1/* 2 * Copyright (c) 2016-2023, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7#include <arch.h> 8#include <asm_macros.S> 9#include <common/bl_common.h> 10#include <common/runtime_svc.h> 11#include <context.h> 12#include <el3_common_macros.S> 13#include <lib/el3_runtime/cpu_data.h> 14#include <lib/pmf/aarch32/pmf_asm_macros.S> 15#include <lib/runtime_instr.h> 16#include <lib/xlat_tables/xlat_tables_defs.h> 17#include <smccc_helpers.h> 18#include <smccc_macros.S> 19 20 .globl sp_min_vector_table 21 .globl sp_min_entrypoint 22 .globl sp_min_warm_entrypoint 23 .globl sp_min_handle_smc 24 .globl sp_min_handle_fiq 25 26#define FIXUP_SIZE ((BL32_LIMIT) - (BL32_BASE)) 27 28 .macro route_fiq_to_sp_min reg 29 /* ----------------------------------------------------- 30 * FIQs are secure interrupts trapped by Monitor and non 31 * secure is not allowed to mask the FIQs. 32 * ----------------------------------------------------- 33 */ 34 ldcopr \reg, SCR 35 orr \reg, \reg, #SCR_FIQ_BIT 36 bic \reg, \reg, #SCR_FW_BIT 37 stcopr \reg, SCR 38 .endm 39 40 .macro clrex_on_monitor_entry 41#if (ARM_ARCH_MAJOR == 7) 42 /* 43 * ARMv7 architectures need to clear the exclusive access when 44 * entering Monitor mode. 45 */ 46 clrex 47#endif 48 .endm 49 50vector_base sp_min_vector_table 51 b sp_min_entrypoint 52 b plat_panic_handler /* Undef */ 53 b sp_min_handle_smc /* Syscall */ 54 b report_prefetch_abort /* Prefetch abort */ 55 b report_data_abort /* Data abort */ 56 b plat_panic_handler /* Reserved */ 57 b plat_panic_handler /* IRQ */ 58 b sp_min_handle_fiq /* FIQ */ 59 60 61/* 62 * The Cold boot/Reset entrypoint for SP_MIN 63 */ 64func sp_min_entrypoint 65 /* --------------------------------------------------------------- 66 * Stash the previous bootloader arguments r0 - r3 for later use. 67 * --------------------------------------------------------------- 68 */ 69 mov r9, r0 70 mov r10, r1 71 mov r11, r2 72 mov r12, r3 73 74#if !RESET_TO_SP_MIN 75 /* --------------------------------------------------------------------- 76 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches 77 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot 78 * and primary/secondary CPU logic should not be executed in this case. 79 * 80 * Also, assume that the previous bootloader has already initialised the 81 * SCTLR, including the CPU endianness, and has initialised the memory. 82 * --------------------------------------------------------------------- 83 */ 84 el3_entrypoint_common \ 85 _init_sctlr=0 \ 86 _warm_boot_mailbox=0 \ 87 _secondary_cold_boot=0 \ 88 _init_memory=0 \ 89 _init_c_runtime=1 \ 90 _exception_vectors=sp_min_vector_table \ 91 _pie_fixup_size=FIXUP_SIZE 92#else 93 /* --------------------------------------------------------------------- 94 * For RESET_TO_SP_MIN systems which have a programmable reset address, 95 * sp_min_entrypoint() is executed only on the cold boot path so we can 96 * skip the warm boot mailbox mechanism. 97 * --------------------------------------------------------------------- 98 */ 99 el3_entrypoint_common \ 100 _init_sctlr=1 \ 101 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \ 102 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \ 103 _init_memory=1 \ 104 _init_c_runtime=1 \ 105 _exception_vectors=sp_min_vector_table \ 106 _pie_fixup_size=FIXUP_SIZE 107#endif /* RESET_TO_SP_MIN */ 108 109#if SP_MIN_WITH_SECURE_FIQ 110 route_fiq_to_sp_min r4 111#endif 112 113 /* --------------------------------------------------------------------- 114 * Relay the previous bootloader's arguments to the platform layer 115 * --------------------------------------------------------------------- 116 */ 117 mov r0, r9 118 mov r1, r10 119 mov r2, r11 120 mov r3, r12 121 bl sp_min_early_platform_setup2 122 bl sp_min_plat_arch_setup 123 124 /* Jump to the main function */ 125 bl sp_min_main 126 127 /* ------------------------------------------------------------- 128 * Clean the .data & .bss sections to main memory. This ensures 129 * that any global data which was initialised by the primary CPU 130 * is visible to secondary CPUs before they enable their data 131 * caches and participate in coherency. 132 * ------------------------------------------------------------- 133 */ 134 ldr r0, =__DATA_START__ 135 ldr r1, =__DATA_END__ 136 sub r1, r1, r0 137 bl clean_dcache_range 138 139 ldr r0, =__BSS_START__ 140 ldr r1, =__BSS_END__ 141 sub r1, r1, r0 142 bl clean_dcache_range 143 144 bl smc_get_next_ctx 145 146 /* r0 points to `smc_ctx_t` */ 147 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */ 148 b sp_min_exit 149endfunc sp_min_entrypoint 150 151 152/* 153 * SMC handling function for SP_MIN. 154 */ 155func sp_min_handle_smc 156 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */ 157 str lr, [sp, #SMC_CTX_LR_MON] 158 159#if ENABLE_RUNTIME_INSTRUMENTATION 160 /* 161 * Read the timestamp value and store it on top of the C runtime stack. 162 * The value will be saved to the per-cpu data once the C stack is 163 * available, as a valid stack is needed to call _cpu_data() 164 */ 165 strd r0, r1, [sp, #SMC_CTX_GPREG_R0] 166 ldcopr16 r0, r1, CNTPCT_64 167 ldr lr, [sp, #SMC_CTX_SP_MON] 168 strd r0, r1, [lr, #-8]! 169 str lr, [sp, #SMC_CTX_SP_MON] 170 ldrd r0, r1, [sp, #SMC_CTX_GPREG_R0] 171#endif 172 173 smccc_save_gp_mode_regs 174 175 clrex_on_monitor_entry 176 177 /* 178 * `sp` still points to `smc_ctx_t`. Save it to a register 179 * and restore the C runtime stack pointer to `sp`. 180 */ 181 mov r2, sp /* handle */ 182 ldr sp, [r2, #SMC_CTX_SP_MON] 183 184#if ENABLE_RUNTIME_INSTRUMENTATION 185 /* Save handle to a callee saved register */ 186 mov r6, r2 187 188 /* 189 * Restore the timestamp value and store it in per-cpu data. The value 190 * will be extracted from per-cpu data by the C level SMC handler and 191 * saved to the PMF timestamp region. 192 */ 193 ldrd r4, r5, [sp], #8 194 bl _cpu_data 195 strd r4, r5, [r0, #CPU_DATA_PMF_TS0_OFFSET] 196 197 /* Restore handle */ 198 mov r2, r6 199#endif 200 201 ldr r0, [r2, #SMC_CTX_SCR] 202 and r3, r0, #SCR_NS_BIT /* flags */ 203 204 /* Switch to Secure Mode*/ 205 bic r0, #SCR_NS_BIT 206 stcopr r0, SCR 207 isb 208 209 ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */ 210 /* Check whether an SMC64 is issued */ 211 tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT) 212 beq 1f 213 /* SMC32 is not detected. Return error back to caller */ 214 mov r0, #SMC_UNK 215 str r0, [r2, #SMC_CTX_GPREG_R0] 216 mov r0, r2 217 b sp_min_exit 2181: 219 /* SMC32 is detected */ 220 mov r1, #0 /* cookie */ 221 bl handle_runtime_svc 222 223 /* `r0` points to `smc_ctx_t` */ 224 b sp_min_exit 225endfunc sp_min_handle_smc 226 227/* 228 * Secure Interrupts handling function for SP_MIN. 229 */ 230func sp_min_handle_fiq 231#if !SP_MIN_WITH_SECURE_FIQ 232 b plat_panic_handler 233#else 234 /* FIQ has a +4 offset for lr compared to preferred return address */ 235 sub lr, lr, #4 236 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */ 237 str lr, [sp, #SMC_CTX_LR_MON] 238 239 smccc_save_gp_mode_regs 240 241 clrex_on_monitor_entry 242 243 /* load run-time stack */ 244 mov r2, sp 245 ldr sp, [r2, #SMC_CTX_SP_MON] 246 247 /* Switch to Secure Mode */ 248 ldr r0, [r2, #SMC_CTX_SCR] 249 bic r0, #SCR_NS_BIT 250 stcopr r0, SCR 251 isb 252 253 push {r2, r3} 254 bl sp_min_fiq 255 pop {r0, r3} 256 257 b sp_min_exit 258#endif 259endfunc sp_min_handle_fiq 260 261/* 262 * The Warm boot entrypoint for SP_MIN. 263 */ 264func sp_min_warm_entrypoint 265#if ENABLE_RUNTIME_INSTRUMENTATION 266 /* 267 * This timestamp update happens with cache off. The next 268 * timestamp collection will need to do cache maintenance prior 269 * to timestamp update. 270 */ 271 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR 272 ldcopr16 r2, r3, CNTPCT_64 273 strd r2, r3, [r0] 274#endif 275 /* 276 * On the warm boot path, most of the EL3 initialisations performed by 277 * 'el3_entrypoint_common' must be skipped: 278 * 279 * - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by 280 * programming the reset address do we need to initialied the SCTLR. 281 * In other cases, we assume this has been taken care by the 282 * entrypoint code. 283 * 284 * - No need to determine the type of boot, we know it is a warm boot. 285 * 286 * - Do not try to distinguish between primary and secondary CPUs, this 287 * notion only exists for a cold boot. 288 * 289 * - No need to initialise the memory or the C runtime environment, 290 * it has been done once and for all on the cold boot path. 291 */ 292 el3_entrypoint_common \ 293 _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \ 294 _warm_boot_mailbox=0 \ 295 _secondary_cold_boot=0 \ 296 _init_memory=0 \ 297 _init_c_runtime=0 \ 298 _exception_vectors=sp_min_vector_table \ 299 _pie_fixup_size=0 300 301 /* 302 * We're about to enable MMU and participate in PSCI state coordination. 303 * 304 * The PSCI implementation invokes platform routines that enable CPUs to 305 * participate in coherency. On a system where CPUs are not 306 * cache-coherent without appropriate platform specific programming, 307 * having caches enabled until such time might lead to coherency issues 308 * (resulting from stale data getting speculatively fetched, among 309 * others). Therefore we keep data caches disabled even after enabling 310 * the MMU for such platforms. 311 * 312 * On systems with hardware-assisted coherency, or on single cluster 313 * platforms, such platform specific programming is not required to 314 * enter coherency (as CPUs already are); and there's no reason to have 315 * caches disabled either. 316 */ 317#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY 318 mov r0, #0 319#else 320 mov r0, #DISABLE_DCACHE 321#endif 322 bl bl32_plat_enable_mmu 323 324#if SP_MIN_WITH_SECURE_FIQ 325 route_fiq_to_sp_min r0 326#endif 327 328 bl sp_min_warm_boot 329 bl smc_get_next_ctx 330 /* r0 points to `smc_ctx_t` */ 331 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */ 332 333#if ENABLE_RUNTIME_INSTRUMENTATION 334 /* Save smc_ctx_t */ 335 mov r5, r0 336 337 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI 338 mov r4, r0 339 340 /* 341 * Invalidate before updating timestamp to ensure previous timestamp 342 * updates on the same cache line with caches disabled are properly 343 * seen by the same core. Without the cache invalidate, the core might 344 * write into a stale cache line. 345 */ 346 mov r1, #PMF_TS_SIZE 347 bl inv_dcache_range 348 349 ldcopr16 r0, r1, CNTPCT_64 350 strd r0, r1, [r4] 351 352 /* Restore smc_ctx_t */ 353 mov r0, r5 354#endif 355 356 b sp_min_exit 357endfunc sp_min_warm_entrypoint 358 359/* 360 * The function to restore the registers from SMC context and return 361 * to the mode restored to SPSR. 362 * 363 * Arguments : r0 must point to the SMC context to restore from. 364 */ 365func sp_min_exit 366 monitor_exit 367endfunc sp_min_exit 368