1 /* time.h -- An implementation of the standard Unix <sys/time.h> file.
2    Written by Geoffrey Noer <noer@cygnus.com>
3    Public domain; no rights reserved. */
4 
5 /*-
6  * SPDX-License-Identifier: BSD-3-Clause
7  *
8  * Copyright (c) 1982, 1986, 1993
9  *	The Regents of the University of California.  All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)time.h	8.5 (Berkeley) 5/4/95
36  * $FreeBSD: head/sys/sys/time.h 346176 2019-04-13 04:46:35Z imp $
37  */
38 
39 #ifndef _SYS_TIME_H_
40 #define	_SYS_TIME_H_
41 
42 #include <_ansi.h>
43 #include <sys/cdefs.h>
44 #include <sys/_timeval.h>
45 #include <sys/types.h>
46 #include <sys/timespec.h>
47 
48 #if __BSD_VISIBLE || __POSIX_VISIBLE >= 200112 || __XSI_VISIBLE
49 #include <sys/select.h>
50 #endif
51 
52 struct timezone {
53 	int	tz_minuteswest;	/* minutes west of Greenwich */
54 	int	tz_dsttime;	/* type of dst correction */
55 };
56 #define	DST_NONE	0	/* not on dst */
57 #define	DST_USA		1	/* USA style dst */
58 #define	DST_AUST	2	/* Australian style dst */
59 #define	DST_WET		3	/* Western European dst */
60 #define	DST_MET		4	/* Middle European dst */
61 #define	DST_EET		5	/* Eastern European dst */
62 #define	DST_CAN		6	/* Canada */
63 
64 #if __BSD_VISIBLE
65 struct bintime {
66 	time_t	sec;
67 	uint64_t frac;
68 };
69 
70 static __inline void
bintime_addx(struct bintime * _bt,uint64_t _x)71 bintime_addx(struct bintime *_bt, uint64_t _x)
72 {
73 	uint64_t _u;
74 
75 	_u = _bt->frac;
76 	_bt->frac += _x;
77 	if (_u > _bt->frac)
78 		_bt->sec++;
79 }
80 
81 static __inline void
bintime_add(struct bintime * _bt,const struct bintime * _bt2)82 bintime_add(struct bintime *_bt, const struct bintime *_bt2)
83 {
84 	uint64_t _u;
85 
86 	_u = _bt->frac;
87 	_bt->frac += _bt2->frac;
88 	if (_u > _bt->frac)
89 		_bt->sec++;
90 	_bt->sec += _bt2->sec;
91 }
92 
93 static __inline void
bintime_sub(struct bintime * _bt,const struct bintime * _bt2)94 bintime_sub(struct bintime *_bt, const struct bintime *_bt2)
95 {
96 	uint64_t _u;
97 
98 	_u = _bt->frac;
99 	_bt->frac -= _bt2->frac;
100 	if (_u < _bt->frac)
101 		_bt->sec--;
102 	_bt->sec -= _bt2->sec;
103 }
104 
105 static __inline void
bintime_mul(struct bintime * _bt,u_int _x)106 bintime_mul(struct bintime *_bt, u_int _x)
107 {
108 	uint64_t _p1, _p2;
109 
110 	_p1 = (_bt->frac & 0xffffffffull) * _x;
111 	_p2 = (_bt->frac >> 32) * _x + (_p1 >> 32);
112 	_bt->sec *= _x;
113 	_bt->sec += (_p2 >> 32);
114 	_bt->frac = (_p2 << 32) | (_p1 & 0xffffffffull);
115 }
116 
117 static __inline void
bintime_shift(struct bintime * _bt,int _exp)118 bintime_shift(struct bintime *_bt, int _exp)
119 {
120 
121 	if (_exp > 0) {
122 		_bt->sec <<= _exp;
123 		_bt->sec |= _bt->frac >> (64 - _exp);
124 		_bt->frac <<= _exp;
125 	} else if (_exp < 0) {
126 		_bt->frac >>= -_exp;
127 		_bt->frac |= (uint64_t)_bt->sec << (64 + _exp);
128 		_bt->sec >>= -_exp;
129 	}
130 }
131 
132 #define	bintime_clear(a)	((a)->sec = (a)->frac = 0)
133 #define	bintime_isset(a)	((a)->sec || (a)->frac)
134 #define	bintime_cmp(a, b, cmp)						\
135 	(((a)->sec == (b)->sec) ?					\
136 	    ((a)->frac cmp (b)->frac) :					\
137 	    ((a)->sec cmp (b)->sec))
138 
139 #define	SBT_1S	((sbintime_t)1 << 32)
140 #define	SBT_1M	(SBT_1S * 60)
141 #define	SBT_1MS	(SBT_1S / 1000)
142 #define	SBT_1US	(SBT_1S / 1000000)
143 #define	SBT_1NS	(SBT_1S / 1000000000) /* beware rounding, see nstosbt() */
144 #define	SBT_MAX	0x7fffffffffffffffLL
145 
146 static __inline int
sbintime_getsec(sbintime_t _sbt)147 sbintime_getsec(sbintime_t _sbt)
148 {
149 
150 	return (_sbt >> 32);
151 }
152 
153 static __inline sbintime_t
bttosbt(const struct bintime _bt)154 bttosbt(const struct bintime _bt)
155 {
156 
157 	return (((sbintime_t)_bt.sec << 32) + (_bt.frac >> 32));
158 }
159 
160 static __inline struct bintime
sbttobt(sbintime_t _sbt)161 sbttobt(sbintime_t _sbt)
162 {
163 	struct bintime _bt;
164 
165 	_bt.sec = _sbt >> 32;
166 	_bt.frac = _sbt << 32;
167 	return (_bt);
168 }
169 
170 /*
171  * Decimal<->sbt conversions.  Multiplying or dividing by SBT_1NS results in
172  * large roundoff errors which sbttons() and nstosbt() avoid.  Millisecond and
173  * microsecond functions are also provided for completeness.
174  *
175  * These functions return the smallest sbt larger or equal to the
176  * number of seconds requested so that sbttoX(Xtosbt(y)) == y.  Unlike
177  * top of second computations below, which require that we tick at the
178  * top of second, these need to be rounded up so we do whatever for at
179  * least as long as requested.
180  *
181  * The naive computation we'd do is this
182  *	((unit * 2^64 / SIFACTOR) + 2^32-1) >> 32
183  * However, that overflows. Instead, we compute
184  *	((unit * 2^63 / SIFACTOR) + 2^31-1) >> 32
185  * and use pre-computed constants that are the ceil of the 2^63 / SIFACTOR
186  * term to ensure we are using exactly the right constant. We use the lesser
187  * evil of ull rather than a uint64_t cast to ensure we have well defined
188  * right shift semantics. With these changes, we get all the ns, us and ms
189  * conversions back and forth right.
190  */
191 static __inline int64_t
sbttons(sbintime_t _sbt)192 sbttons(sbintime_t _sbt)
193 {
194 	uint64_t ns;
195 
196 	ns = _sbt;
197 	if (ns >= SBT_1S)
198 		ns = (ns >> 32) * 1000000000;
199 	else
200 		ns = 0;
201 
202 	return (ns + (1000000000 * (_sbt & 0xffffffffu) >> 32));
203 }
204 
205 static __inline sbintime_t
nstosbt(int64_t _ns)206 nstosbt(int64_t _ns)
207 {
208 	sbintime_t sb = 0;
209 
210 	if (_ns >= SBT_1S) {
211 		sb = (_ns / 1000000000) * SBT_1S;
212 		_ns = _ns % 1000000000;
213 	}
214 	/* 9223372037 = ceil(2^63 / 1000000000) */
215 	sb += ((_ns * 9223372037ull) + 0x7fffffff) >> 31;
216 	return (sb);
217 }
218 
219 static __inline int64_t
sbttous(sbintime_t _sbt)220 sbttous(sbintime_t _sbt)
221 {
222 
223 	return ((1000000 * _sbt) >> 32);
224 }
225 
226 static __inline sbintime_t
ustosbt(int64_t _us)227 ustosbt(int64_t _us)
228 {
229 	sbintime_t sb = 0;
230 
231 	if (_us >= SBT_1S) {
232 		sb = (_us / 1000000) * SBT_1S;
233 		_us = _us % 1000000;
234 	}
235 	/* 9223372036855 = ceil(2^63 / 1000000) */
236 	sb += ((_us * 9223372036855ull) + 0x7fffffff) >> 31;
237 	return (sb);
238 }
239 
240 static __inline int64_t
sbttoms(sbintime_t _sbt)241 sbttoms(sbintime_t _sbt)
242 {
243 
244 	return ((1000 * _sbt) >> 32);
245 }
246 
247 static __inline sbintime_t
mstosbt(int64_t _ms)248 mstosbt(int64_t _ms)
249 {
250 	sbintime_t sb = 0;
251 
252 	if (_ms >= SBT_1S) {
253 		sb = (_ms / 1000) * SBT_1S;
254 		_ms = _ms % 1000;
255 	}
256 	/* 9223372036854776 = ceil(2^63 / 1000) */
257 	sb += ((_ms * 9223372036854776ull) + 0x7fffffff) >> 31;
258 	return (sb);
259 }
260 
261 /*-
262  * Background information:
263  *
264  * When converting between timestamps on parallel timescales of differing
265  * resolutions it is historical and scientific practice to round down rather
266  * than doing 4/5 rounding.
267  *
268  *   The date changes at midnight, not at noon.
269  *
270  *   Even at 15:59:59.999999999 it's not four'o'clock.
271  *
272  *   time_second ticks after N.999999999 not after N.4999999999
273  */
274 
275 static __inline void
bintime2timespec(const struct bintime * _bt,struct timespec * _ts)276 bintime2timespec(const struct bintime *_bt, struct timespec *_ts)
277 {
278 
279 	_ts->tv_sec = _bt->sec;
280 	_ts->tv_nsec = ((uint64_t)1000000000 *
281 	    (uint32_t)(_bt->frac >> 32)) >> 32;
282 }
283 
284 static __inline void
timespec2bintime(const struct timespec * _ts,struct bintime * _bt)285 timespec2bintime(const struct timespec *_ts, struct bintime *_bt)
286 {
287 
288 	_bt->sec = _ts->tv_sec;
289 	/* 18446744073 = int(2^64 / 1000000000) */
290 	_bt->frac = _ts->tv_nsec * (uint64_t)18446744073LL;
291 }
292 
293 static __inline void
bintime2timeval(const struct bintime * _bt,struct timeval * _tv)294 bintime2timeval(const struct bintime *_bt, struct timeval *_tv)
295 {
296 
297 	_tv->tv_sec = _bt->sec;
298 	_tv->tv_usec = ((uint64_t)1000000 * (uint32_t)(_bt->frac >> 32)) >> 32;
299 }
300 
301 static __inline void
timeval2bintime(const struct timeval * _tv,struct bintime * _bt)302 timeval2bintime(const struct timeval *_tv, struct bintime *_bt)
303 {
304 
305 	_bt->sec = _tv->tv_sec;
306 	/* 18446744073709 = int(2^64 / 1000000) */
307 	_bt->frac = _tv->tv_usec * (uint64_t)18446744073709LL;
308 }
309 
310 static __inline struct timespec
sbttots(sbintime_t _sbt)311 sbttots(sbintime_t _sbt)
312 {
313 	struct timespec _ts;
314 
315 	_ts.tv_sec = _sbt >> 32;
316 	_ts.tv_nsec = sbttons((uint32_t)_sbt);
317 	return (_ts);
318 }
319 
320 static __inline sbintime_t
tstosbt(struct timespec _ts)321 tstosbt(struct timespec _ts)
322 {
323 
324 	return (((sbintime_t)_ts.tv_sec << 32) + nstosbt(_ts.tv_nsec));
325 }
326 
327 static __inline struct timeval
sbttotv(sbintime_t _sbt)328 sbttotv(sbintime_t _sbt)
329 {
330 	struct timeval _tv;
331 
332 	_tv.tv_sec = _sbt >> 32;
333 	_tv.tv_usec = sbttous((uint32_t)_sbt);
334 	return (_tv);
335 }
336 
337 static __inline sbintime_t
tvtosbt(struct timeval _tv)338 tvtosbt(struct timeval _tv)
339 {
340 
341 	return (((sbintime_t)_tv.tv_sec << 32) + ustosbt(_tv.tv_usec));
342 }
343 
344 /* Operations on timespecs */
345 #define	timespecclear(tvp)	((tvp)->tv_sec = (tvp)->tv_nsec = 0)
346 #define	timespecisset(tvp)	((tvp)->tv_sec || (tvp)->tv_nsec)
347 #define	timespeccmp(tvp, uvp, cmp)					\
348 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
349 	    ((tvp)->tv_nsec cmp (uvp)->tv_nsec) :			\
350 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
351 
352 #define	timespecadd(tsp, usp, vsp)					\
353 	do {								\
354 		(vsp)->tv_sec = (tsp)->tv_sec + (usp)->tv_sec;		\
355 		(vsp)->tv_nsec = (tsp)->tv_nsec + (usp)->tv_nsec;	\
356 		if ((vsp)->tv_nsec >= 1000000000L) {			\
357 			(vsp)->tv_sec++;				\
358 			(vsp)->tv_nsec -= 1000000000L;			\
359 		}							\
360 	} while (0)
361 #define	timespecsub(tsp, usp, vsp)					\
362 	do {								\
363 		(vsp)->tv_sec = (tsp)->tv_sec - (usp)->tv_sec;		\
364 		(vsp)->tv_nsec = (tsp)->tv_nsec - (usp)->tv_nsec;	\
365 		if ((vsp)->tv_nsec < 0) {				\
366 			(vsp)->tv_sec--;				\
367 			(vsp)->tv_nsec += 1000000000L;			\
368 		}							\
369 	} while (0)
370 
371 #ifndef _KERNEL			/* NetBSD/OpenBSD compatible interfaces */
372 
373 #define	timerclear(tvp)		((tvp)->tv_sec = (tvp)->tv_usec = 0)
374 #define	timerisset(tvp)		((tvp)->tv_sec || (tvp)->tv_usec)
375 #define	timercmp(tvp, uvp, cmp)					\
376 	(((tvp)->tv_sec == (uvp)->tv_sec) ?				\
377 	    ((tvp)->tv_usec cmp (uvp)->tv_usec) :			\
378 	    ((tvp)->tv_sec cmp (uvp)->tv_sec))
379 #define	timeradd(tvp, uvp, vvp)						\
380 	do {								\
381 		(vvp)->tv_sec = (tvp)->tv_sec + (uvp)->tv_sec;		\
382 		(vvp)->tv_usec = (tvp)->tv_usec + (uvp)->tv_usec;	\
383 		if ((vvp)->tv_usec >= 1000000) {			\
384 			(vvp)->tv_sec++;				\
385 			(vvp)->tv_usec -= 1000000;			\
386 		}							\
387 	} while (0)
388 #define	timersub(tvp, uvp, vvp)						\
389 	do {								\
390 		(vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec;		\
391 		(vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec;	\
392 		if ((vvp)->tv_usec < 0) {				\
393 			(vvp)->tv_sec--;				\
394 			(vvp)->tv_usec += 1000000;			\
395 		}							\
396 	} while (0)
397 #endif
398 #endif /* __BSD_VISIBLE */
399 
400 /*
401  * Names of the interval timers, and structure
402  * defining a timer setting.
403  */
404 #define	ITIMER_REAL	0
405 #define	ITIMER_VIRTUAL	1
406 #define	ITIMER_PROF	2
407 
408 struct itimerval {
409 	struct	timeval it_interval;	/* timer interval */
410 	struct	timeval it_value;	/* current value */
411 };
412 
413 #ifndef _KERNEL
414 #include <time.h>
415 
416 __BEGIN_DECLS
417 int utimes (const char *, const struct timeval [2]);
418 
419 #if __BSD_VISIBLE
420 int adjtime (const struct timeval *, struct timeval *);
421 int futimes (int, const struct timeval [2]);
422 int lutimes (const char *, const struct timeval [2]);
423 int settimeofday (const struct timeval *, const struct timezone *);
424 #endif
425 
426 #if __MISC_VISIBLE || __XSI_VISIBLE
427 int getitimer (int __which, struct itimerval *__value);
428 int setitimer (int __which, const struct itimerval *__restrict __value,
429 					struct itimerval *__restrict __ovalue);
430 #endif
431 
432 int gettimeofday (struct timeval *__restrict __p,
433 			  void *__restrict __tz);
434 
435 #if __GNU_VISIBLE
436 int futimesat (int, const char *, const struct timeval [2]);
437 #endif
438 
439 #ifdef _LIBC
440 int _gettimeofday (struct timeval *__p, void *__tz);
441 #endif
442 
443 __END_DECLS
444 
445 #endif /* !_KERNEL */
446 #include <machine/_time.h>
447 
448 #endif /* !_SYS_TIME_H_ */
449