/* * SPDX-License-Identifier: Apache-2.0 * * Copyright (c) 2017-2018 Linaro LTD * Copyright (c) 2017-2019 JUUL Labs * Copyright (c) 2020-2023 Arm Limited * * Original license: * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, * software distributed under the License is distributed on an * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY * KIND, either express or implied. See the License for the * specific language governing permissions and limitations * under the License. */ #include #include "mcuboot_config/mcuboot_config.h" #ifdef MCUBOOT_SIGN_RSA #include "bootutil_priv.h" #include "bootutil/sign_key.h" #include "bootutil/fault_injection_hardening.h" #define BOOTUTIL_CRYPTO_RSA_SIGN_ENABLED #include "bootutil/crypto/rsa.h" /* PSA Crypto APIs provide an integrated API to perform the verification * while for other crypto backends we need to implement each step at this * abstraction level */ #if !defined(MCUBOOT_USE_PSA_CRYPTO) #include "bootutil/crypto/sha.h" /* * Constants for this particular constrained implementation of * RSA-PSS. In particular, we support RSA 2048, with a SHA256 hash, * and a 32-byte salt. A signature with different parameters will be * rejected as invalid. */ /* The size, in octets, of the message. */ #define PSS_EMLEN (MCUBOOT_SIGN_RSA_LEN / 8) /* The size of the hash function. For SHA256, this is 32 bytes. */ #define PSS_HLEN 32 /* Size of the salt, should be fixed. */ #define PSS_SLEN 32 /* The length of the mask: emLen - hLen - 1. */ #define PSS_MASK_LEN (PSS_EMLEN - PSS_HLEN - 1) #define PSS_HASH_OFFSET PSS_MASK_LEN /* For the mask itself, how many bytes should be all zeros. */ #define PSS_MASK_ZERO_COUNT (PSS_MASK_LEN - PSS_SLEN - 1) #define PSS_MASK_ONE_POS PSS_MASK_ZERO_COUNT /* Where the salt starts. */ #define PSS_MASK_SALT_POS (PSS_MASK_ONE_POS + 1) static const uint8_t pss_zeros[8] = {0}; /* * Compute the RSA-PSS mask-generation function, MGF1. Assumptions * are that the mask length will be less than 256 * PSS_HLEN, and * therefore we never need to increment anything other than the low * byte of the counter. * * This is described in PKCS#1, B.2.1. */ static void pss_mgf1(uint8_t *mask, const uint8_t *hash) { bootutil_sha_context ctx; uint8_t counter[4] = { 0, 0, 0, 0 }; uint8_t htmp[PSS_HLEN]; int count = PSS_MASK_LEN; int bytes; while (count > 0) { bootutil_sha_init(&ctx); bootutil_sha_update(&ctx, hash, PSS_HLEN); bootutil_sha_update(&ctx, counter, 4); bootutil_sha_finish(&ctx, htmp); counter[3]++; bytes = PSS_HLEN; if (bytes > count) bytes = count; memcpy(mask, htmp, bytes); mask += bytes; count -= bytes; } bootutil_sha_drop(&ctx); } /* * Validate an RSA signature, using RSA-PSS, as described in PKCS #1 * v2.2, section 9.1.2, with many parameters required to have fixed * values. RSASSA-PSS-VERIFY RFC8017 section 8.1.2 */ static fih_ret bootutil_cmp_rsasig(bootutil_rsa_context *ctx, uint8_t *hash, uint32_t hlen, uint8_t *sig, size_t slen) { bootutil_sha_context shactx; uint8_t em[MBEDTLS_MPI_MAX_SIZE]; uint8_t db_mask[PSS_MASK_LEN]; uint8_t h2[PSS_HLEN]; int i; FIH_DECLARE(fih_rc, FIH_FAILURE); /* The caller has already verified that slen == bootutil_rsa_get_len(ctx) */ if (slen != PSS_EMLEN || PSS_EMLEN > MBEDTLS_MPI_MAX_SIZE) { goto out; } if (hlen != PSS_HLEN) { goto out; } /* Apply RSAVP1 to produce em = sig^E mod N using the public key */ if (bootutil_rsa_public(ctx, sig, em)) { goto out; } /* * PKCS #1 v2.2, 9.1.2 EMSA-PSS-Verify * * emBits is 2048 * emLen = ceil(emBits/8) = 256 * * The salt length is not known at the beginning. */ /* Step 1. The message is constrained by the address space of a * 32-bit processor, which is far less than the 2^61-1 limit of * SHA-256. */ /* Step 2. mHash is passed in as 'hash', with hLen the hlen * argument. */ /* Step 3. if emLen < hLen + sLen + 2, inconsistent and stop. * The salt length is not known at this point. */ /* Step 4. If the rightmost octet of EM does have the value * 0xbc, output inconsistent and stop. */ if (em[PSS_EMLEN - 1] != 0xbc) { goto out; } /* Step 5. Let maskedDB be the leftmost emLen - hLen - 1 octets * of EM, and H be the next hLen octets. * * maskedDB is then the first 256 - 32 - 1 = 0-222 * H is 32 bytes 223-254 */ /* Step 6. If the leftmost 8emLen - emBits bits of the leftmost * octet in maskedDB are not all equal to zero, output * inconsistent and stop. * * 8emLen - emBits is zero, so there is nothing to test here. */ /* Step 7. let dbMask = MGF(H, emLen - hLen - 1). */ pss_mgf1(db_mask, &em[PSS_HASH_OFFSET]); /* Step 8. let DB = maskedDB xor dbMask. * To avoid needing an additional buffer, store the 'db' in the * same buffer as db_mask. From now, to the end of this function, * db_mask refers to the unmasked 'db'. */ for (i = 0; i < PSS_MASK_LEN; i++) { db_mask[i] ^= em[i]; } /* Step 9. Set the leftmost 8emLen - emBits bits of the leftmost * octet in DB to zero. * pycrypto seems to always make the emBits 2047, so we need to * clear the top bit. */ db_mask[0] &= 0x7F; /* Step 10. If the emLen - hLen - sLen - 2 leftmost octets of DB * are not zero or if the octet at position emLen - hLen - sLen - * 1 (the leftmost position is "position 1") does not have * hexadecimal value 0x01, output "inconsistent" and stop. */ for (i = 0; i < PSS_MASK_ZERO_COUNT; i++) { if (db_mask[i] != 0) { goto out; } } if (db_mask[PSS_MASK_ONE_POS] != 1) { goto out; } /* Step 11. Let salt be the last sLen octets of DB */ /* Step 12. Let M' = 0x00 00 00 00 00 00 00 00 || mHash || salt; */ /* Step 13. Let H' = Hash(M') */ bootutil_sha_init(&shactx); bootutil_sha_update(&shactx, pss_zeros, 8); bootutil_sha_update(&shactx, hash, PSS_HLEN); bootutil_sha_update(&shactx, &db_mask[PSS_MASK_SALT_POS], PSS_SLEN); bootutil_sha_finish(&shactx, h2); bootutil_sha_drop(&shactx); /* Step 14. If H = H', output "consistent". Otherwise, output * "inconsistent". */ FIH_CALL(boot_fih_memequal, fih_rc, h2, &em[PSS_HASH_OFFSET], PSS_HLEN); out: FIH_RET(fih_rc); } #else /* MCUBOOT_USE_PSA_CRYPTO */ static fih_ret bootutil_cmp_rsasig(bootutil_rsa_context *ctx, uint8_t *hash, uint32_t hlen, uint8_t *sig, size_t slen) { int rc = -1; FIH_DECLARE(fih_rc, FIH_FAILURE); /* PSA Crypto APIs allow the verification in a single call */ rc = bootutil_rsassa_pss_verify(ctx, hash, hlen, sig, slen); fih_rc = fih_ret_encode_zero_equality(rc); if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) { FIH_SET(fih_rc, FIH_FAILURE); } FIH_RET(fih_rc); } #endif /* MCUBOOT_USE_PSA_CRYPTO */ fih_ret bootutil_verify_sig(uint8_t *hash, uint32_t hlen, uint8_t *sig, size_t slen, uint8_t key_id) { bootutil_rsa_context ctx; int rc; FIH_DECLARE(fih_rc, FIH_FAILURE); uint8_t *cp; uint8_t *end; bootutil_rsa_init(&ctx); cp = (uint8_t *)bootutil_keys[key_id].key; end = cp + *bootutil_keys[key_id].len; /* The key used for signature verification is a public RSA key */ rc = bootutil_rsa_parse_public_key(&ctx, &cp, end); if (rc || slen != bootutil_rsa_get_len(&ctx)) { goto out; } FIH_CALL(bootutil_cmp_rsasig, fih_rc, &ctx, hash, hlen, sig, slen); out: bootutil_rsa_drop(&ctx); FIH_RET(fih_rc); } #endif /* MCUBOOT_SIGN_RSA */