1/* 2 * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7#include <platform_def.h> 8 9#include <arch.h> 10#include <asm_macros.S> 11#include <bl31/ea_handle.h> 12#include <bl31/interrupt_mgmt.h> 13#include <bl31/sync_handle.h> 14#include <common/runtime_svc.h> 15#include <context.h> 16#include <cpu_macros.S> 17#include <el3_common_macros.S> 18#include <lib/el3_runtime/cpu_data.h> 19#include <lib/smccc.h> 20 21 .globl runtime_exceptions 22 23 .globl sync_exception_sp_el0 24 .globl irq_sp_el0 25 .globl fiq_sp_el0 26 .globl serror_sp_el0 27 28 .globl sync_exception_sp_elx 29 .globl irq_sp_elx 30 .globl fiq_sp_elx 31 .globl serror_sp_elx 32 33 .globl sync_exception_aarch64 34 .globl irq_aarch64 35 .globl fiq_aarch64 36 .globl serror_aarch64 37 38 .globl sync_exception_aarch32 39 .globl irq_aarch32 40 .globl fiq_aarch32 41 .globl serror_aarch32 42 43 /* 44 * Save LR and make x30 available as most of the routines in vector entry 45 * need a free register 46 */ 47 .macro save_x30 48 str x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR] 49 .endm 50 51 .macro restore_x30 52 ldr x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR] 53 .endm 54 55 /* 56 * Macro that synchronizes errors (EA) and checks for pending SError. 57 * On detecting a pending SError it either reflects it back to lower 58 * EL (KFH) or handles it in EL3 (FFH) based on EA routing model. 59 */ 60 .macro sync_and_handle_pending_serror 61 synchronize_errors 62 mrs x30, ISR_EL1 63 tbz x30, #ISR_A_SHIFT, 2f 64#if FFH_SUPPORT 65 mrs x30, scr_el3 66 tst x30, #SCR_EA_BIT 67 b.eq 1f 68 bl handle_pending_async_ea 69 b 2f 70#endif 711: 72 /* This function never returns, but need LR for decision making */ 73 bl reflect_pending_async_ea_to_lower_el 742: 75 .endm 76 77 /* --------------------------------------------------------------------- 78 * This macro handles Synchronous exceptions. 79 * Only SMC exceptions are supported. 80 * --------------------------------------------------------------------- 81 */ 82 .macro handle_sync_exception 83#if ENABLE_RUNTIME_INSTRUMENTATION 84 /* 85 * Read the timestamp value and store it in per-cpu data. The value 86 * will be extracted from per-cpu data by the C level SMC handler and 87 * saved to the PMF timestamp region. 88 */ 89 mrs x30, cntpct_el0 90 str x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29] 91 mrs x29, tpidr_el3 92 str x30, [x29, #CPU_DATA_PMF_TS0_OFFSET] 93 ldr x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X29] 94#endif 95 96 mrs x30, esr_el3 97 ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH 98 99 /* Handle SMC exceptions separately from other synchronous exceptions */ 100 cmp x30, #EC_AARCH32_SMC 101 b.eq smc_handler32 102 103 cmp x30, #EC_AARCH64_SMC 104 b.eq sync_handler64 105 106 cmp x30, #EC_AARCH64_SYS 107 b.eq sync_handler64 108 109 cmp x30, #EC_IMP_DEF_EL3 110 b.eq imp_def_el3_handler 111 112 /* If FFH Support then try to handle lower EL EA exceptions. */ 113#if FFH_SUPPORT 114 mrs x30, scr_el3 115 tst x30, #SCR_EA_BIT 116 b.eq 1f 117 b handle_lower_el_sync_ea 118#endif 1191: 120 /* Synchronous exceptions other than the above are unhandled */ 121 b report_unhandled_exception 122 .endm 123 124vector_base runtime_exceptions 125 126 /* --------------------------------------------------------------------- 127 * Current EL with SP_EL0 : 0x0 - 0x200 128 * --------------------------------------------------------------------- 129 */ 130vector_entry sync_exception_sp_el0 131#ifdef MONITOR_TRAPS 132 stp x29, x30, [sp, #-16]! 133 134 mrs x30, esr_el3 135 ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH 136 137 /* Check for BRK */ 138 cmp x30, #EC_BRK 139 b.eq brk_handler 140 141 ldp x29, x30, [sp], #16 142#endif /* MONITOR_TRAPS */ 143 144 /* We don't expect any synchronous exceptions from EL3 */ 145 b report_unhandled_exception 146end_vector_entry sync_exception_sp_el0 147 148vector_entry irq_sp_el0 149 /* 150 * EL3 code is non-reentrant. Any asynchronous exception is a serious 151 * error. Loop infinitely. 152 */ 153 b report_unhandled_interrupt 154end_vector_entry irq_sp_el0 155 156 157vector_entry fiq_sp_el0 158 b report_unhandled_interrupt 159end_vector_entry fiq_sp_el0 160 161 162vector_entry serror_sp_el0 163 no_ret plat_handle_el3_ea 164end_vector_entry serror_sp_el0 165 166 /* --------------------------------------------------------------------- 167 * Current EL with SP_ELx: 0x200 - 0x400 168 * --------------------------------------------------------------------- 169 */ 170vector_entry sync_exception_sp_elx 171 /* 172 * This exception will trigger if anything went wrong during a previous 173 * exception entry or exit or while handling an earlier unexpected 174 * synchronous exception. There is a high probability that SP_EL3 is 175 * corrupted. 176 */ 177 b report_unhandled_exception 178end_vector_entry sync_exception_sp_elx 179 180vector_entry irq_sp_elx 181 b report_unhandled_interrupt 182end_vector_entry irq_sp_elx 183 184vector_entry fiq_sp_elx 185 b report_unhandled_interrupt 186end_vector_entry fiq_sp_elx 187 188vector_entry serror_sp_elx 189#if FFH_SUPPORT 190 /* 191 * This will trigger if the exception was taken due to SError in EL3 or 192 * because of pending asynchronous external aborts from lower EL that got 193 * triggered due to implicit/explicit synchronization in EL3 (SCR_EL3.EA=1) 194 * during EL3 entry. For the former case we continue with "plat_handle_el3_ea". 195 * The later case will occur when PSTATE.A bit is cleared in 196 * "handle_pending_async_ea". This means we are doing a nested 197 * exception in EL3. Call the handler for async EA which will eret back to 198 * original el3 handler if it is nested exception. Also, unmask EA so that we 199 * catch any further EA arise when handling this nested exception at EL3. 200 */ 201 save_x30 202 ldr x30, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG] 203 cbz x30, 1f 204 /* 205 * This is nested exception handling, clear the flag to avoid taking this 206 * path for further exceptions caused by EA handling 207 */ 208 str xzr, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG] 209 unmask_async_ea 210 b handle_lower_el_async_ea 2111: 212 restore_x30 213#endif 214 no_ret plat_handle_el3_ea 215 216end_vector_entry serror_sp_elx 217 218 /* --------------------------------------------------------------------- 219 * Lower EL using AArch64 : 0x400 - 0x600 220 * --------------------------------------------------------------------- 221 */ 222vector_entry sync_exception_aarch64 223 /* 224 * This exception vector will be the entry point for SMCs and traps 225 * that are unhandled at lower ELs most commonly. SP_EL3 should point 226 * to a valid cpu context where the general purpose and system register 227 * state can be saved. 228 */ 229 save_x30 230 apply_at_speculative_wa 231 sync_and_handle_pending_serror 232 unmask_async_ea 233 handle_sync_exception 234end_vector_entry sync_exception_aarch64 235 236vector_entry irq_aarch64 237 save_x30 238 apply_at_speculative_wa 239 sync_and_handle_pending_serror 240 unmask_async_ea 241 b handle_interrupt_exception 242end_vector_entry irq_aarch64 243 244vector_entry fiq_aarch64 245 save_x30 246 apply_at_speculative_wa 247 sync_and_handle_pending_serror 248 unmask_async_ea 249 b handle_interrupt_exception 250end_vector_entry fiq_aarch64 251 252 /* 253 * Need to synchronize any outstanding SError since we can get a burst of errors. 254 * So reuse the sync mechanism to catch any further errors which are pending. 255 */ 256vector_entry serror_aarch64 257#if FFH_SUPPORT 258 save_x30 259 apply_at_speculative_wa 260 sync_and_handle_pending_serror 261 unmask_async_ea 262 b handle_lower_el_async_ea 263#else 264 b report_unhandled_exception 265#endif 266end_vector_entry serror_aarch64 267 268 /* --------------------------------------------------------------------- 269 * Lower EL using AArch32 : 0x600 - 0x800 270 * --------------------------------------------------------------------- 271 */ 272vector_entry sync_exception_aarch32 273 /* 274 * This exception vector will be the entry point for SMCs and traps 275 * that are unhandled at lower ELs most commonly. SP_EL3 should point 276 * to a valid cpu context where the general purpose and system register 277 * state can be saved. 278 */ 279 save_x30 280 apply_at_speculative_wa 281 sync_and_handle_pending_serror 282 unmask_async_ea 283 handle_sync_exception 284end_vector_entry sync_exception_aarch32 285 286vector_entry irq_aarch32 287 save_x30 288 apply_at_speculative_wa 289 sync_and_handle_pending_serror 290 unmask_async_ea 291 b handle_interrupt_exception 292end_vector_entry irq_aarch32 293 294vector_entry fiq_aarch32 295 save_x30 296 apply_at_speculative_wa 297 sync_and_handle_pending_serror 298 unmask_async_ea 299 b handle_interrupt_exception 300end_vector_entry fiq_aarch32 301 302 /* 303 * Need to synchronize any outstanding SError since we can get a burst of errors. 304 * So reuse the sync mechanism to catch any further errors which are pending. 305 */ 306vector_entry serror_aarch32 307#if FFH_SUPPORT 308 save_x30 309 apply_at_speculative_wa 310 sync_and_handle_pending_serror 311 unmask_async_ea 312 b handle_lower_el_async_ea 313#else 314 b report_unhandled_exception 315#endif 316end_vector_entry serror_aarch32 317 318#ifdef MONITOR_TRAPS 319 .section .rodata.brk_string, "aS" 320brk_location: 321 .asciz "Error at instruction 0x" 322brk_message: 323 .asciz "Unexpected BRK instruction with value 0x" 324#endif /* MONITOR_TRAPS */ 325 326 /* --------------------------------------------------------------------- 327 * The following code handles secure monitor calls. 328 * Depending upon the execution state from where the SMC has been 329 * invoked, it frees some general purpose registers to perform the 330 * remaining tasks. They involve finding the runtime service handler 331 * that is the target of the SMC & switching to runtime stacks (SP_EL0) 332 * before calling the handler. 333 * 334 * Note that x30 has been explicitly saved and can be used here 335 * --------------------------------------------------------------------- 336 */ 337func sync_exception_handler 338smc_handler32: 339 /* Check whether aarch32 issued an SMC64 */ 340 tbnz x0, #FUNCID_CC_SHIFT, smc_prohibited 341 342sync_handler64: 343 /* NOTE: The code below must preserve x0-x4 */ 344 345 /* 346 * Save general purpose and ARMv8.3-PAuth registers (if enabled). 347 * Also save PMCR_EL0 and set the PSTATE to a known state. 348 */ 349 bl prepare_el3_entry 350 351#if ENABLE_PAUTH 352 /* Load and program APIAKey firmware key */ 353 bl pauth_load_bl31_apiakey 354#endif 355 356 /* 357 * Populate the parameters for the SMC handler. 358 * We already have x0-x4 in place. x5 will point to a cookie (not used 359 * now). x6 will point to the context structure (SP_EL3) and x7 will 360 * contain flags we need to pass to the handler. 361 */ 362 mov x5, xzr 363 mov x6, sp 364 365 /* 366 * Restore the saved C runtime stack value which will become the new 367 * SP_EL0 i.e. EL3 runtime stack. It was saved in the 'cpu_context' 368 * structure prior to the last ERET from EL3. 369 */ 370 ldr x12, [x6, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP] 371 372 /* Switch to SP_EL0 */ 373 msr spsel, #MODE_SP_EL0 374 375 /* 376 * Save the SPSR_EL3 and ELR_EL3 in case there is a world 377 * switch during SMC handling. 378 * TODO: Revisit if all system registers can be saved later. 379 */ 380 mrs x16, spsr_el3 381 mrs x17, elr_el3 382 stp x16, x17, [x6, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3] 383 384 /* Load SCR_EL3 */ 385 mrs x18, scr_el3 386 387 /* check for system register traps */ 388 mrs x16, esr_el3 389 ubfx x17, x16, #ESR_EC_SHIFT, #ESR_EC_LENGTH 390 cmp x17, #EC_AARCH64_SYS 391 b.eq sysreg_handler64 392 393 /* Clear flag register */ 394 mov x7, xzr 395 396#if ENABLE_RME 397 /* Copy SCR_EL3.NSE bit to the flag to indicate caller's security */ 398 ubfx x7, x18, #SCR_NSE_SHIFT, #1 399 400 /* 401 * Shift copied SCR_EL3.NSE bit by 5 to create space for 402 * SCR_EL3.NS bit. Bit 5 of the flag corresponds to 403 * the SCR_EL3.NSE bit. 404 */ 405 lsl x7, x7, #5 406#endif /* ENABLE_RME */ 407 408 /* Copy SCR_EL3.NS bit to the flag to indicate caller's security */ 409 bfi x7, x18, #0, #1 410 411 mov sp, x12 412 413 /* 414 * Per SMCCC documentation, bits [23:17] must be zero for Fast 415 * SMCs. Other values are reserved for future use. Ensure that 416 * these bits are zeroes, if not report as unknown SMC. 417 */ 418 tbz x0, #FUNCID_TYPE_SHIFT, 2f /* Skip check if its a Yield Call*/ 419 tst x0, #(FUNCID_FC_RESERVED_MASK << FUNCID_FC_RESERVED_SHIFT) 420 b.ne smc_unknown 421 422 /* 423 * Per SMCCCv1.3 a caller can set the SVE hint bit in the SMC FID 424 * passed through x0. Copy the SVE hint bit to flags and mask the 425 * bit in smc_fid passed to the standard service dispatcher. 426 * A service/dispatcher can retrieve the SVE hint bit state from 427 * flags using the appropriate helper. 428 */ 4292: 430 and x16, x0, #(FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT) 431 orr x7, x7, x16 432 bic x0, x0, #(FUNCID_SVE_HINT_MASK << FUNCID_SVE_HINT_SHIFT) 433 434 /* Get the unique owning entity number */ 435 ubfx x16, x0, #FUNCID_OEN_SHIFT, #FUNCID_OEN_WIDTH 436 ubfx x15, x0, #FUNCID_TYPE_SHIFT, #FUNCID_TYPE_WIDTH 437 orr x16, x16, x15, lsl #FUNCID_OEN_WIDTH 438 439 /* Load descriptor index from array of indices */ 440 adrp x14, rt_svc_descs_indices 441 add x14, x14, :lo12:rt_svc_descs_indices 442 ldrb w15, [x14, x16] 443 444 /* Any index greater than 127 is invalid. Check bit 7. */ 445 tbnz w15, 7, smc_unknown 446 447 /* 448 * Get the descriptor using the index 449 * x11 = (base + off), w15 = index 450 * 451 * handler = (base + off) + (index << log2(size)) 452 */ 453 adr x11, (__RT_SVC_DESCS_START__ + RT_SVC_DESC_HANDLE) 454 lsl w10, w15, #RT_SVC_SIZE_LOG2 455 ldr x15, [x11, w10, uxtw] 456 457 /* 458 * Call the Secure Monitor Call handler and then drop directly into 459 * el3_exit() which will program any remaining architectural state 460 * prior to issuing the ERET to the desired lower EL. 461 */ 462#if DEBUG 463 cbz x15, rt_svc_fw_critical_error 464#endif 465 blr x15 466 467 b el3_exit 468 469sysreg_handler64: 470 mov x0, x16 /* ESR_EL3, containing syndrome information */ 471 mov x1, x6 /* lower EL's context */ 472 mov x19, x6 /* save context pointer for after the call */ 473 mov sp, x12 /* EL3 runtime stack, as loaded above */ 474 475 /* int handle_sysreg_trap(uint64_t esr_el3, cpu_context_t *ctx); */ 476 bl handle_sysreg_trap 477 /* 478 * returns: 479 * -1: unhandled trap, panic 480 * 0: handled trap, return to the trapping instruction (repeating it) 481 * 1: handled trap, return to the next instruction 482 */ 483 484 tst w0, w0 485 b.mi elx_panic /* negative return value: panic */ 486 b.eq 1f /* zero: do not change ELR_EL3 */ 487 488 /* advance the PC to continue after the instruction */ 489 ldr x1, [x19, #CTX_EL3STATE_OFFSET + CTX_ELR_EL3] 490 add x1, x1, #4 491 str x1, [x19, #CTX_EL3STATE_OFFSET + CTX_ELR_EL3] 4921: 493 b el3_exit 494 495smc_unknown: 496 /* 497 * Unknown SMC call. Populate return value with SMC_UNK and call 498 * el3_exit() which will restore the remaining architectural state 499 * i.e., SYS, GP and PAuth registers(if any) prior to issuing the ERET 500 * to the desired lower EL. 501 */ 502 mov x0, #SMC_UNK 503 str x0, [x6, #CTX_GPREGS_OFFSET + CTX_GPREG_X0] 504 b el3_exit 505 506smc_prohibited: 507 restore_ptw_el1_sys_regs 508 ldp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28] 509 ldr x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR] 510 mov x0, #SMC_UNK 511 exception_return 512 513#if DEBUG 514rt_svc_fw_critical_error: 515 /* Switch to SP_ELx */ 516 msr spsel, #MODE_SP_ELX 517 no_ret report_unhandled_exception 518#endif 519endfunc sync_exception_handler 520 521 /* --------------------------------------------------------------------- 522 * This function handles FIQ or IRQ interrupts i.e. EL3, S-EL1 and NS 523 * interrupts. 524 * 525 * Note that x30 has been explicitly saved and can be used here 526 * --------------------------------------------------------------------- 527 */ 528func handle_interrupt_exception 529 /* 530 * Save general purpose and ARMv8.3-PAuth registers (if enabled). 531 * Also save PMCR_EL0 and set the PSTATE to a known state. 532 */ 533 bl prepare_el3_entry 534 535#if ENABLE_PAUTH 536 /* Load and program APIAKey firmware key */ 537 bl pauth_load_bl31_apiakey 538#endif 539 540 /* Save the EL3 system registers needed to return from this exception */ 541 mrs x0, spsr_el3 542 mrs x1, elr_el3 543 stp x0, x1, [sp, #CTX_EL3STATE_OFFSET + CTX_SPSR_EL3] 544 545 /* Switch to the runtime stack i.e. SP_EL0 */ 546 ldr x2, [sp, #CTX_EL3STATE_OFFSET + CTX_RUNTIME_SP] 547 mov x20, sp 548 msr spsel, #MODE_SP_EL0 549 mov sp, x2 550 551 /* 552 * Find out whether this is a valid interrupt type. 553 * If the interrupt controller reports a spurious interrupt then return 554 * to where we came from. 555 */ 556 bl plat_ic_get_pending_interrupt_type 557 cmp x0, #INTR_TYPE_INVAL 558 b.eq interrupt_exit 559 560 /* 561 * Get the registered handler for this interrupt type. 562 * A NULL return value could be 'cause of the following conditions: 563 * 564 * a. An interrupt of a type was routed correctly but a handler for its 565 * type was not registered. 566 * 567 * b. An interrupt of a type was not routed correctly so a handler for 568 * its type was not registered. 569 * 570 * c. An interrupt of a type was routed correctly to EL3, but was 571 * deasserted before its pending state could be read. Another 572 * interrupt of a different type pended at the same time and its 573 * type was reported as pending instead. However, a handler for this 574 * type was not registered. 575 * 576 * a. and b. can only happen due to a programming error. The 577 * occurrence of c. could be beyond the control of Trusted Firmware. 578 * It makes sense to return from this exception instead of reporting an 579 * error. 580 */ 581 bl get_interrupt_type_handler 582 cbz x0, interrupt_exit 583 mov x21, x0 584 585 mov x0, #INTR_ID_UNAVAILABLE 586 587 /* Set the current security state in the 'flags' parameter */ 588 mrs x2, scr_el3 589 ubfx x1, x2, #0, #1 590 591 /* Restore the reference to the 'handle' i.e. SP_EL3 */ 592 mov x2, x20 593 594 /* x3 will point to a cookie (not used now) */ 595 mov x3, xzr 596 597 /* Call the interrupt type handler */ 598 blr x21 599 600interrupt_exit: 601 /* Return from exception, possibly in a different security state */ 602 b el3_exit 603endfunc handle_interrupt_exception 604 605func imp_def_el3_handler 606 /* Save GP registers */ 607 stp x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0] 608 stp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2] 609 stp x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4] 610 611 /* Get the cpu_ops pointer */ 612 bl get_cpu_ops_ptr 613 614 /* Get the cpu_ops exception handler */ 615 ldr x0, [x0, #CPU_E_HANDLER_FUNC] 616 617 /* 618 * If the reserved function pointer is NULL, this CPU does not have an 619 * implementation defined exception handler function 620 */ 621 cbz x0, el3_handler_exit 622 mrs x1, esr_el3 623 ubfx x1, x1, #ESR_EC_SHIFT, #ESR_EC_LENGTH 624 blr x0 625el3_handler_exit: 626 ldp x0, x1, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X0] 627 ldp x2, x3, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X2] 628 ldp x4, x5, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X4] 629 restore_x30 630 no_ret report_unhandled_exception 631endfunc imp_def_el3_handler 632 633/* 634 * Handler for async EA from lower EL synchronized at EL3 entry in KFH mode. 635 * 636 * This scenario may arise when there is an error (EA) in the system which is not 637 * yet signaled to PE while executing in lower EL. During entry into EL3, the errors 638 * are synchronized either implicitly or explicitly causing async EA to pend at EL3. 639 * 640 * On detecting the pending EA (via ISR_EL1.A) and if the EA routing model is 641 * KFH (SCR_EL3.EA = 1) this handler reflects ther error back to lower EL. 642 * 643 * This function assumes x30 has been saved. 644 */ 645func reflect_pending_async_ea_to_lower_el 646 /* 647 * As the original exception was not handled we need to ensure that we return 648 * back to the instruction which caused the exception. To acheive that, eret 649 * to "elr-4" (Label "subtract_elr_el3") for SMC or simply eret otherwise 650 * (Label "skip_smc_check"). 651 * 652 * LIMITATION: It could be that async EA is masked at the target exception level 653 * or the priority of async EA wrt to the EL3/secure interrupt is lower, which 654 * causes back and forth between lower EL and EL3. In case of back and forth between 655 * lower EL and EL3, we can track the loop count in "CTX_NESTED_EA_FLAG" and leverage 656 * previous ELR in "CTX_SAVED_ELR_EL3" to detect this cycle and further panic 657 * to indicate a problem here (Label "check_loop_ctr"). If we are in this cycle, loop 658 * counter retains its value but if we do a normal el3_exit this flag gets cleared. 659 * However, setting SCR_EL3.IESB = 1, should give priority to SError handling 660 * as per AArch64.TakeException pseudo code in Arm ARM. 661 * 662 * TODO: In future if EL3 gets a capability to inject a virtual SError to lower 663 * ELs, we can remove the el3_panic and handle the original exception first and 664 * inject SError to lower EL before ereting back. 665 */ 666 stp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28] 667 ldr x29, [sp, #CTX_EL3STATE_OFFSET + CTX_SAVED_ELR_EL3] 668 mrs x28, elr_el3 669 cmp x29, x28 670 b.eq check_loop_ctr 671 str x28, [sp, #CTX_EL3STATE_OFFSET + CTX_SAVED_ELR_EL3] 672 /* Zero the loop counter */ 673 str xzr, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG] 674 b skip_loop_ctr 675check_loop_ctr: 676 ldr x29, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG] 677 add x29, x29, #1 678 str x29, [sp, #CTX_EL3STATE_OFFSET + CTX_NESTED_EA_FLAG] 679 cmp x29, #ASYNC_EA_REPLAY_COUNTER 680 b.ge el3_panic 681skip_loop_ctr: 682 /* 683 * Logic to distinguish if we came from SMC or any other exception. 684 * Use offsets in vector entry to get which exception we are handling. 685 * In each vector entry of size 0x200, address "0x0-0x80" is for sync 686 * exception and "0x80-0x200" is for async exceptions. 687 * Use vector base address (vbar_el3) and exception offset (LR) to 688 * calculate whether the address we came from is any of the following 689 * "0x0-0x80", "0x200-0x280", "0x400-0x480" or "0x600-0x680" 690 */ 691 mrs x29, vbar_el3 692 sub x30, x30, x29 693 and x30, x30, #0x1ff 694 cmp x30, #0x80 695 b.ge skip_smc_check 696 /* Its a synchronous exception, Now check if it is SMC or not? */ 697 mrs x30, esr_el3 698 ubfx x30, x30, #ESR_EC_SHIFT, #ESR_EC_LENGTH 699 cmp x30, #EC_AARCH32_SMC 700 b.eq subtract_elr_el3 701 cmp x30, #EC_AARCH64_SMC 702 b.eq subtract_elr_el3 703 b skip_smc_check 704subtract_elr_el3: 705 sub x28, x28, #4 706skip_smc_check: 707 msr elr_el3, x28 708 ldp x28, x29, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_X28] 709 ldr x30, [sp, #CTX_GPREGS_OFFSET + CTX_GPREG_LR] 710 exception_return 711endfunc reflect_pending_async_ea_to_lower_el 712 713 /* --------------------------------------------------------------------- 714 * The following code handles exceptions caused by BRK instructions. 715 * Following a BRK instruction, the only real valid cause of action is 716 * to print some information and panic, as the code that caused it is 717 * likely in an inconsistent internal state. 718 * 719 * This is initially intended to be used in conjunction with 720 * __builtin_trap. 721 * --------------------------------------------------------------------- 722 */ 723#ifdef MONITOR_TRAPS 724func brk_handler 725 /* Extract the ISS */ 726 mrs x10, esr_el3 727 ubfx x10, x10, #ESR_ISS_SHIFT, #ESR_ISS_LENGTH 728 729 /* Ensure the console is initialized */ 730 bl plat_crash_console_init 731 732 adr x4, brk_location 733 bl asm_print_str 734 mrs x4, elr_el3 735 bl asm_print_hex 736 bl asm_print_newline 737 738 adr x4, brk_message 739 bl asm_print_str 740 mov x4, x10 741 mov x5, #28 742 bl asm_print_hex_bits 743 bl asm_print_newline 744 745 no_ret plat_panic_handler 746endfunc brk_handler 747#endif /* MONITOR_TRAPS */ 748