1 /* Adapted for Newlib, 2009.  (Allow for int < 32 bits; return *quo=0 during
2  * errors to make test scripts easier.)  */
3 /* @(#)e_fmod.c 1.3 95/01/18 */
4 /*-
5  * ====================================================
6  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7  *
8  * Developed at SunSoft, a Sun Microsystems, Inc. business.
9  * Permission to use, copy, modify, and distribute this
10  * software is freely granted, provided that this notice
11  * is preserved.
12  * ====================================================
13  */
14 
15 #include <math.h>
16 #include "fdlibm.h"
17 
18 /* For quotient, return either all 31 bits that can from calculation (using
19  * int32_t), or as many as can fit into an int that is smaller than 32 bits.  */
20 #if INT_MAX > 0x7FFFFFFFL
21   #define QUO_MASK 0x7FFFFFFF
22 # else
23   #define QUO_MASK INT_MAX
24 #endif
25 
26 static const float Zero[] = {0.0, -0.0,};
27 
28 /*
29  * Return the IEEE remainder and set *quo to the last n bits of the
30  * quotient, rounded to the nearest integer.  We choose n=31--if that many fit--
31  * we wind up computing all the integer bits of the quotient anyway as
32  * a side-effect of computing the remainder by the shift and subtract
33  * method.  In practice, this is far more bits than are needed to use
34  * remquo in reduction algorithms.
35  */
36 float
remquof(float x,float y,int * quo)37 remquof(float x, float y, int *quo)
38 {
39 	__int32_t n,hx,hy,hz,ix,iy,sx,i;
40 	__uint32_t q,sxy;
41 
42 	GET_FLOAT_WORD(hx,x);
43 	GET_FLOAT_WORD(hy,y);
44 	sxy = (hx ^ hy) & 0x80000000;
45 	sx = hx&0x80000000;		/* sign of x */
46 	hx ^=sx;		/* |x| */
47 	hy &= 0x7fffffff;	/* |y| */
48 
49     /* purge off exception values */
50 	if(hy==0||hx>=0x7f800000||hy>0x7f800000) { /* y=0,NaN;or x not finite */
51 	    *quo = 0;	/* Not necessary, but return consistent value */
52 	    return (x*y)/(x*y);
53 	}
54 	if(hx<hy) {
55 	    q = 0;
56 	    goto fixup;	/* |x|<|y| return x or x-y */
57 	} else if(hx==hy) {
58 	    *quo = (sxy ? -1 : 1);
59 	    return Zero[(__uint32_t)sx>>31];	/* |x|=|y| return x*0*/
60 	}
61 
62     /* determine ix = ilogb(x) */
63 	if(hx<0x00800000) {	/* subnormal x */
64 	    for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
65 	} else ix = (hx>>23)-127;
66 
67     /* determine iy = ilogb(y) */
68 	if(hy<0x00800000) {	/* subnormal y */
69 	    for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1;
70 	} else iy = (hy>>23)-127;
71 
72     /* set up {hx,lx}, {hy,ly} and align y to x */
73 	if(ix >= -126)
74 	    hx = 0x00800000|(0x007fffff&hx);
75 	else {		/* subnormal x, shift x to normal */
76 	    n = -126-ix;
77 	    hx <<= n;
78 	}
79 	if(iy >= -126)
80 	    hy = 0x00800000|(0x007fffff&hy);
81 	else {		/* subnormal y, shift y to normal */
82 	    n = -126-iy;
83 	    hy <<= n;
84 	}
85 
86     /* fix point fmod */
87 	n = ix - iy;
88 	q = 0;
89 	while(n--) {
90 	    hz=hx-hy;
91 	    if(hz<0) hx = hx << 1;
92 	    else {hx = hz << 1; q++;}
93 	    q <<= 1;
94 	}
95 	hz=hx-hy;
96 	if(hz>=0) {hx=hz;q++;}
97 
98     /* convert back to floating value and restore the sign */
99 	if(hx==0) {				/* return sign(x)*0 */
100 	    *quo = (sxy ? -q : q);
101 	    return Zero[(__uint32_t)sx>>31];
102 	}
103 	while(hx<0x00800000) {		/* normalize x */
104 	    hx <<= 1;
105 	    iy -= 1;
106 	}
107 	if(iy>= -126) {		/* normalize output */
108 	    hx = ((hx-0x00800000)|((iy+127)<<23));
109 	} else {		/* subnormal output */
110 	    n = -126 - iy;
111 	    hx >>= n;
112 	}
113 fixup:
114 	SET_FLOAT_WORD(x,hx);
115 	y = fabsf(y);
116 	if (y < 0x1p-125f) {
117 	    if (x+x>y || (x+x==y && (q & 1))) {
118 		q++;
119 		x-=y;
120 	    }
121 	} else if (x>0.5f*y || (x==0.5f*y && (q & 1))) {
122 	    q++;
123 	    x-=y;
124 	}
125 	GET_FLOAT_WORD(hx,x);
126 	SET_FLOAT_WORD(x,hx^sx);
127 	q &= 0x7fffffff;
128 	*quo = (sxy ? -q : q);
129 	return x;
130 }
131 
132 _MATH_ALIAS_f_ffI(remquo)
133