1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #include "tensorflow/lite/c/builtin_op_data.h"
17 #include "tensorflow/lite/c/common.h"
18 #include "tensorflow/lite/micro/kernels/kernel_runner.h"
19 #include "tensorflow/lite/micro/test_helpers.h"
20 #include "tensorflow/lite/micro/testing/micro_test.h"
21
22 namespace tflite {
23 namespace testing {
24 namespace {
25
26 template <typename T>
ValidateDequantizeGoldens(TfLiteTensor * tensors,int tensors_size,const T * expected_output_data,T * output_data,int output_length,float tolerance=1e-5)27 void ValidateDequantizeGoldens(TfLiteTensor* tensors, int tensors_size,
28 const T* expected_output_data, T* output_data,
29 int output_length, float tolerance = 1e-5) {
30 int inputs_array_data[] = {1, 0};
31 TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
32 int outputs_array_data[] = {1, 1};
33 TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
34
35 const TfLiteRegistration registration =
36 tflite::ops::micro::Register_DEQUANTIZE();
37 micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
38 outputs_array,
39 /*builtin_data=*/nullptr);
40
41 TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
42 TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
43
44 for (int i = 0; i < output_length; ++i) {
45 TF_LITE_MICRO_EXPECT_NEAR(expected_output_data[i], output_data[i], 0.001f);
46 }
47 }
48
49 template <typename T>
TestDequantizeToFloat(int * input_dims_data,const float * input_data,T * input_data_quantized,float scale,int zero_point,int * output_dims_data,const float * expected_output_data,float * output_data)50 void TestDequantizeToFloat(int* input_dims_data, const float* input_data,
51 T* input_data_quantized, float scale, int zero_point,
52 int* output_dims_data,
53 const float* expected_output_data,
54 float* output_data) {
55 TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
56 TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
57 const int output_length = ElementCount(*output_dims);
58
59 // 1 input, 1 output.
60 const int tensors_size = 2;
61 TfLiteTensor tensors[tensors_size] = {
62 CreateQuantizedTensor(input_data, input_data_quantized, input_dims, scale,
63 zero_point),
64 CreateTensor(output_data, output_dims),
65 };
66
67 ValidateDequantizeGoldens(tensors, tensors_size, expected_output_data,
68 output_data, output_length);
69 }
70
71 template <typename T>
TestDequantizeToInt32(int * input_dims_data,const float * input_data,T * input_data_quantized,float input_scale,int input_zero_point,int * output_dims_data,const int32_t * expected_output_data,float output_scale,int output_zero_point,int32_t * output_data)72 void TestDequantizeToInt32(int* input_dims_data, const float* input_data,
73 T* input_data_quantized, float input_scale,
74 int input_zero_point, int* output_dims_data,
75 const int32_t* expected_output_data,
76 float output_scale, int output_zero_point,
77 int32_t* output_data) {
78 TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
79 TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
80 const int output_length = ElementCount(*output_dims);
81
82 // 1 input, 1 output.
83 const int tensors_size = 2;
84 TfLiteTensor tensors[tensors_size] = {
85 CreateQuantizedTensor(input_data, input_data_quantized, input_dims,
86 input_scale, input_zero_point),
87 CreateTensor(output_data, output_dims),
88 };
89
90 tensors[1].params.scale = output_scale;
91 tensors[1].params.zero_point = output_zero_point;
92
93 ValidateDequantizeGoldens(tensors, tensors_size, expected_output_data,
94 output_data, output_length);
95 }
96
97 } // namespace
98 } // namespace testing
99 } // namespace tflite
100
101 TF_LITE_MICRO_TESTS_BEGIN
102
TF_LITE_MICRO_TEST(DequantizeOpTestUint8)103 TF_LITE_MICRO_TEST(DequantizeOpTestUint8) {
104 const int length = 10;
105 int dims[] = {2, 5, 2};
106 const float values[] = {-63.5, -63, -62.5, -62, -61.5,
107 62, 62.5, 63, 63.5, 64};
108 const float scale = 0.5;
109 const int zero_point = 127;
110 uint8_t input_quantized[length];
111 float output[length];
112 tflite::testing::TestDequantizeToFloat(dims, values, input_quantized, scale,
113 zero_point, dims, values, output);
114 }
115
TF_LITE_MICRO_TEST(DequantizeOpTestInt8)116 TF_LITE_MICRO_TEST(DequantizeOpTestInt8) {
117 const int length = 10;
118 int dims[] = {2, 5, 2};
119 const float values[] = {-63.5, -63, -62.5, -62, -61.5,
120 62, 62.5, 63, 63.5, 64};
121 const float scale = 0.5;
122 const int zero_point = -1;
123 int8_t input_quantized[length];
124 float output[length];
125 tflite::testing::TestDequantizeToFloat(dims, values, input_quantized, scale,
126 zero_point, dims, values, output);
127 }
128
TF_LITE_MICRO_TEST(DequantizeOpTestInt16)129 TF_LITE_MICRO_TEST(DequantizeOpTestInt16) {
130 const int length = 10;
131 int dims[] = {2, 5, 2};
132 const float values[] = {-63.5, -63, -62.5, -62, -61.5,
133 62, 62.5, 63, 63.5, 64};
134 const float scale = 0.5;
135 const int zero_point = -1;
136 int16_t input_quantized[length];
137 float output[length];
138 tflite::testing::TestDequantizeToFloat(dims, values, input_quantized, scale,
139 zero_point, dims, values, output);
140 }
141
142 TF_LITE_MICRO_TESTS_END
143