1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/el3_runtime/context_mgmt.h>
17 #include <lib/utils.h>
18 #include <plat/common/platform.h>
19 
20 #include "psci_private.h"
21 
22 /*
23  * SPD power management operations, expected to be supplied by the registered
24  * SPD on successful SP initialization
25  */
26 const spd_pm_ops_t *psci_spd_pm;
27 
28 /*
29  * PSCI requested local power state map. This array is used to store the local
30  * power states requested by a CPU for power levels from level 1 to
31  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
32  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
33  * CPU are the same.
34  *
35  * During state coordination, the platform is passed an array containing the
36  * local states requested for a particular non cpu power domain by each cpu
37  * within the domain.
38  *
39  * TODO: Dense packing of the requested states will cause cache thrashing
40  * when multiple power domains write to it. If we allocate the requested
41  * states at each power level in a cache-line aligned per-domain memory,
42  * the cache thrashing can be avoided.
43  */
44 static plat_local_state_t
45 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
46 
47 unsigned int psci_plat_core_count;
48 
49 /*******************************************************************************
50  * Arrays that hold the platform's power domain tree information for state
51  * management of power domains.
52  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
53  * which is an ancestor of a CPU power domain.
54  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
55  ******************************************************************************/
56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
57 #if USE_COHERENT_MEM
58 __section(".tzfw_coherent_mem")
59 #endif
60 ;
61 
62 /* Lock for PSCI state coordination */
63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
64 
65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
66 
67 /*******************************************************************************
68  * Pointer to functions exported by the platform to complete power mgmt. ops
69  ******************************************************************************/
70 const plat_psci_ops_t *psci_plat_pm_ops;
71 
72 /******************************************************************************
73  * Check that the maximum power level supported by the platform makes sense
74  *****************************************************************************/
75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
76 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
77 	assert_platform_max_pwrlvl_check);
78 
79 #if PSCI_OS_INIT_MODE
80 /*******************************************************************************
81  * The power state coordination mode used in CPU_SUSPEND.
82  * Defaults to platform-coordinated mode.
83  ******************************************************************************/
84 suspend_mode_t psci_suspend_mode = PLAT_COORD;
85 #endif
86 
87 /*
88  * The plat_local_state used by the platform is one of these types: RUN,
89  * RETENTION and OFF. The platform can define further sub-states for each type
90  * apart from RUN. This categorization is done to verify the sanity of the
91  * psci_power_state passed by the platform and to print debug information. The
92  * categorization is done on the basis of the following conditions:
93  *
94  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
95  *
96  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
97  *    STATE_TYPE_RETN.
98  *
99  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
100  *    STATE_TYPE_OFF.
101  */
102 typedef enum plat_local_state_type {
103 	STATE_TYPE_RUN = 0,
104 	STATE_TYPE_RETN,
105 	STATE_TYPE_OFF
106 } plat_local_state_type_t;
107 
108 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)109 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
110 {
111 	if (state != 0U) {
112 		if (state > PLAT_MAX_RET_STATE) {
113 			return STATE_TYPE_OFF;
114 		} else {
115 			return STATE_TYPE_RETN;
116 		}
117 	} else {
118 		return STATE_TYPE_RUN;
119 	}
120 }
121 
122 /******************************************************************************
123  * Check that the maximum retention level supported by the platform is less
124  * than the maximum off level.
125  *****************************************************************************/
126 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
127 		assert_platform_max_off_and_retn_state_check);
128 
129 /******************************************************************************
130  * This function ensures that the power state parameter in a CPU_SUSPEND request
131  * is valid. If so, it returns the requested states for each power level.
132  *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)133 int psci_validate_power_state(unsigned int power_state,
134 			      psci_power_state_t *state_info)
135 {
136 	/* Check SBZ bits in power state are zero */
137 	if (psci_check_power_state(power_state) != 0U)
138 		return PSCI_E_INVALID_PARAMS;
139 
140 	assert(psci_plat_pm_ops->validate_power_state != NULL);
141 
142 	/* Validate the power_state using platform pm_ops */
143 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
144 }
145 
146 /******************************************************************************
147  * This function retrieves the `psci_power_state_t` for system suspend from
148  * the platform.
149  *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)150 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
151 {
152 	/*
153 	 * Assert that the required pm_ops hook is implemented to ensure that
154 	 * the capability detected during psci_setup() is valid.
155 	 */
156 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
157 
158 	/*
159 	 * Query the platform for the power_state required for system suspend
160 	 */
161 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
162 }
163 
164 #if PSCI_OS_INIT_MODE
165 /*******************************************************************************
166  * This function verifies that all the other cores at the 'end_pwrlvl' have been
167  * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
168  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
169  * otherwise.
170  ******************************************************************************/
psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)171 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
172 {
173 	unsigned int my_idx, lvl, parent_idx;
174 	unsigned int cpu_start_idx, ncpus, cpu_idx;
175 	plat_local_state_t local_state;
176 
177 	if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
178 		return true;
179 	}
180 
181 	my_idx = plat_my_core_pos();
182 
183 	for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
184 		parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
185 	}
186 
187 	cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
188 	ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
189 
190 	for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
191 			cpu_idx++) {
192 		local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
193 		if (cpu_idx == my_idx) {
194 			assert(is_local_state_run(local_state) != 0);
195 			continue;
196 		}
197 
198 		if (is_local_state_run(local_state) != 0) {
199 			return false;
200 		}
201 	}
202 
203 	return true;
204 }
205 #endif
206 
207 /*******************************************************************************
208  * This function verifies that all the other cores in the system have been
209  * turned OFF and the current CPU is the last running CPU in the system.
210  * Returns true, if the current CPU is the last ON CPU or false otherwise.
211  ******************************************************************************/
psci_is_last_on_cpu(void)212 bool psci_is_last_on_cpu(void)
213 {
214 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
215 
216 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
217 		if (cpu_idx == my_idx) {
218 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
219 			continue;
220 		}
221 
222 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
223 			VERBOSE("core=%u other than current core=%u %s\n",
224 				cpu_idx, my_idx, "running in the system");
225 			return false;
226 		}
227 	}
228 
229 	return true;
230 }
231 
232 /*******************************************************************************
233  * This function verifies that all cores in the system have been turned ON.
234  * Returns true, if all CPUs are ON or false otherwise.
235  ******************************************************************************/
psci_are_all_cpus_on(void)236 static bool psci_are_all_cpus_on(void)
237 {
238 	unsigned int cpu_idx;
239 
240 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
241 		if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
242 			return false;
243 		}
244 	}
245 
246 	return true;
247 }
248 
249 /*******************************************************************************
250  * Routine to return the maximum power level to traverse to after a cpu has
251  * been physically powered up. It is expected to be called immediately after
252  * reset from assembler code.
253  ******************************************************************************/
get_power_on_target_pwrlvl(void)254 static unsigned int get_power_on_target_pwrlvl(void)
255 {
256 	unsigned int pwrlvl;
257 
258 	/*
259 	 * Assume that this cpu was suspended and retrieve its target power
260 	 * level. If it is invalid then it could only have been turned off
261 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
262 	 * cpu can be turned off to.
263 	 */
264 	pwrlvl = psci_get_suspend_pwrlvl();
265 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
266 		pwrlvl = PLAT_MAX_PWR_LVL;
267 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
268 	return pwrlvl;
269 }
270 
271 /******************************************************************************
272  * Helper function to update the requested local power state array. This array
273  * does not store the requested state for the CPU power level. Hence an
274  * assertion is added to prevent us from accessing the CPU power level.
275  *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)276 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
277 					 unsigned int cpu_idx,
278 					 plat_local_state_t req_pwr_state)
279 {
280 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
281 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
282 			(cpu_idx < psci_plat_core_count)) {
283 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
284 	}
285 }
286 
287 /******************************************************************************
288  * This function initializes the psci_req_local_pwr_states.
289  *****************************************************************************/
psci_init_req_local_pwr_states(void)290 void __init psci_init_req_local_pwr_states(void)
291 {
292 	/* Initialize the requested state of all non CPU power domains as OFF */
293 	unsigned int pwrlvl;
294 	unsigned int core;
295 
296 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
297 		for (core = 0; core < psci_plat_core_count; core++) {
298 			psci_req_local_pwr_states[pwrlvl][core] =
299 				PLAT_MAX_OFF_STATE;
300 		}
301 	}
302 }
303 
304 /******************************************************************************
305  * Helper function to return a reference to an array containing the local power
306  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
307  * array will be the number of cpu power domains of which this power domain is
308  * an ancestor. These requested states will be used to determine a suitable
309  * target state for this power domain during psci state coordination. An
310  * assertion is added to prevent us from accessing the CPU power level.
311  *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)312 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
313 							 unsigned int cpu_idx)
314 {
315 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
316 
317 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
318 			(cpu_idx < psci_plat_core_count)) {
319 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
320 	} else
321 		return NULL;
322 }
323 
324 #if PSCI_OS_INIT_MODE
325 /******************************************************************************
326  * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
327  * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
328  * local power states (state_info).
329  *****************************************************************************/
psci_update_req_local_pwr_states(unsigned int end_pwrlvl,unsigned int cpu_idx,psci_power_state_t * state_info,plat_local_state_t * prev)330 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
331 				      unsigned int cpu_idx,
332 				      psci_power_state_t *state_info,
333 				      plat_local_state_t *prev)
334 {
335 	unsigned int lvl;
336 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
337 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
338 #else
339 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
340 #endif
341 	plat_local_state_t req_state;
342 
343 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
344 		/* Save the previous requested local power state */
345 		prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
346 
347 		/* Update the new requested local power state */
348 		if (lvl <= end_pwrlvl) {
349 			req_state = state_info->pwr_domain_state[lvl];
350 		} else {
351 			req_state = state_info->pwr_domain_state[end_pwrlvl];
352 		}
353 		psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
354 	}
355 }
356 
357 /******************************************************************************
358  * Helper function to restore the previously saved requested local power states
359  * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
360  *****************************************************************************/
psci_restore_req_local_pwr_states(unsigned int cpu_idx,plat_local_state_t * prev)361 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
362 				       plat_local_state_t *prev)
363 {
364 	unsigned int lvl;
365 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
366 	unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
367 #else
368 	unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
369 #endif
370 
371 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
372 		/* Restore the previous requested local power state */
373 		psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
374 	}
375 }
376 #endif
377 
378 /*
379  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
380  * memory.
381  *
382  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
383  * it's accessed by both cached and non-cached participants. To serve the common
384  * minimum, perform a cache flush before read and after write so that non-cached
385  * participants operate on latest data in main memory.
386  *
387  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
388  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
389  * In both cases, no cache operations are required.
390  */
391 
392 /*
393  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
394  * after any required cache maintenance operation.
395  */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)396 static plat_local_state_t get_non_cpu_pd_node_local_state(
397 		unsigned int parent_idx)
398 {
399 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
400 	flush_dcache_range(
401 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
402 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
403 #endif
404 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
405 }
406 
407 /*
408  * Update local state of non-CPU power domain node from a cached CPU; perform
409  * any required cache maintenance operation afterwards.
410  */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)411 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
412 		plat_local_state_t state)
413 {
414 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
415 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
416 	flush_dcache_range(
417 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
418 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
419 #endif
420 }
421 
422 /******************************************************************************
423  * Helper function to return the current local power state of each power domain
424  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
425  * function will be called after a cpu is powered on to find the local state
426  * each power domain has emerged from.
427  *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)428 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
429 				      psci_power_state_t *target_state)
430 {
431 	unsigned int parent_idx, lvl;
432 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
433 
434 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
435 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
436 
437 	/* Copy the local power state from node to state_info */
438 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
439 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
440 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
441 	}
442 
443 	/* Set the the higher levels to RUN */
444 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
445 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
446 }
447 
448 /******************************************************************************
449  * Helper function to set the target local power state that each power domain
450  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
451  * enter. This function will be called after coordination of requested power
452  * states has been done for each power level.
453  *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)454 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
455 					const psci_power_state_t *target_state)
456 {
457 	unsigned int parent_idx, lvl;
458 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
459 
460 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
461 
462 	/*
463 	 * Need to flush as local_state might be accessed with Data Cache
464 	 * disabled during power on
465 	 */
466 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
467 
468 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
469 
470 	/* Copy the local_state from state_info */
471 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
472 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
473 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
474 	}
475 }
476 
477 
478 /*******************************************************************************
479  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
480  ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)481 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
482 				      unsigned int end_lvl,
483 				      unsigned int *node_index)
484 {
485 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
486 	unsigned int i;
487 	unsigned int *node = node_index;
488 
489 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
490 		*node = parent_node;
491 		node++;
492 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
493 	}
494 }
495 
496 /******************************************************************************
497  * This function is invoked post CPU power up and initialization. It sets the
498  * affinity info state, target power state and requested power state for the
499  * current CPU and all its ancestor power domains to RUN.
500  *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)501 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
502 {
503 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
504 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
505 
506 	/* Reset the local_state to RUN for the non cpu power domains. */
507 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
508 		set_non_cpu_pd_node_local_state(parent_idx,
509 				PSCI_LOCAL_STATE_RUN);
510 		psci_set_req_local_pwr_state(lvl,
511 					     cpu_idx,
512 					     PSCI_LOCAL_STATE_RUN);
513 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
514 	}
515 
516 	/* Set the affinity info state to ON */
517 	psci_set_aff_info_state(AFF_STATE_ON);
518 
519 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
520 	psci_flush_cpu_data(psci_svc_cpu_data);
521 }
522 
523 /******************************************************************************
524  * This function is used in platform-coordinated mode.
525  *
526  * This function is passed the local power states requested for each power
527  * domain (state_info) between the current CPU domain and its ancestors until
528  * the target power level (end_pwrlvl). It updates the array of requested power
529  * states with this information.
530  *
531  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
532  * retrieves the states requested by all the cpus of which the power domain at
533  * that level is an ancestor. It passes this information to the platform to
534  * coordinate and return the target power state. If the target state for a level
535  * is RUN then subsequent levels are not considered. At the CPU level, state
536  * coordination is not required. Hence, the requested and the target states are
537  * the same.
538  *
539  * The 'state_info' is updated with the target state for each level between the
540  * CPU and the 'end_pwrlvl' and returned to the caller.
541  *
542  * This function will only be invoked with data cache enabled and while
543  * powering down a core.
544  *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)545 void psci_do_state_coordination(unsigned int end_pwrlvl,
546 				psci_power_state_t *state_info)
547 {
548 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
549 	unsigned int start_idx;
550 	unsigned int ncpus;
551 	plat_local_state_t target_state, *req_states;
552 
553 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
554 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
555 
556 	/* For level 0, the requested state will be equivalent
557 	   to target state */
558 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
559 
560 		/* First update the requested power state */
561 		psci_set_req_local_pwr_state(lvl, cpu_idx,
562 					     state_info->pwr_domain_state[lvl]);
563 
564 		/* Get the requested power states for this power level */
565 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
566 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
567 
568 		/*
569 		 * Let the platform coordinate amongst the requested states at
570 		 * this power level and return the target local power state.
571 		 */
572 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
573 		target_state = plat_get_target_pwr_state(lvl,
574 							 req_states,
575 							 ncpus);
576 
577 		state_info->pwr_domain_state[lvl] = target_state;
578 
579 		/* Break early if the negotiated target power state is RUN */
580 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
581 			break;
582 
583 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
584 	}
585 
586 	/*
587 	 * This is for cases when we break out of the above loop early because
588 	 * the target power state is RUN at a power level < end_pwlvl.
589 	 * We update the requested power state from state_info and then
590 	 * set the target state as RUN.
591 	 */
592 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
593 		psci_set_req_local_pwr_state(lvl, cpu_idx,
594 					     state_info->pwr_domain_state[lvl]);
595 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
596 
597 	}
598 
599 	/* Update the target state in the power domain nodes */
600 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
601 }
602 
603 #if PSCI_OS_INIT_MODE
604 /******************************************************************************
605  * This function is used in OS-initiated mode.
606  *
607  * This function is passed the local power states requested for each power
608  * domain (state_info) between the current CPU domain and its ancestors until
609  * the target power level (end_pwrlvl), and ensures the requested power states
610  * are valid. It updates the array of requested power states with this
611  * information.
612  *
613  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
614  * retrieves the states requested by all the cpus of which the power domain at
615  * that level is an ancestor. It passes this information to the platform to
616  * coordinate and return the target power state. If the requested state does
617  * not match the target state, the request is denied.
618  *
619  * The 'state_info' is not modified.
620  *
621  * This function will only be invoked with data cache enabled and while
622  * powering down a core.
623  *****************************************************************************/
psci_validate_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)624 int psci_validate_state_coordination(unsigned int end_pwrlvl,
625 				     psci_power_state_t *state_info)
626 {
627 	int rc = PSCI_E_SUCCESS;
628 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
629 	unsigned int start_idx;
630 	unsigned int ncpus;
631 	plat_local_state_t target_state, *req_states;
632 	plat_local_state_t prev[PLAT_MAX_PWR_LVL];
633 
634 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
635 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
636 
637 	/*
638 	 * Save a copy of the previous requested local power states and update
639 	 * the new requested local power states.
640 	 */
641 	psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
642 
643 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
644 		/* Get the requested power states for this power level */
645 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
646 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
647 
648 		/*
649 		 * Let the platform coordinate amongst the requested states at
650 		 * this power level and return the target local power state.
651 		 */
652 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
653 		target_state = plat_get_target_pwr_state(lvl,
654 							 req_states,
655 							 ncpus);
656 
657 		/*
658 		 * Verify that the requested power state matches the target
659 		 * local power state.
660 		 */
661 		if (state_info->pwr_domain_state[lvl] != target_state) {
662 			if (target_state == PSCI_LOCAL_STATE_RUN) {
663 				rc = PSCI_E_DENIED;
664 			} else {
665 				rc = PSCI_E_INVALID_PARAMS;
666 			}
667 			goto exit;
668 		}
669 	}
670 
671 	/*
672 	 * Verify that the current core is the last running core at the
673 	 * specified power level.
674 	 */
675 	lvl = state_info->last_at_pwrlvl;
676 	if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
677 		rc = PSCI_E_DENIED;
678 	}
679 
680 exit:
681 	if (rc != PSCI_E_SUCCESS) {
682 		/* Restore the previous requested local power states. */
683 		psci_restore_req_local_pwr_states(cpu_idx, prev);
684 		return rc;
685 	}
686 
687 	/* Update the target state in the power domain nodes */
688 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
689 
690 	return rc;
691 }
692 #endif
693 
694 /******************************************************************************
695  * This function validates a suspend request by making sure that if a standby
696  * state is requested then no power level is turned off and the highest power
697  * level is placed in a standby/retention state.
698  *
699  * It also ensures that the state level X will enter is not shallower than the
700  * state level X + 1 will enter.
701  *
702  * This validation will be enabled only for DEBUG builds as the platform is
703  * expected to perform these validations as well.
704  *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)705 int psci_validate_suspend_req(const psci_power_state_t *state_info,
706 			      unsigned int is_power_down_state)
707 {
708 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
709 	plat_local_state_t state;
710 	plat_local_state_type_t req_state_type, deepest_state_type;
711 	int i;
712 
713 	/* Find the target suspend power level */
714 	target_lvl = psci_find_target_suspend_lvl(state_info);
715 	if (target_lvl == PSCI_INVALID_PWR_LVL)
716 		return PSCI_E_INVALID_PARAMS;
717 
718 	/* All power domain levels are in a RUN state to begin with */
719 	deepest_state_type = STATE_TYPE_RUN;
720 
721 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
722 		state = state_info->pwr_domain_state[i];
723 		req_state_type = find_local_state_type(state);
724 
725 		/*
726 		 * While traversing from the highest power level to the lowest,
727 		 * the state requested for lower levels has to be the same or
728 		 * deeper i.e. equal to or greater than the state at the higher
729 		 * levels. If this condition is true, then the requested state
730 		 * becomes the deepest state encountered so far.
731 		 */
732 		if (req_state_type < deepest_state_type)
733 			return PSCI_E_INVALID_PARAMS;
734 		deepest_state_type = req_state_type;
735 	}
736 
737 	/* Find the highest off power level */
738 	max_off_lvl = psci_find_max_off_lvl(state_info);
739 
740 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
741 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
742 	if (target_lvl != max_off_lvl)
743 		max_retn_lvl = target_lvl;
744 
745 	/*
746 	 * If this is not a request for a power down state then max off level
747 	 * has to be invalid and max retention level has to be a valid power
748 	 * level.
749 	 */
750 	if ((is_power_down_state == 0U) &&
751 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
752 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
753 		return PSCI_E_INVALID_PARAMS;
754 
755 	return PSCI_E_SUCCESS;
756 }
757 
758 /******************************************************************************
759  * This function finds the highest power level which will be powered down
760  * amongst all the power levels specified in the 'state_info' structure
761  *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)762 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
763 {
764 	int i;
765 
766 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
767 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
768 			return (unsigned int) i;
769 	}
770 
771 	return PSCI_INVALID_PWR_LVL;
772 }
773 
774 /******************************************************************************
775  * This functions finds the level of the highest power domain which will be
776  * placed in a low power state during a suspend operation.
777  *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)778 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
779 {
780 	int i;
781 
782 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
783 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
784 			return (unsigned int) i;
785 	}
786 
787 	return PSCI_INVALID_PWR_LVL;
788 }
789 
790 /*******************************************************************************
791  * This function is passed the highest level in the topology tree that the
792  * operation should be applied to and a list of node indexes. It picks up locks
793  * from the node index list in order of increasing power domain level in the
794  * range specified.
795  ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)796 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
797 				   const unsigned int *parent_nodes)
798 {
799 	unsigned int parent_idx;
800 	unsigned int level;
801 
802 	/* No locking required for level 0. Hence start locking from level 1 */
803 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
804 		parent_idx = parent_nodes[level - 1U];
805 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
806 	}
807 }
808 
809 /*******************************************************************************
810  * This function is passed the highest level in the topology tree that the
811  * operation should be applied to and a list of node indexes. It releases the
812  * locks in order of decreasing power domain level in the range specified.
813  ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)814 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
815 				   const unsigned int *parent_nodes)
816 {
817 	unsigned int parent_idx;
818 	unsigned int level;
819 
820 	/* Unlock top down. No unlocking required for level 0. */
821 	for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
822 		parent_idx = parent_nodes[level - 1U];
823 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
824 	}
825 }
826 
827 /*******************************************************************************
828  * Simple routine to determine whether a mpidr is valid or not.
829  ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)830 int psci_validate_mpidr(u_register_t mpidr)
831 {
832 	int pos = plat_core_pos_by_mpidr(mpidr);
833 
834 	if ((pos < 0) || ((unsigned int)pos >= PLATFORM_CORE_COUNT)) {
835 		return PSCI_E_INVALID_PARAMS;
836 	}
837 
838 	return PSCI_E_SUCCESS;
839 }
840 
841 /*******************************************************************************
842  * This function determines the full entrypoint information for the requested
843  * PSCI entrypoint on power on/resume and returns it.
844  ******************************************************************************/
845 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)846 static int psci_get_ns_ep_info(entry_point_info_t *ep,
847 			       uintptr_t entrypoint,
848 			       u_register_t context_id)
849 {
850 	u_register_t ep_attr, sctlr;
851 	unsigned int daif, ee, mode;
852 	u_register_t ns_scr_el3 = read_scr_el3();
853 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
854 
855 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
856 		read_sctlr_el2() : ns_sctlr_el1;
857 	ee = 0;
858 
859 	ep_attr = NON_SECURE | EP_ST_DISABLE;
860 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
861 		ep_attr |= EP_EE_BIG;
862 		ee = 1;
863 	}
864 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
865 
866 	ep->pc = entrypoint;
867 	zeromem(&ep->args, sizeof(ep->args));
868 	ep->args.arg0 = context_id;
869 
870 	/*
871 	 * Figure out whether the cpu enters the non-secure address space
872 	 * in aarch32 or aarch64
873 	 */
874 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
875 
876 		/*
877 		 * Check whether a Thumb entry point has been provided for an
878 		 * aarch64 EL
879 		 */
880 		if ((entrypoint & 0x1UL) != 0UL)
881 			return PSCI_E_INVALID_ADDRESS;
882 
883 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
884 
885 		ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
886 				   DISABLE_ALL_EXCEPTIONS);
887 	} else {
888 
889 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
890 			MODE32_hyp : MODE32_svc;
891 
892 		/*
893 		 * TODO: Choose async. exception bits if HYP mode is not
894 		 * implemented according to the values of SCR.{AW, FW} bits
895 		 */
896 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
897 
898 		ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
899 				       daif);
900 	}
901 
902 	return PSCI_E_SUCCESS;
903 }
904 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)905 static int psci_get_ns_ep_info(entry_point_info_t *ep,
906 			       uintptr_t entrypoint,
907 			       u_register_t context_id)
908 {
909 	u_register_t ep_attr;
910 	unsigned int aif, ee, mode;
911 	u_register_t scr = read_scr();
912 	u_register_t ns_sctlr, sctlr;
913 
914 	/* Switch to non secure state */
915 	write_scr(scr | SCR_NS_BIT);
916 	isb();
917 	ns_sctlr = read_sctlr();
918 
919 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
920 
921 	/* Return to original state */
922 	write_scr(scr);
923 	isb();
924 	ee = 0;
925 
926 	ep_attr = NON_SECURE | EP_ST_DISABLE;
927 	if (sctlr & SCTLR_EE_BIT) {
928 		ep_attr |= EP_EE_BIG;
929 		ee = 1;
930 	}
931 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
932 
933 	ep->pc = entrypoint;
934 	zeromem(&ep->args, sizeof(ep->args));
935 	ep->args.arg0 = context_id;
936 
937 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
938 
939 	/*
940 	 * TODO: Choose async. exception bits if HYP mode is not
941 	 * implemented according to the values of SCR.{AW, FW} bits
942 	 */
943 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
944 
945 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
946 
947 	return PSCI_E_SUCCESS;
948 }
949 
950 #endif /* __aarch64__ */
951 
952 /*******************************************************************************
953  * This function validates the entrypoint with the platform layer if the
954  * appropriate pm_ops hook is exported by the platform and returns the
955  * 'entry_point_info'.
956  ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)957 int psci_validate_entry_point(entry_point_info_t *ep,
958 			      uintptr_t entrypoint,
959 			      u_register_t context_id)
960 {
961 	int rc;
962 
963 	/* Validate the entrypoint using platform psci_ops */
964 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
965 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
966 		if (rc != PSCI_E_SUCCESS)
967 			return PSCI_E_INVALID_ADDRESS;
968 	}
969 
970 	/*
971 	 * Verify and derive the re-entry information for
972 	 * the non-secure world from the non-secure state from
973 	 * where this call originated.
974 	 */
975 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
976 	return rc;
977 }
978 
979 /*******************************************************************************
980  * Generic handler which is called when a cpu is physically powered on. It
981  * traverses the node information and finds the highest power level powered
982  * off and performs generic, architectural, platform setup and state management
983  * to power on that power level and power levels below it.
984  * e.g. For a cpu that's been powered on, it will call the platform specific
985  * code to enable the gic cpu interface and for a cluster it will enable
986  * coherency at the interconnect level in addition to gic cpu interface.
987  ******************************************************************************/
psci_warmboot_entrypoint(void)988 void psci_warmboot_entrypoint(void)
989 {
990 	unsigned int end_pwrlvl;
991 	unsigned int cpu_idx = plat_my_core_pos();
992 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
993 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
994 
995 	/*
996 	 * Verify that we have been explicitly turned ON or resumed from
997 	 * suspend.
998 	 */
999 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
1000 		ERROR("Unexpected affinity info state.\n");
1001 		panic();
1002 	}
1003 
1004 	/*
1005 	 * Get the maximum power domain level to traverse to after this cpu
1006 	 * has been physically powered up.
1007 	 */
1008 	end_pwrlvl = get_power_on_target_pwrlvl();
1009 
1010 	/* Get the parent nodes */
1011 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
1012 
1013 	/*
1014 	 * This function acquires the lock corresponding to each power level so
1015 	 * that by the time all locks are taken, the system topology is snapshot
1016 	 * and state management can be done safely.
1017 	 */
1018 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1019 
1020 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1021 
1022 #if ENABLE_PSCI_STAT
1023 	plat_psci_stat_accounting_stop(&state_info);
1024 #endif
1025 
1026 	/*
1027 	 * This CPU could be resuming from suspend or it could have just been
1028 	 * turned on. To distinguish between these 2 cases, we examine the
1029 	 * affinity state of the CPU:
1030 	 *  - If the affinity state is ON_PENDING then it has just been
1031 	 *    turned on.
1032 	 *  - Else it is resuming from suspend.
1033 	 *
1034 	 * Depending on the type of warm reset identified, choose the right set
1035 	 * of power management handler and perform the generic, architecture
1036 	 * and platform specific handling.
1037 	 */
1038 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1039 		psci_cpu_on_finish(cpu_idx, &state_info);
1040 	else
1041 		psci_cpu_suspend_finish(cpu_idx, &state_info);
1042 
1043 	/*
1044 	 * Set the requested and target state of this CPU and all the higher
1045 	 * power domains which are ancestors of this CPU to run.
1046 	 */
1047 	psci_set_pwr_domains_to_run(end_pwrlvl);
1048 
1049 #if ENABLE_PSCI_STAT
1050 	/*
1051 	 * Update PSCI stats.
1052 	 * Caches are off when writing stats data on the power down path.
1053 	 * Since caches are now enabled, it's necessary to do cache
1054 	 * maintenance before reading that same data.
1055 	 */
1056 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1057 #endif
1058 
1059 	/*
1060 	 * This loop releases the lock corresponding to each power level
1061 	 * in the reverse order to which they were acquired.
1062 	 */
1063 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1064 }
1065 
1066 /*******************************************************************************
1067  * This function initializes the set of hooks that PSCI invokes as part of power
1068  * management operation. The power management hooks are expected to be provided
1069  * by the SPD, after it finishes all its initialization
1070  ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)1071 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1072 {
1073 	assert(pm != NULL);
1074 	psci_spd_pm = pm;
1075 
1076 	if (pm->svc_migrate != NULL)
1077 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1078 
1079 	if (pm->svc_migrate_info != NULL)
1080 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1081 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
1082 }
1083 
1084 /*******************************************************************************
1085  * This function invokes the migrate info hook in the spd_pm_ops. It performs
1086  * the necessary return value validation. If the Secure Payload is UP and
1087  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1088  * is resident through the mpidr parameter. Else the value of the parameter on
1089  * return is undefined.
1090  ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)1091 int psci_spd_migrate_info(u_register_t *mpidr)
1092 {
1093 	int rc;
1094 
1095 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1096 		return PSCI_E_NOT_SUPPORTED;
1097 
1098 	rc = psci_spd_pm->svc_migrate_info(mpidr);
1099 
1100 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1101 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1102 
1103 	return rc;
1104 }
1105 
1106 
1107 /*******************************************************************************
1108  * This function prints the state of all power domains present in the
1109  * system
1110  ******************************************************************************/
psci_print_power_domain_map(void)1111 void psci_print_power_domain_map(void)
1112 {
1113 #if LOG_LEVEL >= LOG_LEVEL_INFO
1114 	unsigned int idx;
1115 	plat_local_state_t state;
1116 	plat_local_state_type_t state_type;
1117 
1118 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
1119 	static const char * const psci_state_type_str[] = {
1120 		"ON",
1121 		"RETENTION",
1122 		"OFF",
1123 	};
1124 
1125 	INFO("PSCI Power Domain Map:\n");
1126 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1127 							idx++) {
1128 		state_type = find_local_state_type(
1129 				psci_non_cpu_pd_nodes[idx].local_state);
1130 		INFO("  Domain Node : Level %u, parent_node %u,"
1131 				" State %s (0x%x)\n",
1132 				psci_non_cpu_pd_nodes[idx].level,
1133 				psci_non_cpu_pd_nodes[idx].parent_node,
1134 				psci_state_type_str[state_type],
1135 				psci_non_cpu_pd_nodes[idx].local_state);
1136 	}
1137 
1138 	for (idx = 0; idx < psci_plat_core_count; idx++) {
1139 		state = psci_get_cpu_local_state_by_idx(idx);
1140 		state_type = find_local_state_type(state);
1141 		INFO("  CPU Node : MPID 0x%llx, parent_node %u,"
1142 				" State %s (0x%x)\n",
1143 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1144 				psci_cpu_pd_nodes[idx].parent_node,
1145 				psci_state_type_str[state_type],
1146 				psci_get_cpu_local_state_by_idx(idx));
1147 	}
1148 #endif
1149 }
1150 
1151 /******************************************************************************
1152  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1153  * have ever been powered up would have set its MPDIR value to something other
1154  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1155  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1156  * meaningful only when called on the primary CPU during early boot.
1157  *****************************************************************************/
psci_secondaries_brought_up(void)1158 int psci_secondaries_brought_up(void)
1159 {
1160 	unsigned int idx, n_valid = 0U;
1161 
1162 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1163 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1164 			n_valid++;
1165 	}
1166 
1167 	assert(n_valid > 0U);
1168 
1169 	return (n_valid > 1U) ? 1 : 0;
1170 }
1171 
1172 /*******************************************************************************
1173  * Initiate power down sequence, by calling power down operations registered for
1174  * this CPU.
1175  ******************************************************************************/
psci_pwrdown_cpu(unsigned int power_level)1176 void psci_pwrdown_cpu(unsigned int power_level)
1177 {
1178 #if HW_ASSISTED_COHERENCY
1179 	/*
1180 	 * With hardware-assisted coherency, the CPU drivers only initiate the
1181 	 * power down sequence, without performing cache-maintenance operations
1182 	 * in software. Data caches enabled both before and after this call.
1183 	 */
1184 	prepare_cpu_pwr_dwn(power_level);
1185 #else
1186 	/*
1187 	 * Without hardware-assisted coherency, the CPU drivers disable data
1188 	 * caches, then perform cache-maintenance operations in software.
1189 	 *
1190 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1191 	 * sequence, but that function will return with data caches disabled.
1192 	 * We must ensure that the stack memory is flushed out to memory before
1193 	 * we start popping from it again.
1194 	 */
1195 	psci_do_pwrdown_cache_maintenance(power_level);
1196 #endif
1197 }
1198 
1199 /*******************************************************************************
1200  * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1201  * online PE. Caller can pass suitable method to stop a remote core.
1202  *
1203  * 'wait_ms' is the timeout value in milliseconds for the other cores to
1204  * transition to power down state. Passing '0' makes it non-blocking.
1205  *
1206  * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1207  * given timeout.
1208  ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))1209 int psci_stop_other_cores(unsigned int wait_ms,
1210 				   void (*stop_func)(u_register_t mpidr))
1211 {
1212 	unsigned int idx, this_cpu_idx;
1213 
1214 	this_cpu_idx = plat_my_core_pos();
1215 
1216 	/* Invoke stop_func for each core */
1217 	for (idx = 0U; idx < psci_plat_core_count; idx++) {
1218 		/* skip current CPU */
1219 		if (idx == this_cpu_idx) {
1220 			continue;
1221 		}
1222 
1223 		/* Check if the CPU is ON */
1224 		if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1225 			(*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1226 		}
1227 	}
1228 
1229 	/* Need to wait for other cores to shutdown */
1230 	if (wait_ms != 0U) {
1231 		while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1232 			mdelay(1U);
1233 		}
1234 
1235 		if (!psci_is_last_on_cpu()) {
1236 			WARN("Failed to stop all cores!\n");
1237 			psci_print_power_domain_map();
1238 			return PSCI_E_DENIED;
1239 		}
1240 	}
1241 
1242 	return PSCI_E_SUCCESS;
1243 }
1244 
1245 /*******************************************************************************
1246  * This function verifies that all the other cores in the system have been
1247  * turned OFF and the current CPU is the last running CPU in the system.
1248  * Returns true if the current CPU is the last ON CPU or false otherwise.
1249  *
1250  * This API has following differences with psci_is_last_on_cpu
1251  *  1. PSCI states are locked
1252  ******************************************************************************/
psci_is_last_on_cpu_safe(void)1253 bool psci_is_last_on_cpu_safe(void)
1254 {
1255 	unsigned int this_core = plat_my_core_pos();
1256 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1257 
1258 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1259 
1260 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1261 
1262 	if (!psci_is_last_on_cpu()) {
1263 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1264 		return false;
1265 	}
1266 
1267 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1268 
1269 	return true;
1270 }
1271 
1272 /*******************************************************************************
1273  * This function verifies that all cores in the system have been turned ON.
1274  * Returns true, if all CPUs are ON or false otherwise.
1275  *
1276  * This API has following differences with psci_are_all_cpus_on
1277  *  1. PSCI states are locked
1278  ******************************************************************************/
psci_are_all_cpus_on_safe(void)1279 bool psci_are_all_cpus_on_safe(void)
1280 {
1281 	unsigned int this_core = plat_my_core_pos();
1282 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1283 
1284 	psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1285 
1286 	psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1287 
1288 	if (!psci_are_all_cpus_on()) {
1289 		psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1290 		return false;
1291 	}
1292 
1293 	psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1294 
1295 	return true;
1296 }
1297