1 /*
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright © 2021 Keith Packard
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer in the documentation and/or other materials provided
16 * with the distribution.
17 *
18 * 3. Neither the name of the copyright holder nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
31 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
33 * OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #define __STDC_WANT_IEC_60559_BFP_EXT__
37 #define _GNU_SOURCE
38 #include <stdio.h>
39 #include <math.h>
40 #include <fenv.h>
41 #include <stdlib.h>
42 #ifdef _HAVE_COMPLEX
43 #include <complex.h>
44 #endif
45
46 double d1, d2, d3;
47 float f1, f2, f3;
48 int i1;
49 long int li1;
50 long long int lli1;
51
52 #ifdef _TEST_LONG_DOUBLE
53 long double l1, l2, l3;
54 #endif
55
56 #ifdef _HAVE_COMPLEX
57 double complex cd1, cd2, cd3;
58 float complex cf1, cf2, cf3;
59
60 #ifdef _TEST_LONG_DOUBLE
61 long double complex cl1, cl2, cl3;
62 #endif
63
64 #endif
65
66 fexcept_t fex;
67 fenv_t fen;
68 femode_t fem;
69
70 /*
71 * Touch test to make sure all of the expected math functions exist
72 */
73
74 int
main(void)75 main(void)
76 {
77 printf("sizeof float %ld double %ld long double %ld\n",
78 (long) sizeof(float), (long) sizeof(double), (long) sizeof(long double));
79 d1 = atan (d1);
80 d1 = cos (d1);
81 d1 = sin (d1);
82 d1 = tan (d1);
83 d1 = tanh (d1);
84 d1 = frexp (d1, &i1);
85 d1 = modf (d1, &d2);
86 d1 = ceil (d1);
87 d1 = fabs (d1);
88 d1 = floor (d1);
89 d1 = acos (d1);
90 d1 = asin (d1);
91 d1 = atan2 (d1, d2);
92 d1 = cosh (d1);
93 d1 = sinh (d1);
94 d1 = exp (d1);
95 d1 = ldexp (d1, i1);
96 d1 = log (d1);
97 d1 = log10 (d1);
98 d1 = pow (d1, d2);
99 d1 = sqrt (d1);
100 d1 = fmod (d1, d2);
101
102 i1 = finite (d1);
103 i1 = finitef (f1);
104 #ifdef _TEST_LONG_DOUBLE
105 #if defined(_HAVE_BUILTIN_FINITEL) || defined(_HAVE_BUILTIN_ISFINITE)
106 i1 = finitel (l1);
107 #endif
108 #ifdef _HAVE_BUILTIN_ISINFL
109 i1 = isinfl (l1);
110 #endif
111 #ifdef _HAVE_BUILTIN_ISNANL
112 i1 = isnanl (l1);
113 #endif
114 #endif
115 i1 = isinff (f1);
116 i1 = isnanf (f1);
117 i1 = isinf (d1);
118 i1 = isnan (d1);
119
120 i1 = __isinff (f1);
121 i1 = __isinfd (d1);
122 i1 = __isnanf (f1);
123 i1 = __isnand (d1);
124 i1 = __fpclassifyf (f1);
125 i1 = __fpclassifyd (d1);
126 i1 = __signbitf (f1);
127 i1 = __signbitd (d1);
128
129 /* Non ANSI double precision functions. */
130
131 d1 = infinity ();
132 d1 = nan ("");
133 d1 = copysign (d1, d2);
134 d1 = logb (d1);
135 i1 = ilogb (d1);
136
137 d1 = asinh (d1);
138 d1 = cbrt (d1);
139 d1 = nextafter (d1, d2);
140 d1 = rint (d1);
141 d1 = scalbn (d1, i1);
142
143 d1 = exp2 (d1);
144 d1 = scalbln (d1, li1);
145 d1 = tgamma (d1);
146 d1 = nearbyint (d1);
147 li1 = lrint (d1);
148 lli1 = llrint (d1);
149 d1 = round (d1);
150 li1 = lround (d1);
151 lli1 = llround (d1);
152 d1 = trunc (d1);
153 d1 = remquo (d1, d2, &i1);
154 d1 = fdim (d1, d2);
155 d1 = fmax (d1, d2);
156 d1 = fmin (d1, d2);
157 d1 = fma (d1, d2, d3);
158
159 d1 = log1p (d1);
160 d1 = expm1 (d1);
161
162 d1 = acosh (d1);
163 d1 = atanh (d1);
164 d1 = remainder (d1, d2);
165 d1 = gamma (d1);
166 d1 = lgamma (d1);
167 d1 = erf (d1);
168 d1 = erfc (d1);
169 d1 = log2 (d1);
170
171 d1 = hypot (d1, d2);
172
173 /* Single precision versions of ANSI functions. */
174
175 f1 = atanf (f1);
176 f1 = cosf (f1);
177 f1 = sinf (f1);
178 f1 = tanf (f1);
179 f1 = tanhf (f1);
180 f1 = frexpf (f1, &i1);
181 f1 = modff (f1, &f2);
182 f1 = ceilf (f1);
183 f1 = fabsf (f1);
184 f1 = floorf (f1);
185
186 f1 = acosf (f1);
187 f1 = asinf (f1);
188 f1 = atan2f (f1, f2);
189 f1 = coshf (f1);
190 f1 = sinhf (f1);
191 f1 = expf (f1);
192 f1 = ldexpf (f1, i1);
193 f1 = logf (f1);
194 f1 = log10f (f1);
195 f1 = powf (f1, f2);
196 f1 = sqrtf (f1);
197 f1 = fmodf (f1, f2);
198
199 /* Other single precision functions. */
200
201 f1 = exp2f (f1);
202 f1 = scalblnf (f1, li1);
203 f1 = tgammaf (f1);
204 f1 = nearbyintf (f1);
205 li1 = lrintf (f1);
206 lli1 = llrintf (f1);
207 f1 = roundf (f1);
208 li1 = lroundf (f1);
209 lli1 = llroundf (f1);
210 f1 = truncf (f1);
211 f1 = remquof (f1, f2, &i1);
212 f1 = fdimf (f1, f2);
213 f1 = fmaxf (f1, f2);
214 f1 = fminf (f1, f2);
215 f1 = fmaf (f1, f2, f3);
216
217 f1 = infinityf ();
218 f1 = nanf ("");
219 f1 = copysignf (f1, f2);
220 f1 = logbf (f1);
221 i1 = ilogbf (f1);
222
223 f1 = asinhf (f1);
224 f1 = cbrtf (f1);
225 f1 = nextafterf (f1, f2);
226 f1 = rintf (f1);
227 f1 = scalbnf (f1, i1);
228 f1 = log1pf (f1);
229 f1 = expm1f (f1);
230
231 f1 = acoshf (f1);
232 f1 = atanhf (f1);
233 f1 = remainderf (f1, f2);
234 f1 = gammaf (f1);
235 f1 = lgammaf (f1);
236 f1 = erff (f1);
237 f1 = erfcf (f1);
238 f1 = log2f (f1);
239 f1 = hypotf (f1, f2);
240
241 #ifdef _TEST_LONG_DOUBLE
242 l1 = frexpl (l1, &i1);
243 l1 = ldexpl (l1, i1);
244 l1 = sqrtl (l1);
245 l1 = hypotl (l1, l2);
246 l1 = nanl ("");
247 i1 = ilogbl (l1);
248 l1 = logbl (l1);
249 l1 = scalbnl (l1, i1);
250 l1 = scalblnl (l1, li1);
251 l1 = nearbyintl (l1);
252 l1 = rintl (l1);
253 li1 = lrintl (l1);
254 lli1 = llrintl (l1);
255 l1 = roundl (l1);
256 l1 = lroundl (l1);
257 lli1 = llroundl (l1);
258 l1 = truncl (l1);
259 l1 = fmaxl (l1, l2);
260 l1 = fminl (l1, l2);
261 l1 = hypotl (l1, l2);
262 l1 = sqrtl (l1);
263 l1 = fabsl (l1);
264 l1 = copysignl (l1, l2);
265
266 l1 = ceill (l1);
267 l1 = floorl (l1);
268
269 #ifdef _HAVE_LONG_DOUBLE_MATH
270 l1 = atanl (l1);
271 l1 = cosl (l1);
272 l1 = sinl (l1);
273 l1 = tanl (l1);
274 l1 = tanhl (l1);
275 l1 = modfl (l1, &l2);
276 l1 = log1pl (l1);
277 l1 = expm1l (l1);
278
279 l1 = acosl (l1);
280 l1 = asinl (l1);
281 l1 = atan2l (l1, l2);
282 l1 = coshl (l1);
283 l1 = sinhl (l1);
284 l1 = expl (l1);
285 l1 = logl (l1);
286 l1 = log10l (l1);
287 l1 = powl (l1, l2);
288 l1 = fmodl (l1, l2);
289
290 l1 = asinhl (l1);
291 l1 = cbrtl (l1);
292 l1 = log2l (l1);
293 l1 = exp2l (l1);
294 l1 = tgammal (l1);
295 l1 = remquol (l1, l2, &i1);
296 l1 = fdiml (l1, l2);
297 l1 = fmal (l1, l2, l3);
298 l1 = acoshl (l1);
299 l1 = atanhl (l1);
300 l1 = remainderl (l1, l2);
301 l1 = lgammal (l1);
302 l1 = erfl (l1);
303 l1 = erfcl (l1);
304 f1 = dreml (l1, l2);
305 sincosl (l1, &l2, &l3);
306 l1 = exp10l (l1);
307 l1 = pow10l (l1);
308 f1 = nexttowardf (f1, l1);
309 d1 = nexttoward (d1, l1);
310 l1 = nextafterl (l1, l2);
311 l1 = nexttowardl (l1, l2);
312 #endif /* _HAVE_LONG_DOUBLE_MATH */
313 #endif /* _TEST_LONG_DOUBLE */
314
315 d1 = drem (d1, d2);
316 f1 = dremf (f1, f2);
317 d1 = lgamma_r (d1, &i1);
318 f1 = lgammaf_r (f1, &i1);
319
320 d1 = y0 (d1);
321 d1 = y1 (d1);
322 d1 = yn (i1, d1);
323 d1 = j0 (d1);
324 d1 = j1 (d1);
325 d1 = jn (i1, d1);
326
327 f1 = y0f (f1);
328 f1 = y1f (f1);
329 f1 = ynf (i1, f2);
330 f1 = j0f (f1);
331 f1 = j1f (f1);
332 f1 = jnf (i1, f2);
333
334 sincos (d1, &d2, &d3);
335 sincosf (f1, &f2, &f3);
336 d1 = exp10 (d1);
337 d1 = pow10 (d1);
338 f1 = exp10f (f1);
339 f1 = pow10f (f1);
340
341 #ifdef _HAVE_COMPLEX
342 cd1 = cacos(cd1);
343 cf1 = cacosf(cf1);
344
345 /* 7.3.5.2 The casin functions */
346 cd1 = casin(cd1);
347 cf1 = casinf(cf1);
348
349 /* 7.3.5.1 The catan functions */
350 cd1 = catan(cd1);
351 cf1 = catanf(cf1);
352
353 /* 7.3.5.1 The ccos functions */
354 cd1 = ccos(cd1);
355 cf1 = ccosf(cf1);
356
357 /* 7.3.5.1 The csin functions */
358 cd1 = csin(cd1);
359 cf1 = csinf(cf1);
360
361 /* 7.3.5.1 The ctan functions */
362 cd1 = ctan(cd1);
363 cf1 = ctanf(cf1);
364
365 /* 7.3.6 Hyperbolic functions */
366 /* 7.3.6.1 The cacosh functions */
367 cd1 = cacosh(cd1);
368 cf1 = cacoshf(cf1);
369
370 /* 7.3.6.2 The casinh functions */
371 cd1 = casinh(cd1);
372 cf1 = casinhf(cf1);
373
374 /* 7.3.6.3 The catanh functions */
375 cd1 = catanh(cd1);
376 cf1 = catanhf(cf1);
377
378 /* 7.3.6.4 The ccosh functions */
379 cd1 = ccosh(cd1);
380 cf1 = ccoshf(cf1);
381
382 /* 7.3.6.5 The csinh functions */
383 cd1 = csinh(cd1);
384 cf1 = csinhf(cf1);
385
386 /* 7.3.6.6 The ctanh functions */
387 cd1 = ctanh(cd1);
388 cf1 = ctanhf(cf1);
389
390 /* 7.3.7 Exponential and logarithmic functions */
391 /* 7.3.7.1 The cexp functions */
392 cd1 = cexp(cd1);
393 cf1 = cexpf(cf1);
394
395 /* 7.3.7.2 The clog functions */
396 cd1 = clog(cd1);
397 cf1 = clogf(cf1);
398
399 /* 7.3.8 Power and absolute-value functions */
400 /* 7.3.8.1 The cabs functions */
401 d1 = cabs(cd1) ;
402 f1 = cabsf(cf1) ;
403
404 /* 7.3.8.2 The cpow functions */
405 cd1 = cpow(cd1, cd2);
406 cf1 = cpowf(cf1, cf2);
407
408 /* 7.3.8.3 The csqrt functions */
409 cd1 = csqrt(cd1);
410 cf1 = csqrtf(cf1);
411
412 /* 7.3.9 Manipulation functions */
413 /* 7.3.9.1 The carg functions */
414 d1 = carg(cd1);
415 f1 = cargf(cf1);
416
417 /* 7.3.9.2 The cimag functions */
418 d1 = cimag(cd1);
419 f1 = cimagf(cf1);
420
421 /* 7.3.9.3 The conj functions */
422 cd1 = conj(cd1);
423 cf1 = conjf(cf1);
424
425 /* 7.3.9.4 The cproj functions */
426 cd1 = cproj(cd1);
427 cf1 = cprojf(cf1);
428
429 /* 7.3.9.5 The creal functions */
430 d1 = creal(cd1);
431 f1 = crealf(cf1);
432
433 #if __GNU_VISIBLE
434 cd1 = clog10(cd1);
435 cf1 = clog10f(cf1);
436 #endif
437
438 #ifdef _TEST_LONG_DOUBLE
439 cl1 = csqrtl(cl1);
440 l1 = cabsl(cl1) ;
441 cl1 = cprojl(cl1);
442 l1 = creall(cl1);
443 cl1 = conjl(cl1);
444 l1 = cimagl(cl1);
445
446 #ifdef _HAVE_LONG_DOUBLE_MATH
447 l1 = cargl(cl1);
448 cl1 = casinl(cl1);
449 cl1 = cacosl(cl1);
450 cl1 = catanl(cl1);
451 cl1 = ccosl(cl1);
452 cl1 = csinl(cl1);
453 cl1 = ctanl(cl1);
454 cl1 = cacoshl(cl1);
455 cl1 = casinhl(cl1);
456 cl1 = catanhl(cl1);
457 cl1 = ccoshl(cl1);
458 cl1 = csinhl(cl1);
459 cl1 = ctanhl(cl1);
460 cl1 = cexpl(cl1);
461 cl1 = clogl(cl1);
462 cl1 = cpowl(cl1, cl2);
463 #if __GNU_VISIBLE
464 cl1 = clog10l(cl1);
465 #endif
466 #endif /* _HAVE_LONG_DOUBLE_MATH */
467
468 #endif /* _TEST_LONG_DOUBLE */
469
470 #endif /* _HAVE_COMPLEX */
471
472 i1 = feclearexcept(FE_ALL_EXCEPT);
473 i1 = fegetexceptflag(&fex, FE_ALL_EXCEPT);
474 i1 = feraiseexcept(0);
475 i1 = fesetexceptflag(&fex, FE_ALL_EXCEPT);
476 i1 = fetestexcept(FE_ALL_EXCEPT);
477
478 i1 = fegetround();
479 i1 = fesetround(FE_TONEAREST);
480
481 i1 = fegetenv(&fen);
482 i1 = feholdexcept(&fen);
483 i1 = fesetenv(&fen);
484 i1 = feupdateenv(&fen);
485
486 i1 = feenableexcept(FE_ALL_EXCEPT);
487 i1 = fedisableexcept(FE_ALL_EXCEPT);
488 i1 = fegetexcept();
489
490 i1 = fegetmode(&fem);
491 i1 = fesetmode(&fem);
492 i1 = fesetexcept(FE_ALL_EXCEPT);
493
494 return 0;
495 }
496