1 /*
2 * Copyright 2022 NXP
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8
9 #include <arch.h>
10 #include <caam.h>
11 #include <cci.h>
12 #include <common/debug.h>
13 #include <dcfg.h>
14 #ifdef I2C_INIT
15 #include <i2c.h>
16 #endif
17 #include <lib/mmio.h>
18 #include <lib/xlat_tables/xlat_tables_v2.h>
19 #include <ls_interconnect.h>
20 #include <nxp_smmu.h>
21 #include <nxp_timer.h>
22 #include <plat_console.h>
23 #include <plat_gic.h>
24 #include <plat_tzc400.h>
25 #include <pmu.h>
26 #if defined(NXP_SFP_ENABLED)
27 #include <sfp.h>
28 #endif
29
30 #include <errata.h>
31 #ifdef CONFIG_OCRAM_ECC_EN
32 #include <ocram.h>
33 #endif
34 #include <plat_common.h>
35 #include <platform_def.h>
36 #include <soc.h>
37
38 static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2];
39 static struct soc_type soc_list[] = {
40 SOC_ENTRY(LS1044A, LS1044A, 1, 4),
41 SOC_ENTRY(LS1044AE, LS1044AE, 1, 4),
42 SOC_ENTRY(LS1048A, LS1048A, 1, 4),
43 SOC_ENTRY(LS1048AE, LS1048AE, 1, 4),
44 SOC_ENTRY(LS1084A, LS1084A, 2, 4),
45 SOC_ENTRY(LS1084AE, LS1084AE, 2, 4),
46 SOC_ENTRY(LS1088A, LS1088A, 2, 4),
47 SOC_ENTRY(LS1088AE, LS1088AE, 2, 4),
48 };
49
50 static dcfg_init_info_t dcfg_init_data = {
51 .g_nxp_dcfg_addr = NXP_DCFG_ADDR,
52 .nxp_sysclk_freq = NXP_SYSCLK_FREQ,
53 .nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
54 .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
55 };
56
57 /*
58 * This function dynamically constructs the topology according to
59 * SoC Flavor and returns it.
60 */
plat_get_power_domain_tree_desc(void)61 const unsigned char *plat_get_power_domain_tree_desc(void)
62 {
63 unsigned int i;
64 uint8_t num_clusters, cores_per_cluster;
65
66 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
67
68 /*
69 * The highest level is the system level. The next level is constituted
70 * by clusters and then cores in clusters.
71 */
72 _power_domain_tree_desc[0] = 1;
73 _power_domain_tree_desc[1] = num_clusters;
74
75 for (i = 0; i < _power_domain_tree_desc[1]; i++) {
76 _power_domain_tree_desc[i + 2] = cores_per_cluster;
77 }
78
79
80 return _power_domain_tree_desc;
81 }
82
83 CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
84 assert_invalid_ls1088a_cluster_count);
85
86 /*
87 * This function returns the core count within the cluster corresponding to
88 * `mpidr`.
89 */
plat_ls_get_cluster_core_count(u_register_t mpidr)90 unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
91 {
92 return CORES_PER_CLUSTER;
93 }
94
95 /*
96 * This function returns the total number of cores in the SoC
97 */
get_tot_num_cores(void)98 unsigned int get_tot_num_cores(void)
99 {
100 uint8_t num_clusters, cores_per_cluster;
101
102 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
103
104 return (num_clusters * cores_per_cluster);
105 }
106
107 /*
108 * This function returns the PMU IDLE Cluster mask.
109 */
get_pmu_idle_cluster_mask(void)110 unsigned int get_pmu_idle_cluster_mask(void)
111 {
112 uint8_t num_clusters, cores_per_cluster;
113
114 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
115
116 return ((1 << num_clusters) - 2);
117 }
118
119 /*
120 * This function returns the PMU Flush Cluster mask.
121 */
get_pmu_flush_cluster_mask(void)122 unsigned int get_pmu_flush_cluster_mask(void)
123 {
124 uint8_t num_clusters, cores_per_cluster;
125
126 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
127
128 return ((1 << num_clusters) - 2);
129 }
130
131 /*
132 * This function returns the PMU IDLE Core mask.
133 */
get_pmu_idle_core_mask(void)134 unsigned int get_pmu_idle_core_mask(void)
135 {
136 return ((1 << get_tot_num_cores()) - 2);
137 }
138
139 #ifdef IMAGE_BL2
140
soc_bl2_prepare_exit(void)141 void soc_bl2_prepare_exit(void)
142 {
143 #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
144 set_sfp_wr_disable();
145 #endif
146 }
147
soc_preload_setup(void)148 void soc_preload_setup(void)
149 {
150
151 }
152
153 /*
154 * This function returns the boot device based on RCW_SRC
155 */
get_boot_dev(void)156 enum boot_device get_boot_dev(void)
157 {
158 enum boot_device src = BOOT_DEVICE_NONE;
159 uint32_t porsr1;
160 uint32_t rcw_src, val;
161
162 porsr1 = read_reg_porsr1();
163
164 rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
165
166 /* RCW SRC NOR */
167 val = rcw_src & RCW_SRC_TYPE_MASK;
168 if (val == NOR_16B_VAL) {
169 src = BOOT_DEVICE_IFC_NOR;
170 INFO("RCW BOOT SRC is IFC NOR\n");
171 } else {
172 val = rcw_src & RCW_SRC_SERIAL_MASK;
173 switch (val) {
174 case QSPI_VAL:
175 src = BOOT_DEVICE_QSPI;
176 INFO("RCW BOOT SRC is QSPI\n");
177 break;
178 case SDHC_VAL:
179 src = BOOT_DEVICE_EMMC;
180 INFO("RCW BOOT SRC is SD/EMMC\n");
181 break;
182 case EMMC_VAL:
183 src = BOOT_DEVICE_EMMC;
184 INFO("RCW BOOT SRC is SD/EMMC\n");
185 break;
186 default:
187 src = BOOT_DEVICE_NONE;
188 }
189 }
190
191 return src;
192 }
193
194 /*
195 * This function sets up access permissions on memory regions
196 */
soc_mem_access(void)197 void soc_mem_access(void)
198 {
199 dram_regions_info_t *info_dram_regions = get_dram_regions_info();
200 int i = 0;
201 struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
202 int dram_idx, index = 1;
203
204 for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions;
205 dram_idx++) {
206 if (info_dram_regions->region[i].size == 0) {
207 ERROR("DDR init failure, or");
208 ERROR("DRAM regions not populated correctly.\n");
209 break;
210 }
211
212 index = populate_tzc400_reg_list(tzc400_reg_list,
213 dram_idx, index,
214 info_dram_regions->region[dram_idx].addr,
215 info_dram_regions->region[dram_idx].size,
216 NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
217 }
218
219 mem_access_setup(NXP_TZC_ADDR, index,
220 tzc400_reg_list);
221 }
222
223 /*
224 * This function implements soc specific erratum
225 * This is called before DDR is initialized or MMU is enabled
226 */
soc_early_init(void)227 void soc_early_init(void)
228 {
229 enum boot_device dev;
230 dram_regions_info_t *dram_regions_info = get_dram_regions_info();
231
232 #ifdef CONFIG_OCRAM_ECC_EN
233 ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
234 #endif
235 dcfg_init(&dcfg_init_data);
236 #if LOG_LEVEL > 0
237 /* Initialize the console to provide early debug support */
238 plat_console_init(NXP_CONSOLE_ADDR,
239 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
240 #endif
241 enable_timer_base_to_cluster(NXP_PMU_ADDR);
242 enable_core_tb(NXP_PMU_ADDR);
243
244 /*
245 * Use the region(NXP_SD_BLOCK_BUF_ADDR + NXP_SD_BLOCK_BUF_SIZE)
246 * as dma of sd
247 */
248 dev = get_boot_dev();
249 if (dev == BOOT_DEVICE_EMMC) {
250 mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
251 NXP_SD_BLOCK_BUF_SIZE,
252 MT_DEVICE | MT_RW | MT_NS);
253 }
254
255 /*
256 * Unlock write access for SMMU SMMU_CBn_ACTLR in all Non-secure contexts.
257 */
258 smmu_cache_unlock(NXP_SMMU_ADDR);
259 INFO("SMMU Cache Unlocking is Configured.\n");
260
261 #if TRUSTED_BOARD_BOOT
262 uint32_t mode;
263
264 sfp_init(NXP_SFP_ADDR);
265 /*
266 * For secure boot disable SMMU.
267 * Later when platform security policy comes in picture,
268 * this might get modified based on the policy
269 */
270 if (check_boot_mode_secure(&mode) == true) {
271 bypass_smmu(NXP_SMMU_ADDR);
272 }
273
274 /*
275 * For Mbedtls currently crypto is not supported via CAAM
276 * enable it when that support is there. In tbbr.mk
277 * the CAAM_INTEG is set as 0.
278 */
279 #ifndef MBEDTLS_X509
280 /* Initialize the crypto accelerator if enabled */
281 if (is_sec_enabled() == false) {
282 INFO("SEC is disabled.\n");
283 } else {
284 sec_init(NXP_CAAM_ADDR);
285 }
286 #endif
287 #endif
288
289 soc_errata();
290
291 delay_timer_init(NXP_TIMER_ADDR);
292 i2c_init(NXP_I2C_ADDR);
293 dram_regions_info->total_dram_size = init_ddr();
294 }
295 #else /* !IMAGE_BL2 */
296
soc_early_platform_setup2(void)297 void soc_early_platform_setup2(void)
298 {
299 dcfg_init(&dcfg_init_data);
300 /*
301 * Initialize system level generic timer for Socs
302 */
303 delay_timer_init(NXP_TIMER_ADDR);
304
305 #if LOG_LEVEL > 0
306 /* Initialize the console to provide early debug support */
307 plat_console_init(NXP_CONSOLE_ADDR,
308 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
309 #endif
310 }
311
soc_platform_setup(void)312 void soc_platform_setup(void)
313 {
314 /* Initialize the GIC driver, cpu and distributor interfaces */
315 static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
316 static interrupt_prop_t ls_interrupt_props[] = {
317 PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
318 PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
319 };
320
321 plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
322 PLATFORM_CORE_COUNT,
323 ls_interrupt_props,
324 ARRAY_SIZE(ls_interrupt_props),
325 target_mask_array,
326 plat_core_pos);
327
328 plat_ls_gic_init();
329 enable_init_timer();
330 }
331
332 /*
333 * This function initializes the soc from the BL31 module
334 */
soc_init(void)335 void soc_init(void)
336 {
337 uint8_t num_clusters, cores_per_cluster;
338
339 /* low-level init of the soc */
340 soc_init_lowlevel();
341 _init_global_data();
342 soc_init_percpu();
343 _initialize_psci();
344
345 /*
346 * Initialize Interconnect for this cluster during cold boot.
347 * No need for locks as no other CPU is active.
348 */
349 cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
350
351 /*
352 * Enable Interconnect coherency for the primary CPU's cluster.
353 */
354 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
355 plat_ls_interconnect_enter_coherency(num_clusters);
356
357 /* set platform security policies */
358 _set_platform_security();
359
360 /* Initialize the crypto accelerator if enabled */
361 if (is_sec_enabled() == false) {
362 INFO("SEC is disabled.\n");
363 } else {
364 sec_init(NXP_CAAM_ADDR);
365 }
366 }
367
soc_runtime_setup(void)368 void soc_runtime_setup(void)
369 {
370
371 }
372 #endif /* IMAGE_BL2 */
373
374 /*
375 * Function to return the SoC SYS CLK
376 */
get_sys_clk(void)377 unsigned int get_sys_clk(void)
378 {
379 return NXP_SYSCLK_FREQ;
380 }
381
382 /*
383 * Function returns the base counter frequency
384 * after reading the first entry at CNTFID0 (0x20 offset).
385 *
386 * Function is used by:
387 * 1. ARM common code for PSCI management.
388 * 2. ARM Generic Timer init.
389 */
plat_get_syscnt_freq2(void)390 unsigned int plat_get_syscnt_freq2(void)
391 {
392 unsigned int counter_base_frequency;
393 /*
394 * Below register specifies the base frequency of the system counter.
395 * As per NXP Board Manuals:
396 * The system counter always works with SYS_REF_CLK/4 frequency clock.
397 */
398 counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
399
400 return counter_base_frequency;
401 }
402