1 /*
2 * The RSA public-key cryptosystem
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19
20 /*
21 * The following sources were referenced in the design of this implementation
22 * of the RSA algorithm:
23 *
24 * [1] A method for obtaining digital signatures and public-key cryptosystems
25 * R Rivest, A Shamir, and L Adleman
26 * http://people.csail.mit.edu/rivest/pubs.html#RSA78
27 *
28 * [2] Handbook of Applied Cryptography - 1997, Chapter 8
29 * Menezes, van Oorschot and Vanstone
30 *
31 * [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
32 * Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
33 * Stefan Mangard
34 * https://arxiv.org/abs/1702.08719v2
35 *
36 */
37
38 #include "common.h"
39
40 #if defined(MBEDTLS_RSA_C)
41
42 #include "mbedtls/rsa.h"
43 #include "mbedtls/rsa_internal.h"
44 #include "mbedtls/oid.h"
45 #include "mbedtls/platform_util.h"
46 #include "mbedtls/error.h"
47 #include "constant_time_internal.h"
48 #include "mbedtls/constant_time.h"
49
50 #include <string.h>
51
52 #if defined(MBEDTLS_PKCS1_V21)
53 #include "mbedtls/md.h"
54 #endif
55
56 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
57 #include <stdlib.h>
58 #endif
59
60 #if defined(MBEDTLS_PLATFORM_C)
61 #include "mbedtls/platform.h"
62 #else
63 #include <stdio.h>
64 #define mbedtls_printf printf
65 #define mbedtls_calloc calloc
66 #define mbedtls_free free
67 #endif
68
69 #if !defined(MBEDTLS_RSA_ALT)
70
71 /* Parameter validation macros */
72 #define RSA_VALIDATE_RET( cond ) \
73 MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
74 #define RSA_VALIDATE( cond ) \
75 MBEDTLS_INTERNAL_VALIDATE( cond )
76
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)77 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
78 const mbedtls_mpi *N,
79 const mbedtls_mpi *P, const mbedtls_mpi *Q,
80 const mbedtls_mpi *D, const mbedtls_mpi *E )
81 {
82 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
83 RSA_VALIDATE_RET( ctx != NULL );
84
85 if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
86 ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
87 ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
88 ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
89 ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
90 {
91 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
92 }
93
94 if( N != NULL )
95 ctx->len = mbedtls_mpi_size( &ctx->N );
96
97 return( 0 );
98 }
99
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)100 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
101 unsigned char const *N, size_t N_len,
102 unsigned char const *P, size_t P_len,
103 unsigned char const *Q, size_t Q_len,
104 unsigned char const *D, size_t D_len,
105 unsigned char const *E, size_t E_len )
106 {
107 int ret = 0;
108 RSA_VALIDATE_RET( ctx != NULL );
109
110 if( N != NULL )
111 {
112 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
113 ctx->len = mbedtls_mpi_size( &ctx->N );
114 }
115
116 if( P != NULL )
117 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
118
119 if( Q != NULL )
120 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
121
122 if( D != NULL )
123 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
124
125 if( E != NULL )
126 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
127
128 cleanup:
129
130 if( ret != 0 )
131 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
132
133 return( 0 );
134 }
135
136 /*
137 * Checks whether the context fields are set in such a way
138 * that the RSA primitives will be able to execute without error.
139 * It does *not* make guarantees for consistency of the parameters.
140 */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)141 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
142 int blinding_needed )
143 {
144 #if !defined(MBEDTLS_RSA_NO_CRT)
145 /* blinding_needed is only used for NO_CRT to decide whether
146 * P,Q need to be present or not. */
147 ((void) blinding_needed);
148 #endif
149
150 if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
151 ctx->len > MBEDTLS_MPI_MAX_SIZE )
152 {
153 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
154 }
155
156 /*
157 * 1. Modular exponentiation needs positive, odd moduli.
158 */
159
160 /* Modular exponentiation wrt. N is always used for
161 * RSA public key operations. */
162 if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
163 mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0 )
164 {
165 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
166 }
167
168 #if !defined(MBEDTLS_RSA_NO_CRT)
169 /* Modular exponentiation for P and Q is only
170 * used for private key operations and if CRT
171 * is used. */
172 if( is_priv &&
173 ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
174 mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
175 mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
176 mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0 ) )
177 {
178 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
179 }
180 #endif /* !MBEDTLS_RSA_NO_CRT */
181
182 /*
183 * 2. Exponents must be positive
184 */
185
186 /* Always need E for public key operations */
187 if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
188 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
189
190 #if defined(MBEDTLS_RSA_NO_CRT)
191 /* For private key operations, use D or DP & DQ
192 * as (unblinded) exponents. */
193 if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
194 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
195 #else
196 if( is_priv &&
197 ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
198 mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0 ) )
199 {
200 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
201 }
202 #endif /* MBEDTLS_RSA_NO_CRT */
203
204 /* Blinding shouldn't make exponents negative either,
205 * so check that P, Q >= 1 if that hasn't yet been
206 * done as part of 1. */
207 #if defined(MBEDTLS_RSA_NO_CRT)
208 if( is_priv && blinding_needed &&
209 ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
210 mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
211 {
212 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
213 }
214 #endif
215
216 /* It wouldn't lead to an error if it wasn't satisfied,
217 * but check for QP >= 1 nonetheless. */
218 #if !defined(MBEDTLS_RSA_NO_CRT)
219 if( is_priv &&
220 mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
221 {
222 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
223 }
224 #endif
225
226 return( 0 );
227 }
228
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)229 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
230 {
231 int ret = 0;
232 int have_N, have_P, have_Q, have_D, have_E;
233 #if !defined(MBEDTLS_RSA_NO_CRT)
234 int have_DP, have_DQ, have_QP;
235 #endif
236 int n_missing, pq_missing, d_missing, is_pub, is_priv;
237
238 RSA_VALIDATE_RET( ctx != NULL );
239
240 have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
241 have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
242 have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
243 have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
244 have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
245
246 #if !defined(MBEDTLS_RSA_NO_CRT)
247 have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
248 have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
249 have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
250 #endif
251
252 /*
253 * Check whether provided parameters are enough
254 * to deduce all others. The following incomplete
255 * parameter sets for private keys are supported:
256 *
257 * (1) P, Q missing.
258 * (2) D and potentially N missing.
259 *
260 */
261
262 n_missing = have_P && have_Q && have_D && have_E;
263 pq_missing = have_N && !have_P && !have_Q && have_D && have_E;
264 d_missing = have_P && have_Q && !have_D && have_E;
265 is_pub = have_N && !have_P && !have_Q && !have_D && have_E;
266
267 /* These three alternatives are mutually exclusive */
268 is_priv = n_missing || pq_missing || d_missing;
269
270 if( !is_priv && !is_pub )
271 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
272
273 /*
274 * Step 1: Deduce N if P, Q are provided.
275 */
276
277 if( !have_N && have_P && have_Q )
278 {
279 if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
280 &ctx->Q ) ) != 0 )
281 {
282 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
283 }
284
285 ctx->len = mbedtls_mpi_size( &ctx->N );
286 }
287
288 /*
289 * Step 2: Deduce and verify all remaining core parameters.
290 */
291
292 if( pq_missing )
293 {
294 ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
295 &ctx->P, &ctx->Q );
296 if( ret != 0 )
297 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
298
299 }
300 else if( d_missing )
301 {
302 if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
303 &ctx->Q,
304 &ctx->E,
305 &ctx->D ) ) != 0 )
306 {
307 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
308 }
309 }
310
311 /*
312 * Step 3: Deduce all additional parameters specific
313 * to our current RSA implementation.
314 */
315
316 #if !defined(MBEDTLS_RSA_NO_CRT)
317 if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
318 {
319 ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
320 &ctx->DP, &ctx->DQ, &ctx->QP );
321 if( ret != 0 )
322 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
323 }
324 #endif /* MBEDTLS_RSA_NO_CRT */
325
326 /*
327 * Step 3: Basic sanity checks
328 */
329
330 return( rsa_check_context( ctx, is_priv, 1 ) );
331 }
332
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)333 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
334 unsigned char *N, size_t N_len,
335 unsigned char *P, size_t P_len,
336 unsigned char *Q, size_t Q_len,
337 unsigned char *D, size_t D_len,
338 unsigned char *E, size_t E_len )
339 {
340 int ret = 0;
341 int is_priv;
342 RSA_VALIDATE_RET( ctx != NULL );
343
344 /* Check if key is private or public */
345 is_priv =
346 mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
347 mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
348 mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
349 mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
350 mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
351
352 if( !is_priv )
353 {
354 /* If we're trying to export private parameters for a public key,
355 * something must be wrong. */
356 if( P != NULL || Q != NULL || D != NULL )
357 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
358
359 }
360
361 if( N != NULL )
362 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
363
364 if( P != NULL )
365 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
366
367 if( Q != NULL )
368 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
369
370 if( D != NULL )
371 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
372
373 if( E != NULL )
374 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
375
376 cleanup:
377
378 return( ret );
379 }
380
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)381 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
382 mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
383 mbedtls_mpi *D, mbedtls_mpi *E )
384 {
385 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
386 int is_priv;
387 RSA_VALIDATE_RET( ctx != NULL );
388
389 /* Check if key is private or public */
390 is_priv =
391 mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
392 mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
393 mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
394 mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
395 mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
396
397 if( !is_priv )
398 {
399 /* If we're trying to export private parameters for a public key,
400 * something must be wrong. */
401 if( P != NULL || Q != NULL || D != NULL )
402 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
403
404 }
405
406 /* Export all requested core parameters. */
407
408 if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
409 ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
410 ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
411 ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
412 ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
413 {
414 return( ret );
415 }
416
417 return( 0 );
418 }
419
420 /*
421 * Export CRT parameters
422 * This must also be implemented if CRT is not used, for being able to
423 * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
424 * can be used in this case.
425 */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)426 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
427 mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
428 {
429 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
430 int is_priv;
431 RSA_VALIDATE_RET( ctx != NULL );
432
433 /* Check if key is private or public */
434 is_priv =
435 mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
436 mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
437 mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
438 mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
439 mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
440
441 if( !is_priv )
442 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
443
444 #if !defined(MBEDTLS_RSA_NO_CRT)
445 /* Export all requested blinding parameters. */
446 if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
447 ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
448 ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
449 {
450 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
451 }
452 #else
453 if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
454 DP, DQ, QP ) ) != 0 )
455 {
456 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
457 }
458 #endif
459
460 return( 0 );
461 }
462
463 /*
464 * Initialize an RSA context
465 */
mbedtls_rsa_init(mbedtls_rsa_context * ctx,int padding,int hash_id)466 void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
467 int padding,
468 int hash_id )
469 {
470 RSA_VALIDATE( ctx != NULL );
471 RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
472 padding == MBEDTLS_RSA_PKCS_V21 );
473
474 memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
475
476 mbedtls_rsa_set_padding( ctx, padding, hash_id );
477
478 #if defined(MBEDTLS_THREADING_C)
479 /* Set ctx->ver to nonzero to indicate that the mutex has been
480 * initialized and will need to be freed. */
481 ctx->ver = 1;
482 mbedtls_mutex_init( &ctx->mutex );
483 #endif
484 }
485
486 /*
487 * Set padding for an existing RSA context
488 */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,int hash_id)489 void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
490 int hash_id )
491 {
492 RSA_VALIDATE( ctx != NULL );
493 RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
494 padding == MBEDTLS_RSA_PKCS_V21 );
495
496 ctx->padding = padding;
497 ctx->hash_id = hash_id;
498 }
499
500 /*
501 * Get length in bytes of RSA modulus
502 */
503
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)504 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
505 {
506 return( ctx->len );
507 }
508
509
510 #if defined(MBEDTLS_GENPRIME)
511
512 /*
513 * Generate an RSA keypair
514 *
515 * This generation method follows the RSA key pair generation procedure of
516 * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
517 */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)518 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
519 int (*f_rng)(void *, unsigned char *, size_t),
520 void *p_rng,
521 unsigned int nbits, int exponent )
522 {
523 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
524 mbedtls_mpi H, G, L;
525 int prime_quality = 0;
526 RSA_VALIDATE_RET( ctx != NULL );
527 RSA_VALIDATE_RET( f_rng != NULL );
528
529 /*
530 * If the modulus is 1024 bit long or shorter, then the security strength of
531 * the RSA algorithm is less than or equal to 80 bits and therefore an error
532 * rate of 2^-80 is sufficient.
533 */
534 if( nbits > 1024 )
535 prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
536
537 mbedtls_mpi_init( &H );
538 mbedtls_mpi_init( &G );
539 mbedtls_mpi_init( &L );
540
541 if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
542 {
543 ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
544 goto cleanup;
545 }
546
547 /*
548 * find primes P and Q with Q < P so that:
549 * 1. |P-Q| > 2^( nbits / 2 - 100 )
550 * 2. GCD( E, (P-1)*(Q-1) ) == 1
551 * 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
552 */
553 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
554
555 do
556 {
557 MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
558 prime_quality, f_rng, p_rng ) );
559
560 MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
561 prime_quality, f_rng, p_rng ) );
562
563 /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
564 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
565 if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
566 continue;
567
568 /* not required by any standards, but some users rely on the fact that P > Q */
569 if( H.s < 0 )
570 mbedtls_mpi_swap( &ctx->P, &ctx->Q );
571
572 /* Temporarily replace P,Q by P-1, Q-1 */
573 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
574 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
575 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
576
577 /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
578 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H ) );
579 if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
580 continue;
581
582 /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
583 MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
584 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
585 MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
586
587 if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
588 continue;
589
590 break;
591 }
592 while( 1 );
593
594 /* Restore P,Q */
595 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P, &ctx->P, 1 ) );
596 MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q, &ctx->Q, 1 ) );
597
598 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
599
600 ctx->len = mbedtls_mpi_size( &ctx->N );
601
602 #if !defined(MBEDTLS_RSA_NO_CRT)
603 /*
604 * DP = D mod (P - 1)
605 * DQ = D mod (Q - 1)
606 * QP = Q^-1 mod P
607 */
608 MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
609 &ctx->DP, &ctx->DQ, &ctx->QP ) );
610 #endif /* MBEDTLS_RSA_NO_CRT */
611
612 /* Double-check */
613 MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
614
615 cleanup:
616
617 mbedtls_mpi_free( &H );
618 mbedtls_mpi_free( &G );
619 mbedtls_mpi_free( &L );
620
621 if( ret != 0 )
622 {
623 mbedtls_rsa_free( ctx );
624
625 if( ( -ret & ~0x7f ) == 0 )
626 ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret );
627 return( ret );
628 }
629
630 return( 0 );
631 }
632
633 #endif /* MBEDTLS_GENPRIME */
634
635 /*
636 * Check a public RSA key
637 */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)638 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
639 {
640 RSA_VALIDATE_RET( ctx != NULL );
641
642 if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
643 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
644
645 if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
646 {
647 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
648 }
649
650 if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
651 mbedtls_mpi_bitlen( &ctx->E ) < 2 ||
652 mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
653 {
654 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
655 }
656
657 return( 0 );
658 }
659
660 /*
661 * Check for the consistency of all fields in an RSA private key context
662 */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)663 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
664 {
665 RSA_VALIDATE_RET( ctx != NULL );
666
667 if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
668 rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
669 {
670 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
671 }
672
673 if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
674 &ctx->D, &ctx->E, NULL, NULL ) != 0 )
675 {
676 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
677 }
678
679 #if !defined(MBEDTLS_RSA_NO_CRT)
680 else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
681 &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
682 {
683 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
684 }
685 #endif
686
687 return( 0 );
688 }
689
690 /*
691 * Check if contexts holding a public and private key match
692 */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)693 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
694 const mbedtls_rsa_context *prv )
695 {
696 RSA_VALIDATE_RET( pub != NULL );
697 RSA_VALIDATE_RET( prv != NULL );
698
699 if( mbedtls_rsa_check_pubkey( pub ) != 0 ||
700 mbedtls_rsa_check_privkey( prv ) != 0 )
701 {
702 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
703 }
704
705 if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
706 mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
707 {
708 return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
709 }
710
711 return( 0 );
712 }
713
714 /*
715 * Do an RSA public key operation
716 */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)717 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
718 const unsigned char *input,
719 unsigned char *output )
720 {
721 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
722 size_t olen;
723 mbedtls_mpi T;
724 RSA_VALIDATE_RET( ctx != NULL );
725 RSA_VALIDATE_RET( input != NULL );
726 RSA_VALIDATE_RET( output != NULL );
727
728 if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
729 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
730
731 mbedtls_mpi_init( &T );
732
733 #if defined(MBEDTLS_THREADING_C)
734 if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
735 return( ret );
736 #endif
737
738 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
739
740 if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
741 {
742 ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
743 goto cleanup;
744 }
745
746 olen = ctx->len;
747 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
748 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
749
750 cleanup:
751 #if defined(MBEDTLS_THREADING_C)
752 if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
753 return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
754 #endif
755
756 mbedtls_mpi_free( &T );
757
758 if( ret != 0 )
759 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) );
760
761 return( 0 );
762 }
763
764 /*
765 * Generate or update blinding values, see section 10 of:
766 * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
767 * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
768 * Berlin Heidelberg, 1996. p. 104-113.
769 */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)770 static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
771 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
772 {
773 int ret, count = 0;
774 mbedtls_mpi R;
775
776 mbedtls_mpi_init( &R );
777
778 if( ctx->Vf.p != NULL )
779 {
780 /* We already have blinding values, just update them by squaring */
781 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
782 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
783 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
784 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
785
786 goto cleanup;
787 }
788
789 /* Unblinding value: Vf = random number, invertible mod N */
790 do {
791 if( count++ > 10 )
792 {
793 ret = MBEDTLS_ERR_RSA_RNG_FAILED;
794 goto cleanup;
795 }
796
797 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
798
799 /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
800 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
801 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
802 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
803
804 /* At this point, Vi is invertible mod N if and only if both Vf and R
805 * are invertible mod N. If one of them isn't, we don't need to know
806 * which one, we just loop and choose new values for both of them.
807 * (Each iteration succeeds with overwhelming probability.) */
808 ret = mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vi, &ctx->N );
809 if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
810 goto cleanup;
811
812 } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
813
814 /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
815 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
816 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
817
818 /* Blinding value: Vi = Vf^(-e) mod N
819 * (Vi already contains Vf^-1 at this point) */
820 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
821
822
823 cleanup:
824 mbedtls_mpi_free( &R );
825
826 return( ret );
827 }
828
829 /*
830 * Exponent blinding supposed to prevent side-channel attacks using multiple
831 * traces of measurements to recover the RSA key. The more collisions are there,
832 * the more bits of the key can be recovered. See [3].
833 *
834 * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
835 * observations on avarage.
836 *
837 * For example with 28 byte blinding to achieve 2 collisions the adversary has
838 * to make 2^112 observations on avarage.
839 *
840 * (With the currently (as of 2017 April) known best algorithms breaking 2048
841 * bit RSA requires approximately as much time as trying out 2^112 random keys.
842 * Thus in this sense with 28 byte blinding the security is not reduced by
843 * side-channel attacks like the one in [3])
844 *
845 * This countermeasure does not help if the key recovery is possible with a
846 * single trace.
847 */
848 #define RSA_EXPONENT_BLINDING 28
849
850 /*
851 * Do an RSA private key operation
852 */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)853 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
854 int (*f_rng)(void *, unsigned char *, size_t),
855 void *p_rng,
856 const unsigned char *input,
857 unsigned char *output )
858 {
859 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
860 size_t olen;
861
862 /* Temporary holding the result */
863 mbedtls_mpi T;
864
865 /* Temporaries holding P-1, Q-1 and the
866 * exponent blinding factor, respectively. */
867 mbedtls_mpi P1, Q1, R;
868
869 #if !defined(MBEDTLS_RSA_NO_CRT)
870 /* Temporaries holding the results mod p resp. mod q. */
871 mbedtls_mpi TP, TQ;
872
873 /* Temporaries holding the blinded exponents for
874 * the mod p resp. mod q computation (if used). */
875 mbedtls_mpi DP_blind, DQ_blind;
876
877 /* Pointers to actual exponents to be used - either the unblinded
878 * or the blinded ones, depending on the presence of a PRNG. */
879 mbedtls_mpi *DP = &ctx->DP;
880 mbedtls_mpi *DQ = &ctx->DQ;
881 #else
882 /* Temporary holding the blinded exponent (if used). */
883 mbedtls_mpi D_blind;
884
885 /* Pointer to actual exponent to be used - either the unblinded
886 * or the blinded one, depending on the presence of a PRNG. */
887 mbedtls_mpi *D = &ctx->D;
888 #endif /* MBEDTLS_RSA_NO_CRT */
889
890 /* Temporaries holding the initial input and the double
891 * checked result; should be the same in the end. */
892 mbedtls_mpi I, C;
893
894 RSA_VALIDATE_RET( ctx != NULL );
895 RSA_VALIDATE_RET( input != NULL );
896 RSA_VALIDATE_RET( output != NULL );
897
898 if( rsa_check_context( ctx, 1 /* private key checks */,
899 f_rng != NULL /* blinding y/n */ ) != 0 )
900 {
901 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
902 }
903
904 #if defined(MBEDTLS_THREADING_C)
905 if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
906 return( ret );
907 #endif
908
909 /* MPI Initialization */
910 mbedtls_mpi_init( &T );
911
912 mbedtls_mpi_init( &P1 );
913 mbedtls_mpi_init( &Q1 );
914 mbedtls_mpi_init( &R );
915
916 if( f_rng != NULL )
917 {
918 #if defined(MBEDTLS_RSA_NO_CRT)
919 mbedtls_mpi_init( &D_blind );
920 #else
921 mbedtls_mpi_init( &DP_blind );
922 mbedtls_mpi_init( &DQ_blind );
923 #endif
924 }
925
926 #if !defined(MBEDTLS_RSA_NO_CRT)
927 mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
928 #endif
929
930 mbedtls_mpi_init( &I );
931 mbedtls_mpi_init( &C );
932
933 /* End of MPI initialization */
934
935 MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
936 if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
937 {
938 ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
939 goto cleanup;
940 }
941
942 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
943
944 if( f_rng != NULL )
945 {
946 /*
947 * Blinding
948 * T = T * Vi mod N
949 */
950 MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
951 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
952 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
953
954 /*
955 * Exponent blinding
956 */
957 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
958 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
959
960 #if defined(MBEDTLS_RSA_NO_CRT)
961 /*
962 * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
963 */
964 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
965 f_rng, p_rng ) );
966 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
967 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
968 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
969
970 D = &D_blind;
971 #else
972 /*
973 * DP_blind = ( P - 1 ) * R + DP
974 */
975 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
976 f_rng, p_rng ) );
977 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
978 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
979 &ctx->DP ) );
980
981 DP = &DP_blind;
982
983 /*
984 * DQ_blind = ( Q - 1 ) * R + DQ
985 */
986 MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
987 f_rng, p_rng ) );
988 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
989 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
990 &ctx->DQ ) );
991
992 DQ = &DQ_blind;
993 #endif /* MBEDTLS_RSA_NO_CRT */
994 }
995
996 #if defined(MBEDTLS_RSA_NO_CRT)
997 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
998 #else
999 /*
1000 * Faster decryption using the CRT
1001 *
1002 * TP = input ^ dP mod P
1003 * TQ = input ^ dQ mod Q
1004 */
1005
1006 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
1007 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
1008
1009 /*
1010 * T = (TP - TQ) * (Q^-1 mod P) mod P
1011 */
1012 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
1013 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1014 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1015
1016 /*
1017 * T = TQ + T * Q
1018 */
1019 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1020 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1021 #endif /* MBEDTLS_RSA_NO_CRT */
1022
1023 if( f_rng != NULL )
1024 {
1025 /*
1026 * Unblind
1027 * T = T * Vf mod N
1028 */
1029 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1030 MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1031 }
1032
1033 /* Verify the result to prevent glitching attacks. */
1034 MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1035 &ctx->N, &ctx->RN ) );
1036 if( mbedtls_mpi_cmp_mpi( &C, &I ) != 0 )
1037 {
1038 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1039 goto cleanup;
1040 }
1041
1042 olen = ctx->len;
1043 MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1044
1045 cleanup:
1046 #if defined(MBEDTLS_THREADING_C)
1047 if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1048 return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1049 #endif
1050
1051 mbedtls_mpi_free( &P1 );
1052 mbedtls_mpi_free( &Q1 );
1053 mbedtls_mpi_free( &R );
1054
1055 if( f_rng != NULL )
1056 {
1057 #if defined(MBEDTLS_RSA_NO_CRT)
1058 mbedtls_mpi_free( &D_blind );
1059 #else
1060 mbedtls_mpi_free( &DP_blind );
1061 mbedtls_mpi_free( &DQ_blind );
1062 #endif
1063 }
1064
1065 mbedtls_mpi_free( &T );
1066
1067 #if !defined(MBEDTLS_RSA_NO_CRT)
1068 mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1069 #endif
1070
1071 mbedtls_mpi_free( &C );
1072 mbedtls_mpi_free( &I );
1073
1074 if( ret != 0 && ret >= -0x007f )
1075 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) );
1076
1077 return( ret );
1078 }
1079
1080 #if defined(MBEDTLS_PKCS1_V21)
1081 /**
1082 * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1083 *
1084 * \param dst buffer to mask
1085 * \param dlen length of destination buffer
1086 * \param src source of the mask generation
1087 * \param slen length of the source buffer
1088 * \param md_ctx message digest context to use
1089 */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_context_t * md_ctx)1090 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1091 size_t slen, mbedtls_md_context_t *md_ctx )
1092 {
1093 unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1094 unsigned char counter[4];
1095 unsigned char *p;
1096 unsigned int hlen;
1097 size_t i, use_len;
1098 int ret = 0;
1099
1100 memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1101 memset( counter, 0, 4 );
1102
1103 hlen = mbedtls_md_get_size( md_ctx->md_info );
1104
1105 /* Generate and apply dbMask */
1106 p = dst;
1107
1108 while( dlen > 0 )
1109 {
1110 use_len = hlen;
1111 if( dlen < hlen )
1112 use_len = dlen;
1113
1114 if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1115 goto exit;
1116 if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1117 goto exit;
1118 if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1119 goto exit;
1120 if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1121 goto exit;
1122
1123 for( i = 0; i < use_len; ++i )
1124 *p++ ^= mask[i];
1125
1126 counter[3]++;
1127
1128 dlen -= use_len;
1129 }
1130
1131 exit:
1132 mbedtls_platform_zeroize( mask, sizeof( mask ) );
1133
1134 return( ret );
1135 }
1136 #endif /* MBEDTLS_PKCS1_V21 */
1137
1138 #if defined(MBEDTLS_PKCS1_V21)
1139 /*
1140 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1141 */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1142 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1143 int (*f_rng)(void *, unsigned char *, size_t),
1144 void *p_rng,
1145 int mode,
1146 const unsigned char *label, size_t label_len,
1147 size_t ilen,
1148 const unsigned char *input,
1149 unsigned char *output )
1150 {
1151 size_t olen;
1152 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1153 unsigned char *p = output;
1154 unsigned int hlen;
1155 const mbedtls_md_info_t *md_info;
1156 mbedtls_md_context_t md_ctx;
1157
1158 RSA_VALIDATE_RET( ctx != NULL );
1159 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1160 mode == MBEDTLS_RSA_PUBLIC );
1161 RSA_VALIDATE_RET( output != NULL );
1162 RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1163 RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1164
1165 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1166 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1167
1168 if( f_rng == NULL )
1169 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1170
1171 md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1172 if( md_info == NULL )
1173 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1174
1175 olen = ctx->len;
1176 hlen = mbedtls_md_get_size( md_info );
1177
1178 /* first comparison checks for overflow */
1179 if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1180 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1181
1182 memset( output, 0, olen );
1183
1184 *p++ = 0;
1185
1186 /* Generate a random octet string seed */
1187 if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1188 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1189
1190 p += hlen;
1191
1192 /* Construct DB */
1193 if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1194 return( ret );
1195 p += hlen;
1196 p += olen - 2 * hlen - 2 - ilen;
1197 *p++ = 1;
1198 if( ilen != 0 )
1199 memcpy( p, input, ilen );
1200
1201 mbedtls_md_init( &md_ctx );
1202 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1203 goto exit;
1204
1205 /* maskedDB: Apply dbMask to DB */
1206 if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1207 &md_ctx ) ) != 0 )
1208 goto exit;
1209
1210 /* maskedSeed: Apply seedMask to seed */
1211 if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1212 &md_ctx ) ) != 0 )
1213 goto exit;
1214
1215 exit:
1216 mbedtls_md_free( &md_ctx );
1217
1218 if( ret != 0 )
1219 return( ret );
1220
1221 return( ( mode == MBEDTLS_RSA_PUBLIC )
1222 ? mbedtls_rsa_public( ctx, output, output )
1223 : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1224 }
1225 #endif /* MBEDTLS_PKCS1_V21 */
1226
1227 #if defined(MBEDTLS_PKCS1_V15)
1228 /*
1229 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1230 */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1231 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1232 int (*f_rng)(void *, unsigned char *, size_t),
1233 void *p_rng,
1234 int mode, size_t ilen,
1235 const unsigned char *input,
1236 unsigned char *output )
1237 {
1238 size_t nb_pad, olen;
1239 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1240 unsigned char *p = output;
1241
1242 RSA_VALIDATE_RET( ctx != NULL );
1243 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1244 mode == MBEDTLS_RSA_PUBLIC );
1245 RSA_VALIDATE_RET( output != NULL );
1246 RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1247
1248 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1249 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1250
1251 olen = ctx->len;
1252
1253 /* first comparison checks for overflow */
1254 if( ilen + 11 < ilen || olen < ilen + 11 )
1255 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1256
1257 nb_pad = olen - 3 - ilen;
1258
1259 *p++ = 0;
1260 if( mode == MBEDTLS_RSA_PUBLIC )
1261 {
1262 if( f_rng == NULL )
1263 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1264
1265 *p++ = MBEDTLS_RSA_CRYPT;
1266
1267 while( nb_pad-- > 0 )
1268 {
1269 int rng_dl = 100;
1270
1271 do {
1272 ret = f_rng( p_rng, p, 1 );
1273 } while( *p == 0 && --rng_dl && ret == 0 );
1274
1275 /* Check if RNG failed to generate data */
1276 if( rng_dl == 0 || ret != 0 )
1277 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1278
1279 p++;
1280 }
1281 }
1282 else
1283 {
1284 *p++ = MBEDTLS_RSA_SIGN;
1285
1286 while( nb_pad-- > 0 )
1287 *p++ = 0xFF;
1288 }
1289
1290 *p++ = 0;
1291 if( ilen != 0 )
1292 memcpy( p, input, ilen );
1293
1294 return( ( mode == MBEDTLS_RSA_PUBLIC )
1295 ? mbedtls_rsa_public( ctx, output, output )
1296 : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1297 }
1298 #endif /* MBEDTLS_PKCS1_V15 */
1299
1300 /*
1301 * Add the message padding, then do an RSA operation
1302 */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1303 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1304 int (*f_rng)(void *, unsigned char *, size_t),
1305 void *p_rng,
1306 int mode, size_t ilen,
1307 const unsigned char *input,
1308 unsigned char *output )
1309 {
1310 RSA_VALIDATE_RET( ctx != NULL );
1311 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1312 mode == MBEDTLS_RSA_PUBLIC );
1313 RSA_VALIDATE_RET( output != NULL );
1314 RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1315
1316 switch( ctx->padding )
1317 {
1318 #if defined(MBEDTLS_PKCS1_V15)
1319 case MBEDTLS_RSA_PKCS_V15:
1320 return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
1321 input, output );
1322 #endif
1323
1324 #if defined(MBEDTLS_PKCS1_V21)
1325 case MBEDTLS_RSA_PKCS_V21:
1326 return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1327 ilen, input, output );
1328 #endif
1329
1330 default:
1331 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1332 }
1333 }
1334
1335 #if defined(MBEDTLS_PKCS1_V21)
1336 /*
1337 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1338 */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1339 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1340 int (*f_rng)(void *, unsigned char *, size_t),
1341 void *p_rng,
1342 int mode,
1343 const unsigned char *label, size_t label_len,
1344 size_t *olen,
1345 const unsigned char *input,
1346 unsigned char *output,
1347 size_t output_max_len )
1348 {
1349 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1350 size_t ilen, i, pad_len;
1351 unsigned char *p, bad, pad_done;
1352 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1353 unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1354 unsigned int hlen;
1355 const mbedtls_md_info_t *md_info;
1356 mbedtls_md_context_t md_ctx;
1357
1358 RSA_VALIDATE_RET( ctx != NULL );
1359 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1360 mode == MBEDTLS_RSA_PUBLIC );
1361 RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1362 RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1363 RSA_VALIDATE_RET( input != NULL );
1364 RSA_VALIDATE_RET( olen != NULL );
1365
1366 /*
1367 * Parameters sanity checks
1368 */
1369 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1370 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1371
1372 ilen = ctx->len;
1373
1374 if( ilen < 16 || ilen > sizeof( buf ) )
1375 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1376
1377 md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1378 if( md_info == NULL )
1379 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1380
1381 hlen = mbedtls_md_get_size( md_info );
1382
1383 // checking for integer underflow
1384 if( 2 * hlen + 2 > ilen )
1385 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1386
1387 /*
1388 * RSA operation
1389 */
1390 ret = ( mode == MBEDTLS_RSA_PUBLIC )
1391 ? mbedtls_rsa_public( ctx, input, buf )
1392 : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1393
1394 if( ret != 0 )
1395 goto cleanup;
1396
1397 /*
1398 * Unmask data and generate lHash
1399 */
1400 mbedtls_md_init( &md_ctx );
1401 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1402 {
1403 mbedtls_md_free( &md_ctx );
1404 goto cleanup;
1405 }
1406
1407 /* seed: Apply seedMask to maskedSeed */
1408 if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1409 &md_ctx ) ) != 0 ||
1410 /* DB: Apply dbMask to maskedDB */
1411 ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1412 &md_ctx ) ) != 0 )
1413 {
1414 mbedtls_md_free( &md_ctx );
1415 goto cleanup;
1416 }
1417
1418 mbedtls_md_free( &md_ctx );
1419
1420 /* Generate lHash */
1421 if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1422 goto cleanup;
1423
1424 /*
1425 * Check contents, in "constant-time"
1426 */
1427 p = buf;
1428 bad = 0;
1429
1430 bad |= *p++; /* First byte must be 0 */
1431
1432 p += hlen; /* Skip seed */
1433
1434 /* Check lHash */
1435 for( i = 0; i < hlen; i++ )
1436 bad |= lhash[i] ^ *p++;
1437
1438 /* Get zero-padding len, but always read till end of buffer
1439 * (minus one, for the 01 byte) */
1440 pad_len = 0;
1441 pad_done = 0;
1442 for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1443 {
1444 pad_done |= p[i];
1445 pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1446 }
1447
1448 p += pad_len;
1449 bad |= *p++ ^ 0x01;
1450
1451 /*
1452 * The only information "leaked" is whether the padding was correct or not
1453 * (eg, no data is copied if it was not correct). This meets the
1454 * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1455 * the different error conditions.
1456 */
1457 if( bad != 0 )
1458 {
1459 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1460 goto cleanup;
1461 }
1462
1463 if( ilen - ( p - buf ) > output_max_len )
1464 {
1465 ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1466 goto cleanup;
1467 }
1468
1469 *olen = ilen - (p - buf);
1470 if( *olen != 0 )
1471 memcpy( output, p, *olen );
1472 ret = 0;
1473
1474 cleanup:
1475 mbedtls_platform_zeroize( buf, sizeof( buf ) );
1476 mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1477
1478 return( ret );
1479 }
1480 #endif /* MBEDTLS_PKCS1_V21 */
1481
1482 #if defined(MBEDTLS_PKCS1_V15)
1483 /*
1484 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1485 */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1486 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1487 int (*f_rng)(void *, unsigned char *, size_t),
1488 void *p_rng,
1489 int mode,
1490 size_t *olen,
1491 const unsigned char *input,
1492 unsigned char *output,
1493 size_t output_max_len )
1494 {
1495 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1496 size_t ilen;
1497 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1498
1499 RSA_VALIDATE_RET( ctx != NULL );
1500 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1501 mode == MBEDTLS_RSA_PUBLIC );
1502 RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1503 RSA_VALIDATE_RET( input != NULL );
1504 RSA_VALIDATE_RET( olen != NULL );
1505
1506 ilen = ctx->len;
1507
1508 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1509 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1510
1511 if( ilen < 16 || ilen > sizeof( buf ) )
1512 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1513
1514 ret = ( mode == MBEDTLS_RSA_PUBLIC )
1515 ? mbedtls_rsa_public( ctx, input, buf )
1516 : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1517
1518 if( ret != 0 )
1519 goto cleanup;
1520
1521 ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding( mode, buf, ilen,
1522 output, output_max_len, olen );
1523
1524 cleanup:
1525 mbedtls_platform_zeroize( buf, sizeof( buf ) );
1526
1527 return( ret );
1528 }
1529 #endif /* MBEDTLS_PKCS1_V15 */
1530
1531 /*
1532 * Do an RSA operation, then remove the message padding
1533 */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1534 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1535 int (*f_rng)(void *, unsigned char *, size_t),
1536 void *p_rng,
1537 int mode, size_t *olen,
1538 const unsigned char *input,
1539 unsigned char *output,
1540 size_t output_max_len)
1541 {
1542 RSA_VALIDATE_RET( ctx != NULL );
1543 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1544 mode == MBEDTLS_RSA_PUBLIC );
1545 RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1546 RSA_VALIDATE_RET( input != NULL );
1547 RSA_VALIDATE_RET( olen != NULL );
1548
1549 switch( ctx->padding )
1550 {
1551 #if defined(MBEDTLS_PKCS1_V15)
1552 case MBEDTLS_RSA_PKCS_V15:
1553 return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
1554 input, output, output_max_len );
1555 #endif
1556
1557 #if defined(MBEDTLS_PKCS1_V21)
1558 case MBEDTLS_RSA_PKCS_V21:
1559 return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1560 olen, input, output,
1561 output_max_len );
1562 #endif
1563
1564 default:
1565 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1566 }
1567 }
1568
1569 #if defined(MBEDTLS_PKCS1_V21)
rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1570 static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1571 int (*f_rng)(void *, unsigned char *, size_t),
1572 void *p_rng,
1573 int mode,
1574 mbedtls_md_type_t md_alg,
1575 unsigned int hashlen,
1576 const unsigned char *hash,
1577 int saltlen,
1578 unsigned char *sig )
1579 {
1580 size_t olen;
1581 unsigned char *p = sig;
1582 unsigned char *salt = NULL;
1583 size_t slen, min_slen, hlen, offset = 0;
1584 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1585 size_t msb;
1586 const mbedtls_md_info_t *md_info;
1587 mbedtls_md_context_t md_ctx;
1588 RSA_VALIDATE_RET( ctx != NULL );
1589 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1590 mode == MBEDTLS_RSA_PUBLIC );
1591 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
1592 hashlen == 0 ) ||
1593 hash != NULL );
1594 RSA_VALIDATE_RET( sig != NULL );
1595
1596 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1597 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1598
1599 if( f_rng == NULL )
1600 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1601
1602 olen = ctx->len;
1603
1604 if( md_alg != MBEDTLS_MD_NONE )
1605 {
1606 /* Gather length of hash to sign */
1607 md_info = mbedtls_md_info_from_type( md_alg );
1608 if( md_info == NULL )
1609 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1610
1611 hashlen = mbedtls_md_get_size( md_info );
1612 }
1613
1614 md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1615 if( md_info == NULL )
1616 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1617
1618 hlen = mbedtls_md_get_size( md_info );
1619
1620 if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY)
1621 {
1622 /* Calculate the largest possible salt length, up to the hash size.
1623 * Normally this is the hash length, which is the maximum salt length
1624 * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
1625 * enough room, use the maximum salt length that fits. The constraint is
1626 * that the hash length plus the salt length plus 2 bytes must be at most
1627 * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1628 * (PKCS#1 v2.2) §9.1.1 step 3. */
1629 min_slen = hlen - 2;
1630 if( olen < hlen + min_slen + 2 )
1631 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1632 else if( olen >= hlen + hlen + 2 )
1633 slen = hlen;
1634 else
1635 slen = olen - hlen - 2;
1636 }
1637 else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) )
1638 {
1639 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1640 }
1641 else
1642 {
1643 slen = (size_t) saltlen;
1644 }
1645
1646 memset( sig, 0, olen );
1647
1648 /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1649 msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1650 p += olen - hlen - slen - 2;
1651 *p++ = 0x01;
1652
1653 /* Generate salt of length slen in place in the encoded message */
1654 salt = p;
1655 if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1656 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1657
1658 p += slen;
1659
1660 mbedtls_md_init( &md_ctx );
1661 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1662 goto exit;
1663
1664 /* Generate H = Hash( M' ) */
1665 if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1666 goto exit;
1667 if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1668 goto exit;
1669 if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1670 goto exit;
1671 if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1672 goto exit;
1673 if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1674 goto exit;
1675
1676 /* Compensate for boundary condition when applying mask */
1677 if( msb % 8 == 0 )
1678 offset = 1;
1679
1680 /* maskedDB: Apply dbMask to DB */
1681 if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1682 &md_ctx ) ) != 0 )
1683 goto exit;
1684
1685 msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1686 sig[0] &= 0xFF >> ( olen * 8 - msb );
1687
1688 p += hlen;
1689 *p++ = 0xBC;
1690
1691 exit:
1692 mbedtls_md_free( &md_ctx );
1693
1694 if( ret != 0 )
1695 return( ret );
1696
1697 return( ( mode == MBEDTLS_RSA_PUBLIC )
1698 ? mbedtls_rsa_public( ctx, sig, sig )
1699 : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
1700 }
1701
1702 /*
1703 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
1704 * the option to pass in the salt length.
1705 */
mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1706 int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx,
1707 int (*f_rng)(void *, unsigned char *, size_t),
1708 void *p_rng,
1709 mbedtls_md_type_t md_alg,
1710 unsigned int hashlen,
1711 const unsigned char *hash,
1712 int saltlen,
1713 unsigned char *sig )
1714 {
1715 return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, MBEDTLS_RSA_PRIVATE, md_alg,
1716 hashlen, hash, saltlen, sig );
1717 }
1718
1719
1720 /*
1721 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1722 */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1723 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1724 int (*f_rng)(void *, unsigned char *, size_t),
1725 void *p_rng,
1726 int mode,
1727 mbedtls_md_type_t md_alg,
1728 unsigned int hashlen,
1729 const unsigned char *hash,
1730 unsigned char *sig )
1731 {
1732 return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
1733 hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig );
1734 }
1735 #endif /* MBEDTLS_PKCS1_V21 */
1736
1737 #if defined(MBEDTLS_PKCS1_V15)
1738 /*
1739 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1740 */
1741
1742 /* Construct a PKCS v1.5 encoding of a hashed message
1743 *
1744 * This is used both for signature generation and verification.
1745 *
1746 * Parameters:
1747 * - md_alg: Identifies the hash algorithm used to generate the given hash;
1748 * MBEDTLS_MD_NONE if raw data is signed.
1749 * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
1750 * - hash: Buffer containing the hashed message or the raw data.
1751 * - dst_len: Length of the encoded message.
1752 * - dst: Buffer to hold the encoded message.
1753 *
1754 * Assumptions:
1755 * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
1756 * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
1757 * - dst points to a buffer of size at least dst_len.
1758 *
1759 */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)1760 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
1761 unsigned int hashlen,
1762 const unsigned char *hash,
1763 size_t dst_len,
1764 unsigned char *dst )
1765 {
1766 size_t oid_size = 0;
1767 size_t nb_pad = dst_len;
1768 unsigned char *p = dst;
1769 const char *oid = NULL;
1770
1771 /* Are we signing hashed or raw data? */
1772 if( md_alg != MBEDTLS_MD_NONE )
1773 {
1774 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
1775 if( md_info == NULL )
1776 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1777
1778 if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
1779 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1780
1781 hashlen = mbedtls_md_get_size( md_info );
1782
1783 /* Double-check that 8 + hashlen + oid_size can be used as a
1784 * 1-byte ASN.1 length encoding and that there's no overflow. */
1785 if( 8 + hashlen + oid_size >= 0x80 ||
1786 10 + hashlen < hashlen ||
1787 10 + hashlen + oid_size < 10 + hashlen )
1788 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1789
1790 /*
1791 * Static bounds check:
1792 * - Need 10 bytes for five tag-length pairs.
1793 * (Insist on 1-byte length encodings to protect against variants of
1794 * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
1795 * - Need hashlen bytes for hash
1796 * - Need oid_size bytes for hash alg OID.
1797 */
1798 if( nb_pad < 10 + hashlen + oid_size )
1799 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1800 nb_pad -= 10 + hashlen + oid_size;
1801 }
1802 else
1803 {
1804 if( nb_pad < hashlen )
1805 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1806
1807 nb_pad -= hashlen;
1808 }
1809
1810 /* Need space for signature header and padding delimiter (3 bytes),
1811 * and 8 bytes for the minimal padding */
1812 if( nb_pad < 3 + 8 )
1813 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1814 nb_pad -= 3;
1815
1816 /* Now nb_pad is the amount of memory to be filled
1817 * with padding, and at least 8 bytes long. */
1818
1819 /* Write signature header and padding */
1820 *p++ = 0;
1821 *p++ = MBEDTLS_RSA_SIGN;
1822 memset( p, 0xFF, nb_pad );
1823 p += nb_pad;
1824 *p++ = 0;
1825
1826 /* Are we signing raw data? */
1827 if( md_alg == MBEDTLS_MD_NONE )
1828 {
1829 memcpy( p, hash, hashlen );
1830 return( 0 );
1831 }
1832
1833 /* Signing hashed data, add corresponding ASN.1 structure
1834 *
1835 * DigestInfo ::= SEQUENCE {
1836 * digestAlgorithm DigestAlgorithmIdentifier,
1837 * digest Digest }
1838 * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
1839 * Digest ::= OCTET STRING
1840 *
1841 * Schematic:
1842 * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ]
1843 * TAG-NULL + LEN [ NULL ] ]
1844 * TAG-OCTET + LEN [ HASH ] ]
1845 */
1846 *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1847 *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
1848 *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
1849 *p++ = (unsigned char)( 0x04 + oid_size );
1850 *p++ = MBEDTLS_ASN1_OID;
1851 *p++ = (unsigned char) oid_size;
1852 memcpy( p, oid, oid_size );
1853 p += oid_size;
1854 *p++ = MBEDTLS_ASN1_NULL;
1855 *p++ = 0x00;
1856 *p++ = MBEDTLS_ASN1_OCTET_STRING;
1857 *p++ = (unsigned char) hashlen;
1858 memcpy( p, hash, hashlen );
1859 p += hashlen;
1860
1861 /* Just a sanity-check, should be automatic
1862 * after the initial bounds check. */
1863 if( p != dst + dst_len )
1864 {
1865 mbedtls_platform_zeroize( dst, dst_len );
1866 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1867 }
1868
1869 return( 0 );
1870 }
1871
1872 /*
1873 * Do an RSA operation to sign the message digest
1874 */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1875 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
1876 int (*f_rng)(void *, unsigned char *, size_t),
1877 void *p_rng,
1878 int mode,
1879 mbedtls_md_type_t md_alg,
1880 unsigned int hashlen,
1881 const unsigned char *hash,
1882 unsigned char *sig )
1883 {
1884 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1885 unsigned char *sig_try = NULL, *verif = NULL;
1886
1887 RSA_VALIDATE_RET( ctx != NULL );
1888 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1889 mode == MBEDTLS_RSA_PUBLIC );
1890 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
1891 hashlen == 0 ) ||
1892 hash != NULL );
1893 RSA_VALIDATE_RET( sig != NULL );
1894
1895 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1896 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1897
1898 /*
1899 * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
1900 */
1901
1902 if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
1903 ctx->len, sig ) ) != 0 )
1904 return( ret );
1905
1906 /*
1907 * Call respective RSA primitive
1908 */
1909
1910 if( mode == MBEDTLS_RSA_PUBLIC )
1911 {
1912 /* Skip verification on a public key operation */
1913 return( mbedtls_rsa_public( ctx, sig, sig ) );
1914 }
1915
1916 /* Private key operation
1917 *
1918 * In order to prevent Lenstra's attack, make the signature in a
1919 * temporary buffer and check it before returning it.
1920 */
1921
1922 sig_try = mbedtls_calloc( 1, ctx->len );
1923 if( sig_try == NULL )
1924 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1925
1926 verif = mbedtls_calloc( 1, ctx->len );
1927 if( verif == NULL )
1928 {
1929 mbedtls_free( sig_try );
1930 return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
1931 }
1932
1933 MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
1934 MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
1935
1936 if( mbedtls_ct_memcmp( verif, sig, ctx->len ) != 0 )
1937 {
1938 ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
1939 goto cleanup;
1940 }
1941
1942 memcpy( sig, sig_try, ctx->len );
1943
1944 cleanup:
1945 mbedtls_platform_zeroize( sig_try, ctx->len );
1946 mbedtls_platform_zeroize( verif, ctx->len );
1947 mbedtls_free( sig_try );
1948 mbedtls_free( verif );
1949
1950 if( ret != 0 )
1951 memset( sig, '!', ctx->len );
1952 return( ret );
1953 }
1954 #endif /* MBEDTLS_PKCS1_V15 */
1955
1956 /*
1957 * Do an RSA operation to sign the message digest
1958 */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1959 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
1960 int (*f_rng)(void *, unsigned char *, size_t),
1961 void *p_rng,
1962 int mode,
1963 mbedtls_md_type_t md_alg,
1964 unsigned int hashlen,
1965 const unsigned char *hash,
1966 unsigned char *sig )
1967 {
1968 RSA_VALIDATE_RET( ctx != NULL );
1969 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1970 mode == MBEDTLS_RSA_PUBLIC );
1971 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
1972 hashlen == 0 ) ||
1973 hash != NULL );
1974 RSA_VALIDATE_RET( sig != NULL );
1975
1976 switch( ctx->padding )
1977 {
1978 #if defined(MBEDTLS_PKCS1_V15)
1979 case MBEDTLS_RSA_PKCS_V15:
1980 return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
1981 hashlen, hash, sig );
1982 #endif
1983
1984 #if defined(MBEDTLS_PKCS1_V21)
1985 case MBEDTLS_RSA_PKCS_V21:
1986 return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
1987 hashlen, hash, sig );
1988 #endif
1989
1990 default:
1991 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1992 }
1993 }
1994
1995 #if defined(MBEDTLS_PKCS1_V21)
1996 /*
1997 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
1998 */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)1999 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
2000 int (*f_rng)(void *, unsigned char *, size_t),
2001 void *p_rng,
2002 int mode,
2003 mbedtls_md_type_t md_alg,
2004 unsigned int hashlen,
2005 const unsigned char *hash,
2006 mbedtls_md_type_t mgf1_hash_id,
2007 int expected_salt_len,
2008 const unsigned char *sig )
2009 {
2010 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2011 size_t siglen;
2012 unsigned char *p;
2013 unsigned char *hash_start;
2014 unsigned char result[MBEDTLS_MD_MAX_SIZE];
2015 unsigned char zeros[8];
2016 unsigned int hlen;
2017 size_t observed_salt_len, msb;
2018 const mbedtls_md_info_t *md_info;
2019 mbedtls_md_context_t md_ctx;
2020 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2021
2022 RSA_VALIDATE_RET( ctx != NULL );
2023 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2024 mode == MBEDTLS_RSA_PUBLIC );
2025 RSA_VALIDATE_RET( sig != NULL );
2026 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
2027 hashlen == 0 ) ||
2028 hash != NULL );
2029
2030 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
2031 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2032
2033 siglen = ctx->len;
2034
2035 if( siglen < 16 || siglen > sizeof( buf ) )
2036 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2037
2038 ret = ( mode == MBEDTLS_RSA_PUBLIC )
2039 ? mbedtls_rsa_public( ctx, sig, buf )
2040 : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
2041
2042 if( ret != 0 )
2043 return( ret );
2044
2045 p = buf;
2046
2047 if( buf[siglen - 1] != 0xBC )
2048 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2049
2050 if( md_alg != MBEDTLS_MD_NONE )
2051 {
2052 /* Gather length of hash to sign */
2053 md_info = mbedtls_md_info_from_type( md_alg );
2054 if( md_info == NULL )
2055 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2056
2057 hashlen = mbedtls_md_get_size( md_info );
2058 }
2059
2060 md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2061 if( md_info == NULL )
2062 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2063
2064 hlen = mbedtls_md_get_size( md_info );
2065
2066 memset( zeros, 0, 8 );
2067
2068 /*
2069 * Note: EMSA-PSS verification is over the length of N - 1 bits
2070 */
2071 msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2072
2073 if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2074 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2075
2076 /* Compensate for boundary condition when applying mask */
2077 if( msb % 8 == 0 )
2078 {
2079 p++;
2080 siglen -= 1;
2081 }
2082
2083 if( siglen < hlen + 2 )
2084 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2085 hash_start = p + siglen - hlen - 1;
2086
2087 mbedtls_md_init( &md_ctx );
2088 if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2089 goto exit;
2090
2091 ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2092 if( ret != 0 )
2093 goto exit;
2094
2095 buf[0] &= 0xFF >> ( siglen * 8 - msb );
2096
2097 while( p < hash_start - 1 && *p == 0 )
2098 p++;
2099
2100 if( *p++ != 0x01 )
2101 {
2102 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2103 goto exit;
2104 }
2105
2106 observed_salt_len = hash_start - p;
2107
2108 if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2109 observed_salt_len != (size_t) expected_salt_len )
2110 {
2111 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2112 goto exit;
2113 }
2114
2115 /*
2116 * Generate H = Hash( M' )
2117 */
2118 ret = mbedtls_md_starts( &md_ctx );
2119 if ( ret != 0 )
2120 goto exit;
2121 ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2122 if ( ret != 0 )
2123 goto exit;
2124 ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2125 if ( ret != 0 )
2126 goto exit;
2127 ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2128 if ( ret != 0 )
2129 goto exit;
2130 ret = mbedtls_md_finish( &md_ctx, result );
2131 if ( ret != 0 )
2132 goto exit;
2133
2134 if( memcmp( hash_start, result, hlen ) != 0 )
2135 {
2136 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2137 goto exit;
2138 }
2139
2140 exit:
2141 mbedtls_md_free( &md_ctx );
2142
2143 return( ret );
2144 }
2145
2146 /*
2147 * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2148 */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2149 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2150 int (*f_rng)(void *, unsigned char *, size_t),
2151 void *p_rng,
2152 int mode,
2153 mbedtls_md_type_t md_alg,
2154 unsigned int hashlen,
2155 const unsigned char *hash,
2156 const unsigned char *sig )
2157 {
2158 mbedtls_md_type_t mgf1_hash_id;
2159 RSA_VALIDATE_RET( ctx != NULL );
2160 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2161 mode == MBEDTLS_RSA_PUBLIC );
2162 RSA_VALIDATE_RET( sig != NULL );
2163 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
2164 hashlen == 0 ) ||
2165 hash != NULL );
2166
2167 mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2168 ? (mbedtls_md_type_t) ctx->hash_id
2169 : md_alg;
2170
2171 return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
2172 md_alg, hashlen, hash,
2173 mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
2174 sig ) );
2175
2176 }
2177 #endif /* MBEDTLS_PKCS1_V21 */
2178
2179 #if defined(MBEDTLS_PKCS1_V15)
2180 /*
2181 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2182 */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2183 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2184 int (*f_rng)(void *, unsigned char *, size_t),
2185 void *p_rng,
2186 int mode,
2187 mbedtls_md_type_t md_alg,
2188 unsigned int hashlen,
2189 const unsigned char *hash,
2190 const unsigned char *sig )
2191 {
2192 int ret = 0;
2193 size_t sig_len;
2194 unsigned char *encoded = NULL, *encoded_expected = NULL;
2195
2196 RSA_VALIDATE_RET( ctx != NULL );
2197 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2198 mode == MBEDTLS_RSA_PUBLIC );
2199 RSA_VALIDATE_RET( sig != NULL );
2200 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
2201 hashlen == 0 ) ||
2202 hash != NULL );
2203
2204 sig_len = ctx->len;
2205
2206 if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2207 return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2208
2209 /*
2210 * Prepare expected PKCS1 v1.5 encoding of hash.
2211 */
2212
2213 if( ( encoded = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2214 ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2215 {
2216 ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2217 goto cleanup;
2218 }
2219
2220 if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2221 encoded_expected ) ) != 0 )
2222 goto cleanup;
2223
2224 /*
2225 * Apply RSA primitive to get what should be PKCS1 encoded hash.
2226 */
2227
2228 ret = ( mode == MBEDTLS_RSA_PUBLIC )
2229 ? mbedtls_rsa_public( ctx, sig, encoded )
2230 : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, encoded );
2231 if( ret != 0 )
2232 goto cleanup;
2233
2234 /*
2235 * Compare
2236 */
2237
2238 if( ( ret = mbedtls_ct_memcmp( encoded, encoded_expected,
2239 sig_len ) ) != 0 )
2240 {
2241 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2242 goto cleanup;
2243 }
2244
2245 cleanup:
2246
2247 if( encoded != NULL )
2248 {
2249 mbedtls_platform_zeroize( encoded, sig_len );
2250 mbedtls_free( encoded );
2251 }
2252
2253 if( encoded_expected != NULL )
2254 {
2255 mbedtls_platform_zeroize( encoded_expected, sig_len );
2256 mbedtls_free( encoded_expected );
2257 }
2258
2259 return( ret );
2260 }
2261 #endif /* MBEDTLS_PKCS1_V15 */
2262
2263 /*
2264 * Do an RSA operation and check the message digest
2265 */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2266 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2267 int (*f_rng)(void *, unsigned char *, size_t),
2268 void *p_rng,
2269 int mode,
2270 mbedtls_md_type_t md_alg,
2271 unsigned int hashlen,
2272 const unsigned char *hash,
2273 const unsigned char *sig )
2274 {
2275 RSA_VALIDATE_RET( ctx != NULL );
2276 RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2277 mode == MBEDTLS_RSA_PUBLIC );
2278 RSA_VALIDATE_RET( sig != NULL );
2279 RSA_VALIDATE_RET( ( md_alg == MBEDTLS_MD_NONE &&
2280 hashlen == 0 ) ||
2281 hash != NULL );
2282
2283 switch( ctx->padding )
2284 {
2285 #if defined(MBEDTLS_PKCS1_V15)
2286 case MBEDTLS_RSA_PKCS_V15:
2287 return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
2288 hashlen, hash, sig );
2289 #endif
2290
2291 #if defined(MBEDTLS_PKCS1_V21)
2292 case MBEDTLS_RSA_PKCS_V21:
2293 return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
2294 hashlen, hash, sig );
2295 #endif
2296
2297 default:
2298 return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2299 }
2300 }
2301
2302 /*
2303 * Copy the components of an RSA key
2304 */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2305 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2306 {
2307 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2308 RSA_VALIDATE_RET( dst != NULL );
2309 RSA_VALIDATE_RET( src != NULL );
2310
2311 dst->len = src->len;
2312
2313 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2314 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2315
2316 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2317 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2318 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2319
2320 #if !defined(MBEDTLS_RSA_NO_CRT)
2321 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2322 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2323 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2324 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2325 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2326 #endif
2327
2328 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2329
2330 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2331 MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2332
2333 dst->padding = src->padding;
2334 dst->hash_id = src->hash_id;
2335
2336 cleanup:
2337 if( ret != 0 )
2338 mbedtls_rsa_free( dst );
2339
2340 return( ret );
2341 }
2342
2343 /*
2344 * Free the components of an RSA key
2345 */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2346 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2347 {
2348 if( ctx == NULL )
2349 return;
2350
2351 mbedtls_mpi_free( &ctx->Vi );
2352 mbedtls_mpi_free( &ctx->Vf );
2353 mbedtls_mpi_free( &ctx->RN );
2354 mbedtls_mpi_free( &ctx->D );
2355 mbedtls_mpi_free( &ctx->Q );
2356 mbedtls_mpi_free( &ctx->P );
2357 mbedtls_mpi_free( &ctx->E );
2358 mbedtls_mpi_free( &ctx->N );
2359
2360 #if !defined(MBEDTLS_RSA_NO_CRT)
2361 mbedtls_mpi_free( &ctx->RQ );
2362 mbedtls_mpi_free( &ctx->RP );
2363 mbedtls_mpi_free( &ctx->QP );
2364 mbedtls_mpi_free( &ctx->DQ );
2365 mbedtls_mpi_free( &ctx->DP );
2366 #endif /* MBEDTLS_RSA_NO_CRT */
2367
2368 #if defined(MBEDTLS_THREADING_C)
2369 /* Free the mutex, but only if it hasn't been freed already. */
2370 if( ctx->ver != 0 )
2371 {
2372 mbedtls_mutex_free( &ctx->mutex );
2373 ctx->ver = 0;
2374 }
2375 #endif
2376 }
2377
2378 #endif /* !MBEDTLS_RSA_ALT */
2379
2380 #if defined(MBEDTLS_SELF_TEST)
2381
2382 #include "mbedtls/sha1.h"
2383
2384 /*
2385 * Example RSA-1024 keypair, for test purposes
2386 */
2387 #define KEY_LEN 128
2388
2389 #define RSA_N "9292758453063D803DD603D5E777D788" \
2390 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2391 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2392 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2393 "93A89813FBF3C4F8066D2D800F7C38A8" \
2394 "1AE31942917403FF4946B0A83D3D3E05" \
2395 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2396 "5E94BB77B07507233A0BC7BAC8F90F79"
2397
2398 #define RSA_E "10001"
2399
2400 #define RSA_D "24BF6185468786FDD303083D25E64EFC" \
2401 "66CA472BC44D253102F8B4A9D3BFA750" \
2402 "91386C0077937FE33FA3252D28855837" \
2403 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2404 "DF79C5CE07EE72C7F123142198164234" \
2405 "CABB724CF78B8173B9F880FC86322407" \
2406 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2407 "071513A1E85B5DFA031F21ECAE91A34D"
2408
2409 #define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2410 "2C01CAD19EA484A87EA4377637E75500" \
2411 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2412 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2413
2414 #define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
2415 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2416 "910E4168387E3C30AA1E00C339A79508" \
2417 "8452DD96A9A5EA5D9DCA68DA636032AF"
2418
2419 #define PT_LEN 24
2420 #define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2421 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2422
2423 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2424 static int myrand( void *rng_state, unsigned char *output, size_t len )
2425 {
2426 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2427 size_t i;
2428
2429 if( rng_state != NULL )
2430 rng_state = NULL;
2431
2432 for( i = 0; i < len; ++i )
2433 output[i] = rand();
2434 #else
2435 if( rng_state != NULL )
2436 rng_state = NULL;
2437
2438 arc4random_buf( output, len );
2439 #endif /* !OpenBSD && !NetBSD */
2440
2441 return( 0 );
2442 }
2443 #endif /* MBEDTLS_PKCS1_V15 */
2444
2445 /*
2446 * Checkup routine
2447 */
mbedtls_rsa_self_test(int verbose)2448 int mbedtls_rsa_self_test( int verbose )
2449 {
2450 int ret = 0;
2451 #if defined(MBEDTLS_PKCS1_V15)
2452 size_t len;
2453 mbedtls_rsa_context rsa;
2454 unsigned char rsa_plaintext[PT_LEN];
2455 unsigned char rsa_decrypted[PT_LEN];
2456 unsigned char rsa_ciphertext[KEY_LEN];
2457 #if defined(MBEDTLS_SHA1_C)
2458 unsigned char sha1sum[20];
2459 #endif
2460
2461 mbedtls_mpi K;
2462
2463 mbedtls_mpi_init( &K );
2464 mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
2465
2466 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N ) );
2467 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2468 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P ) );
2469 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2470 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q ) );
2471 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2472 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D ) );
2473 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2474 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E ) );
2475 MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2476
2477 MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2478
2479 if( verbose != 0 )
2480 mbedtls_printf( " RSA key validation: " );
2481
2482 if( mbedtls_rsa_check_pubkey( &rsa ) != 0 ||
2483 mbedtls_rsa_check_privkey( &rsa ) != 0 )
2484 {
2485 if( verbose != 0 )
2486 mbedtls_printf( "failed\n" );
2487
2488 ret = 1;
2489 goto cleanup;
2490 }
2491
2492 if( verbose != 0 )
2493 mbedtls_printf( "passed\n PKCS#1 encryption : " );
2494
2495 memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2496
2497 if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
2498 PT_LEN, rsa_plaintext,
2499 rsa_ciphertext ) != 0 )
2500 {
2501 if( verbose != 0 )
2502 mbedtls_printf( "failed\n" );
2503
2504 ret = 1;
2505 goto cleanup;
2506 }
2507
2508 if( verbose != 0 )
2509 mbedtls_printf( "passed\n PKCS#1 decryption : " );
2510
2511 if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
2512 &len, rsa_ciphertext, rsa_decrypted,
2513 sizeof(rsa_decrypted) ) != 0 )
2514 {
2515 if( verbose != 0 )
2516 mbedtls_printf( "failed\n" );
2517
2518 ret = 1;
2519 goto cleanup;
2520 }
2521
2522 if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2523 {
2524 if( verbose != 0 )
2525 mbedtls_printf( "failed\n" );
2526
2527 ret = 1;
2528 goto cleanup;
2529 }
2530
2531 if( verbose != 0 )
2532 mbedtls_printf( "passed\n" );
2533
2534 #if defined(MBEDTLS_SHA1_C)
2535 if( verbose != 0 )
2536 mbedtls_printf( " PKCS#1 data sign : " );
2537
2538 if( mbedtls_sha1_ret( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2539 {
2540 if( verbose != 0 )
2541 mbedtls_printf( "failed\n" );
2542
2543 return( 1 );
2544 }
2545
2546 if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2547 MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
2548 sha1sum, rsa_ciphertext ) != 0 )
2549 {
2550 if( verbose != 0 )
2551 mbedtls_printf( "failed\n" );
2552
2553 ret = 1;
2554 goto cleanup;
2555 }
2556
2557 if( verbose != 0 )
2558 mbedtls_printf( "passed\n PKCS#1 sig. verify: " );
2559
2560 if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL,
2561 MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
2562 sha1sum, rsa_ciphertext ) != 0 )
2563 {
2564 if( verbose != 0 )
2565 mbedtls_printf( "failed\n" );
2566
2567 ret = 1;
2568 goto cleanup;
2569 }
2570
2571 if( verbose != 0 )
2572 mbedtls_printf( "passed\n" );
2573 #endif /* MBEDTLS_SHA1_C */
2574
2575 if( verbose != 0 )
2576 mbedtls_printf( "\n" );
2577
2578 cleanup:
2579 mbedtls_mpi_free( &K );
2580 mbedtls_rsa_free( &rsa );
2581 #else /* MBEDTLS_PKCS1_V15 */
2582 ((void) verbose);
2583 #endif /* MBEDTLS_PKCS1_V15 */
2584 return( ret );
2585 }
2586
2587 #endif /* MBEDTLS_SELF_TEST */
2588
2589 #endif /* MBEDTLS_RSA_C */
2590