1 /*
2  * Copyright (c) 2018-2023, Arm Limited. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <common/debug.h>
8 #include <drivers/arm/css/css_mhu_doorbell.h>
9 #include <drivers/arm/css/scmi.h>
10 #include <drivers/arm/css/sds.h>
11 #include <drivers/arm/gic600_multichip.h>
12 #include <lib/mmio.h>
13 #include <lib/utils.h>
14 #include <plat/arm/common/plat_arm.h>
15 
16 #include "n1sdp_def.h"
17 #include "n1sdp_private.h"
18 #include <platform_def.h>
19 
20 /*
21  * Platform information structure stored in SDS.
22  * This structure holds information about platform's DDR
23  * size which will be used to zero out the memory before
24  * enabling the ECC capability as well as information
25  * about multichip setup
26  * 	- multichip mode
27  * 	- secondary_count
28  * 	- Local DDR size in GB, DDR memory in master board
29  * 	- Remote DDR size in GB, DDR memory in secondary board
30  */
31 struct n1sdp_plat_info {
32 	bool multichip_mode;
33 	uint8_t secondary_count;
34 	uint8_t local_ddr_size;
35 	uint8_t remote_ddr_size;
36 } __packed;
37 
38 static scmi_channel_plat_info_t n1sdp_scmi_plat_info = {
39 	.scmi_mbx_mem = N1SDP_SCMI_PAYLOAD_BASE,
40 	.db_reg_addr = PLAT_CSS_MHU_BASE + CSS_SCMI_MHU_DB_REG_OFF,
41 	.db_preserve_mask = 0xfffffffe,
42 	.db_modify_mask = 0x1,
43 	.ring_doorbell = &mhu_ring_doorbell
44 };
45 
46 static struct gic600_multichip_data n1sdp_multichip_data __init = {
47 	.rt_owner_base = PLAT_ARM_GICD_BASE,
48 	.rt_owner = 0,
49 	.chip_count = 1,
50 	.chip_addrs = {
51 		PLAT_ARM_GICD_BASE >> 16,
52 		PLAT_ARM_GICD_BASE >> 16
53 	},
54 	.spi_ids = {
55 		{PLAT_ARM_GICD_BASE, 32, 511},
56 		{PLAT_ARM_GICD_BASE, 512, 991}
57 	}
58 };
59 
60 static uintptr_t n1sdp_multichip_gicr_frames[3] = {
61 	PLAT_ARM_GICR_BASE,
62 	PLAT_ARM_GICR_BASE + PLAT_ARM_REMOTE_CHIP_OFFSET,
63 	0
64 };
65 
plat_css_get_scmi_info(unsigned int channel_id)66 scmi_channel_plat_info_t *plat_css_get_scmi_info(unsigned int channel_id)
67 {
68 	return &n1sdp_scmi_plat_info;
69 }
70 
plat_arm_psci_override_pm_ops(plat_psci_ops_t * ops)71 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
72 {
73 	ops->pwr_domain_off = n1sdp_pwr_domain_off;
74 	return css_scmi_override_pm_ops(ops);
75 }
76 
77 /*
78  * N1SDP platform supports RDIMMs with ECC capability. To use the ECC
79  * capability, the entire DDR memory space has to be zeroed out before
80  * enabling the ECC bits in DMC620. Zeroing out several gigabytes of
81  * memory from SCP is quite time consuming so the following function
82  * is added to zero out the DDR memory from application processor which is
83  * much faster compared to SCP. Local DDR memory is zeroed out during BL2
84  * stage. If remote chip is connected, it's DDR memory is zeroed out here.
85  */
86 
remote_dmc_ecc_setup(uint8_t remote_ddr_size)87 void remote_dmc_ecc_setup(uint8_t remote_ddr_size)
88 {
89 	uint64_t remote_dram2_size;
90 
91 	remote_dram2_size = (remote_ddr_size * 1024UL * 1024UL * 1024UL) -
92 				N1SDP_REMOTE_DRAM1_SIZE;
93 	/* multichip setup */
94 	INFO("Zeroing remote DDR memories\n");
95 	zero_normalmem((void *)N1SDP_REMOTE_DRAM1_BASE,
96 			N1SDP_REMOTE_DRAM1_SIZE);
97 	flush_dcache_range(N1SDP_REMOTE_DRAM1_BASE, N1SDP_REMOTE_DRAM1_SIZE);
98 	zero_normalmem((void *)N1SDP_REMOTE_DRAM2_BASE, remote_dram2_size);
99 	flush_dcache_range(N1SDP_REMOTE_DRAM2_BASE, remote_dram2_size);
100 
101 	INFO("Enabling ECC on remote DMCs\n");
102 	/* Set DMCs to CONFIG state before writing ERR0CTLR0 register */
103 	mmio_write_32(N1SDP_REMOTE_DMC0_MEMC_CMD_REG,
104 			N1SDP_DMC_MEMC_CMD_CONFIG);
105 	mmio_write_32(N1SDP_REMOTE_DMC1_MEMC_CMD_REG,
106 			N1SDP_DMC_MEMC_CMD_CONFIG);
107 
108 	/* Enable ECC in DMCs */
109 	mmio_setbits_32(N1SDP_REMOTE_DMC0_ERR0CTLR0_REG,
110 			N1SDP_DMC_ERR0CTLR0_ECC_EN);
111 	mmio_setbits_32(N1SDP_REMOTE_DMC1_ERR0CTLR0_REG,
112 			N1SDP_DMC_ERR0CTLR0_ECC_EN);
113 
114 	/* Set DMCs to READY state */
115 	mmio_write_32(N1SDP_REMOTE_DMC0_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
116 	mmio_write_32(N1SDP_REMOTE_DMC1_MEMC_CMD_REG, N1SDP_DMC_MEMC_CMD_READY);
117 }
118 
n1sdp_bl31_multichip_setup(void)119 void n1sdp_bl31_multichip_setup(void)
120 {
121 	plat_arm_override_gicr_frames(n1sdp_multichip_gicr_frames);
122 	gic600_multichip_init(&n1sdp_multichip_data);
123 }
124 
bl31_platform_setup(void)125 void bl31_platform_setup(void)
126 {
127 	int ret;
128 	struct n1sdp_plat_info plat_info;
129 
130 	ret = sds_init();
131 	if (ret != SDS_OK) {
132 		ERROR("SDS initialization failed\n");
133 		panic();
134 	}
135 
136 	ret = sds_struct_read(N1SDP_SDS_PLATFORM_INFO_STRUCT_ID,
137 				N1SDP_SDS_PLATFORM_INFO_OFFSET,
138 				&plat_info,
139 				N1SDP_SDS_PLATFORM_INFO_SIZE,
140 				SDS_ACCESS_MODE_NON_CACHED);
141 	if (ret != SDS_OK) {
142 		ERROR("Error getting platform info from SDS\n");
143 		panic();
144 	}
145 	/* Validate plat_info SDS */
146 	if ((plat_info.local_ddr_size == 0)
147 		|| (plat_info.local_ddr_size > N1SDP_MAX_DDR_CAPACITY_GB)
148 		|| (plat_info.remote_ddr_size > N1SDP_MAX_DDR_CAPACITY_GB)
149 		|| (plat_info.secondary_count > N1SDP_MAX_SECONDARY_COUNT)) {
150 		ERROR("platform info SDS is corrupted\n");
151 		panic();
152 	}
153 
154 	if (plat_info.multichip_mode) {
155 		n1sdp_multichip_data.chip_count = plat_info.secondary_count + 1;
156 		n1sdp_bl31_multichip_setup();
157 	}
158 	arm_bl31_platform_setup();
159 
160 	/* Check if remote memory is present */
161 	if ((plat_info.multichip_mode) && (plat_info.remote_ddr_size != 0))
162 		remote_dmc_ecc_setup(plat_info.remote_ddr_size);
163 }
164 
165 #if defined(SPD_spmd) && (SPMC_AT_EL3 == 0)
166 /*
167  * A dummy implementation of the platform handler for Group0 secure interrupt.
168  */
plat_spmd_handle_group0_interrupt(uint32_t intid)169 int plat_spmd_handle_group0_interrupt(uint32_t intid)
170 {
171 	(void)intid;
172 	return -1;
173 }
174 #endif /*defined(SPD_spmd) && (SPMC_AT_EL3 == 0)*/
175