1 /*
2 * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
7 #include <bootutil/bootutil.h>
8 #include <bootutil/bootutil_log.h>
9 #include <bootutil/fault_injection_hardening.h>
10 #include <bootutil/image.h>
11
12 #include "bootloader_init.h"
13 #include "bootloader_utility.h"
14 #include "bootloader_random.h"
15 #include "bootloader_soc.h"
16
17 #include "esp_assert.h"
18
19 #ifdef CONFIG_MCUBOOT_SERIAL
20 #include "boot_serial/boot_serial.h"
21 #include "serial_adapter/serial_adapter.h"
22
23 const struct boot_uart_funcs boot_funcs = {
24 .read = console_read,
25 .write = console_write
26 };
27 #endif
28
29 #if defined(CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH) || defined(CONFIG_SECURE_BOOT)
30 #include "esp_efuse.h"
31 #endif
32 #ifdef CONFIG_SECURE_BOOT
33 #include "esp_secure_boot.h"
34 #endif
35 #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
36 #include "esp_flash_encrypt.h"
37 #endif
38
39 #include "esp_loader.h"
40 #include "os/os_malloc.h"
41
42 #define IMAGE_INDEX_0 0
43 #define IMAGE_INDEX_1 1
44
45 #define PRIMARY_SLOT 0
46 #define SECONDARY_SLOT 1
47
48 #ifdef CONFIG_SECURE_BOOT
49 extern esp_err_t check_and_generate_secure_boot_keys(void);
50 #endif
51
do_boot(struct boot_rsp * rsp)52 void do_boot(struct boot_rsp *rsp)
53 {
54 BOOT_LOG_INF("br_image_off = 0x%x", rsp->br_image_off);
55 BOOT_LOG_INF("ih_hdr_size = 0x%x", rsp->br_hdr->ih_hdr_size);
56 int slot = (rsp->br_image_off == CONFIG_ESP_IMAGE0_PRIMARY_START_ADDRESS) ? PRIMARY_SLOT : SECONDARY_SLOT;
57 start_cpu0_image(IMAGE_INDEX_0, slot, rsp->br_hdr->ih_hdr_size);
58 }
59
60 #ifdef CONFIG_ESP_MULTI_PROCESSOR_BOOT
read_image_header(uint32_t img_index,uint32_t slot,struct image_header * img_header)61 int read_image_header(uint32_t img_index, uint32_t slot, struct image_header *img_header)
62 {
63 const struct flash_area *fap;
64 int area_id;
65 int rc = 0;
66
67 area_id = flash_area_id_from_multi_image_slot(img_index, slot);
68 rc = flash_area_open(area_id, &fap);
69 if (rc != 0) {
70 rc = BOOT_EFLASH;
71 goto done;
72 }
73
74 if (flash_area_read(fap, 0, img_header, sizeof(struct image_header))) {
75 rc = BOOT_EFLASH;
76 goto done;
77 }
78
79 BOOT_LOG_INF("Image offset = 0x%x", fap->fa_off);
80 BOOT_LOG_INF("Image header size = 0x%x", img_header->ih_hdr_size);
81
82 done:
83 flash_area_close(fap);
84 return rc;
85 }
86
do_boot_appcpu(uint32_t img_index,uint32_t slot)87 void do_boot_appcpu(uint32_t img_index, uint32_t slot)
88 {
89 struct image_header img_header;
90
91 if (read_image_header(img_index, slot, &img_header) != 0) {
92 FIH_PANIC;
93 }
94
95 start_cpu1_image(img_index, slot, img_header.ih_hdr_size);
96 }
97 #endif
98
main()99 int main()
100 {
101 if (bootloader_init() != ESP_OK) {
102 FIH_PANIC;
103 }
104
105 /* Rough steps for a first boot when Secure Boot and/or Flash Encryption are still disabled on device:
106 * Secure Boot:
107 * 1) Calculate the SHA-256 hash digest of the public key and write to EFUSE.
108 * 2) Validate the application images and prepare the booting process.
109 * 3) Burn EFUSE to enable Secure Boot V2 (ABS_DONE_0).
110 * Flash Encryption:
111 * 4) Generate Flash Encryption key and write to EFUSE.
112 * 5) Encrypt flash in-place including bootloader, image primary/secondary slot and scratch.
113 * 6) Burn EFUSE to enable Flash Encryption.
114 * 7) Reset system to ensure Flash Encryption cache resets properly.
115 */
116
117 #ifdef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
118 BOOT_LOG_WRN("eFuse virtual mode is enabled. If Secure boot or Flash encryption is enabled then it does not provide any security. FOR TESTING ONLY!");
119 esp_efuse_init_virtual_mode_in_flash(CONFIG_EFUSE_VIRTUAL_OFFSET, CONFIG_EFUSE_VIRTUAL_SIZE);
120 #endif
121
122 #if defined(CONFIG_SECURE_BOOT) || defined(CONFIG_SECURE_FLASH_ENC_ENABLED)
123 esp_err_t err;
124 #endif
125
126 #ifdef CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
127 if (esp_secure_boot_enabled() ^ esp_flash_encrypt_initialized_once()) {
128 BOOT_LOG_ERR("Secure Boot and Flash Encryption cannot be enabled separately, only together (their keys go into one eFuse key block)");
129 FIH_PANIC;
130 }
131
132 if (!esp_secure_boot_enabled() || !esp_flash_encryption_enabled()) {
133 esp_efuse_batch_write_begin();
134 }
135 #endif // CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
136
137 #ifdef CONFIG_SECURE_BOOT
138 /* Steps 1 (see above for full description):
139 * 1) Compute digest of the public key.
140 */
141
142 BOOT_LOG_INF("enabling secure boot v2...");
143
144 bool sb_hw_enabled = esp_secure_boot_enabled();
145
146 if (sb_hw_enabled) {
147 BOOT_LOG_INF("secure boot v2 is already enabled, continuing..");
148 } else {
149 esp_efuse_batch_write_begin(); /* Batch all efuse writes at the end of this function */
150
151 err = check_and_generate_secure_boot_keys();
152 if (err != ESP_OK) {
153 esp_efuse_batch_write_cancel();
154 FIH_PANIC;
155 }
156 }
157 #endif
158
159 os_heap_init();
160
161 struct boot_rsp rsp;
162
163 FIH_DECLARE(fih_rc, FIH_FAILURE);
164
165 #ifdef CONFIG_MCUBOOT_SERIAL
166 boot_console_init();
167 if (boot_serial_detect_pin()) {
168 BOOT_LOG_INF("Enter the serial recovery mode");
169 boot_serial_start(&boot_funcs);
170 }
171 #endif
172
173 /* Step 2 (see above for full description):
174 * 2) MCUboot validates the application images and prepares the booting process.
175 */
176
177 /* MCUboot's boot_go validates and checks all images for update and returns
178 * the load information for booting the main image
179 */
180 FIH_CALL(boot_go, fih_rc, &rsp);
181 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
182 BOOT_LOG_ERR("Unable to find bootable image");
183 #ifdef CONFIG_SECURE_BOOT
184 esp_efuse_batch_write_cancel();
185 #endif
186 FIH_PANIC;
187 }
188
189 #ifdef CONFIG_SECURE_BOOT
190 /* Step 3 (see above for full description):
191 * 3) Burn EFUSE to enable Secure Boot V2.
192 */
193
194 if (!sb_hw_enabled) {
195 BOOT_LOG_INF("blowing secure boot efuse...");
196 err = esp_secure_boot_enable_secure_features();
197 if (err != ESP_OK) {
198 esp_efuse_batch_write_cancel();
199 FIH_PANIC;
200 }
201
202 err = esp_efuse_batch_write_commit();
203 if (err != ESP_OK) {
204 BOOT_LOG_ERR("Error programming security eFuses (err=0x%x).", err);
205 FIH_PANIC;
206 }
207
208 #ifdef CONFIG_SECURE_BOOT_ENABLE_AGGRESSIVE_KEY_REVOKE
209 assert(esp_efuse_read_field_bit(ESP_EFUSE_SECURE_BOOT_AGGRESSIVE_REVOKE));
210 #endif
211
212 #ifndef CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
213 assert(esp_secure_boot_enabled());
214 BOOT_LOG_INF("Secure boot permanently enabled");
215 #endif
216 }
217 #endif
218
219 #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
220 /* Step 4, 5 & 6 (see above for full description):
221 * 4) Generate Flash Encryption key and write to EFUSE.
222 * 5) Encrypt flash in-place including bootloader, image primary/secondary slot and scratch.
223 * 6) Burn EFUSE to enable flash encryption
224 */
225 BOOT_LOG_INF("Checking flash encryption...");
226 bool flash_encryption_enabled = esp_flash_encrypt_state();
227 if (!flash_encryption_enabled) {
228 #ifdef CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
229 BOOT_LOG_ERR("flash encryption is not enabled, and SECURE_FLASH_REQUIRE_ALREADY_ENABLED is set, refusing to boot.");
230 FIH_PANIC;
231 #endif // CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
232
233 if (esp_flash_encrypt_is_write_protected(true)) {
234 FIH_PANIC;
235 }
236
237 err = esp_flash_encrypt_init();
238 if (err != ESP_OK) {
239 BOOT_LOG_ERR("Initialization of Flash Encryption key failed (%d)", err);
240 FIH_PANIC;
241 }
242 }
243
244 if (!flash_encryption_enabled) {
245 err = esp_flash_encrypt_contents();
246 if (err != ESP_OK) {
247 BOOT_LOG_ERR("Encryption flash contents failed (%d)", err);
248 FIH_PANIC;
249 }
250
251 err = esp_flash_encrypt_enable();
252 if (err != ESP_OK) {
253 BOOT_LOG_ERR("Enabling of Flash encryption failed (%d)", err);
254 FIH_PANIC;
255 }
256 }
257
258 #ifdef CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
259 if (!esp_secure_boot_enabled() || !flash_encryption_enabled) {
260 err = esp_efuse_batch_write_commit();
261 if (err != ESP_OK) {
262 BOOT_LOG_ERR("Error programming eFuses (err=0x%x).", err);
263 FIH_PANIC;
264 }
265 assert(esp_secure_boot_enabled());
266 BOOT_LOG_INF("Secure boot permanently enabled");
267 }
268 #endif // CONFIG_SECURE_BOOT_FLASH_ENC_KEYS_BURN_TOGETHER
269
270 /* Step 7 (see above for full description):
271 * 7) Reset system to ensure flash encryption cache resets properly.
272 */
273 if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
274 BOOT_LOG_INF("Resetting with flash encryption enabled...");
275 bootloader_reset();
276 }
277 #endif
278
279 BOOT_LOG_INF("Disabling RNG early entropy source...");
280 bootloader_random_disable();
281
282 /* Disable glitch reset after all the security checks are completed.
283 * Glitch detection can be falsely triggered by EMI interference (high RF TX power, etc)
284 * and to avoid such false alarms, disable it.
285 */
286 bootloader_ana_clock_glitch_reset_config(false);
287
288 #ifdef CONFIG_ESP_MULTI_PROCESSOR_BOOT
289 /* Multi image independent boot
290 * Boot on the second processor happens before the image0 boot
291 */
292 do_boot_appcpu(IMAGE_INDEX_1, PRIMARY_SLOT);
293 #endif
294
295 do_boot(&rsp);
296
297 while(1);
298 }
299