1 /*-
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  * Copyright (c) 2009-2011, Bruce D. Evans, Steven G. Kargl, David Schultz.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * The argument reduction and testing for exceptional cases was
13  * written by Steven G. Kargl with input from Bruce D. Evans
14  * and David A. Schultz.
15  */
16 
17 
18 
19 #define	BIAS	(LDBL_MAX_EXP - 1)
20 
21 static const unsigned
22     B1 = 709958130;	/* B1 = (127-127.0/3-0.03306235651)*2**23 */
23 
24 long double
cbrtl(long double x)25 cbrtl(long double x)
26 {
27 	union IEEEl2bits u, v;
28 	long double r, s, t, w;
29 	double dr, dt, dx;
30 	float ft, fx;
31 	u_int32_t hx;
32 	u_int16_t expsign;
33 	int k;
34 
35 	u.e = x;
36 	expsign = u.xbits.expsign;
37 	k = expsign & 0x7fff;
38 
39 	/*
40 	 * If x = +-Inf, then cbrt(x) = +-Inf.
41 	 * If x = NaN, then cbrt(x) = NaN.
42 	 */
43 	if (k == BIAS + LDBL_MAX_EXP)
44 		return (x + x);
45 
46 	if (k == 0) {
47 		/* If x = +-0, then cbrt(x) = +-0. */
48 		if ((u.bits.manh | u.bits.manl) == 0) {
49 			return (x);
50 	    	}
51 		/* Adjust subnormal numbers. */
52 		u.e *= 0x1.0p514l;
53 		k = u.bits.exp;
54 		k -= BIAS + 514;
55  	} else
56 		k -= BIAS;
57 	u.xbits.expsign = BIAS;
58 	v.e = 1;
59 
60 	x = u.e;
61 	switch (k % 3) {
62 	case 1:
63 	case -2:
64 		x = 2*x;
65 		k--;
66 		break;
67 	case 2:
68 	case -1:
69 		x = 4*x;
70 		k -= 2;
71 		break;
72 	}
73 	v.xbits.expsign = (expsign & 0x8000) | (BIAS + k / 3);
74 
75 	/*
76 	 * The following is the guts of s_cbrtf, with the handling of
77 	 * special values removed and extra care for accuracy not taken,
78 	 * but with most of the extra accuracy not discarded.
79 	 */
80 
81 	/* ~5-bit estimate: */
82 	fx = x;
83 	GET_FLOAT_WORD(hx, fx);
84 	SET_FLOAT_WORD(ft, ((hx & 0x7fffffff) / 3 + B1));
85 
86 	/* ~16-bit estimate: */
87 	dx = x;
88 	dt = (double)ft;
89 	dr = dt * dt * dt;
90 	dt = dt * (dx + dx + dr) / (dx + dr + dr);
91 
92 	/* ~47-bit estimate: */
93 	dr = dt * dt * dt;
94 	dt = dt * (dx + dx + dr) / (dx + dr + dr);
95 
96 #if LDBL_MANT_DIG == 64
97 	/*
98 	 * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
99 	 * Round it away from zero to 32 bits (32 so that t*t is exact, and
100 	 * away from zero for technical reasons).
101 	 */
102 	volatile double vd2 = 0x1.0p32;
103 	volatile double vd1 = 0x1.0p-31;
104 	#define vd ((long double)vd2 + (long double)vd1)
105 
106 	t = (long double)dt + vd - 0x1.0p32l;
107 #elif LDBL_MANT_DIG == 113
108 	/*
109 	 * Round dt away from zero to 47 bits.  Since we don't trust the 47,
110 	 * add 2 47-bit ulps instead of 1 to round up.  Rounding is slow and
111 	 * might be avoidable in this case, since on most machines dt will
112 	 * have been evaluated in 53-bit precision and the technical reasons
113 	 * for rounding up might not apply to either case in cbrtl() since
114 	 * dt is much more accurate than needed.
115 	 */
116 	t = (long double)dt + 0x2.0p-46L + 0x1.0p60L - 0x1.0p60L;
117 #else
118 #error "Unsupported long double format"
119 #endif
120 
121 	/*
122      	 * Final step Newton iteration to 64 or 113 bits with
123 	 * error < 0.667 ulps
124 	 */
125 	s=t*t;				/* t*t is exact */
126 	r=x/s;				/* error <= 0.5 ulps; |r| < |t| */
127 	w=t+t;				/* t+t is exact */
128 	r=(r-t)/(w+r);			/* r-t is exact; w+r ~= 3*t */
129 	t=t+t*r;			/* error <= 0.5 + 0.5/3 + epsilon */
130 
131 	t *= v.e;
132 	return (t);
133 }
134