1 /*
2 * Copyright (c) 2015-2023, Arm Limited and Contributors. All rights reserved.
3 * Portions copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8 #include <assert.h>
9 #include <stdbool.h>
10
11 #include <bl31/interrupt_mgmt.h>
12 #include <drivers/arm/gic_common.h>
13 #include <drivers/arm/gicv2.h>
14 #include <plat/common/platform.h>
15
16 /*
17 * The following platform GIC functions are weakly defined. They
18 * provide typical implementations that may be re-used by multiple
19 * platforms but may also be overridden by a platform if required.
20 */
21 #pragma weak plat_ic_get_pending_interrupt_id
22 #pragma weak plat_ic_get_pending_interrupt_type
23 #pragma weak plat_ic_acknowledge_interrupt
24 #pragma weak plat_ic_get_interrupt_type
25 #pragma weak plat_ic_end_of_interrupt
26 #pragma weak plat_interrupt_type_to_line
27
28 #pragma weak plat_ic_get_running_priority
29 #pragma weak plat_ic_is_spi
30 #pragma weak plat_ic_is_ppi
31 #pragma weak plat_ic_is_sgi
32 #pragma weak plat_ic_get_interrupt_active
33 #pragma weak plat_ic_enable_interrupt
34 #pragma weak plat_ic_disable_interrupt
35 #pragma weak plat_ic_set_interrupt_priority
36 #pragma weak plat_ic_set_interrupt_type
37 #pragma weak plat_ic_raise_el3_sgi
38 #pragma weak plat_ic_raise_ns_sgi
39 #pragma weak plat_ic_raise_s_el1_sgi
40 #pragma weak plat_ic_set_spi_routing
41
42 /*
43 * This function returns the highest priority pending interrupt at
44 * the Interrupt controller
45 */
plat_ic_get_pending_interrupt_id(void)46 uint32_t plat_ic_get_pending_interrupt_id(void)
47 {
48 unsigned int id;
49
50 id = gicv2_get_pending_interrupt_id();
51 if (id == GIC_SPURIOUS_INTERRUPT)
52 return INTR_ID_UNAVAILABLE;
53
54 return id;
55 }
56
57 /*
58 * This function returns the type of the highest priority pending interrupt
59 * at the Interrupt controller. In the case of GICv2, the Highest Priority
60 * Pending interrupt register (`GICC_HPPIR`) is read to determine the id of
61 * the pending interrupt. The type of interrupt depends upon the id value
62 * as follows.
63 * 1. id < PENDING_G1_INTID (1022) is reported as a S-EL1 interrupt
64 * 2. id = PENDING_G1_INTID (1022) is reported as a Non-secure interrupt.
65 * 3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt
66 * type.
67 */
plat_ic_get_pending_interrupt_type(void)68 uint32_t plat_ic_get_pending_interrupt_type(void)
69 {
70 unsigned int id;
71
72 id = gicv2_get_pending_interrupt_type();
73
74 /* Assume that all secure interrupts are S-EL1 interrupts */
75 if (id < PENDING_G1_INTID) {
76 #if GICV2_G0_FOR_EL3
77 return INTR_TYPE_EL3;
78 #else
79 return INTR_TYPE_S_EL1;
80 #endif
81 }
82
83 if (id == GIC_SPURIOUS_INTERRUPT)
84 return INTR_TYPE_INVAL;
85
86 return INTR_TYPE_NS;
87 }
88
89 /*
90 * This function returns the highest priority pending interrupt at
91 * the Interrupt controller and indicates to the Interrupt controller
92 * that the interrupt processing has started.
93 */
plat_ic_acknowledge_interrupt(void)94 uint32_t plat_ic_acknowledge_interrupt(void)
95 {
96 return gicv2_acknowledge_interrupt();
97 }
98
99 /*
100 * This function returns the type of the interrupt `id`, depending on how
101 * the interrupt has been configured in the interrupt controller
102 */
plat_ic_get_interrupt_type(uint32_t id)103 uint32_t plat_ic_get_interrupt_type(uint32_t id)
104 {
105 unsigned int type;
106
107 type = gicv2_get_interrupt_group(id);
108
109 /* Assume that all secure interrupts are S-EL1 interrupts */
110 return (type == GICV2_INTR_GROUP1) ? INTR_TYPE_NS :
111 #if GICV2_G0_FOR_EL3
112 INTR_TYPE_EL3;
113 #else
114 INTR_TYPE_S_EL1;
115 #endif
116 }
117
118 /*
119 * This functions is used to indicate to the interrupt controller that
120 * the processing of the interrupt corresponding to the `id` has
121 * finished.
122 */
plat_ic_end_of_interrupt(uint32_t id)123 void plat_ic_end_of_interrupt(uint32_t id)
124 {
125 gicv2_end_of_interrupt(id);
126 }
127
128 /*
129 * An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
130 * The interrupt controller knows which pin/line it uses to signal a type of
131 * interrupt. It lets the interrupt management framework determine
132 * for a type of interrupt and security state, which line should be used in the
133 * SCR_EL3 to control its routing to EL3. The interrupt line is represented
134 * as the bit position of the IRQ or FIQ bit in the SCR_EL3.
135 */
plat_interrupt_type_to_line(uint32_t type,uint32_t security_state)136 uint32_t plat_interrupt_type_to_line(uint32_t type,
137 uint32_t security_state)
138 {
139 assert((type == INTR_TYPE_S_EL1) || (type == INTR_TYPE_EL3) ||
140 (type == INTR_TYPE_NS));
141
142 assert(sec_state_is_valid(security_state));
143
144 /* Non-secure interrupts are signaled on the IRQ line always */
145 if (type == INTR_TYPE_NS)
146 return __builtin_ctz(SCR_IRQ_BIT);
147
148 /*
149 * Secure interrupts are signaled using the IRQ line if the FIQ is
150 * not enabled else they are signaled using the FIQ line.
151 */
152 return ((gicv2_is_fiq_enabled() != 0U) ? __builtin_ctz(SCR_FIQ_BIT) :
153 __builtin_ctz(SCR_IRQ_BIT));
154 }
155
plat_ic_get_running_priority(void)156 unsigned int plat_ic_get_running_priority(void)
157 {
158 return gicv2_get_running_priority();
159 }
160
plat_ic_is_spi(unsigned int id)161 int plat_ic_is_spi(unsigned int id)
162 {
163 return (id >= MIN_SPI_ID) && (id <= MAX_SPI_ID);
164 }
165
plat_ic_is_ppi(unsigned int id)166 int plat_ic_is_ppi(unsigned int id)
167 {
168 return (id >= MIN_PPI_ID) && (id < MIN_SPI_ID);
169 }
170
plat_ic_is_sgi(unsigned int id)171 int plat_ic_is_sgi(unsigned int id)
172 {
173 return (id >= MIN_SGI_ID) && (id < MIN_PPI_ID);
174 }
175
plat_ic_get_interrupt_active(unsigned int id)176 unsigned int plat_ic_get_interrupt_active(unsigned int id)
177 {
178 return gicv2_get_interrupt_active(id);
179 }
180
plat_ic_enable_interrupt(unsigned int id)181 void plat_ic_enable_interrupt(unsigned int id)
182 {
183 gicv2_enable_interrupt(id);
184 }
185
plat_ic_disable_interrupt(unsigned int id)186 void plat_ic_disable_interrupt(unsigned int id)
187 {
188 gicv2_disable_interrupt(id);
189 }
190
plat_ic_set_interrupt_priority(unsigned int id,unsigned int priority)191 void plat_ic_set_interrupt_priority(unsigned int id, unsigned int priority)
192 {
193 gicv2_set_interrupt_priority(id, priority);
194 }
195
plat_ic_has_interrupt_type(unsigned int type)196 bool plat_ic_has_interrupt_type(unsigned int type)
197 {
198 bool has_interrupt_type = false;
199
200 switch (type) {
201 #if GICV2_G0_FOR_EL3
202 case INTR_TYPE_EL3:
203 #else
204 case INTR_TYPE_S_EL1:
205 #endif
206 case INTR_TYPE_NS:
207 has_interrupt_type = true;
208 break;
209 default:
210 /* Do nothing in default case */
211 break;
212 }
213
214 return has_interrupt_type;
215 }
216
plat_ic_set_interrupt_type(unsigned int id,unsigned int type)217 void plat_ic_set_interrupt_type(unsigned int id, unsigned int type)
218 {
219 unsigned int gicv2_group = 0U;
220
221 /* Map canonical interrupt type to GICv2 type */
222 switch (type) {
223 #if GICV2_G0_FOR_EL3
224 case INTR_TYPE_EL3:
225 #else
226 case INTR_TYPE_S_EL1:
227 #endif
228 gicv2_group = GICV2_INTR_GROUP0;
229 break;
230 case INTR_TYPE_NS:
231 gicv2_group = GICV2_INTR_GROUP1;
232 break;
233 default:
234 assert(false); /* Unreachable */
235 break;
236 }
237
238 gicv2_set_interrupt_group(id, gicv2_group);
239 }
240
plat_ic_raise_el3_sgi(int sgi_num,u_register_t target)241 void plat_ic_raise_el3_sgi(int sgi_num, u_register_t target)
242 {
243 #if GICV2_G0_FOR_EL3
244 int id;
245
246 /* Target must be a valid MPIDR in the system */
247 id = plat_core_pos_by_mpidr(target);
248 assert(id >= 0);
249
250 /* Verify that this is a secure SGI */
251 assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_EL3);
252
253 gicv2_raise_sgi(sgi_num, false, id);
254 #else
255 assert(false);
256 #endif
257 }
258
plat_ic_raise_ns_sgi(int sgi_num,u_register_t target)259 void plat_ic_raise_ns_sgi(int sgi_num, u_register_t target)
260 {
261 int id;
262
263 /* Target must be a valid MPIDR in the system */
264 id = plat_core_pos_by_mpidr(target);
265 assert(id >= 0);
266
267 /* Verify that this is a non-secure SGI */
268 assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_NS);
269
270 gicv2_raise_sgi(sgi_num, true, id);
271 }
272
plat_ic_raise_s_el1_sgi(int sgi_num,u_register_t target)273 void plat_ic_raise_s_el1_sgi(int sgi_num, u_register_t target)
274 {
275 #if GICV2_G0_FOR_EL3
276 assert(false);
277 #else
278 int id;
279
280 /* Target must be a valid MPIDR in the system */
281 id = plat_core_pos_by_mpidr(target);
282 assert(id >= 0);
283
284 /* Verify that this is a secure EL1 SGI */
285 assert(plat_ic_get_interrupt_type(sgi_num) == INTR_TYPE_S_EL1);
286
287 gicv2_raise_sgi(sgi_num, false, id);
288 #endif
289 }
290
plat_ic_set_spi_routing(unsigned int id,unsigned int routing_mode,u_register_t mpidr)291 void plat_ic_set_spi_routing(unsigned int id, unsigned int routing_mode,
292 u_register_t mpidr)
293 {
294 int proc_num = 0;
295
296 switch (routing_mode) {
297 case INTR_ROUTING_MODE_PE:
298 proc_num = plat_core_pos_by_mpidr(mpidr);
299 assert(proc_num >= 0);
300 break;
301 case INTR_ROUTING_MODE_ANY:
302 /* Bit mask selecting all 8 CPUs as candidates */
303 proc_num = -1;
304 break;
305 default:
306 assert(0); /* Unreachable */
307 break;
308 }
309
310 gicv2_set_spi_routing(id, proc_num);
311 }
312
plat_ic_set_interrupt_pending(unsigned int id)313 void plat_ic_set_interrupt_pending(unsigned int id)
314 {
315 gicv2_set_interrupt_pending(id);
316 }
317
plat_ic_clear_interrupt_pending(unsigned int id)318 void plat_ic_clear_interrupt_pending(unsigned int id)
319 {
320 gicv2_clear_interrupt_pending(id);
321 }
322
plat_ic_set_priority_mask(unsigned int mask)323 unsigned int plat_ic_set_priority_mask(unsigned int mask)
324 {
325 return gicv2_set_pmr(mask);
326 }
327
plat_ic_get_interrupt_id(unsigned int raw)328 unsigned int plat_ic_get_interrupt_id(unsigned int raw)
329 {
330 unsigned int id = (raw & INT_ID_MASK);
331
332 if (id == GIC_SPURIOUS_INTERRUPT)
333 id = INTR_ID_UNAVAILABLE;
334
335 return id;
336 }
337