1 /*
2 * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <string.h>
9
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <drivers/delay_timer.h>
16 #include <lib/el3_runtime/context_mgmt.h>
17 #include <lib/utils.h>
18 #include <plat/common/platform.h>
19
20 #include "psci_private.h"
21
22 /*
23 * SPD power management operations, expected to be supplied by the registered
24 * SPD on successful SP initialization
25 */
26 const spd_pm_ops_t *psci_spd_pm;
27
28 /*
29 * PSCI requested local power state map. This array is used to store the local
30 * power states requested by a CPU for power levels from level 1 to
31 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
32 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
33 * CPU are the same.
34 *
35 * During state coordination, the platform is passed an array containing the
36 * local states requested for a particular non cpu power domain by each cpu
37 * within the domain.
38 *
39 * TODO: Dense packing of the requested states will cause cache thrashing
40 * when multiple power domains write to it. If we allocate the requested
41 * states at each power level in a cache-line aligned per-domain memory,
42 * the cache thrashing can be avoided.
43 */
44 static plat_local_state_t
45 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
46
47 unsigned int psci_plat_core_count;
48
49 /*******************************************************************************
50 * Arrays that hold the platform's power domain tree information for state
51 * management of power domains.
52 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
53 * which is an ancestor of a CPU power domain.
54 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
55 ******************************************************************************/
56 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
57 #if USE_COHERENT_MEM
58 __section(".tzfw_coherent_mem")
59 #endif
60 ;
61
62 /* Lock for PSCI state coordination */
63 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
64
65 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
66
67 /*******************************************************************************
68 * Pointer to functions exported by the platform to complete power mgmt. ops
69 ******************************************************************************/
70 const plat_psci_ops_t *psci_plat_pm_ops;
71
72 /******************************************************************************
73 * Check that the maximum power level supported by the platform makes sense
74 *****************************************************************************/
75 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
76 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
77 assert_platform_max_pwrlvl_check);
78
79 #if PSCI_OS_INIT_MODE
80 /*******************************************************************************
81 * The power state coordination mode used in CPU_SUSPEND.
82 * Defaults to platform-coordinated mode.
83 ******************************************************************************/
84 suspend_mode_t psci_suspend_mode = PLAT_COORD;
85 #endif
86
87 /*
88 * The plat_local_state used by the platform is one of these types: RUN,
89 * RETENTION and OFF. The platform can define further sub-states for each type
90 * apart from RUN. This categorization is done to verify the sanity of the
91 * psci_power_state passed by the platform and to print debug information. The
92 * categorization is done on the basis of the following conditions:
93 *
94 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
95 *
96 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
97 * STATE_TYPE_RETN.
98 *
99 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
100 * STATE_TYPE_OFF.
101 */
102 typedef enum plat_local_state_type {
103 STATE_TYPE_RUN = 0,
104 STATE_TYPE_RETN,
105 STATE_TYPE_OFF
106 } plat_local_state_type_t;
107
108 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)109 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
110 {
111 if (state != 0U) {
112 if (state > PLAT_MAX_RET_STATE) {
113 return STATE_TYPE_OFF;
114 } else {
115 return STATE_TYPE_RETN;
116 }
117 } else {
118 return STATE_TYPE_RUN;
119 }
120 }
121
122 /******************************************************************************
123 * Check that the maximum retention level supported by the platform is less
124 * than the maximum off level.
125 *****************************************************************************/
126 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
127 assert_platform_max_off_and_retn_state_check);
128
129 /******************************************************************************
130 * This function ensures that the power state parameter in a CPU_SUSPEND request
131 * is valid. If so, it returns the requested states for each power level.
132 *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)133 int psci_validate_power_state(unsigned int power_state,
134 psci_power_state_t *state_info)
135 {
136 /* Check SBZ bits in power state are zero */
137 if (psci_check_power_state(power_state) != 0U)
138 return PSCI_E_INVALID_PARAMS;
139
140 assert(psci_plat_pm_ops->validate_power_state != NULL);
141
142 /* Validate the power_state using platform pm_ops */
143 return psci_plat_pm_ops->validate_power_state(power_state, state_info);
144 }
145
146 /******************************************************************************
147 * This function retrieves the `psci_power_state_t` for system suspend from
148 * the platform.
149 *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)150 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
151 {
152 /*
153 * Assert that the required pm_ops hook is implemented to ensure that
154 * the capability detected during psci_setup() is valid.
155 */
156 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
157
158 /*
159 * Query the platform for the power_state required for system suspend
160 */
161 psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
162 }
163
164 #if PSCI_OS_INIT_MODE
165 /*******************************************************************************
166 * This function verifies that all the other cores at the 'end_pwrlvl' have been
167 * idled and the current CPU is the last running CPU at the 'end_pwrlvl'.
168 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
169 * otherwise.
170 ******************************************************************************/
psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)171 static bool psci_is_last_cpu_to_idle_at_pwrlvl(unsigned int end_pwrlvl)
172 {
173 unsigned int my_idx, lvl, parent_idx;
174 unsigned int cpu_start_idx, ncpus, cpu_idx;
175 plat_local_state_t local_state;
176
177 if (end_pwrlvl == PSCI_CPU_PWR_LVL) {
178 return true;
179 }
180
181 my_idx = plat_my_core_pos();
182
183 for (lvl = PSCI_CPU_PWR_LVL; lvl <= end_pwrlvl; lvl++) {
184 parent_idx = psci_cpu_pd_nodes[my_idx].parent_node;
185 }
186
187 cpu_start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
188 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
189
190 for (cpu_idx = cpu_start_idx; cpu_idx < cpu_start_idx + ncpus;
191 cpu_idx++) {
192 local_state = psci_get_cpu_local_state_by_idx(cpu_idx);
193 if (cpu_idx == my_idx) {
194 assert(is_local_state_run(local_state) != 0);
195 continue;
196 }
197
198 if (is_local_state_run(local_state) != 0) {
199 return false;
200 }
201 }
202
203 return true;
204 }
205 #endif
206
207 /*******************************************************************************
208 * This function verifies that all the other cores in the system have been
209 * turned OFF and the current CPU is the last running CPU in the system.
210 * Returns true, if the current CPU is the last ON CPU or false otherwise.
211 ******************************************************************************/
psci_is_last_on_cpu(void)212 bool psci_is_last_on_cpu(void)
213 {
214 unsigned int cpu_idx, my_idx = plat_my_core_pos();
215
216 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
217 if (cpu_idx == my_idx) {
218 assert(psci_get_aff_info_state() == AFF_STATE_ON);
219 continue;
220 }
221
222 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF) {
223 VERBOSE("core=%u other than current core=%u %s\n",
224 cpu_idx, my_idx, "running in the system");
225 return false;
226 }
227 }
228
229 return true;
230 }
231
232 /*******************************************************************************
233 * This function verifies that all cores in the system have been turned ON.
234 * Returns true, if all CPUs are ON or false otherwise.
235 ******************************************************************************/
psci_are_all_cpus_on(void)236 static bool psci_are_all_cpus_on(void)
237 {
238 unsigned int cpu_idx;
239
240 for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
241 if (psci_get_aff_info_state_by_idx(cpu_idx) == AFF_STATE_OFF) {
242 return false;
243 }
244 }
245
246 return true;
247 }
248
249 /*******************************************************************************
250 * Routine to return the maximum power level to traverse to after a cpu has
251 * been physically powered up. It is expected to be called immediately after
252 * reset from assembler code.
253 ******************************************************************************/
get_power_on_target_pwrlvl(void)254 static unsigned int get_power_on_target_pwrlvl(void)
255 {
256 unsigned int pwrlvl;
257
258 /*
259 * Assume that this cpu was suspended and retrieve its target power
260 * level. If it is invalid then it could only have been turned off
261 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
262 * cpu can be turned off to.
263 */
264 pwrlvl = psci_get_suspend_pwrlvl();
265 if (pwrlvl == PSCI_INVALID_PWR_LVL)
266 pwrlvl = PLAT_MAX_PWR_LVL;
267 assert(pwrlvl < PSCI_INVALID_PWR_LVL);
268 return pwrlvl;
269 }
270
271 /******************************************************************************
272 * Helper function to update the requested local power state array. This array
273 * does not store the requested state for the CPU power level. Hence an
274 * assertion is added to prevent us from accessing the CPU power level.
275 *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)276 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
277 unsigned int cpu_idx,
278 plat_local_state_t req_pwr_state)
279 {
280 assert(pwrlvl > PSCI_CPU_PWR_LVL);
281 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
282 (cpu_idx < psci_plat_core_count)) {
283 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
284 }
285 }
286
287 /******************************************************************************
288 * This function initializes the psci_req_local_pwr_states.
289 *****************************************************************************/
psci_init_req_local_pwr_states(void)290 void __init psci_init_req_local_pwr_states(void)
291 {
292 /* Initialize the requested state of all non CPU power domains as OFF */
293 unsigned int pwrlvl;
294 unsigned int core;
295
296 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
297 for (core = 0; core < psci_plat_core_count; core++) {
298 psci_req_local_pwr_states[pwrlvl][core] =
299 PLAT_MAX_OFF_STATE;
300 }
301 }
302 }
303
304 /******************************************************************************
305 * Helper function to return a reference to an array containing the local power
306 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
307 * array will be the number of cpu power domains of which this power domain is
308 * an ancestor. These requested states will be used to determine a suitable
309 * target state for this power domain during psci state coordination. An
310 * assertion is added to prevent us from accessing the CPU power level.
311 *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)312 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
313 unsigned int cpu_idx)
314 {
315 assert(pwrlvl > PSCI_CPU_PWR_LVL);
316
317 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
318 (cpu_idx < psci_plat_core_count)) {
319 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
320 } else
321 return NULL;
322 }
323
324 #if PSCI_OS_INIT_MODE
325 /******************************************************************************
326 * Helper function to save a copy of the psci_req_local_pwr_states (prev) for a
327 * CPU (cpu_idx), and update psci_req_local_pwr_states with the new requested
328 * local power states (state_info).
329 *****************************************************************************/
psci_update_req_local_pwr_states(unsigned int end_pwrlvl,unsigned int cpu_idx,psci_power_state_t * state_info,plat_local_state_t * prev)330 void psci_update_req_local_pwr_states(unsigned int end_pwrlvl,
331 unsigned int cpu_idx,
332 psci_power_state_t *state_info,
333 plat_local_state_t *prev)
334 {
335 unsigned int lvl;
336 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
337 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
338 #else
339 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
340 #endif
341 plat_local_state_t req_state;
342
343 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
344 /* Save the previous requested local power state */
345 prev[lvl - 1U] = *psci_get_req_local_pwr_states(lvl, cpu_idx);
346
347 /* Update the new requested local power state */
348 if (lvl <= end_pwrlvl) {
349 req_state = state_info->pwr_domain_state[lvl];
350 } else {
351 req_state = state_info->pwr_domain_state[end_pwrlvl];
352 }
353 psci_set_req_local_pwr_state(lvl, cpu_idx, req_state);
354 }
355 }
356
357 /******************************************************************************
358 * Helper function to restore the previously saved requested local power states
359 * (prev) for a CPU (cpu_idx) to psci_req_local_pwr_states.
360 *****************************************************************************/
psci_restore_req_local_pwr_states(unsigned int cpu_idx,plat_local_state_t * prev)361 void psci_restore_req_local_pwr_states(unsigned int cpu_idx,
362 plat_local_state_t *prev)
363 {
364 unsigned int lvl;
365 #ifdef PLAT_MAX_CPU_SUSPEND_PWR_LVL
366 unsigned int max_pwrlvl = PLAT_MAX_CPU_SUSPEND_PWR_LVL;
367 #else
368 unsigned int max_pwrlvl = PLAT_MAX_PWR_LVL;
369 #endif
370
371 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= max_pwrlvl; lvl++) {
372 /* Restore the previous requested local power state */
373 psci_set_req_local_pwr_state(lvl, cpu_idx, prev[lvl - 1U]);
374 }
375 }
376 #endif
377
378 /*
379 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
380 * memory.
381 *
382 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
383 * it's accessed by both cached and non-cached participants. To serve the common
384 * minimum, perform a cache flush before read and after write so that non-cached
385 * participants operate on latest data in main memory.
386 *
387 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
388 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
389 * In both cases, no cache operations are required.
390 */
391
392 /*
393 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
394 * after any required cache maintenance operation.
395 */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)396 static plat_local_state_t get_non_cpu_pd_node_local_state(
397 unsigned int parent_idx)
398 {
399 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
400 flush_dcache_range(
401 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
402 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
403 #endif
404 return psci_non_cpu_pd_nodes[parent_idx].local_state;
405 }
406
407 /*
408 * Update local state of non-CPU power domain node from a cached CPU; perform
409 * any required cache maintenance operation afterwards.
410 */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)411 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
412 plat_local_state_t state)
413 {
414 psci_non_cpu_pd_nodes[parent_idx].local_state = state;
415 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
416 flush_dcache_range(
417 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
418 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
419 #endif
420 }
421
422 /******************************************************************************
423 * Helper function to return the current local power state of each power domain
424 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
425 * function will be called after a cpu is powered on to find the local state
426 * each power domain has emerged from.
427 *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)428 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
429 psci_power_state_t *target_state)
430 {
431 unsigned int parent_idx, lvl;
432 plat_local_state_t *pd_state = target_state->pwr_domain_state;
433
434 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
435 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
436
437 /* Copy the local power state from node to state_info */
438 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
439 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
440 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
441 }
442
443 /* Set the the higher levels to RUN */
444 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
445 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
446 }
447
448 /******************************************************************************
449 * Helper function to set the target local power state that each power domain
450 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
451 * enter. This function will be called after coordination of requested power
452 * states has been done for each power level.
453 *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)454 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
455 const psci_power_state_t *target_state)
456 {
457 unsigned int parent_idx, lvl;
458 const plat_local_state_t *pd_state = target_state->pwr_domain_state;
459
460 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
461
462 /*
463 * Need to flush as local_state might be accessed with Data Cache
464 * disabled during power on
465 */
466 psci_flush_cpu_data(psci_svc_cpu_data.local_state);
467
468 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
469
470 /* Copy the local_state from state_info */
471 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
472 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
473 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
474 }
475 }
476
477
478 /*******************************************************************************
479 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
480 ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)481 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
482 unsigned int end_lvl,
483 unsigned int *node_index)
484 {
485 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
486 unsigned int i;
487 unsigned int *node = node_index;
488
489 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
490 *node = parent_node;
491 node++;
492 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
493 }
494 }
495
496 /******************************************************************************
497 * This function is invoked post CPU power up and initialization. It sets the
498 * affinity info state, target power state and requested power state for the
499 * current CPU and all its ancestor power domains to RUN.
500 *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)501 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
502 {
503 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
504 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
505
506 /* Reset the local_state to RUN for the non cpu power domains. */
507 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
508 set_non_cpu_pd_node_local_state(parent_idx,
509 PSCI_LOCAL_STATE_RUN);
510 psci_set_req_local_pwr_state(lvl,
511 cpu_idx,
512 PSCI_LOCAL_STATE_RUN);
513 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
514 }
515
516 /* Set the affinity info state to ON */
517 psci_set_aff_info_state(AFF_STATE_ON);
518
519 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
520 psci_flush_cpu_data(psci_svc_cpu_data);
521 }
522
523 /******************************************************************************
524 * This function is used in platform-coordinated mode.
525 *
526 * This function is passed the local power states requested for each power
527 * domain (state_info) between the current CPU domain and its ancestors until
528 * the target power level (end_pwrlvl). It updates the array of requested power
529 * states with this information.
530 *
531 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
532 * retrieves the states requested by all the cpus of which the power domain at
533 * that level is an ancestor. It passes this information to the platform to
534 * coordinate and return the target power state. If the target state for a level
535 * is RUN then subsequent levels are not considered. At the CPU level, state
536 * coordination is not required. Hence, the requested and the target states are
537 * the same.
538 *
539 * The 'state_info' is updated with the target state for each level between the
540 * CPU and the 'end_pwrlvl' and returned to the caller.
541 *
542 * This function will only be invoked with data cache enabled and while
543 * powering down a core.
544 *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)545 void psci_do_state_coordination(unsigned int end_pwrlvl,
546 psci_power_state_t *state_info)
547 {
548 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
549 unsigned int start_idx;
550 unsigned int ncpus;
551 plat_local_state_t target_state, *req_states;
552
553 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
554 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
555
556 /* For level 0, the requested state will be equivalent
557 to target state */
558 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
559
560 /* First update the requested power state */
561 psci_set_req_local_pwr_state(lvl, cpu_idx,
562 state_info->pwr_domain_state[lvl]);
563
564 /* Get the requested power states for this power level */
565 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
566 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
567
568 /*
569 * Let the platform coordinate amongst the requested states at
570 * this power level and return the target local power state.
571 */
572 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
573 target_state = plat_get_target_pwr_state(lvl,
574 req_states,
575 ncpus);
576
577 state_info->pwr_domain_state[lvl] = target_state;
578
579 /* Break early if the negotiated target power state is RUN */
580 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
581 break;
582
583 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
584 }
585
586 /*
587 * This is for cases when we break out of the above loop early because
588 * the target power state is RUN at a power level < end_pwlvl.
589 * We update the requested power state from state_info and then
590 * set the target state as RUN.
591 */
592 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
593 psci_set_req_local_pwr_state(lvl, cpu_idx,
594 state_info->pwr_domain_state[lvl]);
595 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
596
597 }
598
599 /* Update the target state in the power domain nodes */
600 psci_set_target_local_pwr_states(end_pwrlvl, state_info);
601 }
602
603 #if PSCI_OS_INIT_MODE
604 /******************************************************************************
605 * This function is used in OS-initiated mode.
606 *
607 * This function is passed the local power states requested for each power
608 * domain (state_info) between the current CPU domain and its ancestors until
609 * the target power level (end_pwrlvl), and ensures the requested power states
610 * are valid. It updates the array of requested power states with this
611 * information.
612 *
613 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
614 * retrieves the states requested by all the cpus of which the power domain at
615 * that level is an ancestor. It passes this information to the platform to
616 * coordinate and return the target power state. If the requested state does
617 * not match the target state, the request is denied.
618 *
619 * The 'state_info' is not modified.
620 *
621 * This function will only be invoked with data cache enabled and while
622 * powering down a core.
623 *****************************************************************************/
psci_validate_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)624 int psci_validate_state_coordination(unsigned int end_pwrlvl,
625 psci_power_state_t *state_info)
626 {
627 int rc = PSCI_E_SUCCESS;
628 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
629 unsigned int start_idx;
630 unsigned int ncpus;
631 plat_local_state_t target_state, *req_states;
632 plat_local_state_t prev[PLAT_MAX_PWR_LVL];
633
634 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
635 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
636
637 /*
638 * Save a copy of the previous requested local power states and update
639 * the new requested local power states.
640 */
641 psci_update_req_local_pwr_states(end_pwrlvl, cpu_idx, state_info, prev);
642
643 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
644 /* Get the requested power states for this power level */
645 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
646 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
647
648 /*
649 * Let the platform coordinate amongst the requested states at
650 * this power level and return the target local power state.
651 */
652 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
653 target_state = plat_get_target_pwr_state(lvl,
654 req_states,
655 ncpus);
656
657 /*
658 * Verify that the requested power state matches the target
659 * local power state.
660 */
661 if (state_info->pwr_domain_state[lvl] != target_state) {
662 if (target_state == PSCI_LOCAL_STATE_RUN) {
663 rc = PSCI_E_DENIED;
664 } else {
665 rc = PSCI_E_INVALID_PARAMS;
666 }
667 goto exit;
668 }
669 }
670
671 /*
672 * Verify that the current core is the last running core at the
673 * specified power level.
674 */
675 lvl = state_info->last_at_pwrlvl;
676 if (!psci_is_last_cpu_to_idle_at_pwrlvl(lvl)) {
677 rc = PSCI_E_DENIED;
678 }
679
680 exit:
681 if (rc != PSCI_E_SUCCESS) {
682 /* Restore the previous requested local power states. */
683 psci_restore_req_local_pwr_states(cpu_idx, prev);
684 return rc;
685 }
686
687 /* Update the target state in the power domain nodes */
688 psci_set_target_local_pwr_states(end_pwrlvl, state_info);
689
690 return rc;
691 }
692 #endif
693
694 /******************************************************************************
695 * This function validates a suspend request by making sure that if a standby
696 * state is requested then no power level is turned off and the highest power
697 * level is placed in a standby/retention state.
698 *
699 * It also ensures that the state level X will enter is not shallower than the
700 * state level X + 1 will enter.
701 *
702 * This validation will be enabled only for DEBUG builds as the platform is
703 * expected to perform these validations as well.
704 *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)705 int psci_validate_suspend_req(const psci_power_state_t *state_info,
706 unsigned int is_power_down_state)
707 {
708 unsigned int max_off_lvl, target_lvl, max_retn_lvl;
709 plat_local_state_t state;
710 plat_local_state_type_t req_state_type, deepest_state_type;
711 int i;
712
713 /* Find the target suspend power level */
714 target_lvl = psci_find_target_suspend_lvl(state_info);
715 if (target_lvl == PSCI_INVALID_PWR_LVL)
716 return PSCI_E_INVALID_PARAMS;
717
718 /* All power domain levels are in a RUN state to begin with */
719 deepest_state_type = STATE_TYPE_RUN;
720
721 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
722 state = state_info->pwr_domain_state[i];
723 req_state_type = find_local_state_type(state);
724
725 /*
726 * While traversing from the highest power level to the lowest,
727 * the state requested for lower levels has to be the same or
728 * deeper i.e. equal to or greater than the state at the higher
729 * levels. If this condition is true, then the requested state
730 * becomes the deepest state encountered so far.
731 */
732 if (req_state_type < deepest_state_type)
733 return PSCI_E_INVALID_PARAMS;
734 deepest_state_type = req_state_type;
735 }
736
737 /* Find the highest off power level */
738 max_off_lvl = psci_find_max_off_lvl(state_info);
739
740 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
741 max_retn_lvl = PSCI_INVALID_PWR_LVL;
742 if (target_lvl != max_off_lvl)
743 max_retn_lvl = target_lvl;
744
745 /*
746 * If this is not a request for a power down state then max off level
747 * has to be invalid and max retention level has to be a valid power
748 * level.
749 */
750 if ((is_power_down_state == 0U) &&
751 ((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
752 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
753 return PSCI_E_INVALID_PARAMS;
754
755 return PSCI_E_SUCCESS;
756 }
757
758 /******************************************************************************
759 * This function finds the highest power level which will be powered down
760 * amongst all the power levels specified in the 'state_info' structure
761 *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)762 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
763 {
764 int i;
765
766 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
767 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
768 return (unsigned int) i;
769 }
770
771 return PSCI_INVALID_PWR_LVL;
772 }
773
774 /******************************************************************************
775 * This functions finds the level of the highest power domain which will be
776 * placed in a low power state during a suspend operation.
777 *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)778 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
779 {
780 int i;
781
782 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
783 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
784 return (unsigned int) i;
785 }
786
787 return PSCI_INVALID_PWR_LVL;
788 }
789
790 /*******************************************************************************
791 * This function is passed the highest level in the topology tree that the
792 * operation should be applied to and a list of node indexes. It picks up locks
793 * from the node index list in order of increasing power domain level in the
794 * range specified.
795 ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)796 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
797 const unsigned int *parent_nodes)
798 {
799 unsigned int parent_idx;
800 unsigned int level;
801
802 /* No locking required for level 0. Hence start locking from level 1 */
803 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
804 parent_idx = parent_nodes[level - 1U];
805 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
806 }
807 }
808
809 /*******************************************************************************
810 * This function is passed the highest level in the topology tree that the
811 * operation should be applied to and a list of node indexes. It releases the
812 * locks in order of decreasing power domain level in the range specified.
813 ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)814 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
815 const unsigned int *parent_nodes)
816 {
817 unsigned int parent_idx;
818 unsigned int level;
819
820 /* Unlock top down. No unlocking required for level 0. */
821 for (level = end_pwrlvl; level >= (PSCI_CPU_PWR_LVL + 1U); level--) {
822 parent_idx = parent_nodes[level - 1U];
823 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
824 }
825 }
826
827 /*******************************************************************************
828 * Simple routine to determine whether a mpidr is valid or not.
829 ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)830 int psci_validate_mpidr(u_register_t mpidr)
831 {
832 int pos = plat_core_pos_by_mpidr(mpidr);
833
834 if ((pos < 0) || ((unsigned int)pos >= PLATFORM_CORE_COUNT)) {
835 return PSCI_E_INVALID_PARAMS;
836 }
837
838 return PSCI_E_SUCCESS;
839 }
840
841 /*******************************************************************************
842 * This function determines the full entrypoint information for the requested
843 * PSCI entrypoint on power on/resume and returns it.
844 ******************************************************************************/
845 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)846 static int psci_get_ns_ep_info(entry_point_info_t *ep,
847 uintptr_t entrypoint,
848 u_register_t context_id)
849 {
850 u_register_t ep_attr, sctlr;
851 unsigned int daif, ee, mode;
852 u_register_t ns_scr_el3 = read_scr_el3();
853 u_register_t ns_sctlr_el1 = read_sctlr_el1();
854
855 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
856 read_sctlr_el2() : ns_sctlr_el1;
857 ee = 0;
858
859 ep_attr = NON_SECURE | EP_ST_DISABLE;
860 if ((sctlr & SCTLR_EE_BIT) != 0U) {
861 ep_attr |= EP_EE_BIG;
862 ee = 1;
863 }
864 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
865
866 ep->pc = entrypoint;
867 zeromem(&ep->args, sizeof(ep->args));
868 ep->args.arg0 = context_id;
869
870 /*
871 * Figure out whether the cpu enters the non-secure address space
872 * in aarch32 or aarch64
873 */
874 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
875
876 /*
877 * Check whether a Thumb entry point has been provided for an
878 * aarch64 EL
879 */
880 if ((entrypoint & 0x1UL) != 0UL)
881 return PSCI_E_INVALID_ADDRESS;
882
883 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
884
885 ep->spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX,
886 DISABLE_ALL_EXCEPTIONS);
887 } else {
888
889 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
890 MODE32_hyp : MODE32_svc;
891
892 /*
893 * TODO: Choose async. exception bits if HYP mode is not
894 * implemented according to the values of SCR.{AW, FW} bits
895 */
896 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
897
898 ep->spsr = SPSR_MODE32((uint64_t)mode, entrypoint & 0x1, ee,
899 daif);
900 }
901
902 return PSCI_E_SUCCESS;
903 }
904 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)905 static int psci_get_ns_ep_info(entry_point_info_t *ep,
906 uintptr_t entrypoint,
907 u_register_t context_id)
908 {
909 u_register_t ep_attr;
910 unsigned int aif, ee, mode;
911 u_register_t scr = read_scr();
912 u_register_t ns_sctlr, sctlr;
913
914 /* Switch to non secure state */
915 write_scr(scr | SCR_NS_BIT);
916 isb();
917 ns_sctlr = read_sctlr();
918
919 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
920
921 /* Return to original state */
922 write_scr(scr);
923 isb();
924 ee = 0;
925
926 ep_attr = NON_SECURE | EP_ST_DISABLE;
927 if (sctlr & SCTLR_EE_BIT) {
928 ep_attr |= EP_EE_BIG;
929 ee = 1;
930 }
931 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
932
933 ep->pc = entrypoint;
934 zeromem(&ep->args, sizeof(ep->args));
935 ep->args.arg0 = context_id;
936
937 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
938
939 /*
940 * TODO: Choose async. exception bits if HYP mode is not
941 * implemented according to the values of SCR.{AW, FW} bits
942 */
943 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
944
945 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
946
947 return PSCI_E_SUCCESS;
948 }
949
950 #endif /* __aarch64__ */
951
952 /*******************************************************************************
953 * This function validates the entrypoint with the platform layer if the
954 * appropriate pm_ops hook is exported by the platform and returns the
955 * 'entry_point_info'.
956 ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)957 int psci_validate_entry_point(entry_point_info_t *ep,
958 uintptr_t entrypoint,
959 u_register_t context_id)
960 {
961 int rc;
962
963 /* Validate the entrypoint using platform psci_ops */
964 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
965 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
966 if (rc != PSCI_E_SUCCESS)
967 return PSCI_E_INVALID_ADDRESS;
968 }
969
970 /*
971 * Verify and derive the re-entry information for
972 * the non-secure world from the non-secure state from
973 * where this call originated.
974 */
975 rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
976 return rc;
977 }
978
979 /*******************************************************************************
980 * Generic handler which is called when a cpu is physically powered on. It
981 * traverses the node information and finds the highest power level powered
982 * off and performs generic, architectural, platform setup and state management
983 * to power on that power level and power levels below it.
984 * e.g. For a cpu that's been powered on, it will call the platform specific
985 * code to enable the gic cpu interface and for a cluster it will enable
986 * coherency at the interconnect level in addition to gic cpu interface.
987 ******************************************************************************/
psci_warmboot_entrypoint(void)988 void psci_warmboot_entrypoint(void)
989 {
990 unsigned int end_pwrlvl;
991 unsigned int cpu_idx = plat_my_core_pos();
992 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
993 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
994
995 /*
996 * Verify that we have been explicitly turned ON or resumed from
997 * suspend.
998 */
999 if (psci_get_aff_info_state() == AFF_STATE_OFF) {
1000 ERROR("Unexpected affinity info state.\n");
1001 panic();
1002 }
1003
1004 /*
1005 * Get the maximum power domain level to traverse to after this cpu
1006 * has been physically powered up.
1007 */
1008 end_pwrlvl = get_power_on_target_pwrlvl();
1009
1010 /* Get the parent nodes */
1011 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
1012
1013 /*
1014 * This function acquires the lock corresponding to each power level so
1015 * that by the time all locks are taken, the system topology is snapshot
1016 * and state management can be done safely.
1017 */
1018 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
1019
1020 psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
1021
1022 #if ENABLE_PSCI_STAT
1023 plat_psci_stat_accounting_stop(&state_info);
1024 #endif
1025
1026 /*
1027 * This CPU could be resuming from suspend or it could have just been
1028 * turned on. To distinguish between these 2 cases, we examine the
1029 * affinity state of the CPU:
1030 * - If the affinity state is ON_PENDING then it has just been
1031 * turned on.
1032 * - Else it is resuming from suspend.
1033 *
1034 * Depending on the type of warm reset identified, choose the right set
1035 * of power management handler and perform the generic, architecture
1036 * and platform specific handling.
1037 */
1038 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
1039 psci_cpu_on_finish(cpu_idx, &state_info);
1040 else
1041 psci_cpu_suspend_finish(cpu_idx, &state_info);
1042
1043 /*
1044 * Set the requested and target state of this CPU and all the higher
1045 * power domains which are ancestors of this CPU to run.
1046 */
1047 psci_set_pwr_domains_to_run(end_pwrlvl);
1048
1049 #if ENABLE_PSCI_STAT
1050 /*
1051 * Update PSCI stats.
1052 * Caches are off when writing stats data on the power down path.
1053 * Since caches are now enabled, it's necessary to do cache
1054 * maintenance before reading that same data.
1055 */
1056 psci_stats_update_pwr_up(end_pwrlvl, &state_info);
1057 #endif
1058
1059 /*
1060 * This loop releases the lock corresponding to each power level
1061 * in the reverse order to which they were acquired.
1062 */
1063 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
1064 }
1065
1066 /*******************************************************************************
1067 * This function initializes the set of hooks that PSCI invokes as part of power
1068 * management operation. The power management hooks are expected to be provided
1069 * by the SPD, after it finishes all its initialization
1070 ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)1071 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
1072 {
1073 assert(pm != NULL);
1074 psci_spd_pm = pm;
1075
1076 if (pm->svc_migrate != NULL)
1077 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
1078
1079 if (pm->svc_migrate_info != NULL)
1080 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
1081 | define_psci_cap(PSCI_MIG_INFO_TYPE);
1082 }
1083
1084 /*******************************************************************************
1085 * This function invokes the migrate info hook in the spd_pm_ops. It performs
1086 * the necessary return value validation. If the Secure Payload is UP and
1087 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
1088 * is resident through the mpidr parameter. Else the value of the parameter on
1089 * return is undefined.
1090 ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)1091 int psci_spd_migrate_info(u_register_t *mpidr)
1092 {
1093 int rc;
1094
1095 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
1096 return PSCI_E_NOT_SUPPORTED;
1097
1098 rc = psci_spd_pm->svc_migrate_info(mpidr);
1099
1100 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
1101 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
1102
1103 return rc;
1104 }
1105
1106
1107 /*******************************************************************************
1108 * This function prints the state of all power domains present in the
1109 * system
1110 ******************************************************************************/
psci_print_power_domain_map(void)1111 void psci_print_power_domain_map(void)
1112 {
1113 #if LOG_LEVEL >= LOG_LEVEL_INFO
1114 unsigned int idx;
1115 plat_local_state_t state;
1116 plat_local_state_type_t state_type;
1117
1118 /* This array maps to the PSCI_STATE_X definitions in psci.h */
1119 static const char * const psci_state_type_str[] = {
1120 "ON",
1121 "RETENTION",
1122 "OFF",
1123 };
1124
1125 INFO("PSCI Power Domain Map:\n");
1126 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
1127 idx++) {
1128 state_type = find_local_state_type(
1129 psci_non_cpu_pd_nodes[idx].local_state);
1130 INFO(" Domain Node : Level %u, parent_node %u,"
1131 " State %s (0x%x)\n",
1132 psci_non_cpu_pd_nodes[idx].level,
1133 psci_non_cpu_pd_nodes[idx].parent_node,
1134 psci_state_type_str[state_type],
1135 psci_non_cpu_pd_nodes[idx].local_state);
1136 }
1137
1138 for (idx = 0; idx < psci_plat_core_count; idx++) {
1139 state = psci_get_cpu_local_state_by_idx(idx);
1140 state_type = find_local_state_type(state);
1141 INFO(" CPU Node : MPID 0x%llx, parent_node %u,"
1142 " State %s (0x%x)\n",
1143 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
1144 psci_cpu_pd_nodes[idx].parent_node,
1145 psci_state_type_str[state_type],
1146 psci_get_cpu_local_state_by_idx(idx));
1147 }
1148 #endif
1149 }
1150
1151 /******************************************************************************
1152 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
1153 * have ever been powered up would have set its MPDIR value to something other
1154 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
1155 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
1156 * meaningful only when called on the primary CPU during early boot.
1157 *****************************************************************************/
psci_secondaries_brought_up(void)1158 int psci_secondaries_brought_up(void)
1159 {
1160 unsigned int idx, n_valid = 0U;
1161
1162 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
1163 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
1164 n_valid++;
1165 }
1166
1167 assert(n_valid > 0U);
1168
1169 return (n_valid > 1U) ? 1 : 0;
1170 }
1171
1172 /*******************************************************************************
1173 * Initiate power down sequence, by calling power down operations registered for
1174 * this CPU.
1175 ******************************************************************************/
psci_pwrdown_cpu(unsigned int power_level)1176 void psci_pwrdown_cpu(unsigned int power_level)
1177 {
1178 #if HW_ASSISTED_COHERENCY
1179 /*
1180 * With hardware-assisted coherency, the CPU drivers only initiate the
1181 * power down sequence, without performing cache-maintenance operations
1182 * in software. Data caches enabled both before and after this call.
1183 */
1184 prepare_cpu_pwr_dwn(power_level);
1185 #else
1186 /*
1187 * Without hardware-assisted coherency, the CPU drivers disable data
1188 * caches, then perform cache-maintenance operations in software.
1189 *
1190 * This also calls prepare_cpu_pwr_dwn() to initiate power down
1191 * sequence, but that function will return with data caches disabled.
1192 * We must ensure that the stack memory is flushed out to memory before
1193 * we start popping from it again.
1194 */
1195 psci_do_pwrdown_cache_maintenance(power_level);
1196 #endif
1197 }
1198
1199 /*******************************************************************************
1200 * This function invokes the callback 'stop_func()' with the 'mpidr' of each
1201 * online PE. Caller can pass suitable method to stop a remote core.
1202 *
1203 * 'wait_ms' is the timeout value in milliseconds for the other cores to
1204 * transition to power down state. Passing '0' makes it non-blocking.
1205 *
1206 * The function returns 'PSCI_E_DENIED' if some cores failed to stop within the
1207 * given timeout.
1208 ******************************************************************************/
psci_stop_other_cores(unsigned int wait_ms,void (* stop_func)(u_register_t mpidr))1209 int psci_stop_other_cores(unsigned int wait_ms,
1210 void (*stop_func)(u_register_t mpidr))
1211 {
1212 unsigned int idx, this_cpu_idx;
1213
1214 this_cpu_idx = plat_my_core_pos();
1215
1216 /* Invoke stop_func for each core */
1217 for (idx = 0U; idx < psci_plat_core_count; idx++) {
1218 /* skip current CPU */
1219 if (idx == this_cpu_idx) {
1220 continue;
1221 }
1222
1223 /* Check if the CPU is ON */
1224 if (psci_get_aff_info_state_by_idx(idx) == AFF_STATE_ON) {
1225 (*stop_func)(psci_cpu_pd_nodes[idx].mpidr);
1226 }
1227 }
1228
1229 /* Need to wait for other cores to shutdown */
1230 if (wait_ms != 0U) {
1231 while ((wait_ms-- != 0U) && (!psci_is_last_on_cpu())) {
1232 mdelay(1U);
1233 }
1234
1235 if (!psci_is_last_on_cpu()) {
1236 WARN("Failed to stop all cores!\n");
1237 psci_print_power_domain_map();
1238 return PSCI_E_DENIED;
1239 }
1240 }
1241
1242 return PSCI_E_SUCCESS;
1243 }
1244
1245 /*******************************************************************************
1246 * This function verifies that all the other cores in the system have been
1247 * turned OFF and the current CPU is the last running CPU in the system.
1248 * Returns true if the current CPU is the last ON CPU or false otherwise.
1249 *
1250 * This API has following differences with psci_is_last_on_cpu
1251 * 1. PSCI states are locked
1252 ******************************************************************************/
psci_is_last_on_cpu_safe(void)1253 bool psci_is_last_on_cpu_safe(void)
1254 {
1255 unsigned int this_core = plat_my_core_pos();
1256 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1257
1258 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1259
1260 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1261
1262 if (!psci_is_last_on_cpu()) {
1263 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1264 return false;
1265 }
1266
1267 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1268
1269 return true;
1270 }
1271
1272 /*******************************************************************************
1273 * This function verifies that all cores in the system have been turned ON.
1274 * Returns true, if all CPUs are ON or false otherwise.
1275 *
1276 * This API has following differences with psci_are_all_cpus_on
1277 * 1. PSCI states are locked
1278 ******************************************************************************/
psci_are_all_cpus_on_safe(void)1279 bool psci_are_all_cpus_on_safe(void)
1280 {
1281 unsigned int this_core = plat_my_core_pos();
1282 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
1283
1284 psci_get_parent_pwr_domain_nodes(this_core, PLAT_MAX_PWR_LVL, parent_nodes);
1285
1286 psci_acquire_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1287
1288 if (!psci_are_all_cpus_on()) {
1289 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1290 return false;
1291 }
1292
1293 psci_release_pwr_domain_locks(PLAT_MAX_PWR_LVL, parent_nodes);
1294
1295 return true;
1296 }
1297