1 /*
2 * SPDX-License-Identifier: Apache-2.0
3 *
4 * Copyright (c) 2019 JUUL Labs
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 */
18
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <inttypes.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include "bootutil/bootutil.h"
25 #include "bootutil_priv.h"
26 #include "swap_priv.h"
27 #include "bootutil/bootutil_log.h"
28
29 #include "mcuboot_config/mcuboot_config.h"
30
31 BOOT_LOG_MODULE_DECLARE(mcuboot);
32
33 #ifdef MCUBOOT_SWAP_USING_MOVE
34
35 #if defined(MCUBOOT_VALIDATE_PRIMARY_SLOT)
36 /*
37 * FIXME: this might have to be updated for threaded sim
38 */
39 int boot_status_fails = 0;
40 #define BOOT_STATUS_ASSERT(x) \
41 do { \
42 if (!(x)) { \
43 boot_status_fails++; \
44 } \
45 } while (0)
46 #else
47 #define BOOT_STATUS_ASSERT(x) ASSERT(x)
48 #endif
49
50 uint32_t
find_last_idx(struct boot_loader_state * state,uint32_t swap_size)51 find_last_idx(struct boot_loader_state *state, uint32_t swap_size)
52 {
53 uint32_t sector_sz;
54 uint32_t sz;
55 uint32_t last_idx;
56
57 sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
58 sz = 0;
59 last_idx = 0;
60 while (1) {
61 sz += sector_sz;
62 last_idx++;
63 if (sz >= swap_size) {
64 break;
65 }
66 }
67
68 return last_idx;
69 }
70
71 int
boot_read_image_header(struct boot_loader_state * state,int slot,struct image_header * out_hdr,struct boot_status * bs)72 boot_read_image_header(struct boot_loader_state *state, int slot,
73 struct image_header *out_hdr, struct boot_status *bs)
74 {
75 const struct flash_area *fap;
76 uint32_t off;
77 uint32_t sz;
78 uint32_t last_idx;
79 uint32_t swap_size;
80 int area_id;
81 int rc;
82
83 #if (BOOT_IMAGE_NUMBER == 1)
84 (void)state;
85 #endif
86
87 off = 0;
88 if (bs && !boot_status_is_reset(bs)) {
89 boot_find_status(BOOT_CURR_IMG(state), &fap);
90 if (fap == NULL || boot_read_swap_size(fap, &swap_size)) {
91 rc = BOOT_EFLASH;
92 goto done;
93 }
94 flash_area_close(fap);
95
96 last_idx = find_last_idx(state, swap_size);
97 sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
98
99 /*
100 * Find the correct offset or slot where the image header is expected to
101 * be found for the steps where it is moved or swapped.
102 */
103 if (bs->op == BOOT_STATUS_OP_MOVE && slot == 0 && bs->idx > last_idx) {
104 off = sz;
105 } else if (bs->op == BOOT_STATUS_OP_SWAP) {
106 if (bs->idx > 1 && bs->idx <= last_idx) {
107 slot = (slot == 0) ? 1 : 0;
108 } else if (bs->idx == 1) {
109 if (slot == 0) {
110 off = sz;
111 } else if (slot == 1 && bs->state == 2) {
112 slot = 0;
113 }
114 }
115 }
116 }
117
118 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
119 rc = flash_area_open(area_id, &fap);
120 if (rc != 0) {
121 rc = BOOT_EFLASH;
122 goto done;
123 }
124
125 rc = flash_area_read(fap, off, out_hdr, sizeof *out_hdr);
126 if (rc != 0) {
127 rc = BOOT_EFLASH;
128 goto done;
129 }
130
131 /* We only know where the headers are located when bs is valid */
132 if (bs != NULL && out_hdr->ih_magic != IMAGE_MAGIC) {
133 rc = -1;
134 goto done;
135 }
136
137 rc = 0;
138
139 done:
140 flash_area_close(fap);
141 return rc;
142 }
143
144 int
swap_read_status_bytes(const struct flash_area * fap,struct boot_loader_state * state,struct boot_status * bs)145 swap_read_status_bytes(const struct flash_area *fap,
146 struct boot_loader_state *state, struct boot_status *bs)
147 {
148 uint32_t off;
149 uint8_t status;
150 int max_entries;
151 int found_idx;
152 uint8_t write_sz;
153 int move_entries;
154 int rc;
155 int last_rc;
156 int erased_sections;
157 int i;
158
159 max_entries = boot_status_entries(BOOT_CURR_IMG(state), fap);
160 if (max_entries < 0) {
161 return BOOT_EBADARGS;
162 }
163
164 erased_sections = 0;
165 found_idx = -1;
166 /* skip erased sectors at the end */
167 last_rc = 1;
168 write_sz = BOOT_WRITE_SZ(state);
169 off = boot_status_off(fap);
170 for (i = max_entries; i > 0; i--) {
171 rc = flash_area_read(fap, off + (i - 1) * write_sz, &status, 1);
172 if (rc < 0) {
173 return BOOT_EFLASH;
174 }
175
176 if (bootutil_buffer_is_erased(fap, &status, 1)) {
177 if (rc != last_rc) {
178 erased_sections++;
179 }
180 } else {
181 if (found_idx == -1) {
182 found_idx = i;
183 }
184 }
185 last_rc = rc;
186 }
187
188 if (erased_sections > 1) {
189 /* This means there was an error writing status on the last
190 * swap. Tell user and move on to validation!
191 */
192 #if !defined(__BOOTSIM__)
193 BOOT_LOG_ERR("Detected inconsistent status!");
194 #endif
195
196 #if !defined(MCUBOOT_VALIDATE_PRIMARY_SLOT)
197 /* With validation of the primary slot disabled, there is no way
198 * to be sure the swapped primary slot is OK, so abort!
199 */
200 assert(0);
201 #endif
202 }
203
204 move_entries = BOOT_MAX_IMG_SECTORS * BOOT_STATUS_MOVE_STATE_COUNT;
205 if (found_idx == -1) {
206 /* no swap status found; nothing to do */
207 } else if (found_idx < move_entries) {
208 bs->op = BOOT_STATUS_OP_MOVE;
209 bs->idx = (found_idx / BOOT_STATUS_MOVE_STATE_COUNT) + BOOT_STATUS_IDX_0;
210 bs->state = (found_idx % BOOT_STATUS_MOVE_STATE_COUNT) + BOOT_STATUS_STATE_0;;
211 } else {
212 bs->op = BOOT_STATUS_OP_SWAP;
213 bs->idx = ((found_idx - move_entries) / BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_IDX_0;
214 bs->state = ((found_idx - move_entries) % BOOT_STATUS_SWAP_STATE_COUNT) + BOOT_STATUS_STATE_0;
215 }
216
217 return 0;
218 }
219
220 uint32_t
boot_status_internal_off(const struct boot_status * bs,int elem_sz)221 boot_status_internal_off(const struct boot_status *bs, int elem_sz)
222 {
223 uint32_t off;
224 int idx_sz;
225
226 idx_sz = elem_sz * ((bs->op == BOOT_STATUS_OP_MOVE) ?
227 BOOT_STATUS_MOVE_STATE_COUNT : BOOT_STATUS_SWAP_STATE_COUNT);
228
229 off = ((bs->op == BOOT_STATUS_OP_MOVE) ?
230 0 : (BOOT_MAX_IMG_SECTORS * BOOT_STATUS_MOVE_STATE_COUNT * elem_sz)) +
231 (bs->idx - BOOT_STATUS_IDX_0) * idx_sz +
232 (bs->state - BOOT_STATUS_STATE_0) * elem_sz;
233
234 return off;
235 }
236
app_max_sectors(struct boot_loader_state * state)237 static int app_max_sectors(struct boot_loader_state *state)
238 {
239 uint32_t sz = 0;
240 uint32_t sector_sz;
241 uint32_t trailer_sz;
242 uint32_t first_trailer_idx;
243
244 sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
245 trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state));
246 first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1;
247
248 while (1) {
249 sz += sector_sz;
250 if (sz >= trailer_sz) {
251 break;
252 }
253 first_trailer_idx--;
254 }
255
256 return first_trailer_idx;
257 }
258
259 int
boot_slots_compatible(struct boot_loader_state * state)260 boot_slots_compatible(struct boot_loader_state *state)
261 {
262 size_t num_sectors_pri;
263 size_t num_sectors_sec;
264 size_t sector_sz_pri = 0;
265 size_t sector_sz_sec = 0;
266 size_t i;
267 size_t num_usable_sectors_pri;
268
269 num_sectors_pri = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT);
270 num_sectors_sec = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT);
271 num_usable_sectors_pri = app_max_sectors(state);
272
273 if ((num_sectors_pri != num_sectors_sec) &&
274 (num_sectors_pri != (num_sectors_sec + 1)) &&
275 (num_usable_sectors_pri != (num_sectors_sec + 1))) {
276 BOOT_LOG_WRN("Cannot upgrade: not a compatible amount of sectors");
277 BOOT_LOG_DBG("slot0 sectors: %d, slot1 sectors: %d, usable slot0 sectors: %d",
278 (int)num_sectors_pri, (int)num_sectors_sec,
279 (int)(num_usable_sectors_pri - 1));
280 return 0;
281 } else if (num_sectors_pri > BOOT_MAX_IMG_SECTORS) {
282 BOOT_LOG_WRN("Cannot upgrade: more sectors than allowed");
283 return 0;
284 }
285
286 if (num_usable_sectors_pri != (num_sectors_sec + 1)) {
287 BOOT_LOG_DBG("Non-optimal sector distribution, slot0 has %d usable sectors (%d assigned) "
288 "but slot1 has %d assigned", (int)(num_usable_sectors_pri - 1),
289 (int)num_sectors_pri, (int)num_sectors_sec);
290 }
291
292 for (i = 0; i < num_sectors_sec; i++) {
293 sector_sz_pri = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i);
294 sector_sz_sec = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, i);
295 if (sector_sz_pri != sector_sz_sec) {
296 BOOT_LOG_WRN("Cannot upgrade: not same sector layout");
297 return 0;
298 }
299 }
300
301 #ifdef MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE
302 if (sector_sz_pri != MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE) {
303 BOOT_LOG_DBG("Discrepancy, slot0 expected erase size: %d, actual: %d",
304 MCUBOOT_SLOT0_EXPECTED_ERASE_SIZE, sector_sz_pri);
305 }
306 #endif
307 #ifdef MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE
308 if (sector_sz_sec != MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE) {
309 BOOT_LOG_DBG("Discrepancy, slot1 expected erase size: %d, actual: %d",
310 MCUBOOT_SLOT1_EXPECTED_ERASE_SIZE, sector_sz_sec);
311 }
312 #endif
313
314 #if defined(MCUBOOT_SLOT0_EXPECTED_WRITE_SIZE) || defined(MCUBOOT_SLOT1_EXPECTED_WRITE_SIZE)
315 if (!swap_write_block_size_check(state)) {
316 BOOT_LOG_WRN("Cannot upgrade: slot write sizes are not compatible");
317 return 0;
318 }
319 #endif
320
321 if (num_sectors_pri > num_sectors_sec) {
322 if (sector_sz_pri != boot_img_sector_size(state, BOOT_PRIMARY_SLOT, i)) {
323 BOOT_LOG_WRN("Cannot upgrade: not same sector layout");
324 return 0;
325 }
326 }
327
328 return 1;
329 }
330
331 #define BOOT_LOG_SWAP_STATE(area, state) \
332 BOOT_LOG_INF("%s: magic=%s, swap_type=0x%x, copy_done=0x%x, " \
333 "image_ok=0x%x", \
334 (area), \
335 ((state)->magic == BOOT_MAGIC_GOOD ? "good" : \
336 (state)->magic == BOOT_MAGIC_UNSET ? "unset" : \
337 "bad"), \
338 (state)->swap_type, \
339 (state)->copy_done, \
340 (state)->image_ok)
341
342 int
swap_status_source(struct boot_loader_state * state)343 swap_status_source(struct boot_loader_state *state)
344 {
345 struct boot_swap_state state_primary_slot;
346 struct boot_swap_state state_secondary_slot;
347 int rc;
348 uint8_t source;
349 uint8_t image_index;
350
351 #if (BOOT_IMAGE_NUMBER == 1)
352 (void)state;
353 #endif
354
355 image_index = BOOT_CURR_IMG(state);
356
357 rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_PRIMARY(image_index),
358 &state_primary_slot);
359 assert(rc == 0);
360
361 BOOT_LOG_SWAP_STATE("Primary image", &state_primary_slot);
362
363 rc = boot_read_swap_state_by_id(FLASH_AREA_IMAGE_SECONDARY(image_index),
364 &state_secondary_slot);
365 assert(rc == 0);
366
367 BOOT_LOG_SWAP_STATE("Secondary image", &state_secondary_slot);
368
369 if (state_primary_slot.magic == BOOT_MAGIC_GOOD &&
370 state_primary_slot.copy_done == BOOT_FLAG_UNSET &&
371 state_secondary_slot.magic != BOOT_MAGIC_GOOD) {
372
373 source = BOOT_STATUS_SOURCE_PRIMARY_SLOT;
374
375 BOOT_LOG_INF("Boot source: primary slot");
376 return source;
377 }
378
379 BOOT_LOG_INF("Boot source: none");
380 return BOOT_STATUS_SOURCE_NONE;
381 }
382
383 /*
384 * "Moves" the sector located at idx - 1 to idx.
385 */
386 static void
boot_move_sector_up(int idx,uint32_t sz,struct boot_loader_state * state,struct boot_status * bs,const struct flash_area * fap_pri,const struct flash_area * fap_sec)387 boot_move_sector_up(int idx, uint32_t sz, struct boot_loader_state *state,
388 struct boot_status *bs, const struct flash_area *fap_pri,
389 const struct flash_area *fap_sec)
390 {
391 uint32_t new_off;
392 uint32_t old_off;
393 int rc;
394
395 /*
396 * FIXME: assuming sectors of size == sz, a single off variable
397 * would be enough
398 */
399
400 /* Calculate offset from start of image area. */
401 new_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx);
402 old_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx - 1);
403
404 if (bs->idx == BOOT_STATUS_IDX_0) {
405 if (bs->source != BOOT_STATUS_SOURCE_PRIMARY_SLOT) {
406 rc = swap_erase_trailer_sectors(state, fap_pri);
407 assert(rc == 0);
408
409 rc = swap_status_init(state, fap_pri, bs);
410 assert(rc == 0);
411 }
412
413 rc = swap_erase_trailer_sectors(state, fap_sec);
414 assert(rc == 0);
415 }
416
417 rc = boot_erase_region(fap_pri, new_off, sz);
418 assert(rc == 0);
419
420 rc = boot_copy_region(state, fap_pri, fap_pri, old_off, new_off, sz);
421 assert(rc == 0);
422
423 rc = boot_write_status(state, bs);
424
425 bs->idx++;
426 BOOT_STATUS_ASSERT(rc == 0);
427 }
428
429 static void
boot_swap_sectors(int idx,uint32_t sz,struct boot_loader_state * state,struct boot_status * bs,const struct flash_area * fap_pri,const struct flash_area * fap_sec)430 boot_swap_sectors(int idx, uint32_t sz, struct boot_loader_state *state,
431 struct boot_status *bs, const struct flash_area *fap_pri,
432 const struct flash_area *fap_sec)
433 {
434 uint32_t pri_off;
435 uint32_t pri_up_off;
436 uint32_t sec_off;
437 int rc;
438
439 pri_up_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx);
440 pri_off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, idx - 1);
441 sec_off = boot_img_sector_off(state, BOOT_SECONDARY_SLOT, idx - 1);
442
443 if (bs->state == BOOT_STATUS_STATE_0) {
444 rc = boot_erase_region(fap_pri, pri_off, sz);
445 assert(rc == 0);
446
447 rc = boot_copy_region(state, fap_sec, fap_pri, sec_off, pri_off, sz);
448 assert(rc == 0);
449
450 rc = boot_write_status(state, bs);
451 bs->state = BOOT_STATUS_STATE_1;
452 BOOT_STATUS_ASSERT(rc == 0);
453 }
454
455 if (bs->state == BOOT_STATUS_STATE_1) {
456 rc = boot_erase_region(fap_sec, sec_off, sz);
457 assert(rc == 0);
458
459 rc = boot_copy_region(state, fap_pri, fap_sec, pri_up_off, sec_off, sz);
460 assert(rc == 0);
461
462 rc = boot_write_status(state, bs);
463 bs->idx++;
464 bs->state = BOOT_STATUS_STATE_0;
465 BOOT_STATUS_ASSERT(rc == 0);
466 }
467 }
468
469 /*
470 * When starting a revert the swap status exists in the primary slot, and
471 * the status in the secondary slot is erased. To start the swap, the status
472 * area in the primary slot must be re-initialized; if during the small
473 * window of time between re-initializing it and writing the first metadata
474 * a reset happens, the swap process is broken and cannot be resumed.
475 *
476 * This function handles the issue by making the revert look like a permanent
477 * upgrade (by initializing the secondary slot).
478 */
479 void
fixup_revert(const struct boot_loader_state * state,struct boot_status * bs,const struct flash_area * fap_sec)480 fixup_revert(const struct boot_loader_state *state, struct boot_status *bs,
481 const struct flash_area *fap_sec)
482 {
483 struct boot_swap_state swap_state;
484 int rc;
485
486 #if (BOOT_IMAGE_NUMBER == 1)
487 (void)state;
488 #endif
489
490 /* No fixup required */
491 if (bs->swap_type != BOOT_SWAP_TYPE_REVERT ||
492 bs->op != BOOT_STATUS_OP_MOVE ||
493 bs->idx != BOOT_STATUS_IDX_0) {
494 return;
495 }
496
497 rc = boot_read_swap_state(fap_sec, &swap_state);
498 assert(rc == 0);
499
500 BOOT_LOG_SWAP_STATE("Secondary image", &swap_state);
501
502 if (swap_state.magic == BOOT_MAGIC_UNSET) {
503 rc = swap_erase_trailer_sectors(state, fap_sec);
504 assert(rc == 0);
505
506 rc = boot_write_image_ok(fap_sec);
507 assert(rc == 0);
508
509 rc = boot_write_swap_size(fap_sec, bs->swap_size);
510 assert(rc == 0);
511
512 rc = boot_write_magic(fap_sec);
513 assert(rc == 0);
514 }
515 }
516
517 void
swap_run(struct boot_loader_state * state,struct boot_status * bs,uint32_t copy_size)518 swap_run(struct boot_loader_state *state, struct boot_status *bs,
519 uint32_t copy_size)
520 {
521 uint32_t sz;
522 uint32_t sector_sz;
523 uint32_t idx;
524 uint32_t trailer_sz;
525 uint32_t first_trailer_idx;
526 uint32_t last_idx;
527 uint8_t image_index;
528 const struct flash_area *fap_pri;
529 const struct flash_area *fap_sec;
530 int rc;
531
532 BOOT_LOG_INF("Starting swap using move algorithm.");
533
534 last_idx = find_last_idx(state, copy_size);
535 sector_sz = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
536
537 /*
538 * When starting a new swap upgrade, check that there is enough space.
539 */
540 if (boot_status_is_reset(bs)) {
541 sz = 0;
542 trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state));
543 first_trailer_idx = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1;
544
545 while (1) {
546 sz += sector_sz;
547 if (sz >= trailer_sz) {
548 break;
549 }
550 first_trailer_idx--;
551 }
552
553 if (last_idx >= first_trailer_idx) {
554 BOOT_LOG_WRN("Not enough free space to run swap upgrade");
555 BOOT_LOG_WRN("required %d bytes but only %d are available",
556 (last_idx + 1) * sector_sz,
557 first_trailer_idx * sector_sz);
558 bs->swap_type = BOOT_SWAP_TYPE_NONE;
559 return;
560 }
561 }
562
563 image_index = BOOT_CURR_IMG(state);
564
565 rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index), &fap_pri);
566 assert (rc == 0);
567
568 rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index), &fap_sec);
569 assert (rc == 0);
570
571 fixup_revert(state, bs, fap_sec);
572
573 if (bs->op == BOOT_STATUS_OP_MOVE) {
574 idx = last_idx;
575 while (idx > 0) {
576 if (idx <= (last_idx - bs->idx + 1)) {
577 boot_move_sector_up(idx, sector_sz, state, bs, fap_pri, fap_sec);
578 }
579 idx--;
580 }
581 bs->idx = BOOT_STATUS_IDX_0;
582 }
583
584 bs->op = BOOT_STATUS_OP_SWAP;
585
586 idx = 1;
587 while (idx <= last_idx) {
588 if (idx >= bs->idx) {
589 boot_swap_sectors(idx, sector_sz, state, bs, fap_pri, fap_sec);
590 }
591 idx++;
592 }
593
594 flash_area_close(fap_pri);
595 flash_area_close(fap_sec);
596 }
597
app_max_size(struct boot_loader_state * state)598 int app_max_size(struct boot_loader_state *state)
599 {
600 uint32_t sector_sz_primary;
601 uint32_t sector_sz_secondary;
602 uint32_t sz_primary;
603 uint32_t sz_secondary;
604
605 sector_sz_primary = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, 0);
606 sector_sz_secondary = boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0);
607
608 /* Account for image flags and move sector */
609 sz_primary = app_max_sectors(state) * sector_sz_primary - sector_sz_primary;
610 sz_secondary = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT) * sector_sz_secondary;
611
612 return (sz_primary <= sz_secondary ? sz_primary : sz_secondary);
613 }
614
615 #endif
616