1 // Copyright (c) 2019-2021 Linaro LTD
2 // Copyright (c) 2019-2020 JUUL Labs
3 // Copyright (c) 2019-2023 Arm Limited
4 //
5 // SPDX-License-Identifier: Apache-2.0
6
7 use byteorder::{
8 LittleEndian, WriteBytesExt,
9 };
10 use log::{
11 Level::Info,
12 error,
13 info,
14 log_enabled,
15 warn,
16 };
17 use rand::{
18 Rng, RngCore, SeedableRng,
19 rngs::SmallRng,
20 };
21 use std::{
22 collections::{BTreeMap, HashSet}, io::{Cursor, Write}, mem, rc::Rc, slice
23 };
24 use aes::{
25 Aes128,
26 Aes128Ctr,
27 Aes256,
28 Aes256Ctr,
29 NewBlockCipher,
30 };
31 use cipher::{
32 FromBlockCipher,
33 generic_array::GenericArray,
34 StreamCipher,
35 };
36
37 use simflash::{Flash, SimFlash, SimMultiFlash};
38 use mcuboot_sys::{c, AreaDesc, FlashId, RamBlock};
39 use crate::{
40 ALL_DEVICES,
41 DeviceName,
42 };
43 use crate::caps::Caps;
44 use crate::depends::{
45 BoringDep,
46 Depender,
47 DepTest,
48 DepType,
49 NO_DEPS,
50 PairDep,
51 UpgradeInfo,
52 };
53 use crate::tlv::{ManifestGen, TlvGen, TlvFlags};
54 use crate::utils::align_up;
55 use typenum::{U32, U16};
56
57 /// For testing, use a non-zero offset for the ram-load, to make sure the offset is getting used
58 /// properly, but the value is not really that important.
59 const RAM_LOAD_ADDR: u32 = 1024;
60
61 /// A builder for Images. This describes a single run of the simulator,
62 /// capturing the configuration of a particular set of devices, including
63 /// the flash simulator(s) and the information about the slots.
64 #[derive(Clone)]
65 pub struct ImagesBuilder {
66 flash: SimMultiFlash,
67 areadesc: Rc<AreaDesc>,
68 slots: Vec<[SlotInfo; 2]>,
69 ram: RamData,
70 }
71
72 /// Images represents the state of a simulation for a given set of images.
73 /// The flash holds the state of the simulated flash, whereas primaries
74 /// and upgrades hold the expected contents of these images.
75 pub struct Images {
76 flash: SimMultiFlash,
77 areadesc: Rc<AreaDesc>,
78 images: Vec<OneImage>,
79 total_count: Option<i32>,
80 ram: RamData,
81 }
82
83 /// When doing multi-image, there is an instance of this information for
84 /// each of the images. Single image there will be one of these.
85 struct OneImage {
86 slots: [SlotInfo; 2],
87 primaries: ImageData,
88 upgrades: ImageData,
89 }
90
91 /// The Rust-side representation of an image. For unencrypted images, this
92 /// is just the unencrypted payload. For encrypted images, we store both
93 /// the encrypted and the plaintext.
94 struct ImageData {
95 size: usize,
96 plain: Vec<u8>,
97 cipher: Option<Vec<u8>>,
98 }
99
100 /// For the RamLoad test cases, we need a contiguous area of RAM to load these images into. For
101 /// multi-image builds, these may not correspond with the offsets. This has to be computed early,
102 /// before images are built, because each image contains the offset where the image is to be loaded
103 /// in the header, which is contained within the signature.
104 #[derive(Clone, Debug)]
105 struct RamData {
106 places: BTreeMap<SlotKey, SlotPlace>,
107 total: u32,
108 }
109
110 /// Every slot is indexed by this key.
111 #[derive(Clone, Debug, Eq, Ord, PartialEq, PartialOrd)]
112 struct SlotKey {
113 dev_id: u8,
114 base_off: usize,
115 }
116
117 #[derive(Clone, Debug)]
118 struct SlotPlace {
119 offset: u32,
120 size: u32,
121 }
122
123 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
124 pub enum ImageManipulation {
125 None,
126 BadSignature,
127 WrongOffset,
128 IgnoreRamLoadFlag,
129 /// True to use same address,
130 /// false to overlap by 1 byte
131 OverlapImages(bool),
132 CorruptHigherVersionImage,
133 }
134
135
136 impl ImagesBuilder {
137 /// Construct a new image builder for the given device. Returns
138 /// Some(builder) if is possible to test this configuration, or None if
139 /// not possible (for example, if there aren't enough image slots).
new(device: DeviceName, align: usize, erased_val: u8) -> Result<Self, String>140 pub fn new(device: DeviceName, align: usize, erased_val: u8) -> Result<Self, String> {
141 let (flash, areadesc, unsupported_caps) = Self::make_device(device, align, erased_val);
142
143 for cap in unsupported_caps {
144 if cap.present() {
145 return Err(format!("unsupported {:?}", cap));
146 }
147 }
148
149 let num_images = Caps::get_num_images();
150
151 let mut slots = Vec::with_capacity(num_images);
152 for image in 0..num_images {
153 // This mapping must match that defined in
154 // `boot/zephyr/include/sysflash/sysflash.h`.
155 let id0 = match image {
156 0 => FlashId::Image0,
157 1 => FlashId::Image2,
158 _ => panic!("More than 2 images not supported"),
159 };
160 let (primary_base, primary_len, primary_dev_id) = match areadesc.find(id0) {
161 Some(info) => info,
162 None => return Err("insufficient partitions".to_string()),
163 };
164 let id1 = match image {
165 0 => FlashId::Image1,
166 1 => FlashId::Image3,
167 _ => panic!("More than 2 images not supported"),
168 };
169 let (secondary_base, secondary_len, secondary_dev_id) = match areadesc.find(id1) {
170 Some(info) => info,
171 None => return Err("insufficient partitions".to_string()),
172 };
173
174 let offset_from_end = c::boot_magic_sz() + c::boot_max_align() * 4;
175
176 // Construct a primary image.
177 let primary = SlotInfo {
178 base_off: primary_base as usize,
179 trailer_off: primary_base + primary_len - offset_from_end,
180 len: primary_len as usize,
181 dev_id: primary_dev_id,
182 index: 0,
183 };
184
185 // And an upgrade image.
186 let secondary = SlotInfo {
187 base_off: secondary_base as usize,
188 trailer_off: secondary_base + secondary_len - offset_from_end,
189 len: secondary_len as usize,
190 dev_id: secondary_dev_id,
191 index: 1,
192 };
193
194 slots.push([primary, secondary]);
195 }
196
197 let ram = RamData::new(&slots);
198
199 Ok(ImagesBuilder {
200 flash,
201 areadesc,
202 slots,
203 ram,
204 })
205 }
206
each_device<F>(f: F) where F: Fn(Self)207 pub fn each_device<F>(f: F)
208 where F: Fn(Self)
209 {
210 for &dev in ALL_DEVICES {
211 for &align in test_alignments() {
212 for &erased_val in &[0, 0xff] {
213 match Self::new(dev, align, erased_val) {
214 Ok(run) => f(run),
215 Err(msg) => warn!("Skipping {}: {}", dev, msg),
216 }
217 }
218 }
219 }
220 }
221
222 /// Construct an `Images` that doesn't expect an upgrade to happen.
make_no_upgrade_image(self, deps: &DepTest, img_manipulation: ImageManipulation) -> Images223 pub fn make_no_upgrade_image(self, deps: &DepTest, img_manipulation: ImageManipulation) -> Images {
224 let num_images = self.num_images();
225 let mut flash = self.flash;
226 let ram = self.ram.clone(); // TODO: Avoid this clone.
227 let mut higher_version_corrupted = false;
228 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
229 let dep: Box<dyn Depender> = if num_images > 1 {
230 Box::new(PairDep::new(num_images, image_num, deps))
231 } else {
232 Box::new(BoringDep::new(image_num, deps))
233 };
234
235 let (primaries,upgrades) = if img_manipulation == ImageManipulation::CorruptHigherVersionImage && !higher_version_corrupted {
236 higher_version_corrupted = true;
237 let prim = install_image(&mut flash, &slots[0],
238 maximal(42784), &ram, &*dep, ImageManipulation::None, Some(0));
239 let upgr = match deps.depends[image_num] {
240 DepType::NoUpgrade => install_no_image(),
241 _ => install_image(&mut flash, &slots[1],
242 maximal(46928), &ram, &*dep, ImageManipulation::BadSignature, Some(0))
243 };
244 (prim, upgr)
245 } else {
246 let prim = install_image(&mut flash, &slots[0],
247 maximal(42784), &ram, &*dep, img_manipulation, Some(0));
248 let upgr = match deps.depends[image_num] {
249 DepType::NoUpgrade => install_no_image(),
250 _ => install_image(&mut flash, &slots[1],
251 maximal(46928), &ram, &*dep, img_manipulation, Some(0))
252 };
253 (prim, upgr)
254 };
255 OneImage {
256 slots,
257 primaries,
258 upgrades,
259 }}).collect();
260 install_ptable(&mut flash, &self.areadesc);
261 Images {
262 flash,
263 areadesc: self.areadesc,
264 images,
265 total_count: None,
266 ram: self.ram,
267 }
268 }
269
make_image(self, deps: &DepTest, permanent: bool) -> Images270 pub fn make_image(self, deps: &DepTest, permanent: bool) -> Images {
271 let mut images = self.make_no_upgrade_image(deps, ImageManipulation::None);
272 for image in &images.images {
273 mark_upgrade(&mut images.flash, &image.slots[1]);
274 }
275
276 // The count is meaningless if no flash operations are performed.
277 if !Caps::modifies_flash() {
278 return images;
279 }
280
281 // upgrades without fails, counts number of flash operations
282 let total_count = match images.run_basic_upgrade(permanent) {
283 Some(v) => v,
284 None =>
285 if deps.upgrades.iter().any(|u| *u == UpgradeInfo::Held) {
286 0
287 } else {
288 panic!("Unable to perform basic upgrade");
289 }
290 };
291
292 images.total_count = Some(total_count);
293 images
294 }
295
make_bad_secondary_slot_image(self) -> Images296 pub fn make_bad_secondary_slot_image(self) -> Images {
297 let mut bad_flash = self.flash;
298 let ram = self.ram.clone(); // TODO: Avoid this clone.
299 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
300 let dep = BoringDep::new(image_num, &NO_DEPS);
301 let primaries = install_image(&mut bad_flash, &slots[0],
302 maximal(32784), &ram, &dep, ImageManipulation::None, Some(0));
303 let upgrades = install_image(&mut bad_flash, &slots[1],
304 maximal(41928), &ram, &dep, ImageManipulation::BadSignature, Some(0));
305 OneImage {
306 slots,
307 primaries,
308 upgrades,
309 }}).collect();
310 Images {
311 flash: bad_flash,
312 areadesc: self.areadesc,
313 images,
314 total_count: None,
315 ram: self.ram,
316 }
317 }
318
make_oversized_secondary_slot_image(self) -> Images319 pub fn make_oversized_secondary_slot_image(self) -> Images {
320 let mut bad_flash = self.flash;
321 let ram = self.ram.clone(); // TODO: Avoid this clone.
322 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
323 let dep = BoringDep::new(image_num, &NO_DEPS);
324 let primaries = install_image(&mut bad_flash, &slots[0],
325 maximal(32784), &ram, &dep, ImageManipulation::None, Some(0));
326 let upgrades = install_image(&mut bad_flash, &slots[1],
327 ImageSize::Oversized, &ram, &dep, ImageManipulation::None, Some(0));
328 OneImage {
329 slots,
330 primaries,
331 upgrades,
332 }}).collect();
333 Images {
334 flash: bad_flash,
335 areadesc: self.areadesc,
336 images,
337 total_count: None,
338 ram: self.ram,
339 }
340 }
341
make_erased_secondary_image(self) -> Images342 pub fn make_erased_secondary_image(self) -> Images {
343 let mut flash = self.flash;
344 let ram = self.ram.clone(); // TODO: Avoid this clone.
345 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
346 let dep = BoringDep::new(image_num, &NO_DEPS);
347 let primaries = install_image(&mut flash, &slots[0],
348 maximal(32784), &ram, &dep,ImageManipulation::None, Some(0));
349 let upgrades = install_no_image();
350 OneImage {
351 slots,
352 primaries,
353 upgrades,
354 }}).collect();
355 Images {
356 flash,
357 areadesc: self.areadesc,
358 images,
359 total_count: None,
360 ram: self.ram,
361 }
362 }
363
make_bootstrap_image(self) -> Images364 pub fn make_bootstrap_image(self) -> Images {
365 let mut flash = self.flash;
366 let ram = self.ram.clone(); // TODO: Avoid this clone.
367 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
368 let dep = BoringDep::new(image_num, &NO_DEPS);
369 let primaries = install_no_image();
370 let upgrades = install_image(&mut flash, &slots[1],
371 maximal(32784), &ram, &dep, ImageManipulation::None, Some(0));
372 OneImage {
373 slots,
374 primaries,
375 upgrades,
376 }}).collect();
377 Images {
378 flash,
379 areadesc: self.areadesc,
380 images,
381 total_count: None,
382 ram: self.ram,
383 }
384 }
385
make_oversized_bootstrap_image(self) -> Images386 pub fn make_oversized_bootstrap_image(self) -> Images {
387 let mut flash = self.flash;
388 let ram = self.ram.clone(); // TODO: Avoid this clone.
389 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
390 let dep = BoringDep::new(image_num, &NO_DEPS);
391 let primaries = install_no_image();
392 let upgrades = install_image(&mut flash, &slots[1],
393 ImageSize::Oversized, &ram, &dep, ImageManipulation::None, Some(0));
394 OneImage {
395 slots,
396 primaries,
397 upgrades,
398 }}).collect();
399 Images {
400 flash,
401 areadesc: self.areadesc,
402 images,
403 total_count: None,
404 ram: self.ram,
405 }
406 }
407
408 /// If security_cnt is None then do not add a security counter TLV, otherwise add the specified value.
make_image_with_security_counter(self, security_cnt: Option<u32>) -> Images409 pub fn make_image_with_security_counter(self, security_cnt: Option<u32>) -> Images {
410 let mut flash = self.flash;
411 let ram = self.ram.clone(); // TODO: Avoid this clone.
412 let images = self.slots.into_iter().enumerate().map(|(image_num, slots)| {
413 let dep = BoringDep::new(image_num, &NO_DEPS);
414 let primaries = install_image(&mut flash, &slots[0],
415 maximal(32784), &ram, &dep, ImageManipulation::None, security_cnt);
416 let upgrades = install_image(&mut flash, &slots[1],
417 maximal(41928), &ram, &dep, ImageManipulation::None, security_cnt.map(|v| v + 1));
418 OneImage {
419 slots,
420 primaries,
421 upgrades,
422 }}).collect();
423 Images {
424 flash,
425 areadesc: self.areadesc,
426 images,
427 total_count: None,
428 ram: self.ram,
429 }
430 }
431
432 /// Build the Flash and area descriptor for a given device.
make_device(device: DeviceName, align: usize, erased_val: u8) -> (SimMultiFlash, Rc<AreaDesc>, &'static [Caps])433 pub fn make_device(device: DeviceName, align: usize, erased_val: u8) -> (SimMultiFlash, Rc<AreaDesc>, &'static [Caps]) {
434 match device {
435 DeviceName::Stm32f4 => {
436 // STM style flash. Large sectors, with a large scratch area.
437 // The flash layout as described is not present in any real STM32F4 device, but it
438 // serves to exercise support for sectors of varying sizes inside a single slot,
439 // as long as they are compatible in both slots and all fit in the scratch.
440 let dev = SimFlash::new(vec![16 * 1024, 16 * 1024, 16 * 1024, 16 * 1024, 64 * 1024,
441 32 * 1024, 32 * 1024, 64 * 1024,
442 32 * 1024, 32 * 1024, 64 * 1024,
443 128 * 1024],
444 align as usize, erased_val);
445 let dev_id = 0;
446 let mut areadesc = AreaDesc::new();
447 areadesc.add_flash_sectors(dev_id, &dev);
448 areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
449 areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
450 areadesc.add_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
451
452 let mut flash = SimMultiFlash::new();
453 flash.insert(dev_id, dev);
454 (flash, Rc::new(areadesc), &[Caps::SwapUsingMove])
455 }
456 DeviceName::K64f => {
457 // NXP style flash. Small sectors, one small sector for scratch.
458 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
459
460 let dev_id = 0;
461 let mut areadesc = AreaDesc::new();
462 areadesc.add_flash_sectors(dev_id, &dev);
463 areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
464 areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
465 areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
466
467 let mut flash = SimMultiFlash::new();
468 flash.insert(dev_id, dev);
469 (flash, Rc::new(areadesc), &[])
470 }
471 DeviceName::K64fBig => {
472 // Simulating an STM style flash on top of an NXP style flash. Underlying flash device
473 // uses small sectors, but we tell the bootloader they are large.
474 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
475
476 let dev_id = 0;
477 let mut areadesc = AreaDesc::new();
478 areadesc.add_flash_sectors(dev_id, &dev);
479 areadesc.add_simple_image(0x020000, 0x020000, FlashId::Image0, dev_id);
480 areadesc.add_simple_image(0x040000, 0x020000, FlashId::Image1, dev_id);
481 areadesc.add_simple_image(0x060000, 0x020000, FlashId::ImageScratch, dev_id);
482
483 let mut flash = SimMultiFlash::new();
484 flash.insert(dev_id, dev);
485 (flash, Rc::new(areadesc), &[Caps::SwapUsingMove])
486 }
487 DeviceName::Nrf52840 => {
488 // Simulating the flash on the nrf52840 with partitions set up so that the scratch size
489 // does not divide into the image size.
490 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
491
492 let dev_id = 0;
493 let mut areadesc = AreaDesc::new();
494 areadesc.add_flash_sectors(dev_id, &dev);
495 areadesc.add_image(0x008000, 0x034000, FlashId::Image0, dev_id);
496 areadesc.add_image(0x03c000, 0x034000, FlashId::Image1, dev_id);
497 areadesc.add_image(0x070000, 0x00d000, FlashId::ImageScratch, dev_id);
498
499 let mut flash = SimMultiFlash::new();
500 flash.insert(dev_id, dev);
501 (flash, Rc::new(areadesc), &[])
502 }
503 DeviceName::Nrf52840UnequalSlots => {
504 let dev = SimFlash::new(vec![4096; 128], align as usize, erased_val);
505
506 let dev_id = 0;
507 let mut areadesc = AreaDesc::new();
508 areadesc.add_flash_sectors(dev_id, &dev);
509 areadesc.add_image(0x008000, 0x03c000, FlashId::Image0, dev_id);
510 areadesc.add_image(0x044000, 0x03b000, FlashId::Image1, dev_id);
511
512 let mut flash = SimMultiFlash::new();
513 flash.insert(dev_id, dev);
514 (flash, Rc::new(areadesc), &[Caps::SwapUsingScratch, Caps::OverwriteUpgrade])
515 }
516 DeviceName::Nrf52840SpiFlash => {
517 // Simulate nrf52840 with external SPI flash. The external SPI flash
518 // has a larger sector size so for now store scratch on that flash.
519 let dev0 = SimFlash::new(vec![4096; 128], align as usize, erased_val);
520 let dev1 = SimFlash::new(vec![8192; 64], align as usize, erased_val);
521
522 let mut areadesc = AreaDesc::new();
523 areadesc.add_flash_sectors(0, &dev0);
524 areadesc.add_flash_sectors(1, &dev1);
525
526 areadesc.add_image(0x008000, 0x068000, FlashId::Image0, 0);
527 areadesc.add_image(0x000000, 0x068000, FlashId::Image1, 1);
528 areadesc.add_image(0x068000, 0x018000, FlashId::ImageScratch, 1);
529
530 let mut flash = SimMultiFlash::new();
531 flash.insert(0, dev0);
532 flash.insert(1, dev1);
533 (flash, Rc::new(areadesc), &[Caps::SwapUsingMove])
534 }
535 DeviceName::K64fMulti => {
536 // NXP style flash, but larger, to support multiple images.
537 let dev = SimFlash::new(vec![4096; 256], align as usize, erased_val);
538
539 let dev_id = 0;
540 let mut areadesc = AreaDesc::new();
541 areadesc.add_flash_sectors(dev_id, &dev);
542 areadesc.add_image(0x020000, 0x020000, FlashId::Image0, dev_id);
543 areadesc.add_image(0x040000, 0x020000, FlashId::Image1, dev_id);
544 areadesc.add_image(0x060000, 0x001000, FlashId::ImageScratch, dev_id);
545 areadesc.add_image(0x080000, 0x020000, FlashId::Image2, dev_id);
546 areadesc.add_image(0x0a0000, 0x020000, FlashId::Image3, dev_id);
547
548 let mut flash = SimMultiFlash::new();
549 flash.insert(dev_id, dev);
550 (flash, Rc::new(areadesc), &[])
551 }
552 }
553 }
554
num_images(&self) -> usize555 pub fn num_images(&self) -> usize {
556 self.slots.len()
557 }
558 }
559
560 impl Images {
561 /// A simple upgrade without forced failures.
562 ///
563 /// Returns the number of flash operations which can later be used to
564 /// inject failures at chosen steps. Returns None if it was unable to
565 /// count the operations in a basic upgrade.
run_basic_upgrade(&self, permanent: bool) -> Option<i32>566 pub fn run_basic_upgrade(&self, permanent: bool) -> Option<i32> {
567 let (flash, total_count) = self.try_upgrade(None, permanent);
568 info!("Total flash operation count={}", total_count);
569
570 if !self.verify_images(&flash, 0, 1) {
571 warn!("Image mismatch after first boot");
572 None
573 } else {
574 Some(total_count)
575 }
576 }
577
run_bootstrap(&self) -> bool578 pub fn run_bootstrap(&self) -> bool {
579 let mut flash = self.flash.clone();
580 let mut fails = 0;
581
582 if Caps::Bootstrap.present() {
583 info!("Try bootstraping image in the primary");
584
585 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
586 warn!("Failed first boot");
587 fails += 1;
588 }
589
590 if !self.verify_images(&flash, 0, 1) {
591 warn!("Image in the first slot was not bootstrapped");
592 fails += 1;
593 }
594
595 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
596 BOOT_FLAG_SET, BOOT_FLAG_SET) {
597 warn!("Mismatched trailer for the primary slot");
598 fails += 1;
599 }
600 }
601
602 if fails > 0 {
603 error!("Expected trailer on secondary slot to be erased");
604 }
605
606 fails > 0
607 }
608
run_oversized_bootstrap(&self) -> bool609 pub fn run_oversized_bootstrap(&self) -> bool {
610 let mut flash = self.flash.clone();
611 let mut fails = 0;
612
613 if Caps::Bootstrap.present() {
614 info!("Try bootstraping image in the primary");
615
616 let boot_result = c::boot_go(&mut flash, &self.areadesc, None, None, false).interrupted();
617
618 if boot_result {
619 warn!("Failed first boot");
620 fails += 1;
621 }
622
623 if self.verify_images(&flash, 0, 1) {
624 warn!("Image in the first slot was not bootstrapped");
625 fails += 1;
626 }
627
628 if self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
629 BOOT_FLAG_SET, BOOT_FLAG_SET) {
630 warn!("Mismatched trailer for the primary slot");
631 fails += 1;
632 }
633 }
634
635 if fails > 0 {
636 error!("Expected trailer on secondary slot to be erased");
637 }
638
639 fails > 0
640 }
641
642
643 /// Test a simple upgrade, with dependencies given, and verify that the
644 /// image does as is described in the test.
run_check_deps(&self, deps: &DepTest) -> bool645 pub fn run_check_deps(&self, deps: &DepTest) -> bool {
646 if !Caps::modifies_flash() {
647 return false;
648 }
649
650 let (flash, _) = self.try_upgrade(None, true);
651
652 self.verify_dep_images(&flash, deps)
653 }
654
is_swap_upgrade(&self) -> bool655 fn is_swap_upgrade(&self) -> bool {
656 Caps::SwapUsingScratch.present() || Caps::SwapUsingMove.present()
657 }
658
run_basic_revert(&self) -> bool659 pub fn run_basic_revert(&self) -> bool {
660 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
661 return false;
662 }
663
664 let mut fails = 0;
665
666 // FIXME: this test would also pass if no swap is ever performed???
667 if self.is_swap_upgrade() {
668 for count in 2 .. 5 {
669 info!("Try revert: {}", count);
670 let flash = self.try_revert(count);
671 if !self.verify_images(&flash, 0, 0) {
672 error!("Revert failure on count {}", count);
673 fails += 1;
674 }
675 }
676 }
677
678 fails > 0
679 }
680
run_perm_with_fails(&self) -> bool681 pub fn run_perm_with_fails(&self) -> bool {
682 if !Caps::modifies_flash() {
683 return false;
684 }
685
686 let mut fails = 0;
687 let total_flash_ops = self.total_count.unwrap();
688
689 if skip_slow_test() {
690 return false;
691 }
692
693 // Let's try an image halfway through.
694 for i in 1 .. total_flash_ops {
695 info!("Try interruption at {}", i);
696 let (flash, count) = self.try_upgrade(Some(i), true);
697 info!("Second boot, count={}", count);
698 if !self.verify_images(&flash, 0, 1) {
699 warn!("FAIL at step {} of {}", i, total_flash_ops);
700 fails += 1;
701 }
702
703 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
704 BOOT_FLAG_SET, BOOT_FLAG_SET) {
705 warn!("Mismatched trailer for the primary slot");
706 fails += 1;
707 }
708
709 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
710 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
711 warn!("Mismatched trailer for the secondary slot");
712 fails += 1;
713 }
714
715 if self.is_swap_upgrade() && !self.verify_images(&flash, 1, 0) {
716 warn!("Secondary slot FAIL at step {} of {}",
717 i, total_flash_ops);
718 fails += 1;
719 }
720 }
721
722 if fails > 0 {
723 error!("{} out of {} failed {:.2}%", fails, total_flash_ops,
724 fails as f32 * 100.0 / total_flash_ops as f32);
725 }
726
727 fails > 0
728 }
729
run_perm_with_random_fails(&self, total_fails: usize) -> bool730 pub fn run_perm_with_random_fails(&self, total_fails: usize) -> bool {
731 if !Caps::modifies_flash() {
732 return false;
733 }
734
735 let mut fails = 0;
736 let total_flash_ops = self.total_count.unwrap();
737 let (flash, total_counts) = self.try_random_fails(total_flash_ops, total_fails);
738 info!("Random interruptions at reset points={:?}", total_counts);
739
740 let primary_slot_ok = self.verify_images(&flash, 0, 1);
741 let secondary_slot_ok = if self.is_swap_upgrade() {
742 // TODO: This result is ignored.
743 self.verify_images(&flash, 1, 0)
744 } else {
745 true
746 };
747 if !primary_slot_ok || !secondary_slot_ok {
748 error!("Image mismatch after random interrupts: primary slot={} \
749 secondary slot={}",
750 if primary_slot_ok { "ok" } else { "fail" },
751 if secondary_slot_ok { "ok" } else { "fail" });
752 fails += 1;
753 }
754 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
755 BOOT_FLAG_SET, BOOT_FLAG_SET) {
756 error!("Mismatched trailer for the primary slot");
757 fails += 1;
758 }
759 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
760 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
761 error!("Mismatched trailer for the secondary slot");
762 fails += 1;
763 }
764
765 if fails > 0 {
766 error!("Error testing perm upgrade with {} fails", total_fails);
767 }
768
769 fails > 0
770 }
771
run_revert_with_fails(&self) -> bool772 pub fn run_revert_with_fails(&self) -> bool {
773 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
774 return false;
775 }
776
777 let mut fails = 0;
778
779 if skip_slow_test() {
780 return false;
781 }
782
783 if self.is_swap_upgrade() {
784 for i in 1 .. self.total_count.unwrap() {
785 info!("Try interruption at {}", i);
786 if self.try_revert_with_fail_at(i) {
787 error!("Revert failed at interruption {}", i);
788 fails += 1;
789 }
790 }
791 }
792
793 fails > 0
794 }
795
run_norevert(&self) -> bool796 pub fn run_norevert(&self) -> bool {
797 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
798 return false;
799 }
800
801 let mut flash = self.flash.clone();
802 let mut fails = 0;
803
804 info!("Try norevert");
805
806 // First do a normal upgrade...
807 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
808 warn!("Failed first boot");
809 fails += 1;
810 }
811
812 //FIXME: copy_done is written by boot_go, is it ok if no copy
813 // was ever done?
814
815 if !self.verify_images(&flash, 0, 1) {
816 warn!("Primary slot image verification FAIL");
817 fails += 1;
818 }
819 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
820 BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
821 warn!("Mismatched trailer for the primary slot");
822 fails += 1;
823 }
824 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
825 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
826 warn!("Mismatched trailer for the secondary slot");
827 fails += 1;
828 }
829
830 // Marks image in the primary slot as permanent,
831 // no revert should happen...
832 self.mark_permanent_upgrades(&mut flash, 0);
833
834 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
835 BOOT_FLAG_SET, BOOT_FLAG_SET) {
836 warn!("Mismatched trailer for the primary slot");
837 fails += 1;
838 }
839
840 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
841 warn!("Failed second boot");
842 fails += 1;
843 }
844
845 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
846 BOOT_FLAG_SET, BOOT_FLAG_SET) {
847 warn!("Mismatched trailer for the primary slot");
848 fails += 1;
849 }
850 if !self.verify_images(&flash, 0, 1) {
851 warn!("Failed image verification");
852 fails += 1;
853 }
854
855 if fails > 0 {
856 error!("Error running upgrade without revert");
857 }
858
859 fails > 0
860 }
861
862 // Test taht too big upgrade image will be rejected
run_oversizefail_upgrade(&self) -> bool863 pub fn run_oversizefail_upgrade(&self) -> bool {
864 let mut flash = self.flash.clone();
865 let mut fails = 0;
866
867 info!("Try upgrade image with to big size");
868
869 // Only perform this test if an upgrade is expected to happen.
870 if !Caps::modifies_flash() {
871 info!("Skipping upgrade image with bad signature");
872 return false;
873 }
874
875 self.mark_upgrades(&mut flash, 0);
876 self.mark_permanent_upgrades(&mut flash, 0);
877 self.mark_upgrades(&mut flash, 1);
878
879 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
880 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
881 warn!("1. Mismatched trailer for the primary slot");
882 fails += 1;
883 }
884
885 // Run the bootloader...
886 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
887 warn!("Failed first boot");
888 fails += 1;
889 }
890
891 // State should not have changed
892 if !self.verify_images(&flash, 0, 0) {
893 warn!("Failed image verification");
894 fails += 1;
895 }
896 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
897 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
898 warn!("2. Mismatched trailer for the primary slot");
899 fails += 1;
900 }
901
902 if fails > 0 {
903 error!("Expected an upgrade failure when image has to big size");
904 }
905
906 fails > 0
907 }
908
909 // Test that an upgrade is rejected. Assumes that the image was build
910 // such that the upgrade is instead a downgrade.
run_nodowngrade(&self) -> bool911 pub fn run_nodowngrade(&self) -> bool {
912 if !Caps::DowngradePrevention.present() {
913 return false;
914 }
915
916 let mut flash = self.flash.clone();
917 let mut fails = 0;
918
919 info!("Try no downgrade");
920
921 // First, do a normal upgrade.
922 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
923 warn!("Failed first boot");
924 fails += 1;
925 }
926
927 if !self.verify_images(&flash, 0, 0) {
928 warn!("Failed verification after downgrade rejection");
929 fails += 1;
930 }
931
932 if fails > 0 {
933 error!("Error testing downgrade rejection");
934 }
935
936 fails > 0
937 }
938
939 // Tests a new image written to the primary slot that already has magic and
940 // image_ok set while there is no image on the secondary slot, so no revert
941 // should ever happen...
run_norevert_newimage(&self) -> bool942 pub fn run_norevert_newimage(&self) -> bool {
943 if !Caps::modifies_flash() {
944 info!("Skipping run_norevert_newimage, as configuration doesn't modify flash");
945 return false;
946 }
947
948 let mut flash = self.flash.clone();
949 let mut fails = 0;
950
951 info!("Try non-revert on imgtool generated image");
952
953 self.mark_upgrades(&mut flash, 0);
954
955 // This simulates writing an image created by imgtool to
956 // the primary slot
957 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
958 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
959 warn!("Mismatched trailer for the primary slot");
960 fails += 1;
961 }
962
963 // Run the bootloader...
964 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
965 warn!("Failed first boot");
966 fails += 1;
967 }
968
969 // State should not have changed
970 if !self.verify_images(&flash, 0, 0) {
971 warn!("Failed image verification");
972 fails += 1;
973 }
974 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
975 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
976 warn!("Mismatched trailer for the primary slot");
977 fails += 1;
978 }
979 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
980 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
981 warn!("Mismatched trailer for the secondary slot");
982 fails += 1;
983 }
984
985 if fails > 0 {
986 error!("Expected a non revert with new image");
987 }
988
989 fails > 0
990 }
991
992 // Tests a new image written to the primary slot that already has magic and
993 // image_ok set while there is no image on the secondary slot, so no revert
994 // should ever happen...
run_signfail_upgrade(&self) -> bool995 pub fn run_signfail_upgrade(&self) -> bool {
996 let mut flash = self.flash.clone();
997 let mut fails = 0;
998
999 info!("Try upgrade image with bad signature");
1000
1001 // Only perform this test if an upgrade is expected to happen.
1002 if !Caps::modifies_flash() {
1003 info!("Skipping upgrade image with bad signature");
1004 return false;
1005 }
1006
1007 self.mark_upgrades(&mut flash, 0);
1008 self.mark_permanent_upgrades(&mut flash, 0);
1009 self.mark_upgrades(&mut flash, 1);
1010
1011 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1012 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
1013 warn!("Mismatched trailer for the primary slot");
1014 fails += 1;
1015 }
1016
1017 // Run the bootloader...
1018 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1019 warn!("Failed first boot");
1020 fails += 1;
1021 }
1022
1023 // State should not have changed
1024 if !self.verify_images(&flash, 0, 0) {
1025 warn!("Failed image verification");
1026 fails += 1;
1027 }
1028 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1029 BOOT_FLAG_SET, BOOT_FLAG_UNSET) {
1030 warn!("Mismatched trailer for the primary slot");
1031 fails += 1;
1032 }
1033
1034 if fails > 0 {
1035 error!("Expected an upgrade failure when image has bad signature");
1036 }
1037
1038 fails > 0
1039 }
1040
1041 // Should detect there is a leftover trailer in an otherwise erased
1042 // secondary slot and erase its trailer.
run_secondary_leftover_trailer(&self) -> bool1043 pub fn run_secondary_leftover_trailer(&self) -> bool {
1044 if !Caps::modifies_flash() {
1045 return false;
1046 }
1047
1048 let mut flash = self.flash.clone();
1049 let mut fails = 0;
1050
1051 info!("Try with a leftover trailer in the secondary; must be erased");
1052
1053 // Add a trailer on the secondary slot
1054 self.mark_permanent_upgrades(&mut flash, 1);
1055 self.mark_upgrades(&mut flash, 1);
1056
1057 // Run the bootloader...
1058 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1059 warn!("Failed first boot");
1060 fails += 1;
1061 }
1062
1063 // State should not have changed
1064 if !self.verify_images(&flash, 0, 0) {
1065 warn!("Failed image verification");
1066 fails += 1;
1067 }
1068 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
1069 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
1070 warn!("Mismatched trailer for the secondary slot");
1071 fails += 1;
1072 }
1073
1074 if fails > 0 {
1075 error!("Expected trailer on secondary slot to be erased");
1076 }
1077
1078 fails > 0
1079 }
1080
trailer_sz(&self, align: usize) -> usize1081 fn trailer_sz(&self, align: usize) -> usize {
1082 c::boot_trailer_sz(align as u32) as usize
1083 }
1084
status_sz(&self, align: usize) -> usize1085 fn status_sz(&self, align: usize) -> usize {
1086 c::boot_status_sz(align as u32) as usize
1087 }
1088
1089 /// This test runs a simple upgrade with no fails in the images, but
1090 /// allowing for fails in the status area. This should run to the end
1091 /// and warn that write fails were detected...
run_with_status_fails_complete(&self) -> bool1092 pub fn run_with_status_fails_complete(&self) -> bool {
1093 if !Caps::ValidatePrimarySlot.present() || !Caps::modifies_flash() {
1094 return false;
1095 }
1096
1097 let mut flash = self.flash.clone();
1098 let mut fails = 0;
1099
1100 info!("Try swap with status fails");
1101
1102 self.mark_permanent_upgrades(&mut flash, 1);
1103 self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
1104
1105 let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
1106 if !result.success() {
1107 warn!("Failed!");
1108 fails += 1;
1109 }
1110
1111 // Failed writes to the marked "bad" region don't assert anymore.
1112 // Any detected assert() is happening in another part of the code.
1113 if result.asserts() != 0 {
1114 warn!("At least one assert() was called");
1115 fails += 1;
1116 }
1117
1118 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1119 BOOT_FLAG_SET, BOOT_FLAG_SET) {
1120 warn!("Mismatched trailer for the primary slot");
1121 fails += 1;
1122 }
1123
1124 if !self.verify_images(&flash, 0, 1) {
1125 warn!("Failed image verification");
1126 fails += 1;
1127 }
1128
1129 info!("validate primary slot enabled; \
1130 re-run of boot_go should just work");
1131 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1132 warn!("Failed!");
1133 fails += 1;
1134 }
1135
1136 if fails > 0 {
1137 error!("Error running upgrade with status write fails");
1138 }
1139
1140 fails > 0
1141 }
1142
1143 /// This test runs a simple upgrade with no fails in the images, but
1144 /// allowing for fails in the status area. This should run to the end
1145 /// and warn that write fails were detected...
run_with_status_fails_with_reset(&self) -> bool1146 pub fn run_with_status_fails_with_reset(&self) -> bool {
1147 if Caps::OverwriteUpgrade.present() || !Caps::modifies_flash() {
1148 false
1149 } else if Caps::ValidatePrimarySlot.present() {
1150
1151 let mut flash = self.flash.clone();
1152 let mut fails = 0;
1153 let mut count = self.total_count.unwrap() / 2;
1154
1155 //info!("count={}\n", count);
1156
1157 info!("Try interrupted swap with status fails");
1158
1159 self.mark_permanent_upgrades(&mut flash, 1);
1160 self.mark_bad_status_with_rate(&mut flash, 0, 0.5);
1161
1162 // Should not fail, writing to bad regions does not assert
1163 let asserts = c::boot_go(&mut flash, &self.areadesc,
1164 Some(&mut count), None, true).asserts();
1165 if asserts != 0 {
1166 warn!("At least one assert() was called");
1167 fails += 1;
1168 }
1169
1170 self.reset_bad_status(&mut flash, 0);
1171
1172 info!("Resuming an interrupted swap operation");
1173 let asserts = c::boot_go(&mut flash, &self.areadesc, None, None,
1174 true).asserts();
1175
1176 // This might throw no asserts, for large sector devices, where
1177 // a single failure writing is indistinguishable from no failure,
1178 // or throw a single assert for small sector devices that fail
1179 // multiple times...
1180 if asserts > 1 {
1181 warn!("Expected single assert validating the primary slot, \
1182 more detected {}", asserts);
1183 fails += 1;
1184 }
1185
1186 if fails > 0 {
1187 error!("Error running upgrade with status write fails");
1188 }
1189
1190 fails > 0
1191 } else {
1192 let mut flash = self.flash.clone();
1193 let mut fails = 0;
1194
1195 info!("Try interrupted swap with status fails");
1196
1197 self.mark_permanent_upgrades(&mut flash, 1);
1198 self.mark_bad_status_with_rate(&mut flash, 0, 1.0);
1199
1200 // This is expected to fail while writing to bad regions...
1201 let asserts = c::boot_go(&mut flash, &self.areadesc, None, None,
1202 true).asserts();
1203 if asserts == 0 {
1204 warn!("No assert() detected");
1205 fails += 1;
1206 }
1207
1208 fails > 0
1209 }
1210 }
1211
1212 /// Test the direct XIP configuration. With this mode, flash images are never moved, and the
1213 /// bootloader merely selects which partition is the proper one to boot.
run_direct_xip(&self) -> bool1214 pub fn run_direct_xip(&self) -> bool {
1215 if !Caps::DirectXip.present() {
1216 return false;
1217 }
1218
1219 // Clone the flash so we can tell if unchanged.
1220 let mut flash = self.flash.clone();
1221
1222 let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
1223
1224 // Ensure the boot was successful.
1225 let resp = if let Some(resp) = result.resp() {
1226 resp
1227 } else {
1228 panic!("Boot didn't return a valid result");
1229 };
1230
1231 // This configuration should always try booting from the first upgrade slot.
1232 if let Some((offset, _, dev_id)) = self.areadesc.find(FlashId::Image1) {
1233 assert_eq!(offset, resp.image_off as usize);
1234 assert_eq!(dev_id, resp.flash_dev_id);
1235 } else {
1236 panic!("Unable to find upgrade image");
1237 }
1238 false
1239 }
1240
1241 /// Test the ram-loading.
run_ram_load(&self) -> bool1242 pub fn run_ram_load(&self) -> bool {
1243 if !Caps::RamLoad.present() {
1244 return false;
1245 }
1246
1247 // Clone the flash so we can tell if unchanged.
1248 let mut flash = self.flash.clone();
1249
1250 // Setup ram based on the ram configuration we determined earlier for the images.
1251 let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
1252
1253 // println!("Ram: {:#?}", self.ram);
1254
1255 // Verify that the images area loaded into this.
1256 let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc, None,
1257 None, true));
1258 if !result.success() {
1259 error!("Failed to execute ram-load");
1260 return true;
1261 }
1262
1263 // Verify each image.
1264 for image in &self.images {
1265 let place = self.ram.lookup(&image.slots[0]);
1266 let ram_image = ram.borrow_part(place.offset as usize - RAM_LOAD_ADDR as usize,
1267 place.size as usize);
1268 let src_sz = image.upgrades.size();
1269 if src_sz > ram_image.len() {
1270 error!("Image ended up too large, nonsensical");
1271 return true;
1272 }
1273 let src_image = &image.upgrades.plain[0..src_sz];
1274 let ram_image = &ram_image[0..src_sz];
1275 if ram_image != src_image {
1276 error!("Image not loaded correctly");
1277 return true;
1278 }
1279
1280 }
1281
1282 return false;
1283 }
1284
1285 /// Test the split ram-loading.
run_split_ram_load(&self) -> bool1286 pub fn run_split_ram_load(&self) -> bool {
1287 if !Caps::RamLoad.present() {
1288 return false;
1289 }
1290
1291 // Clone the flash so we can tell if unchanged.
1292 let mut flash = self.flash.clone();
1293
1294 // Setup ram based on the ram configuration we determined earlier for the images.
1295 let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
1296
1297 for (idx, _image) in (&self.images).iter().enumerate() {
1298 // Verify that the images area loaded into this.
1299 let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc,
1300 None, Some(idx as i32), true));
1301 if !result.success() {
1302 error!("Failed to execute ram-load");
1303 return true;
1304 }
1305 }
1306
1307 // Verify each image.
1308 for image in &self.images {
1309 let place = self.ram.lookup(&image.slots[0]);
1310 let ram_image = ram.borrow_part(place.offset as usize - RAM_LOAD_ADDR as usize,
1311 place.size as usize);
1312 let src_sz = image.upgrades.size();
1313 if src_sz > ram_image.len() {
1314 error!("Image ended up too large, nonsensical");
1315 return true;
1316 }
1317 let src_image = &image.upgrades.plain[0..src_sz];
1318 let ram_image = &ram_image[0..src_sz];
1319 if ram_image != src_image {
1320 error!("Image not loaded correctly");
1321 return true;
1322 }
1323
1324 }
1325
1326 return false;
1327 }
1328
run_hw_rollback_prot(&self) -> bool1329 pub fn run_hw_rollback_prot(&self) -> bool {
1330 if !Caps::HwRollbackProtection.present() {
1331 return false;
1332 }
1333
1334 let mut flash = self.flash.clone();
1335
1336 // set the "stored" security counter to a fixed value.
1337 c::set_security_counter(0, 30);
1338
1339 let result = c::boot_go(&mut flash, &self.areadesc, None, None, true);
1340
1341 if result.success() {
1342 warn!("Successful boot when it did not suppose to happen!");
1343 return true;
1344 }
1345 let counter_val = c::get_security_counter(0);
1346 if counter_val != 30 {
1347 warn!("Counter was changed when it did not suppose to!");
1348 return true;
1349 }
1350
1351 false
1352 }
1353
run_ram_load_boot_with_result(&self, expected_result: bool) -> bool1354 pub fn run_ram_load_boot_with_result(&self, expected_result: bool) -> bool {
1355 if !Caps::RamLoad.present() {
1356 return false;
1357 }
1358 // Clone the flash so we can tell if unchanged.
1359 let mut flash = self.flash.clone();
1360
1361 // Create RAM config.
1362 let ram = RamBlock::new(self.ram.total - RAM_LOAD_ADDR, RAM_LOAD_ADDR);
1363
1364 // Run the bootloader, and verify that it couldn't run to completion.
1365 let result = ram.invoke(|| c::boot_go(&mut flash, &self.areadesc, None,
1366 None, true));
1367
1368 if result.success() != expected_result {
1369 error!("RAM load boot result was not of the expected value! (was: {}, expected: {})", result.success(), expected_result);
1370 return true;
1371 }
1372
1373 false
1374 }
1375
1376 /// Adds a new flash area that fails statistically
mark_bad_status_with_rate(&self, flash: &mut SimMultiFlash, slot: usize, rate: f32)1377 fn mark_bad_status_with_rate(&self, flash: &mut SimMultiFlash, slot: usize,
1378 rate: f32) {
1379 if Caps::OverwriteUpgrade.present() {
1380 return;
1381 }
1382
1383 // Set this for each image.
1384 for image in &self.images {
1385 let dev_id = &image.slots[slot].dev_id;
1386 let dev = flash.get_mut(&dev_id).unwrap();
1387 let align = dev.align();
1388 let off = &image.slots[slot].base_off;
1389 let len = &image.slots[slot].len;
1390 let status_off = off + len - self.trailer_sz(align);
1391
1392 // Mark the status area as a bad area
1393 let _ = dev.add_bad_region(status_off, self.status_sz(align), rate);
1394 }
1395 }
1396
reset_bad_status(&self, flash: &mut SimMultiFlash, slot: usize)1397 fn reset_bad_status(&self, flash: &mut SimMultiFlash, slot: usize) {
1398 if !Caps::ValidatePrimarySlot.present() {
1399 return;
1400 }
1401
1402 for image in &self.images {
1403 let dev_id = &image.slots[slot].dev_id;
1404 let dev = flash.get_mut(&dev_id).unwrap();
1405 dev.reset_bad_regions();
1406
1407 // Disabling write verification the only assert triggered by
1408 // boot_go should be checking for integrity of status bytes.
1409 dev.set_verify_writes(false);
1410 }
1411 }
1412
1413 /// Test a boot, optionally stopping after 'n' flash options. Returns a count
1414 /// of the number of flash operations done total.
try_upgrade(&self, stop: Option<i32>, permanent: bool) -> (SimMultiFlash, i32)1415 fn try_upgrade(&self, stop: Option<i32>, permanent: bool) -> (SimMultiFlash, i32) {
1416 // Clone the flash to have a new copy.
1417 let mut flash = self.flash.clone();
1418
1419 if permanent {
1420 self.mark_permanent_upgrades(&mut flash, 1);
1421 }
1422
1423 let mut counter = stop.unwrap_or(0);
1424
1425 let (first_interrupted, count) = match c::boot_go(&mut flash,
1426 &self.areadesc,
1427 Some(&mut counter),
1428 None, false) {
1429 x if x.interrupted() => (true, stop.unwrap()),
1430 x if x.success() => (false, -counter),
1431 x => panic!("Unknown return: {:?}", x),
1432 };
1433
1434 counter = 0;
1435 if first_interrupted {
1436 // fl.dump();
1437 match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter),
1438 None, false) {
1439 x if x.interrupted() => panic!("Shouldn't stop again"),
1440 x if x.success() => (),
1441 x => panic!("Unknown return: {:?}", x),
1442 }
1443 }
1444
1445 (flash, count - counter)
1446 }
1447
try_revert(&self, count: usize) -> SimMultiFlash1448 fn try_revert(&self, count: usize) -> SimMultiFlash {
1449 let mut flash = self.flash.clone();
1450
1451 // fl.write_file("image0.bin").unwrap();
1452 for i in 0 .. count {
1453 info!("Running boot pass {}", i + 1);
1454 assert!(c::boot_go(&mut flash, &self.areadesc, None, None, false).success_no_asserts());
1455 }
1456 flash
1457 }
1458
try_revert_with_fail_at(&self, stop: i32) -> bool1459 fn try_revert_with_fail_at(&self, stop: i32) -> bool {
1460 let mut flash = self.flash.clone();
1461 let mut fails = 0;
1462
1463 let mut counter = stop;
1464 if !c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), None,
1465 false).interrupted() {
1466 warn!("Should have stopped test at interruption point");
1467 fails += 1;
1468 }
1469
1470 // In a multi-image setup, copy done might be set if any number of
1471 // images was already successfully swapped.
1472 if !self.verify_trailers_loose(&flash, 0, None, None, BOOT_FLAG_UNSET) {
1473 warn!("copy_done should be unset");
1474 fails += 1;
1475 }
1476
1477 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1478 warn!("Should have finished test upgrade");
1479 fails += 1;
1480 }
1481
1482 if !self.verify_images(&flash, 0, 1) {
1483 warn!("Image in the primary slot before revert is invalid at stop={}",
1484 stop);
1485 fails += 1;
1486 }
1487 if !self.verify_images(&flash, 1, 0) {
1488 warn!("Image in the secondary slot before revert is invalid at stop={}",
1489 stop);
1490 fails += 1;
1491 }
1492 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1493 BOOT_FLAG_UNSET, BOOT_FLAG_SET) {
1494 warn!("Mismatched trailer for the primary slot before revert");
1495 fails += 1;
1496 }
1497 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
1498 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
1499 warn!("Mismatched trailer for the secondary slot before revert");
1500 fails += 1;
1501 }
1502
1503 // Do Revert
1504 let mut counter = stop;
1505 if !c::boot_go(&mut flash, &self.areadesc, Some(&mut counter), None,
1506 false).interrupted() {
1507 warn!("Should have stopped revert at interruption point");
1508 fails += 1;
1509 }
1510
1511 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1512 warn!("Should have finished revert upgrade");
1513 fails += 1;
1514 }
1515
1516 if !self.verify_images(&flash, 0, 0) {
1517 warn!("Image in the primary slot after revert is invalid at stop={}",
1518 stop);
1519 fails += 1;
1520 }
1521 if !self.verify_images(&flash, 1, 1) {
1522 warn!("Image in the secondary slot after revert is invalid at stop={}",
1523 stop);
1524 fails += 1;
1525 }
1526
1527 if !self.verify_trailers(&flash, 0, BOOT_MAGIC_GOOD,
1528 BOOT_FLAG_SET, BOOT_FLAG_SET) {
1529 warn!("Mismatched trailer for the primary slot after revert");
1530 fails += 1;
1531 }
1532 if !self.verify_trailers(&flash, 1, BOOT_MAGIC_UNSET,
1533 BOOT_FLAG_UNSET, BOOT_FLAG_UNSET) {
1534 warn!("Mismatched trailer for the secondary slot after revert");
1535 fails += 1;
1536 }
1537
1538 if !c::boot_go(&mut flash, &self.areadesc, None, None, false).success() {
1539 warn!("Should have finished 3rd boot");
1540 fails += 1;
1541 }
1542
1543 if !self.verify_images(&flash, 0, 0) {
1544 warn!("Image in the primary slot is invalid on 1st boot after revert");
1545 fails += 1;
1546 }
1547 if !self.verify_images(&flash, 1, 1) {
1548 warn!("Image in the secondary slot is invalid on 1st boot after revert");
1549 fails += 1;
1550 }
1551
1552 fails > 0
1553 }
1554
1555
try_random_fails(&self, total_ops: i32, count: usize) -> (SimMultiFlash, Vec<i32>)1556 fn try_random_fails(&self, total_ops: i32, count: usize) -> (SimMultiFlash, Vec<i32>) {
1557 let mut flash = self.flash.clone();
1558
1559 self.mark_permanent_upgrades(&mut flash, 1);
1560
1561 let mut rng = rand::thread_rng();
1562 let mut resets = vec![0i32; count];
1563 let mut remaining_ops = total_ops;
1564 for reset in &mut resets {
1565 let reset_counter = rng.gen_range(1 ..= remaining_ops / 2);
1566 let mut counter = reset_counter;
1567 match c::boot_go(&mut flash, &self.areadesc, Some(&mut counter),
1568 None, false) {
1569 x if x.interrupted() => (),
1570 x => panic!("Unknown return: {:?}", x),
1571 }
1572 remaining_ops -= reset_counter;
1573 *reset = reset_counter;
1574 }
1575
1576 match c::boot_go(&mut flash, &self.areadesc, None, None, false) {
1577 x if x.interrupted() => panic!("Should not be have been interrupted!"),
1578 x if x.success() => (),
1579 x => panic!("Unknown return: {:?}", x),
1580 }
1581
1582 (flash, resets)
1583 }
1584
1585 /// Verify the image in the given flash device, the specified slot
1586 /// against the expected image.
verify_images(&self, flash: &SimMultiFlash, slot: usize, against: usize) -> bool1587 fn verify_images(&self, flash: &SimMultiFlash, slot: usize, against: usize) -> bool {
1588 self.images.iter().all(|image| {
1589 verify_image(flash, &image.slots[slot],
1590 match against {
1591 0 => &image.primaries,
1592 1 => &image.upgrades,
1593 _ => panic!("Invalid 'against'")
1594 })
1595 })
1596 }
1597
1598 /// Verify the images, according to the dependency test.
verify_dep_images(&self, flash: &SimMultiFlash, deps: &DepTest) -> bool1599 fn verify_dep_images(&self, flash: &SimMultiFlash, deps: &DepTest) -> bool {
1600 for (image_num, (image, upgrade)) in self.images.iter().zip(deps.upgrades.iter()).enumerate() {
1601 info!("Upgrade: slot:{}, {:?}", image_num, upgrade);
1602 if !verify_image(flash, &image.slots[0],
1603 match upgrade {
1604 UpgradeInfo::Upgraded => &image.upgrades,
1605 UpgradeInfo::Held => &image.primaries,
1606 }) {
1607 error!("Failed to upgrade properly: image: {}, upgrade: {:?}", image_num, upgrade);
1608 return true;
1609 }
1610 }
1611
1612 false
1613 }
1614
1615 /// Verify that at least one of the trailers of the images have the
1616 /// specified values.
verify_trailers_loose(&self, flash: &SimMultiFlash, slot: usize, magic: Option<u8>, image_ok: Option<u8>, copy_done: Option<u8>) -> bool1617 fn verify_trailers_loose(&self, flash: &SimMultiFlash, slot: usize,
1618 magic: Option<u8>, image_ok: Option<u8>,
1619 copy_done: Option<u8>) -> bool {
1620 self.images.iter().any(|image| {
1621 verify_trailer(flash, &image.slots[slot],
1622 magic, image_ok, copy_done)
1623 })
1624 }
1625
1626 /// Verify that the trailers of the images have the specified
1627 /// values.
verify_trailers(&self, flash: &SimMultiFlash, slot: usize, magic: Option<u8>, image_ok: Option<u8>, copy_done: Option<u8>) -> bool1628 fn verify_trailers(&self, flash: &SimMultiFlash, slot: usize,
1629 magic: Option<u8>, image_ok: Option<u8>,
1630 copy_done: Option<u8>) -> bool {
1631 self.images.iter().all(|image| {
1632 verify_trailer(flash, &image.slots[slot],
1633 magic, image_ok, copy_done)
1634 })
1635 }
1636
1637 /// Mark each of the images for permanent upgrade.
mark_permanent_upgrades(&self, flash: &mut SimMultiFlash, slot: usize)1638 fn mark_permanent_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
1639 for image in &self.images {
1640 mark_permanent_upgrade(flash, &image.slots[slot]);
1641 }
1642 }
1643
1644 /// Mark each of the images for permanent upgrade.
mark_upgrades(&self, flash: &mut SimMultiFlash, slot: usize)1645 fn mark_upgrades(&self, flash: &mut SimMultiFlash, slot: usize) {
1646 for image in &self.images {
1647 mark_upgrade(flash, &image.slots[slot]);
1648 }
1649 }
1650
1651 /// Dump out the flash image(s) to one or more files for debugging
1652 /// purposes. The names will be written as either "{prefix}.mcubin" or
1653 /// "{prefix}-001.mcubin" depending on how many images there are.
debug_dump(&self, prefix: &str)1654 pub fn debug_dump(&self, prefix: &str) {
1655 for (id, fdev) in &self.flash {
1656 let name = if self.flash.len() == 1 {
1657 format!("{}.mcubin", prefix)
1658 } else {
1659 format!("{}-{:>0}.mcubin", prefix, id)
1660 };
1661 fdev.write_file(&name).unwrap();
1662 }
1663 }
1664 }
1665
1666 impl RamData {
1667 // TODO: This is not correct. The second slot of each image should be at the same address as
1668 // the primary.
new(slots: &[[SlotInfo; 2]]) -> RamData1669 fn new(slots: &[[SlotInfo; 2]]) -> RamData {
1670 let mut addr = RAM_LOAD_ADDR;
1671 let mut places = BTreeMap::new();
1672 // println!("Setup:-------------");
1673 for imgs in slots {
1674 for si in imgs {
1675 // println!("Setup: si: {:?}", si);
1676 let offset = addr;
1677 let size = si.len as u32;
1678 places.insert(SlotKey {
1679 dev_id: si.dev_id,
1680 base_off: si.base_off,
1681 }, SlotPlace { offset, size });
1682 // println!(" load: offset: {}, size: {}", offset, size);
1683 }
1684 addr += imgs[0].len as u32;
1685 }
1686 RamData {
1687 places,
1688 total: addr,
1689 }
1690 }
1691
1692 /// Lookup the ram data associated with a given flash partition. We just panic if not present,
1693 /// because all slots used should be in the map.
lookup(&self, slot: &SlotInfo) -> &SlotPlace1694 fn lookup(&self, slot: &SlotInfo) -> &SlotPlace {
1695 self.places.get(&SlotKey{dev_id: slot.dev_id, base_off: slot.base_off})
1696 .expect("RamData should contain all slots")
1697 }
1698 }
1699
1700 /// Show the flash layout.
1701 #[allow(dead_code)]
show_flash(flash: &dyn Flash)1702 fn show_flash(flash: &dyn Flash) {
1703 println!("---- Flash configuration ----");
1704 for sector in flash.sector_iter() {
1705 println!(" {:3}: 0x{:08x}, 0x{:08x}",
1706 sector.num, sector.base, sector.size);
1707 }
1708 println!();
1709 }
1710
1711 #[derive(Debug)]
1712 enum ImageSize {
1713 /// Make the image the specified given size.
1714 Given(usize),
1715 /// Make the image as large as it can be for the partition/device.
1716 Largest,
1717 /// Make the image quite larger than it can be for the partition/device/
1718 Oversized,
1719 }
1720
1721 #[cfg(not(feature = "max-align-32"))]
tralier_estimation(dev: &dyn Flash) -> usize1722 fn tralier_estimation(dev: &dyn Flash) -> usize {
1723 c::boot_trailer_sz(dev.align() as u32) as usize
1724 }
1725
1726 #[cfg(feature = "max-align-32")]
tralier_estimation(dev: &dyn Flash) -> usize1727 fn tralier_estimation(dev: &dyn Flash) -> usize {
1728
1729 let sector_size = dev.sector_iter().next().unwrap().size as u32;
1730
1731 align_up(c::boot_trailer_sz(dev.align() as u32), sector_size) as usize
1732 }
1733
image_largest_trailer(dev: &dyn Flash) -> usize1734 fn image_largest_trailer(dev: &dyn Flash) -> usize {
1735 // Using the header size we know, the trailer size, and the slot size, we can compute
1736 // the largest image possible.
1737 let trailer = if Caps::OverwriteUpgrade.present() {
1738 // This computation is incorrect, and we need to figure out the correct size.
1739 // c::boot_status_sz(dev.align() as u32) as usize
1740 16 + 4 * dev.align()
1741 } else if Caps::SwapUsingMove.present() {
1742 let sector_size = dev.sector_iter().next().unwrap().size as u32;
1743 align_up(c::boot_trailer_sz(dev.align() as u32), sector_size) as usize
1744 } else if Caps::SwapUsingScratch.present() {
1745 tralier_estimation(dev)
1746 } else {
1747 panic!("The maximum image size can't be calculated.")
1748 };
1749
1750 trailer
1751 }
1752
1753 /// Install a "program" into the given image. This fakes the image header, or at least all of the
1754 /// fields used by the given code. Returns a copy of the image that was written.
install_image(flash: &mut SimMultiFlash, slot: &SlotInfo, len: ImageSize, ram: &RamData, deps: &dyn Depender, img_manipulation: ImageManipulation, security_counter:Option<u32>) -> ImageData1755 fn install_image(flash: &mut SimMultiFlash, slot: &SlotInfo, len: ImageSize,
1756 ram: &RamData,
1757 deps: &dyn Depender, img_manipulation: ImageManipulation, security_counter:Option<u32>) -> ImageData {
1758 let offset = slot.base_off;
1759 let slot_len = slot.len;
1760 let dev_id = slot.dev_id;
1761 let dev = flash.get_mut(&dev_id).unwrap();
1762
1763 let mut tlv: Box<dyn ManifestGen> = Box::new(make_tlv());
1764 if img_manipulation == ImageManipulation::IgnoreRamLoadFlag {
1765 tlv.set_ignore_ram_load_flag();
1766 }
1767
1768 tlv.set_security_counter(security_counter);
1769
1770
1771 // Add the dependencies early to the tlv.
1772 for dep in deps.my_deps(offset, slot.index) {
1773 tlv.add_dependency(deps.other_id(), &dep);
1774 }
1775
1776 const HDR_SIZE: usize = 32;
1777 let place = ram.lookup(&slot);
1778 let load_addr = if Caps::RamLoad.present() {
1779 match img_manipulation {
1780 ImageManipulation::WrongOffset => u32::MAX,
1781 ImageManipulation::OverlapImages(true) => RAM_LOAD_ADDR,
1782 ImageManipulation::OverlapImages(false) => place.offset - 1,
1783 _ => place.offset
1784 }
1785 } else {
1786 0
1787 };
1788
1789 let len = match len {
1790 ImageSize::Given(size) => size,
1791 ImageSize::Largest => {
1792 let trailer = image_largest_trailer(dev);
1793 let tlv_len = tlv.estimate_size();
1794 info!("slot: 0x{:x}, HDR: 0x{:x}, trailer: 0x{:x}",
1795 slot_len, HDR_SIZE, trailer);
1796 slot_len - HDR_SIZE - trailer - tlv_len
1797 },
1798 ImageSize::Oversized => {
1799 let trailer = image_largest_trailer(dev);
1800 let tlv_len = tlv.estimate_size();
1801 info!("slot: 0x{:x}, HDR: 0x{:x}, trailer: 0x{:x}",
1802 slot_len, HDR_SIZE, trailer);
1803 // the overflow size is rougly estimated to work for all
1804 // configurations. It might be precise if tlv_len will be maked precise.
1805 slot_len - HDR_SIZE - trailer - tlv_len + dev.align()*4
1806 }
1807
1808 };
1809
1810 // Generate a boot header. Note that the size doesn't include the header.
1811 let header = ImageHeader {
1812 magic: tlv.get_magic(),
1813 load_addr,
1814 hdr_size: HDR_SIZE as u16,
1815 protect_tlv_size: tlv.protect_size(),
1816 img_size: len as u32,
1817 flags: tlv.get_flags(),
1818 ver: deps.my_version(offset, slot.index),
1819 _pad2: 0,
1820 };
1821
1822 let mut b_header = [0; HDR_SIZE];
1823 b_header[..32].clone_from_slice(header.as_raw());
1824 assert_eq!(b_header.len(), HDR_SIZE);
1825
1826 tlv.add_bytes(&b_header);
1827
1828 // The core of the image itself is just pseudorandom data.
1829 let mut b_img = vec![0; len];
1830 splat(&mut b_img, offset);
1831
1832 // Add some information at the start of the payload to make it easier
1833 // to see what it is. This will fail if the image itself is too small.
1834 {
1835 let mut wr = Cursor::new(&mut b_img);
1836 writeln!(&mut wr, "offset: {:#x}, dev_id: {:#x}, slot_info: {:?}",
1837 offset, dev_id, slot).unwrap();
1838 writeln!(&mut wr, "version: {:?}", deps.my_version(offset, slot.index)).unwrap();
1839 }
1840
1841 // TLV signatures work over plain image
1842 tlv.add_bytes(&b_img);
1843
1844 // Generate encrypted images
1845 let flag = TlvFlags::ENCRYPTED_AES128 as u32 | TlvFlags::ENCRYPTED_AES256 as u32;
1846 let is_encrypted = (tlv.get_flags() & flag) != 0;
1847 let mut b_encimg = vec![];
1848 if is_encrypted {
1849 let flag = TlvFlags::ENCRYPTED_AES256 as u32;
1850 let aes256 = (tlv.get_flags() & flag) == flag;
1851 tlv.generate_enc_key();
1852 let enc_key = tlv.get_enc_key();
1853 let nonce = GenericArray::from_slice(&[0; 16]);
1854 b_encimg = b_img.clone();
1855 if aes256 {
1856 let key: &GenericArray<u8, U32> = GenericArray::from_slice(enc_key.as_slice());
1857 let block = Aes256::new(&key);
1858 let mut cipher = Aes256Ctr::from_block_cipher(block, &nonce);
1859 cipher.apply_keystream(&mut b_encimg);
1860 } else {
1861 let key: &GenericArray<u8, U16> = GenericArray::from_slice(enc_key.as_slice());
1862 let block = Aes128::new(&key);
1863 let mut cipher = Aes128Ctr::from_block_cipher(block, &nonce);
1864 cipher.apply_keystream(&mut b_encimg);
1865 }
1866 }
1867
1868 // Build the TLV itself.
1869 if img_manipulation == ImageManipulation::BadSignature {
1870 tlv.corrupt_sig();
1871 }
1872 let mut b_tlv = tlv.make_tlv();
1873
1874 let mut buf = vec![];
1875 buf.append(&mut b_header.to_vec());
1876 buf.append(&mut b_img);
1877 buf.append(&mut b_tlv.clone());
1878
1879 // Pad the buffer to a multiple of the flash alignment.
1880 let align = dev.align();
1881 let image_sz = buf.len();
1882 while buf.len() % align != 0 {
1883 buf.push(dev.erased_val());
1884 }
1885
1886 let mut encbuf = vec![];
1887 if is_encrypted {
1888 encbuf.append(&mut b_header.to_vec());
1889 encbuf.append(&mut b_encimg);
1890 encbuf.append(&mut b_tlv);
1891
1892 while encbuf.len() % align != 0 {
1893 encbuf.push(dev.erased_val());
1894 }
1895 }
1896
1897 // Since images are always non-encrypted in the primary slot, we first write
1898 // an encrypted image, re-read to use for verification, erase + flash
1899 // un-encrypted. In the secondary slot the image is written un-encrypted,
1900 // and if encryption is requested, it follows an erase + flash encrypted.
1901 //
1902 // In the case of ram-load when encryption is enabled both slots have to
1903 // be encrypted so in the event when the image is in the primary slot
1904 // the verification will fail as the image is not encrypted.
1905 if slot.index == 0 && !Caps::RamLoad.present() {
1906 let enc_copy: Option<Vec<u8>>;
1907
1908 if is_encrypted {
1909 dev.write(offset, &encbuf).unwrap();
1910
1911 let mut enc = vec![0u8; encbuf.len()];
1912 dev.read(offset, &mut enc).unwrap();
1913
1914 enc_copy = Some(enc);
1915
1916 dev.erase(offset, slot_len).unwrap();
1917 } else {
1918 enc_copy = None;
1919 }
1920
1921 dev.write(offset, &buf).unwrap();
1922
1923 let mut copy = vec![0u8; buf.len()];
1924 dev.read(offset, &mut copy).unwrap();
1925
1926 ImageData {
1927 size: image_sz,
1928 plain: copy,
1929 cipher: enc_copy,
1930 }
1931 } else {
1932
1933 dev.write(offset, &buf).unwrap();
1934
1935 let mut copy = vec![0u8; buf.len()];
1936 dev.read(offset, &mut copy).unwrap();
1937
1938 let enc_copy: Option<Vec<u8>>;
1939
1940 if is_encrypted {
1941 dev.erase(offset, slot_len).unwrap();
1942
1943 dev.write(offset, &encbuf).unwrap();
1944
1945 let mut enc = vec![0u8; encbuf.len()];
1946 dev.read(offset, &mut enc).unwrap();
1947
1948 enc_copy = Some(enc);
1949 } else {
1950 enc_copy = None;
1951 }
1952
1953 ImageData {
1954 size: image_sz,
1955 plain: copy,
1956 cipher: enc_copy,
1957 }
1958 }
1959 }
1960
1961 /// Install no image. This is used when no upgrade happens.
install_no_image() -> ImageData1962 fn install_no_image() -> ImageData {
1963 ImageData {
1964 size: 0,
1965 plain: vec![],
1966 cipher: None,
1967 }
1968 }
1969
1970 /// Construct a TLV generator based on how MCUboot is currently configured. The returned
1971 /// ManifestGen will generate the appropriate entries based on this configuration.
make_tlv() -> TlvGen1972 fn make_tlv() -> TlvGen {
1973 let aes_key_size = if Caps::Aes256.present() { 256 } else { 128 };
1974
1975 if Caps::EncKw.present() {
1976 if Caps::RSA2048.present() {
1977 TlvGen::new_rsa_kw(aes_key_size)
1978 } else if Caps::EcdsaP256.present() {
1979 TlvGen::new_ecdsa_kw(aes_key_size)
1980 } else {
1981 TlvGen::new_enc_kw(aes_key_size)
1982 }
1983 } else if Caps::EncRsa.present() {
1984 if Caps::RSA2048.present() {
1985 TlvGen::new_sig_enc_rsa(aes_key_size)
1986 } else {
1987 TlvGen::new_enc_rsa(aes_key_size)
1988 }
1989 } else if Caps::EncEc256.present() {
1990 if Caps::EcdsaP256.present() {
1991 TlvGen::new_ecdsa_ecies_p256(aes_key_size)
1992 } else {
1993 TlvGen::new_ecies_p256(aes_key_size)
1994 }
1995 } else if Caps::EncX25519.present() {
1996 if Caps::Ed25519.present() {
1997 TlvGen::new_ed25519_ecies_x25519(aes_key_size)
1998 } else {
1999 TlvGen::new_ecies_x25519(aes_key_size)
2000 }
2001 } else {
2002 // The non-encrypted configuration.
2003 if Caps::RSA2048.present() {
2004 TlvGen::new_rsa_pss()
2005 } else if Caps::RSA3072.present() {
2006 TlvGen::new_rsa3072_pss()
2007 } else if Caps::EcdsaP256.present() || Caps::EcdsaP384.present() {
2008 TlvGen::new_ecdsa()
2009 } else if Caps::Ed25519.present() {
2010 TlvGen::new_ed25519()
2011 } else if Caps::HwRollbackProtection.present() {
2012 TlvGen::new_sec_cnt()
2013 } else {
2014 TlvGen::new_hash_only()
2015 }
2016 }
2017 }
2018
2019 impl ImageData {
2020 /// Find the image contents for the given slot. This assumes that slot 0
2021 /// is unencrypted, and slot 1 is encrypted.
find(&self, slot: usize) -> &Vec<u8>2022 fn find(&self, slot: usize) -> &Vec<u8> {
2023 let encrypted = Caps::EncRsa.present() || Caps::EncKw.present() ||
2024 Caps::EncEc256.present() || Caps::EncX25519.present();
2025 match (encrypted, slot) {
2026 (false, _) => &self.plain,
2027 (true, 0) => &self.plain,
2028 (true, 1) => self.cipher.as_ref().expect("Invalid image"),
2029 _ => panic!("Invalid slot requested"),
2030 }
2031 }
2032
size(&self) -> usize2033 fn size(&self) -> usize {
2034 self.size
2035 }
2036 }
2037
2038 /// Verify that given image is present in the flash at the given offset.
verify_image(flash: &SimMultiFlash, slot: &SlotInfo, images: &ImageData) -> bool2039 fn verify_image(flash: &SimMultiFlash, slot: &SlotInfo, images: &ImageData) -> bool {
2040 let image = images.find(slot.index);
2041 let buf = image.as_slice();
2042 let dev_id = slot.dev_id;
2043
2044 let mut copy = vec![0u8; buf.len()];
2045 let offset = slot.base_off;
2046 let dev = flash.get(&dev_id).unwrap();
2047 dev.read(offset, &mut copy).unwrap();
2048
2049 if buf != ©[..] {
2050 for i in 0 .. buf.len() {
2051 if buf[i] != copy[i] {
2052 info!("First failure for slot{} at {:#x} ({:#x} within) {:#x}!={:#x}",
2053 slot.index, offset + i, i, buf[i], copy[i]);
2054 break;
2055 }
2056 }
2057 false
2058 } else {
2059 true
2060 }
2061 }
2062
verify_trailer(flash: &SimMultiFlash, slot: &SlotInfo, magic: Option<u8>, image_ok: Option<u8>, copy_done: Option<u8>) -> bool2063 fn verify_trailer(flash: &SimMultiFlash, slot: &SlotInfo,
2064 magic: Option<u8>, image_ok: Option<u8>,
2065 copy_done: Option<u8>) -> bool {
2066 if Caps::OverwriteUpgrade.present() {
2067 return true;
2068 }
2069
2070 let offset = slot.trailer_off + c::boot_max_align();
2071 let dev_id = slot.dev_id;
2072 let mut copy = vec![0u8; c::boot_magic_sz() + c::boot_max_align() * 3];
2073 let mut failed = false;
2074
2075 let dev = flash.get(&dev_id).unwrap();
2076 let erased_val = dev.erased_val();
2077 dev.read(offset, &mut copy).unwrap();
2078
2079 failed |= match magic {
2080 Some(v) => {
2081 let magic_off = (c::boot_max_align() * 3) + (c::boot_magic_sz() - MAGIC.len());
2082 if v == 1 && ©[magic_off..] != MAGIC {
2083 warn!("\"magic\" mismatch at {:#x}", offset);
2084 true
2085 } else if v == 3 {
2086 let expected = [erased_val; 16];
2087 if copy[magic_off..] != expected {
2088 warn!("\"magic\" mismatch at {:#x}", offset);
2089 true
2090 } else {
2091 false
2092 }
2093 } else {
2094 false
2095 }
2096 },
2097 None => false,
2098 };
2099
2100 failed |= match image_ok {
2101 Some(v) => {
2102 let image_ok_off = c::boot_max_align() * 2;
2103 if (v == 1 && copy[image_ok_off] != v) || (v == 3 && copy[image_ok_off] != erased_val) {
2104 warn!("\"image_ok\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[image_ok_off]);
2105 true
2106 } else {
2107 false
2108 }
2109 },
2110 None => false,
2111 };
2112
2113 failed |= match copy_done {
2114 Some(v) => {
2115 let copy_done_off = c::boot_max_align();
2116 if (v == 1 && copy[copy_done_off] != v) || (v == 3 && copy[copy_done_off] != erased_val) {
2117 warn!("\"copy_done\" mismatch at {:#x} v={} val={:#x}", offset, v, copy[copy_done_off]);
2118 true
2119 } else {
2120 false
2121 }
2122 },
2123 None => false,
2124 };
2125
2126 !failed
2127 }
2128
2129 /// Install a partition table. This is a simplified partition table that
2130 /// we write at the beginning of flash so make it easier for external tools
2131 /// to analyze these images.
install_ptable(flash: &mut SimMultiFlash, areadesc: &AreaDesc)2132 fn install_ptable(flash: &mut SimMultiFlash, areadesc: &AreaDesc) {
2133 let ids: HashSet<u8> = areadesc.iter_areas().map(|area| area.device_id).collect();
2134 for &id in &ids {
2135 // If there are any partitions in this device that start at 0, and
2136 // aren't marked as the BootLoader partition, avoid adding the
2137 // partition table. This makes it harder to view the image, but
2138 // avoids messing up images already written.
2139 let skip_ptable = areadesc
2140 .iter_areas()
2141 .any(|area| {
2142 area.device_id == id &&
2143 area.off == 0 &&
2144 area.flash_id != FlashId::BootLoader
2145 });
2146 if skip_ptable {
2147 if log_enabled!(Info) {
2148 let special: Vec<FlashId> = areadesc.iter_areas()
2149 .filter(|area| area.device_id == id && area.off == 0)
2150 .map(|area| area.flash_id)
2151 .collect();
2152 info!("Skipping partition table: {:?}", special);
2153 }
2154 break;
2155 }
2156
2157 let mut buf: Vec<u8> = vec![];
2158 write!(&mut buf, "mcuboot\0").unwrap();
2159
2160 // Iterate through all of the partitions in that device, and encode
2161 // into the table.
2162 let count = areadesc.iter_areas().filter(|area| area.device_id == id).count();
2163 buf.write_u32::<LittleEndian>(count as u32).unwrap();
2164
2165 for area in areadesc.iter_areas().filter(|area| area.device_id == id) {
2166 buf.write_u32::<LittleEndian>(area.flash_id as u32).unwrap();
2167 buf.write_u32::<LittleEndian>(area.off).unwrap();
2168 buf.write_u32::<LittleEndian>(area.size).unwrap();
2169 buf.write_u32::<LittleEndian>(0).unwrap();
2170 }
2171
2172 let dev = flash.get_mut(&id).unwrap();
2173
2174 // Pad to alignment.
2175 while buf.len() % dev.align() != 0 {
2176 buf.push(0);
2177 }
2178
2179 dev.write(0, &buf).unwrap();
2180 }
2181 }
2182
2183 /// The image header
2184 #[repr(C)]
2185 #[derive(Debug)]
2186 pub struct ImageHeader {
2187 magic: u32,
2188 load_addr: u32,
2189 hdr_size: u16,
2190 protect_tlv_size: u16,
2191 img_size: u32,
2192 flags: u32,
2193 ver: ImageVersion,
2194 _pad2: u32,
2195 }
2196
2197 impl AsRaw for ImageHeader {}
2198
2199 #[repr(C)]
2200 #[derive(Clone, Debug)]
2201 pub struct ImageVersion {
2202 pub major: u8,
2203 pub minor: u8,
2204 pub revision: u16,
2205 pub build_num: u32,
2206 }
2207
2208 #[derive(Clone, Debug)]
2209 pub struct SlotInfo {
2210 pub base_off: usize,
2211 pub trailer_off: usize,
2212 pub len: usize,
2213 // Which slot within this device.
2214 pub index: usize,
2215 pub dev_id: u8,
2216 }
2217
2218 #[cfg(not(feature = "max-align-32"))]
2219 const MAGIC: &[u8] = &[0x77, 0xc2, 0x95, 0xf3,
2220 0x60, 0xd2, 0xef, 0x7f,
2221 0x35, 0x52, 0x50, 0x0f,
2222 0x2c, 0xb6, 0x79, 0x80];
2223
2224 #[cfg(feature = "max-align-32")]
2225 const MAGIC: &[u8] = &[0x20, 0x00, 0x2d, 0xe1,
2226 0x5d, 0x29, 0x41, 0x0b,
2227 0x8d, 0x77, 0x67, 0x9c,
2228 0x11, 0x0f, 0x1f, 0x8a];
2229
2230 // Replicates defines found in bootutil.h
2231 const BOOT_MAGIC_GOOD: Option<u8> = Some(1);
2232 const BOOT_MAGIC_UNSET: Option<u8> = Some(3);
2233
2234 const BOOT_FLAG_SET: Option<u8> = Some(1);
2235 const BOOT_FLAG_UNSET: Option<u8> = Some(3);
2236
2237 /// Write out the magic so that the loader tries doing an upgrade.
mark_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo)2238 pub fn mark_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
2239 let dev = flash.get_mut(&slot.dev_id).unwrap();
2240 let align = dev.align();
2241 let offset = slot.trailer_off + c::boot_max_align() * 4;
2242 if offset % align != 0 || MAGIC.len() % align != 0 {
2243 // The write size is larger than the magic value. Fill a buffer
2244 // with the erased value, put the MAGIC in it, and write it in its
2245 // entirety.
2246 let mut buf = vec![dev.erased_val(); c::boot_max_align()];
2247 let magic_off = (offset % align) + (c::boot_magic_sz() - MAGIC.len());
2248 buf[magic_off..].copy_from_slice(MAGIC);
2249 dev.write(offset - (offset % align), &buf).unwrap();
2250 } else {
2251 dev.write(offset, MAGIC).unwrap();
2252 }
2253 }
2254
2255 /// Writes the image_ok flag which, guess what, tells the bootloader
2256 /// the this image is ok (not a test, and no revert is to be performed).
mark_permanent_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo)2257 fn mark_permanent_upgrade(flash: &mut SimMultiFlash, slot: &SlotInfo) {
2258 // Overwrite mode always is permanent, and only the magic is used in
2259 // the trailer. To avoid problems with large write sizes, don't try to
2260 // set anything in this case.
2261 if Caps::OverwriteUpgrade.present() {
2262 return;
2263 }
2264
2265 let dev = flash.get_mut(&slot.dev_id).unwrap();
2266 let align = dev.align();
2267 let mut ok = vec![dev.erased_val(); align];
2268 ok[0] = 1u8;
2269 let off = slot.trailer_off + c::boot_max_align() * 3;
2270 dev.write(off, &ok).unwrap();
2271 }
2272
2273 // Drop some pseudo-random gibberish onto the data.
splat(data: &mut [u8], seed: usize)2274 fn splat(data: &mut [u8], seed: usize) {
2275 let mut seed_block = [0u8; 32];
2276 let mut buf = Cursor::new(&mut seed_block[..]);
2277 buf.write_u32::<LittleEndian>(0x135782ea).unwrap();
2278 buf.write_u32::<LittleEndian>(0x92184728).unwrap();
2279 buf.write_u32::<LittleEndian>(data.len() as u32).unwrap();
2280 buf.write_u32::<LittleEndian>(seed as u32).unwrap();
2281 let mut rng: SmallRng = SeedableRng::from_seed(seed_block);
2282 rng.fill_bytes(data);
2283 }
2284
2285 /// Return a read-only view into the raw bytes of this object
2286 trait AsRaw : Sized {
as_raw(&self) -> &[u8]2287 fn as_raw(&self) -> &[u8] {
2288 unsafe { slice::from_raw_parts(self as *const _ as *const u8,
2289 mem::size_of::<Self>()) }
2290 }
2291 }
2292
2293 /// Determine whether it makes sense to test this configuration with a maximally-sized image.
2294 /// Returns an ImageSize representing the best size to test, possibly just with the given size.
maximal(size: usize) -> ImageSize2295 fn maximal(size: usize) -> ImageSize {
2296 if Caps::OverwriteUpgrade.present() ||
2297 Caps::SwapUsingMove.present()
2298 {
2299 ImageSize::Given(size)
2300 } else {
2301 ImageSize::Largest
2302 }
2303 }
2304
show_sizes()2305 pub fn show_sizes() {
2306 // This isn't panic safe.
2307 for min in &[1, 2, 4, 8] {
2308 let msize = c::boot_trailer_sz(*min);
2309 println!("{:2}: {} (0x{:x})", min, msize, msize);
2310 }
2311 }
2312
2313 #[cfg(not(feature = "max-align-32"))]
test_alignments() -> &'static [usize]2314 fn test_alignments() -> &'static [usize] {
2315 &[1, 2, 4, 8]
2316 }
2317
2318 #[cfg(feature = "max-align-32")]
test_alignments() -> &'static [usize]2319 fn test_alignments() -> &'static [usize] {
2320 &[32]
2321 }
2322
2323 /// For testing, some of the tests are quite slow. This will query for an
2324 /// environment variable `MCUBOOT_SKIP_SLOW_TESTS`, which can be set to avoid
2325 /// running these tests.
skip_slow_test() -> bool2326 fn skip_slow_test() -> bool {
2327 if let Ok(_) = std::env::var("MCUBOOT_SKIP_SLOW_TESTS") {
2328 true
2329 } else {
2330 false
2331 }
2332 }
2333