344 if (sp_ctx->ffa_version > MAKE_FFA_VERSION(1, 0) ||
1345 sp_ctx->ns_bit_requested) {
1346 /*
1347 * Currently memory senders must reside in the normal
1348 * world, and we do not have the functionlaity to change
1349 * the state of memory dynamically. Therefore we can always set
1350 * the NS bit to 1.
1351 */
1352 resp->memory_region_attributes |= FFA_MEM_ATTR_NS_BIT;
1353 }
1354 }
1355
1356 /**
1357 * spmc_ffa_mem_retrieve_req - FFA_MEM_RETRIEVE_REQ implementation.
1358 * @smc_fid: FID of SMC
1359 * @total_length: Total length of retrieve request descriptor if this is
1360 * the first call. Otherwise (unsupported) must be 0.
1361 * @fragment_length: Length of fragment of retrieve request descriptor passed
1362 * in this call. Only @fragment_length == @length is
1363 * supported by this implementation.
1364 * @address: Not supported, must be 0.
1365 * @page_count: Not supported, must be 0.
1366 * @smc_handle: Handle passed to smc call. Used to return
1367 * FFA_MEM_RETRIEVE_RESP.
1368 *
1369 * Implements a subset of the FF-A FFA_MEM_RETRIEVE_REQ call.
1370 * Used by secure os to retrieve memory already shared by non-secure os.
1371 * If the data does not fit in a single FFA_MEM_RETRIEVE_RESP message,
1372 * the client must call FFA_MEM_FRAG_RX until the full response has been
1373 * received.
1374 *
1375 * Return: @handle on success, error code on failure.
1376 */
1377 long
spmc_ffa_mem_retrieve_req(uint32_t smc_fid,bool secure_origin,uint32_t total_length,uint32_t fragment_length,uint64_t address,uint32_t page_count,void * cookie,void * handle,uint64_t flags)1378 spmc_ffa_mem_retrieve_req(uint32_t smc_fid,
1379 bool secure_origin,
1380 uint32_t total_length,
1381 uint32_t fragment_length,
1382 uint64_t address,
1383 uint32_t page_count,
1384 void *cookie,
1385 void *handle,
1386 uint64_t flags)
1387 {
1388 int ret;
1389 size_t buf_size;
1390 size_t copy_size = 0;
1391 size_t min_desc_size;
1392 size_t out_desc_size = 0;
1393
1394 /*
1395 * Currently we are only accessing fields that are the same in both the
1396 * v1.0 and v1.1 mtd struct therefore we can use a v1.1 struct directly
1397 * here. We only need validate against the appropriate struct size.
1398 */
1399 struct ffa_mtd *resp;
1400 const struct ffa_mtd *req;
1401 struct spmc_shmem_obj *obj = NULL;
1402 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1403 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1404 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1405
1406 if (!secure_origin) {
1407 WARN("%s: unsupported retrieve req direction.\n", __func__);
1408 return spmc_ffa_error_return(handle,
1409 FFA_ERROR_INVALID_PARAMETER);
1410 }
1411
1412 if (address != 0U || page_count != 0U) {
1413 WARN("%s: custom memory region not supported.\n", __func__);
1414 return spmc_ffa_error_return(handle,
1415 FFA_ERROR_INVALID_PARAMETER);
1416 }
1417
1418 spin_lock(&mbox->lock);
1419
1420 req = mbox->tx_buffer;
1421 resp = mbox->rx_buffer;
1422 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1423
1424 if (mbox->rxtx_page_count == 0U) {
1425 WARN("%s: buffer pair not registered.\n", __func__);
1426 ret = FFA_ERROR_INVALID_PARAMETER;
1427 goto err_unlock_mailbox;
1428 }
1429
1430 if (mbox->state != MAILBOX_STATE_EMPTY) {
1431 WARN("%s: RX Buffer is full! %d\n", __func__, mbox->state);
1432 ret = FFA_ERROR_DENIED;
1433 goto err_unlock_mailbox;
1434 }
1435
1436 if (fragment_length != total_length) {
1437 WARN("%s: fragmented retrieve request not supported.\n",
1438 __func__);
1439 ret = FFA_ERROR_INVALID_PARAMETER;
1440 goto err_unlock_mailbox;
1441 }
1442
1443 if (req->emad_count == 0U) {
1444 WARN("%s: unsupported attribute desc count %u.\n",
1445 __func__, obj->desc.emad_count);
1446 ret = FFA_ERROR_INVALID_PARAMETER;
1447 goto err_unlock_mailbox;
1448 }
1449
1450 /* Determine the appropriate minimum descriptor size. */
1451 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1452 min_desc_size = sizeof(struct ffa_mtd_v1_0);
1453 } else {
1454 min_desc_size = sizeof(struct ffa_mtd);
1455 }
1456 if (total_length < min_desc_size) {
1457 WARN("%s: invalid length %u < %zu\n", __func__, total_length,
1458 min_desc_size);
1459 ret = FFA_ERROR_INVALID_PARAMETER;
1460 goto err_unlock_mailbox;
1461 }
1462
1463 spin_lock(&spmc_shmem_obj_state.lock);
1464
1465 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1466 if (obj == NULL) {
1467 ret = FFA_ERROR_INVALID_PARAMETER;
1468 goto err_unlock_all;
1469 }
1470
1471 if (obj->desc_filled != obj->desc_size) {
1472 WARN("%s: incomplete object desc filled %zu < size %zu\n",
1473 __func__, obj->desc_filled, obj->desc_size);
1474 ret = FFA_ERROR_INVALID_PARAMETER;
1475 goto err_unlock_all;
1476 }
1477
1478 if (req->emad_count != 0U && req->sender_id != obj->desc.sender_id) {
1479 WARN("%s: wrong sender id 0x%x != 0x%x\n",
1480 __func__, req->sender_id, obj->desc.sender_id);
1481 ret = FFA_ERROR_INVALID_PARAMETER;
1482 goto err_unlock_all;
1483 }
1484
1485 if (req->emad_count != 0U && req->tag != obj->desc.tag) {
1486 WARN("%s: wrong tag 0x%lx != 0x%lx\n",
1487 __func__, req->tag, obj->desc.tag);
1488 ret = FFA_ERROR_INVALID_PARAMETER;
1489 goto err_unlock_all;
1490 }
1491
1492 if (req->emad_count != 0U && req->emad_count != obj->desc.emad_count) {
1493 WARN("%s: mistmatch of endpoint counts %u != %u\n",
1494 __func__, req->emad_count, obj->desc.emad_count);
1495 ret = FFA_ERROR_INVALID_PARAMETER;
1496 goto err_unlock_all;
1497 }
1498
1499 /* Ensure the NS bit is set to 0 in the request. */
1500 if ((req->memory_region_attributes & FFA_MEM_ATTR_NS_BIT) != 0U) {
1501 WARN("%s: NS mem attributes flags MBZ.\n", __func__);
1502 ret = FFA_ERROR_INVALID_PARAMETER;
1503 goto err_unlock_all;
1504 }
1505
1506 if (req->flags != 0U) {
1507 if ((req->flags & FFA_MTD_FLAG_TYPE_MASK) !=
1508 (obj->desc.flags & FFA_MTD_FLAG_TYPE_MASK)) {
1509 /*
1510 * If the retrieve request specifies the memory
1511 * transaction ensure it matches what we expect.
1512 */
1513 WARN("%s: wrong mem transaction flags %x != %x\n",
1514 __func__, req->flags, obj->desc.flags);
1515 ret = FFA_ERROR_INVALID_PARAMETER;
1516 goto err_unlock_all;
1517 }
1518
1519 if (req->flags != FFA_MTD_FLAG_TYPE_SHARE_MEMORY &&
1520 req->flags != FFA_MTD_FLAG_TYPE_LEND_MEMORY) {
1521 /*
1522 * Current implementation does not support donate and
1523 * it supports no other flags.
1524 */
1525 WARN("%s: invalid flags 0x%x\n", __func__, req->flags);
1526 ret = FFA_ERROR_INVALID_PARAMETER;
1527 goto err_unlock_all;
1528 }
1529 }
1530
1531 /* Validate the caller is a valid participant. */
1532 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1533 WARN("%s: Invalid endpoint ID (0x%x).\n",
1534 __func__, sp_ctx->sp_id);
1535 ret = FFA_ERROR_INVALID_PARAMETER;
1536 goto err_unlock_all;
1537 }
1538
1539 /* Validate that the provided emad offset and structure is valid.*/
1540 for (size_t i = 0; i < req->emad_count; i++) {
1541 size_t emad_size;
1542 struct ffa_emad_v1_0 *emad;
1543
1544 emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1545 &emad_size);
1546
1547 if ((uintptr_t) emad >= (uintptr_t)
1548 ((uint8_t *) req + total_length)) {
1549 WARN("Invalid emad access.\n");
1550 ret = FFA_ERROR_INVALID_PARAMETER;
1551 goto err_unlock_all;
1552 }
1553 }
1554
1555 /*
1556 * Validate all the endpoints match in the case of multiple
1557 * borrowers. We don't mandate that the order of the borrowers
1558 * must match in the descriptors therefore check to see if the
1559 * endpoints match in any order.
1560 */
1561 for (size_t i = 0; i < req->emad_count; i++) {
1562 bool found = false;
1563 size_t emad_size;
1564 struct ffa_emad_v1_0 *emad;
1565 struct ffa_emad_v1_0 *other_emad;
1566
1567 emad = spmc_shmem_obj_get_emad(req, i, ffa_version,
1568 &emad_size);
1569
1570 for (size_t j = 0; j < obj->desc.emad_count; j++) {
1571 other_emad = spmc_shmem_obj_get_emad(
1572 &obj->desc, j, MAKE_FFA_VERSION(1, 1),
1573 &emad_size);
1574
1575 if (req->emad_count &&
1576 emad->mapd.endpoint_id ==
1577 other_emad->mapd.endpoint_id) {
1578 found = true;
1579 break;
1580 }
1581 }
1582
1583 if (!found) {
1584 WARN("%s: invalid receiver id (0x%x).\n",
1585 __func__, emad->mapd.endpoint_id);
1586 ret = FFA_ERROR_INVALID_PARAMETER;
1587 goto err_unlock_all;
1588 }
1589 }
1590
1591 mbox->state = MAILBOX_STATE_FULL;
1592
1593 if (req->emad_count != 0U) {
1594 obj->in_use++;
1595 }
1596
1597 /*
1598 * If the caller is v1.0 convert the descriptor, otherwise copy
1599 * directly.
1600 */
1601 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1602 ret = spmc_populate_ffa_v1_0_descriptor(resp, obj, buf_size, 0,
1603 ©_size,
1604 &out_desc_size);
1605 if (ret != 0U) {
1606 ERROR("%s: Failed to process descriptor.\n", __func__);
1607 goto err_unlock_all;
1608 }
1609 } else {
1610 copy_size = MIN(obj->desc_size, buf_size);
1611 out_desc_size = obj->desc_size;
1612
1613 memcpy(resp, &obj->desc, copy_size);
1614 }
1615
1616 /* Set the NS bit in the response if applicable. */
1617 spmc_ffa_mem_retrieve_set_ns_bit(resp, sp_ctx);
1618
1619 spin_unlock(&spmc_shmem_obj_state.lock);
1620 spin_unlock(&mbox->lock);
1621
1622 SMC_RET8(handle, FFA_MEM_RETRIEVE_RESP, out_desc_size,
1623 copy_size, 0, 0, 0, 0, 0);
1624
1625 err_unlock_all:
1626 spin_unlock(&spmc_shmem_obj_state.lock);
1627 err_unlock_mailbox:
1628 spin_unlock(&mbox->lock);
1629 return spmc_ffa_error_return(handle, ret);
1630 }
1631
1632 /**
1633 * spmc_ffa_mem_frag_rx - FFA_MEM_FRAG_RX implementation.
1634 * @client: Client state.
1635 * @handle_low: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[31:0].
1636 * @handle_high: Handle passed to &FFA_MEM_RETRIEVE_REQ. Bit[63:32].
1637 * @fragment_offset: Byte offset in descriptor to resume at.
1638 * @sender_id: Bit[31:16]: Endpoint id of sender if client is a
1639 * hypervisor. 0 otherwise.
1640 * @smc_handle: Handle passed to smc call. Used to return
1641 * FFA_MEM_FRAG_TX.
1642 *
1643 * Return: @smc_handle on success, error code on failure.
1644 */
spmc_ffa_mem_frag_rx(uint32_t smc_fid,bool secure_origin,uint32_t handle_low,uint32_t handle_high,uint32_t fragment_offset,uint32_t sender_id,void * cookie,void * handle,uint64_t flags)1645 long spmc_ffa_mem_frag_rx(uint32_t smc_fid,
1646 bool secure_origin,
1647 uint32_t handle_low,
1648 uint32_t handle_high,
1649 uint32_t fragment_offset,
1650 uint32_t sender_id,
1651 void *cookie,
1652 void *handle,
1653 uint64_t flags)
1654 {
1655 int ret;
1656 void *src;
1657 size_t buf_size;
1658 size_t copy_size;
1659 size_t full_copy_size;
1660 uint32_t desc_sender_id;
1661 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1662 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1663 struct spmc_shmem_obj *obj;
1664 uint32_t ffa_version = get_partition_ffa_version(secure_origin);
1665
1666 if (!secure_origin) {
1667 WARN("%s: can only be called from swld.\n",
1668 __func__);
1669 return spmc_ffa_error_return(handle,
1670 FFA_ERROR_INVALID_PARAMETER);
1671 }
1672
1673 spin_lock(&spmc_shmem_obj_state.lock);
1674
1675 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1676 if (obj == NULL) {
1677 WARN("%s: invalid handle, 0x%lx, not a valid handle.\n",
1678 __func__, mem_handle);
1679 ret = FFA_ERROR_INVALID_PARAMETER;
1680 goto err_unlock_shmem;
1681 }
1682
1683 desc_sender_id = (uint32_t)obj->desc.sender_id << 16;
1684 if (sender_id != 0U && sender_id != desc_sender_id) {
1685 WARN("%s: invalid sender_id 0x%x != 0x%x\n", __func__,
1686 sender_id, desc_sender_id);
1687 ret = FFA_ERROR_INVALID_PARAMETER;
1688 goto err_unlock_shmem;
1689 }
1690
1691 if (fragment_offset >= obj->desc_size) {
1692 WARN("%s: invalid fragment_offset 0x%x >= 0x%zx\n",
1693 __func__, fragment_offset, obj->desc_size);
1694 ret = FFA_ERROR_INVALID_PARAMETER;
1695 goto err_unlock_shmem;
1696 }
1697
1698 spin_lock(&mbox->lock);
1699
1700 if (mbox->rxtx_page_count == 0U) {
1701 WARN("%s: buffer pair not registered.\n", __func__);
1702 ret = FFA_ERROR_INVALID_PARAMETER;
1703 goto err_unlock_all;
1704 }
1705
1706 if (mbox->state != MAILBOX_STATE_EMPTY) {
1707 WARN("%s: RX Buffer is full!\n", __func__);
1708 ret = FFA_ERROR_DENIED;
1709 goto err_unlock_all;
1710 }
1711
1712 buf_size = mbox->rxtx_page_count * FFA_PAGE_SIZE;
1713
1714 mbox->state = MAILBOX_STATE_FULL;
1715
1716 /*
1717 * If the caller is v1.0 convert the descriptor, otherwise copy
1718 * directly.
1719 */
1720 if (ffa_version == MAKE_FFA_VERSION(1, 0)) {
1721 size_t out_desc_size;
1722
1723 ret = spmc_populate_ffa_v1_0_descriptor(mbox->rx_buffer, obj,
1724 buf_size,
1725 fragment_offset,
1726 ©_size,
1727 &out_desc_size);
1728 if (ret != 0U) {
1729 ERROR("%s: Failed to process descriptor.\n", __func__);
1730 goto err_unlock_all;
1731 }
1732 } else {
1733 full_copy_size = obj->desc_size - fragment_offset;
1734 copy_size = MIN(full_copy_size, buf_size);
1735
1736 src = &obj->desc;
1737
1738 memcpy(mbox->rx_buffer, src + fragment_offset, copy_size);
1739 }
1740
1741 spin_unlock(&mbox->lock);
1742 spin_unlock(&spmc_shmem_obj_state.lock);
1743
1744 SMC_RET8(handle, FFA_MEM_FRAG_TX, handle_low, handle_high,
1745 copy_size, sender_id, 0, 0, 0);
1746
1747 err_unlock_all:
1748 spin_unlock(&mbox->lock);
1749 err_unlock_shmem:
1750 spin_unlock(&spmc_shmem_obj_state.lock);
1751 return spmc_ffa_error_return(handle, ret);
1752 }
1753
1754 /**
1755 * spmc_ffa_mem_relinquish - FFA_MEM_RELINQUISH implementation.
1756 * @client: Client state.
1757 *
1758 * Implements a subset of the FF-A FFA_MEM_RELINQUISH call.
1759 * Used by secure os release previously shared memory to non-secure os.
1760 *
1761 * The handle to release must be in the client's (secure os's) transmit buffer.
1762 *
1763 * Return: 0 on success, error code on failure.
1764 */
spmc_ffa_mem_relinquish(uint32_t smc_fid,bool secure_origin,uint32_t handle_low,uint32_t handle_high,uint32_t fragment_offset,uint32_t sender_id,void * cookie,void * handle,uint64_t flags)1765 int spmc_ffa_mem_relinquish(uint32_t smc_fid,
1766 bool secure_origin,
1767 uint32_t handle_low,
1768 uint32_t handle_high,
1769 uint32_t fragment_offset,
1770 uint32_t sender_id,
1771 void *cookie,
1772 void *handle,
1773 uint64_t flags)
1774 {
1775 int ret;
1776 struct mailbox *mbox = spmc_get_mbox_desc(secure_origin);
1777 struct spmc_shmem_obj *obj;
1778 const struct ffa_mem_relinquish_descriptor *req;
1779 struct secure_partition_desc *sp_ctx = spmc_get_current_sp_ctx();
1780
1781 if (!secure_origin) {
1782 WARN("%s: unsupported relinquish direction.\n", __func__);
1783 return spmc_ffa_error_return(handle,
1784 FFA_ERROR_INVALID_PARAMETER);
1785 }
1786
1787 spin_lock(&mbox->lock);
1788
1789 if (mbox->rxtx_page_count == 0U) {
1790 WARN("%s: buffer pair not registered.\n", __func__);
1791 ret = FFA_ERROR_INVALID_PARAMETER;
1792 goto err_unlock_mailbox;
1793 }
1794
1795 req = mbox->tx_buffer;
1796
1797 if (req->flags != 0U) {
1798 WARN("%s: unsupported flags 0x%x\n", __func__, req->flags);
1799 ret = FFA_ERROR_INVALID_PARAMETER;
1800 goto err_unlock_mailbox;
1801 }
1802
1803 if (req->endpoint_count == 0) {
1804 WARN("%s: endpoint count cannot be 0.\n", __func__);
1805 ret = FFA_ERROR_INVALID_PARAMETER;
1806 goto err_unlock_mailbox;
1807 }
1808
1809 spin_lock(&spmc_shmem_obj_state.lock);
1810
1811 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, req->handle);
1812 if (obj == NULL) {
1813 ret = FFA_ERROR_INVALID_PARAMETER;
1814 goto err_unlock_all;
1815 }
1816
1817 /*
1818 * Validate the endpoint ID was populated correctly. We don't currently
1819 * support proxy endpoints so the endpoint count should always be 1.
1820 */
1821 if (req->endpoint_count != 1U) {
1822 WARN("%s: unsupported endpoint count %u != 1\n", __func__,
1823 req->endpoint_count);
1824 ret = FFA_ERROR_INVALID_PARAMETER;
1825 goto err_unlock_all;
1826 }
1827
1828 /* Validate provided endpoint ID matches the partition ID. */
1829 if (req->endpoint_array[0] != sp_ctx->sp_id) {
1830 WARN("%s: invalid endpoint ID %u != %u\n", __func__,
1831 req->endpoint_array[0], sp_ctx->sp_id);
1832 ret = FFA_ERROR_INVALID_PARAMETER;
1833 goto err_unlock_all;
1834 }
1835
1836 /* Validate the caller is a valid participant. */
1837 if (!spmc_shmem_obj_validate_id(obj, sp_ctx->sp_id)) {
1838 WARN("%s: Invalid endpoint ID (0x%x).\n",
1839 __func__, req->endpoint_array[0]);
1840 ret = FFA_ERROR_INVALID_PARAMETER;
1841 goto err_unlock_all;
1842 }
1843
1844 if (obj->in_use == 0U) {
1845 ret = FFA_ERROR_INVALID_PARAMETER;
1846 goto err_unlock_all;
1847 }
1848 obj->in_use--;
1849
1850 spin_unlock(&spmc_shmem_obj_state.lock);
1851 spin_unlock(&mbox->lock);
1852
1853 SMC_RET1(handle, FFA_SUCCESS_SMC32);
1854
1855 err_unlock_all:
1856 spin_unlock(&spmc_shmem_obj_state.lock);
1857 err_unlock_mailbox:
1858 spin_unlock(&mbox->lock);
1859 return spmc_ffa_error_return(handle, ret);
1860 }
1861
1862 /**
1863 * spmc_ffa_mem_reclaim - FFA_MEM_RECLAIM implementation.
1864 * @client: Client state.
1865 * @handle_low: Unique handle of shared memory object to reclaim. Bit[31:0].
1866 * @handle_high: Unique handle of shared memory object to reclaim.
1867 * Bit[63:32].
1868 * @flags: Unsupported, ignored.
1869 *
1870 * Implements a subset of the FF-A FFA_MEM_RECLAIM call.
1871 * Used by non-secure os reclaim memory previously shared with secure os.
1872 *
1873 * Return: 0 on success, error code on failure.
1874 */
spmc_ffa_mem_reclaim(uint32_t smc_fid,bool secure_origin,uint32_t handle_low,uint32_t handle_high,uint32_t mem_flags,uint64_t x4,void * cookie,void * handle,uint64_t flags)1875 int spmc_ffa_mem_reclaim(uint32_t smc_fid,
1876 bool secure_origin,
1877 uint32_t handle_low,
1878 uint32_t handle_high,
1879 uint32_t mem_flags,
1880 uint64_t x4,
1881 void *cookie,
1882 void *handle,
1883 uint64_t flags)
1884 {
1885 int ret;
1886 struct spmc_shmem_obj *obj;
1887 uint64_t mem_handle = handle_low | (((uint64_t)handle_high) << 32);
1888
1889 if (secure_origin) {
1890 WARN("%s: unsupported reclaim direction.\n", __func__);
1891 return spmc_ffa_error_return(handle,
1892 FFA_ERROR_INVALID_PARAMETER);
1893 }
1894
1895 if (mem_flags != 0U) {
1896 WARN("%s: unsupported flags 0x%x\n", __func__, mem_flags);
1897 return spmc_ffa_error_return(handle,
1898 FFA_ERROR_INVALID_PARAMETER);
1899 }
1900
1901 spin_lock(&spmc_shmem_obj_state.lock);
1902
1903 obj = spmc_shmem_obj_lookup(&spmc_shmem_obj_state, mem_handle);
1904 if (obj == NULL) {
1905 ret = FFA_ERROR_INVALID_PARAMETER;
1906 goto err_unlock;
1907 }
1908 if (obj->in_use != 0U) {
1909 ret = FFA_ERROR_DENIED;
1910 goto err_unlock;
1911 }
1912
1913 if (obj->desc_filled != obj->desc_size) {
1914 WARN("%s: incomplete object desc filled %zu < size %zu\n",
1915 __func__, obj->desc_filled, obj->desc_size);
1916 ret = FFA_ERROR_INVALID_PARAMETER;
1917 goto err_unlock;
1918 }
1919
1920 /* Allow for platform specific operations to be performed. */
1921 ret = plat_spmc_shmem_reclaim(&obj->desc);
1922 if (ret != 0) {
1923 goto err_unlock;
1924 }
1925
1926 spmc_shmem_obj_free(&spmc_shmem_obj_state, obj);
1927 spin_unlock(&spmc_shmem_obj_state.lock);
1928
1929 SMC_RET1(handle, FFA_SUCCESS_SMC32);
1930
1931 err_unlock:
1932 spin_unlock(&spmc_shmem_obj_state.lock);
1933 return spmc_ffa_error_return(handle, ret);
1934 }
1935