1 /*	$OpenBSD: e_expl.c,v 1.3 2013/11/12 20:35:19 martynas Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*							expl.c
20  *
21  *	Exponential function, long double precision
22  *
23  *
24  *
25  * SYNOPSIS:
26  *
27  * long double x, y, expl();
28  *
29  * y = expl( x );
30  *
31  *
32  *
33  * DESCRIPTION:
34  *
35  * Returns e (2.71828...) raised to the x power.
36  *
37  * Range reduction is accomplished by separating the argument
38  * into an integer k and fraction f such that
39  *
40  *     x    k  f
41  *    e  = 2  e.
42  *
43  * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
44  * in the basic range [-0.5 ln 2, 0.5 ln 2].
45  *
46  *
47  * ACCURACY:
48  *
49  *                      Relative error:
50  * arithmetic   domain     # trials      peak         rms
51  *    IEEE      +-10000     50000       1.12e-19    2.81e-20
52  *
53  *
54  * Error amplification in the exponential function can be
55  * a serious matter.  The error propagation involves
56  * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
57  * which shows that a 1 lsb error in representing X produces
58  * a relative error of X times 1 lsb in the function.
59  * While the routine gives an accurate result for arguments
60  * that are exactly represented by a long double precision
61  * computer number, the result contains amplified roundoff
62  * error for large arguments not exactly represented.
63  *
64  *
65  * ERROR MESSAGES:
66  *
67  *   message         condition      value returned
68  * exp underflow    x < MINLOG         0.0
69  * exp overflow     x > MAXLOG         MAXNUM
70  *
71  */
72 
73 /*	Exponential function	*/
74 
75 
76 
77 static long double P[3] = {
78  1.2617719307481059087798E-4L,
79  3.0299440770744196129956E-2L,
80  9.9999999999999999991025E-1L,
81 };
82 static long double Q[4] = {
83  3.0019850513866445504159E-6L,
84  2.5244834034968410419224E-3L,
85  2.2726554820815502876593E-1L,
86  2.0000000000000000000897E0L,
87 };
88 static const long double C1 = 6.9314575195312500000000E-1L;
89 static const long double C2 = 1.4286068203094172321215E-6L;
90 static const long double MAXLOGL = 1.1356523406294143949492E4L;
91 static const long double MINLOGL = -1.13994985314888605586758E4L;
92 static const long double LOG2EL = 1.4426950408889634073599E0L;
93 
94 long double
expl(long double x)95 expl(long double x)
96 {
97 long double px, xx;
98 int n;
99 
100 if( isnan(x) )
101 	return(x + x);
102 if( x > MAXLOGL) {
103         if (isinf(x))
104                 return x;
105         return __math_oflowl(0);
106 }
107 
108 if( x < MINLOGL ) {
109         if (isinf(x))
110                 return 0.0L;
111 	return __math_uflowl(0);
112 }
113 
114 /* Express e**x = e**g 2**n
115  *   = e**g e**( n loge(2) )
116  *   = e**( g + n loge(2) )
117  */
118 px = floorl( LOG2EL * x + 0.5L ); /* floor() truncates toward -infinity. */
119 n = px;
120 x -= px * C1;
121 x -= px * C2;
122 
123 
124 /* rational approximation for exponential
125  * of the fractional part:
126  * e**x =  1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
127  */
128 xx = x * x;
129 px = x * __polevll( xx, P, 2 );
130 x =  px/( __polevll( xx, Q, 3 ) - px );
131 x = 1.0L + ldexpl( x, 1 );
132 
133 x = ldexpl( x, n );
134 return(x);
135 }
136