1/* 2 * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7#include <platform_def.h> 8 9#include <arch.h> 10#include <common/bl_common.h> 11#include <el3_common_macros.S> 12#include <lib/pmf/aarch64/pmf_asm_macros.S> 13#include <lib/runtime_instr.h> 14#include <lib/xlat_tables/xlat_mmu_helpers.h> 15 16 .globl bl31_entrypoint 17 .globl bl31_warm_entrypoint 18 19 /* ----------------------------------------------------- 20 * bl31_entrypoint() is the cold boot entrypoint, 21 * executed only by the primary cpu. 22 * ----------------------------------------------------- 23 */ 24 25func bl31_entrypoint 26 /* --------------------------------------------------------------- 27 * Stash the previous bootloader arguments x0 - x3 for later use. 28 * --------------------------------------------------------------- 29 */ 30 mov x20, x0 31 mov x21, x1 32 mov x22, x2 33 mov x23, x3 34 35#if !RESET_TO_BL31 36 /* --------------------------------------------------------------------- 37 * For !RESET_TO_BL31 systems, only the primary CPU ever reaches 38 * bl31_entrypoint() during the cold boot flow, so the cold/warm boot 39 * and primary/secondary CPU logic should not be executed in this case. 40 * 41 * Also, assume that the previous bootloader has already initialised the 42 * SCTLR_EL3, including the endianness, and has initialised the memory. 43 * --------------------------------------------------------------------- 44 */ 45 el3_entrypoint_common \ 46 _init_sctlr=0 \ 47 _warm_boot_mailbox=0 \ 48 _secondary_cold_boot=0 \ 49 _init_memory=0 \ 50 _init_c_runtime=1 \ 51 _exception_vectors=runtime_exceptions \ 52 _pie_fixup_size=BL31_LIMIT - BL31_BASE 53#else 54 55 /* --------------------------------------------------------------------- 56 * For RESET_TO_BL31 systems which have a programmable reset address, 57 * bl31_entrypoint() is executed only on the cold boot path so we can 58 * skip the warm boot mailbox mechanism. 59 * --------------------------------------------------------------------- 60 */ 61 el3_entrypoint_common \ 62 _init_sctlr=1 \ 63 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \ 64 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \ 65 _init_memory=1 \ 66 _init_c_runtime=1 \ 67 _exception_vectors=runtime_exceptions \ 68 _pie_fixup_size=BL31_LIMIT - BL31_BASE 69 70#if !RESET_TO_BL31_WITH_PARAMS 71 /* --------------------------------------------------------------------- 72 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so 73 * there's no argument to relay from a previous bootloader. Zero the 74 * arguments passed to the platform layer to reflect that. 75 * --------------------------------------------------------------------- 76 */ 77 mov x20, 0 78 mov x21, 0 79 mov x22, 0 80 mov x23, 0 81#endif /* RESET_TO_BL31_WITH_PARAMS */ 82#endif /* RESET_TO_BL31 */ 83 84 /* -------------------------------------------------------------------- 85 * Perform BL31 setup 86 * -------------------------------------------------------------------- 87 */ 88 mov x0, x20 89 mov x1, x21 90 mov x2, x22 91 mov x3, x23 92 bl bl31_setup 93 94#if ENABLE_PAUTH 95 /* -------------------------------------------------------------------- 96 * Program APIAKey_EL1 and enable pointer authentication 97 * -------------------------------------------------------------------- 98 */ 99 bl pauth_init_enable_el3 100#endif /* ENABLE_PAUTH */ 101 102 /* -------------------------------------------------------------------- 103 * Jump to main function 104 * -------------------------------------------------------------------- 105 */ 106 bl bl31_main 107 108 /* -------------------------------------------------------------------- 109 * Clean the .data & .bss sections to main memory. This ensures 110 * that any global data which was initialised by the primary CPU 111 * is visible to secondary CPUs before they enable their data 112 * caches and participate in coherency. 113 * -------------------------------------------------------------------- 114 */ 115 adrp x0, __DATA_START__ 116 add x0, x0, :lo12:__DATA_START__ 117 adrp x1, __DATA_END__ 118 add x1, x1, :lo12:__DATA_END__ 119 sub x1, x1, x0 120 bl clean_dcache_range 121 122 adrp x0, __BSS_START__ 123 add x0, x0, :lo12:__BSS_START__ 124 adrp x1, __BSS_END__ 125 add x1, x1, :lo12:__BSS_END__ 126 sub x1, x1, x0 127 bl clean_dcache_range 128 129 b el3_exit 130endfunc bl31_entrypoint 131 132 /* -------------------------------------------------------------------- 133 * This CPU has been physically powered up. It is either resuming from 134 * suspend or has simply been turned on. In both cases, call the BL31 135 * warmboot entrypoint 136 * -------------------------------------------------------------------- 137 */ 138func bl31_warm_entrypoint 139#if ENABLE_RUNTIME_INSTRUMENTATION 140 141 /* 142 * This timestamp update happens with cache off. The next 143 * timestamp collection will need to do cache maintenance prior 144 * to timestamp update. 145 */ 146 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR 147 mrs x1, cntpct_el0 148 str x1, [x0] 149#endif 150 151 /* 152 * On the warm boot path, most of the EL3 initialisations performed by 153 * 'el3_entrypoint_common' must be skipped: 154 * 155 * - Only when the platform bypasses the BL1/BL31 entrypoint by 156 * programming the reset address do we need to initialise SCTLR_EL3. 157 * In other cases, we assume this has been taken care by the 158 * entrypoint code. 159 * 160 * - No need to determine the type of boot, we know it is a warm boot. 161 * 162 * - Do not try to distinguish between primary and secondary CPUs, this 163 * notion only exists for a cold boot. 164 * 165 * - No need to initialise the memory or the C runtime environment, 166 * it has been done once and for all on the cold boot path. 167 */ 168 el3_entrypoint_common \ 169 _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \ 170 _warm_boot_mailbox=0 \ 171 _secondary_cold_boot=0 \ 172 _init_memory=0 \ 173 _init_c_runtime=0 \ 174 _exception_vectors=runtime_exceptions \ 175 _pie_fixup_size=0 176 177 /* 178 * We're about to enable MMU and participate in PSCI state coordination. 179 * 180 * The PSCI implementation invokes platform routines that enable CPUs to 181 * participate in coherency. On a system where CPUs are not 182 * cache-coherent without appropriate platform specific programming, 183 * having caches enabled until such time might lead to coherency issues 184 * (resulting from stale data getting speculatively fetched, among 185 * others). Therefore we keep data caches disabled even after enabling 186 * the MMU for such platforms. 187 * 188 * On systems with hardware-assisted coherency, or on single cluster 189 * platforms, such platform specific programming is not required to 190 * enter coherency (as CPUs already are); and there's no reason to have 191 * caches disabled either. 192 */ 193#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY 194 mov x0, xzr 195#else 196 mov x0, #DISABLE_DCACHE 197#endif 198 bl bl31_plat_enable_mmu 199 200#if ENABLE_RME 201 /* 202 * At warm boot GPT data structures have already been initialized in RAM 203 * but the sysregs for this CPU need to be initialized. Note that the GPT 204 * accesses are controlled attributes in GPCCR and do not depend on the 205 * SCR_EL3.C bit. 206 */ 207 bl gpt_enable 208 cbz x0, 1f 209 no_ret plat_panic_handler 2101: 211#endif 212 213#if ENABLE_PAUTH 214 /* -------------------------------------------------------------------- 215 * Program APIAKey_EL1 and enable pointer authentication 216 * -------------------------------------------------------------------- 217 */ 218 bl pauth_init_enable_el3 219#endif /* ENABLE_PAUTH */ 220 221 bl psci_warmboot_entrypoint 222 223#if ENABLE_RUNTIME_INSTRUMENTATION 224 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI 225 mov x19, x0 226 227 /* 228 * Invalidate before updating timestamp to ensure previous timestamp 229 * updates on the same cache line with caches disabled are properly 230 * seen by the same core. Without the cache invalidate, the core might 231 * write into a stale cache line. 232 */ 233 mov x1, #PMF_TS_SIZE 234 mov x20, x30 235 bl inv_dcache_range 236 mov x30, x20 237 238 mrs x0, cntpct_el0 239 str x0, [x19] 240#endif 241 b el3_exit 242endfunc bl31_warm_entrypoint 243