1 /* Copyright © 2018, Keith Packard
2    All rights reserved.
3 
4    Redistribution and use in source and binary forms, with or without
5    modification, are permitted provided that the following conditions are met:
6 
7    * Redistributions of source code must retain the above copyright
8      notice, this list of conditions and the following disclaimer.
9    * Redistributions in binary form must reproduce the above copyright
10      notice, this list of conditions and the following disclaimer in
11      the documentation and/or other materials provided with the
12      distribution.
13    * Neither the name of the copyright holders nor the names of
14      contributors may be used to endorse or promote products derived
15      from this software without specific prior written permission.
16 
17   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27   POSSIBILITY OF SUCH DAMAGE. */
28 
29 #include "stdio_private.h"
30 
31 #ifdef FLOAT64
32 
33 #define _NEED_IO_FLOAT64
34 
35 #include "dtoa.h"
36 
37 #define max(a, b) ({\
38 		__typeof(a) _a = a;\
39 		__typeof(b) _b = b;\
40 		_a > _b ? _a : _b; })
41 
42 #define min(a, b) ({\
43 		__typeof(a) _a = a;\
44 		__typeof(b) _b = b;\
45 		_a < _b ? _a : _b; })
46 
47 #define FRACTION_BITS   (53 - 1)
48 #define FRACTION_MASK   (((uint64_t) 1 << FRACTION_BITS) - 1)
49 #define EXPONENT_BITS   (64 - FRACTION_BITS - 1)
50 #define EXPONENT_MASK   (((uint64_t) 1 << EXPONENT_BITS) - 1)
51 #define SIGN_BIT        ((uint64_t) 1 << (64 - 1))
52 #define BIT64(x)        ((uint64_t) 1 << (x))
53 
54 /*
55  * Check to see if the high bit is set by casting
56  * to signed and checking for negative
57  */
58 static inline bool
high_bit_set(uint64_t fract)59 high_bit_set(uint64_t fract)
60 {
61         return ((int64_t) fract < 0);
62 }
63 
64 int
__dtoa_engine(FLOAT64 x,struct dtoa * dtoa,int max_digits,bool fmode,int max_decimals)65 __dtoa_engine(FLOAT64 x, struct dtoa *dtoa, int max_digits, bool fmode, int max_decimals)
66 {
67         uint64_t v = asuint64(x);
68         uint64_t fract = (v << (EXPONENT_BITS + 1)) >> 1;
69         int expo = (v << 1) >> (FRACTION_BITS + 1);
70         int decexp = 0;
71         int i;
72 	uint8_t	flags = 0;
73 
74 	if (high_bit_set(v))
75 		flags |= DTOA_MINUS;
76 	if (expo == EXPONENT_MASK) {
77                 if (fract)
78                         flags |= DTOA_NAN;
79                 else
80                         flags |= DTOA_INF;
81         } else {
82                 if (expo == 0) {
83                         if (fract == 0) {
84                                 flags |= DTOA_ZERO;
85                                 dtoa->digits[0] = '0';
86                                 max_digits = 1;
87                                 goto done;
88                         }
89                         /* normalize */
90                         while ((int64_t) (fract <<= 1) >= 0)
91                                 expo--;
92                 }
93 
94                 /* add implicit bit */
95                 fract |= SIGN_BIT;
96                 /* adjust exponent */
97                 expo -= (DTOA_MAX_EXP - 2);
98                 decexp = -1;
99 
100                 /*
101                  * Let's consider:
102                  *
103                  *	value = fract * 2^expo * 10^decexp
104                  *
105                  * Initially decexp = 0. The goal is to bring exp between
106                  * 0 and -2 as the magnitude of a fractional decimal digit is 3 bits.
107                  */
108 
109                 while (expo < -2) {
110                         /*
111                          * Make room to allow a multiplication by 5 without overflow.
112                          * We test only the top part for faster code.
113                          */
114                         do {
115                                 /* Round this division to avoid accumulating errors */
116                                 fract = (fract >> 1) + (fract&1);
117                                 expo++;
118                         } while ((uint32_t)(fract >> 32) >= (UINT32_MAX / 5U));
119 
120                         /* Perform fract * 5 * 2 / 10 */
121                         fract *= 5U;
122                         expo++;
123                         decexp--;
124                 }
125 
126                 while (expo > 0) {
127                         /*
128                          * Perform fract / 5 / 2 * 10.
129                          * The +2 is there to do round the result of the division
130                          * by 5 not to lose too much precision in extreme cases.
131                          */
132                         fract += 2;
133                         fract /= 5U;
134                         expo--;
135                         decexp++;
136 
137                         /* Bring back our fractional number to full scale */
138                         do {
139                                 fract <<= 1;
140                                 expo--;
141                         } while (!high_bit_set(fract));
142                 }
143 
144 
145                 /*
146                  * The binary fractional point is located somewhere above bit 63.
147                  * Move it between bits 59 and 60 to give 4 bits of room to the
148                  * integer part.
149                  */
150                 fract >>= (4 - expo);
151 
152 		/* If limiting decimals, then limit the max digits
153 		 * to no more than the number of digits left of the decimal
154 		 * plus the number of digits right of the decimal
155 		 *
156 		 * exp:          exponent value. If negative, there are
157 		 *		 -exp - 1 zeros left of the first non-zero
158 		 *               digit in 'f' format. If non-negative,
159 		 *               there are exp digits to the left of
160 		 *               the decimal point
161 		 *
162 		 * max_decimals: Only used in 'f' format. Round to no
163 		 *               more than this many digits to the
164 		 *               right of the decimal point (left if
165 		 *               negative)
166 		 *
167 		 * max_digits: We can't convert more than this number
168 		 *               of digits given the limits of the
169 		 *               buffer
170 		 */
171 
172 		int save_max_digits = max_digits;
173 		if (fmode) {
174 			/*
175 			 * This covers two cases:
176 			 *
177 			 * When exp is < 0, there are -exp-1 zeros taking up
178 			 * space before we can display any of the real digits,
179 			 * so we have to subtract those off max_decimals before
180 			 * we round that (max_decimals - (-exp - 1)). This
181 			 * may end up less than zero, in which case we have
182 			 * no digits to display.
183 			 *
184 			 * When exp >= 0, there are exp + 1 digits left of the
185 			 * decimal point *plus* max_decimals right of the
186 			 * decimal point that need to be generated
187 			 *
188 			 * A single expression gives the right answer in both
189 			 * cases, which is kinda cool
190 			 */
191 			/* max_decimals comes in biased by 1 to flag the 'f' case */
192 			max_digits = min(max_digits, max(max_decimals<0, max_decimals + decexp + 1));
193 		}
194 
195                 int decimals = max_digits;
196 
197                 /* Round the value to the last digit being printed. */
198                 uint64_t round = BIT64(59); /* 0.5 */
199                 while (decimals--) {
200                         round /= 10U;
201                 }
202                 fract += round;
203                 /* Make sure rounding didn't make fract >= 1.0 */
204                 if (fract >= BIT64(60)) {
205                         fract /= 10U;
206                         decexp++;
207                         max_digits = min(save_max_digits, max(1, max_decimals + decexp + 1));
208                 }
209 
210 		/* Now convert mantissa to decimal. */
211 
212 		/* Compute digits */
213 		for (i = 0; i < max_digits; i++) {
214                         fract *= 10U;
215 			dtoa->digits[i] = (fract >> 60) + '0';
216                         fract &= BIT64(60) - 1;
217 		}
218 	}
219 done:
220 	dtoa->flags = flags;
221 	dtoa->exp = decexp;
222 	return max_digits;
223 }
224 
225 #endif
226