1 /* $NetBSD: csqrt.c,v 1.1 2007/08/20 16:01:37 drochner Exp $ */
2 
3 /*-
4  * Copyright (c) 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software written by Stephen L. Moshier.
8  * It is redistributed by the NetBSD Foundation by permission of the author.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * imported and modified include for newlib 2010/10/03
32  * Marco Atzeri <marco_atzeri@yahoo.it>
33  */
34 
35 /*
36 FUNCTION
37         <<csqrt>>, <<csqrtf>>---complex square root
38 
39 INDEX
40         csqrt
41 INDEX
42         csqrtf
43 
44 SYNOPSIS
45        #include <complex.h>
46        double complex csqrt(double complex <[z]>);
47        float complex csqrtf(float complex <[z]>);
48 
49 
50 DESCRIPTION
51         These functions compute the complex square root of <[z]>, with
52         a branch cut along the negative real axis.
53 
54         <<csqrtf>> is identical to <<csqrt>>, except that it performs
55         its calculations on <<floats complex>>.
56 
57 RETURNS
58         The csqrt functions return the complex square root value, in
59         the range of the right halfplane (including the imaginary axis).
60 
61 PORTABILITY
62         <<csqrt>> and <<csqrtf>> are ISO C99
63 
64 QUICKREF
65         <<csqrt>> and <<csqrtf>> are ISO C99
66 
67 */
68 
69 
70 #include <complex.h>
71 #include <math.h>
72 
73 double complex
csqrt(double complex z)74 csqrt(double complex z)
75 {
76 	double complex w;
77 	double x, y, r, t, scale;
78 
79 	x = creal (z);
80 	y = cimag (z);
81 
82 	if (y == 0.0) {
83 		if (x == 0.0) {
84 			w = 0.0 + y * (double complex) I;
85 		} else {
86 			r = fabs(x);
87 			r = sqrt(r);
88 			if (x < 0.0) {
89 				w = 0.0 + r * (double complex) I;
90 			} else {
91 				w = r + y * (double complex) I;
92 			}
93 		}
94 		return w;
95 	}
96 	if (x == 0.0) {
97 		r = fabs(y);
98 		r = sqrt(0.5 * r);
99 		if (y > 0)
100 			w = r + r * (double complex) I;
101 		else
102 			w = r - r * (double complex) I;
103 		return w;
104 	}
105 	/* Rescale to avoid internal overflow or underflow.  */
106 	if ((fabs(x) > 4.0) || (fabs(y) > 4.0)) {
107 		x *= 0.25;
108 		y *= 0.25;
109 		scale = 2.0;
110 	} else {
111 #if 1
112 		x *= 1.8014398509481984e16;  /* 2^54 */
113 		y *= 1.8014398509481984e16;
114 		scale = 7.450580596923828125e-9; /* 2^-27 */
115 #else
116 		x *= 4.0;
117 		y *= 4.0;
118 		scale = 0.5;
119 #endif
120 	}
121 	w = x + y * (double complex) I;
122 	r = cabs(w);
123 	if (x > 0) {
124 		t = sqrt(0.5 * r + 0.5 * x);
125 		r = scale * fabs((0.5 * y) / t );
126 		t *= scale;
127 	} else {
128 		r = sqrt(0.5 * r - 0.5 * x);
129 		t = scale * fabs((0.5 * y) / r);
130 		r *= scale;
131 	}
132 	if (y < 0)
133 		w = t - r * (double complex) I;
134 	else
135 		w = t + r * (double complex) I;
136 	return w;
137 }
138