1 /*
2 * SPDX-License-Identifier: Apache-2.0
3 *
4 * Copyright (c) 2017-2018 Linaro LTD
5 * Copyright (c) 2017-2019 JUUL Labs
6 * Copyright (c) 2020-2023 Arm Limited
7 *
8 * Original license:
9 *
10 * Licensed to the Apache Software Foundation (ASF) under one
11 * or more contributor license agreements. See the NOTICE file
12 * distributed with this work for additional information
13 * regarding copyright ownership. The ASF licenses this file
14 * to you under the Apache License, Version 2.0 (the
15 * "License"); you may not use this file except in compliance
16 * with the License. You may obtain a copy of the License at
17 *
18 * http://www.apache.org/licenses/LICENSE-2.0
19 *
20 * Unless required by applicable law or agreed to in writing,
21 * software distributed under the License is distributed on an
22 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
23 * KIND, either express or implied. See the License for the
24 * specific language governing permissions and limitations
25 * under the License.
26 */
27
28 #include <string.h>
29
30 #include "mcuboot_config/mcuboot_config.h"
31
32 #ifdef MCUBOOT_SIGN_RSA
33 #include "bootutil_priv.h"
34 #include "bootutil/sign_key.h"
35 #include "bootutil/fault_injection_hardening.h"
36
37 #define BOOTUTIL_CRYPTO_RSA_SIGN_ENABLED
38 #include "bootutil/crypto/rsa.h"
39
40 /* PSA Crypto APIs provide an integrated API to perform the verification
41 * while for other crypto backends we need to implement each step at this
42 * abstraction level
43 */
44 #if !defined(MCUBOOT_USE_PSA_CRYPTO)
45
46 #include "bootutil/crypto/sha.h"
47
48 /*
49 * Constants for this particular constrained implementation of
50 * RSA-PSS. In particular, we support RSA 2048, with a SHA256 hash,
51 * and a 32-byte salt. A signature with different parameters will be
52 * rejected as invalid.
53 */
54
55 /* The size, in octets, of the message. */
56 #define PSS_EMLEN (MCUBOOT_SIGN_RSA_LEN / 8)
57
58 /* The size of the hash function. For SHA256, this is 32 bytes. */
59 #define PSS_HLEN 32
60
61 /* Size of the salt, should be fixed. */
62 #define PSS_SLEN 32
63
64 /* The length of the mask: emLen - hLen - 1. */
65 #define PSS_MASK_LEN (PSS_EMLEN - PSS_HLEN - 1)
66
67 #define PSS_HASH_OFFSET PSS_MASK_LEN
68
69 /* For the mask itself, how many bytes should be all zeros. */
70 #define PSS_MASK_ZERO_COUNT (PSS_MASK_LEN - PSS_SLEN - 1)
71 #define PSS_MASK_ONE_POS PSS_MASK_ZERO_COUNT
72
73 /* Where the salt starts. */
74 #define PSS_MASK_SALT_POS (PSS_MASK_ONE_POS + 1)
75
76 static const uint8_t pss_zeros[8] = {0};
77
78 /*
79 * Compute the RSA-PSS mask-generation function, MGF1. Assumptions
80 * are that the mask length will be less than 256 * PSS_HLEN, and
81 * therefore we never need to increment anything other than the low
82 * byte of the counter.
83 *
84 * This is described in PKCS#1, B.2.1.
85 */
86 static void
pss_mgf1(uint8_t * mask,const uint8_t * hash)87 pss_mgf1(uint8_t *mask, const uint8_t *hash)
88 {
89 bootutil_sha_context ctx;
90 uint8_t counter[4] = { 0, 0, 0, 0 };
91 uint8_t htmp[PSS_HLEN];
92 int count = PSS_MASK_LEN;
93 int bytes;
94
95 while (count > 0) {
96 bootutil_sha_init(&ctx);
97 bootutil_sha_update(&ctx, hash, PSS_HLEN);
98 bootutil_sha_update(&ctx, counter, 4);
99 bootutil_sha_finish(&ctx, htmp);
100
101 counter[3]++;
102
103 bytes = PSS_HLEN;
104 if (bytes > count)
105 bytes = count;
106
107 memcpy(mask, htmp, bytes);
108 mask += bytes;
109 count -= bytes;
110 }
111
112 bootutil_sha_drop(&ctx);
113 }
114
115 /*
116 * Validate an RSA signature, using RSA-PSS, as described in PKCS #1
117 * v2.2, section 9.1.2, with many parameters required to have fixed
118 * values. RSASSA-PSS-VERIFY RFC8017 section 8.1.2
119 */
120 static fih_ret
bootutil_cmp_rsasig(bootutil_rsa_context * ctx,uint8_t * hash,uint32_t hlen,uint8_t * sig,size_t slen)121 bootutil_cmp_rsasig(bootutil_rsa_context *ctx, uint8_t *hash, uint32_t hlen,
122 uint8_t *sig, size_t slen)
123 {
124 bootutil_sha_context shactx;
125 uint8_t em[MBEDTLS_MPI_MAX_SIZE];
126 uint8_t db_mask[PSS_MASK_LEN];
127 uint8_t h2[PSS_HLEN];
128 int i;
129 FIH_DECLARE(fih_rc, FIH_FAILURE);
130
131 /* The caller has already verified that slen == bootutil_rsa_get_len(ctx) */
132 if (slen != PSS_EMLEN ||
133 PSS_EMLEN > MBEDTLS_MPI_MAX_SIZE) {
134 goto out;
135 }
136
137 if (hlen != PSS_HLEN) {
138 goto out;
139 }
140
141 /* Apply RSAVP1 to produce em = sig^E mod N using the public key */
142 if (bootutil_rsa_public(ctx, sig, em)) {
143 goto out;
144 }
145
146 /*
147 * PKCS #1 v2.2, 9.1.2 EMSA-PSS-Verify
148 *
149 * emBits is 2048
150 * emLen = ceil(emBits/8) = 256
151 *
152 * The salt length is not known at the beginning.
153 */
154
155 /* Step 1. The message is constrained by the address space of a
156 * 32-bit processor, which is far less than the 2^61-1 limit of
157 * SHA-256.
158 */
159
160 /* Step 2. mHash is passed in as 'hash', with hLen the hlen
161 * argument. */
162
163 /* Step 3. if emLen < hLen + sLen + 2, inconsistent and stop.
164 * The salt length is not known at this point.
165 */
166
167 /* Step 4. If the rightmost octet of EM does have the value
168 * 0xbc, output inconsistent and stop.
169 */
170 if (em[PSS_EMLEN - 1] != 0xbc) {
171 goto out;
172 }
173
174 /* Step 5. Let maskedDB be the leftmost emLen - hLen - 1 octets
175 * of EM, and H be the next hLen octets.
176 *
177 * maskedDB is then the first 256 - 32 - 1 = 0-222
178 * H is 32 bytes 223-254
179 */
180
181 /* Step 6. If the leftmost 8emLen - emBits bits of the leftmost
182 * octet in maskedDB are not all equal to zero, output
183 * inconsistent and stop.
184 *
185 * 8emLen - emBits is zero, so there is nothing to test here.
186 */
187
188 /* Step 7. let dbMask = MGF(H, emLen - hLen - 1). */
189 pss_mgf1(db_mask, &em[PSS_HASH_OFFSET]);
190
191 /* Step 8. let DB = maskedDB xor dbMask.
192 * To avoid needing an additional buffer, store the 'db' in the
193 * same buffer as db_mask. From now, to the end of this function,
194 * db_mask refers to the unmasked 'db'. */
195 for (i = 0; i < PSS_MASK_LEN; i++) {
196 db_mask[i] ^= em[i];
197 }
198
199 /* Step 9. Set the leftmost 8emLen - emBits bits of the leftmost
200 * octet in DB to zero.
201 * pycrypto seems to always make the emBits 2047, so we need to
202 * clear the top bit. */
203 db_mask[0] &= 0x7F;
204
205 /* Step 10. If the emLen - hLen - sLen - 2 leftmost octets of DB
206 * are not zero or if the octet at position emLen - hLen - sLen -
207 * 1 (the leftmost position is "position 1") does not have
208 * hexadecimal value 0x01, output "inconsistent" and stop. */
209 for (i = 0; i < PSS_MASK_ZERO_COUNT; i++) {
210 if (db_mask[i] != 0) {
211 goto out;
212 }
213 }
214
215 if (db_mask[PSS_MASK_ONE_POS] != 1) {
216 goto out;
217 }
218
219 /* Step 11. Let salt be the last sLen octets of DB */
220
221 /* Step 12. Let M' = 0x00 00 00 00 00 00 00 00 || mHash || salt; */
222
223 /* Step 13. Let H' = Hash(M') */
224 bootutil_sha_init(&shactx);
225 bootutil_sha_update(&shactx, pss_zeros, 8);
226 bootutil_sha_update(&shactx, hash, PSS_HLEN);
227 bootutil_sha_update(&shactx, &db_mask[PSS_MASK_SALT_POS], PSS_SLEN);
228 bootutil_sha_finish(&shactx, h2);
229 bootutil_sha_drop(&shactx);
230
231 /* Step 14. If H = H', output "consistent". Otherwise, output
232 * "inconsistent". */
233 FIH_CALL(boot_fih_memequal, fih_rc, h2, &em[PSS_HASH_OFFSET], PSS_HLEN);
234
235 out:
236 FIH_RET(fih_rc);
237 }
238
239 #else /* MCUBOOT_USE_PSA_CRYPTO */
240
241 static fih_ret
bootutil_cmp_rsasig(bootutil_rsa_context * ctx,uint8_t * hash,uint32_t hlen,uint8_t * sig,size_t slen)242 bootutil_cmp_rsasig(bootutil_rsa_context *ctx, uint8_t *hash, uint32_t hlen,
243 uint8_t *sig, size_t slen)
244 {
245 int rc = -1;
246 FIH_DECLARE(fih_rc, FIH_FAILURE);
247
248 /* PSA Crypto APIs allow the verification in a single call */
249 rc = bootutil_rsassa_pss_verify(ctx, hash, hlen, sig, slen);
250
251 fih_rc = fih_ret_encode_zero_equality(rc);
252 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
253 FIH_SET(fih_rc, FIH_FAILURE);
254 }
255
256 FIH_RET(fih_rc);
257 }
258
259 #endif /* MCUBOOT_USE_PSA_CRYPTO */
260
261 fih_ret
bootutil_verify_sig(uint8_t * hash,uint32_t hlen,uint8_t * sig,size_t slen,uint8_t key_id)262 bootutil_verify_sig(uint8_t *hash, uint32_t hlen, uint8_t *sig, size_t slen,
263 uint8_t key_id)
264 {
265 bootutil_rsa_context ctx;
266 int rc;
267 FIH_DECLARE(fih_rc, FIH_FAILURE);
268 uint8_t *cp;
269 uint8_t *end;
270
271 bootutil_rsa_init(&ctx);
272
273 cp = (uint8_t *)bootutil_keys[key_id].key;
274 end = cp + *bootutil_keys[key_id].len;
275
276 /* The key used for signature verification is a public RSA key */
277 rc = bootutil_rsa_parse_public_key(&ctx, &cp, end);
278 if (rc || slen != bootutil_rsa_get_len(&ctx)) {
279 goto out;
280 }
281 FIH_CALL(bootutil_cmp_rsasig, fih_rc, &ctx, hash, hlen, sig, slen);
282
283 out:
284 bootutil_rsa_drop(&ctx);
285
286 FIH_RET(fih_rc);
287 }
288 #endif /* MCUBOOT_SIGN_RSA */
289