1 /*
2 * SPDX-License-Identifier: Apache-2.0
3 *
4 * Copyright (c) 2016-2020 Linaro LTD
5 * Copyright (c) 2016-2019 JUUL Labs
6 * Copyright (c) 2019-2021 Arm Limited
7 *
8 * Original license:
9 *
10 * Licensed to the Apache Software Foundation (ASF) under one
11 * or more contributor license agreements. See the NOTICE file
12 * distributed with this work for additional information
13 * regarding copyright ownership. The ASF licenses this file
14 * to you under the Apache License, Version 2.0 (the
15 * "License"); you may not use this file except in compliance
16 * with the License. You may obtain a copy of the License at
17 *
18 * http://www.apache.org/licenses/LICENSE-2.0
19 *
20 * Unless required by applicable law or agreed to in writing,
21 * software distributed under the License is distributed on an
22 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
23 * KIND, either express or implied. See the License for the
24 * specific language governing permissions and limitations
25 * under the License.
26 */
27
28 /**
29 * This file provides an interface to the boot loader. Functions defined in
30 * this file should only be called while the boot loader is running.
31 */
32
33 #include <stddef.h>
34 #include <stdbool.h>
35 #include <inttypes.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include "bootutil/bootutil.h"
39 #include "bootutil/bootutil_public.h"
40 #include "bootutil/image.h"
41 #include "bootutil_priv.h"
42 #include "swap_priv.h"
43 #include "bootutil/bootutil_log.h"
44 #include "bootutil/security_cnt.h"
45 #include "bootutil/boot_record.h"
46 #include "bootutil/fault_injection_hardening.h"
47 #include "bootutil/ramload.h"
48 #include "bootutil/boot_hooks.h"
49 #include "bootutil/mcuboot_status.h"
50
51 #ifdef MCUBOOT_ENC_IMAGES
52 #include "bootutil/enc_key.h"
53 #endif
54
55 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
56 #include <os/os_malloc.h>
57 #endif
58
59 #include "mcuboot_config/mcuboot_config.h"
60
61 BOOT_LOG_MODULE_DECLARE(mcuboot);
62
63 static struct boot_loader_state boot_data;
64
65 #if (BOOT_IMAGE_NUMBER > 1)
66 #define IMAGES_ITER(x) for ((x) = 0; (x) < BOOT_IMAGE_NUMBER; ++(x))
67 #else
68 #define IMAGES_ITER(x)
69 #endif
70
71 /*
72 * This macro allows some control on the allocation of local variables.
73 * When running natively on a target, we don't want to allocated huge
74 * variables on the stack, so make them global instead. For the simulator
75 * we want to run as many threads as there are tests, and it's safer
76 * to just make those variables stack allocated.
77 */
78 #if !defined(__BOOTSIM__)
79 #define TARGET_STATIC static
80 #else
81 #define TARGET_STATIC
82 #endif
83
84 #if BOOT_MAX_ALIGN > 1024
85 #define BUF_SZ BOOT_MAX_ALIGN
86 #else
87 #define BUF_SZ 1024
88 #endif
89
90 static int
boot_read_image_headers(struct boot_loader_state * state,bool require_all,struct boot_status * bs)91 boot_read_image_headers(struct boot_loader_state *state, bool require_all,
92 struct boot_status *bs)
93 {
94 int rc;
95 int i;
96
97 for (i = 0; i < BOOT_NUM_SLOTS; i++) {
98 rc = BOOT_HOOK_CALL(boot_read_image_header_hook, BOOT_HOOK_REGULAR,
99 BOOT_CURR_IMG(state), i, boot_img_hdr(state, i));
100 if (rc == BOOT_HOOK_REGULAR)
101 {
102 rc = boot_read_image_header(state, i, boot_img_hdr(state, i), bs);
103 }
104 if (rc != 0) {
105 /* If `require_all` is set, fail on any single fail, otherwise
106 * if at least the first slot's header was read successfully,
107 * then the boot loader can attempt a boot.
108 *
109 * Failure to read any headers is a fatal error.
110 */
111 if (i > 0 && !require_all) {
112 return 0;
113 } else {
114 return rc;
115 }
116 }
117 }
118
119 return 0;
120 }
121
122 /**
123 * Saves boot status and shared data for current image.
124 *
125 * @param state Boot loader status information.
126 * @param active_slot Index of the slot will be loaded for current image.
127 *
128 * @return 0 on success; nonzero on failure.
129 */
130 static int
boot_add_shared_data(struct boot_loader_state * state,uint32_t active_slot)131 boot_add_shared_data(struct boot_loader_state *state,
132 uint32_t active_slot)
133 {
134 #if defined(MCUBOOT_MEASURED_BOOT) || defined(MCUBOOT_DATA_SHARING)
135 int rc;
136
137 #ifdef MCUBOOT_MEASURED_BOOT
138 rc = boot_save_boot_status(BOOT_CURR_IMG(state),
139 boot_img_hdr(state, active_slot),
140 BOOT_IMG_AREA(state, active_slot));
141 if (rc != 0) {
142 BOOT_LOG_ERR("Failed to add image data to shared area");
143 return rc;
144 }
145 #endif /* MCUBOOT_MEASURED_BOOT */
146
147 #ifdef MCUBOOT_DATA_SHARING
148 rc = boot_save_shared_data(boot_img_hdr(state, active_slot),
149 BOOT_IMG_AREA(state, active_slot));
150 if (rc != 0) {
151 BOOT_LOG_ERR("Failed to add data to shared memory area.");
152 return rc;
153 }
154 #endif /* MCUBOOT_DATA_SHARING */
155
156 return 0;
157
158 #else /* MCUBOOT_MEASURED_BOOT || MCUBOOT_DATA_SHARING */
159 (void) (state);
160 (void) (active_slot);
161
162 return 0;
163 #endif
164 }
165
166 /**
167 * Fills rsp to indicate how booting should occur.
168 *
169 * @param state Boot loader status information.
170 * @param rsp boot_rsp struct to fill.
171 */
172 static void
fill_rsp(struct boot_loader_state * state,struct boot_rsp * rsp)173 fill_rsp(struct boot_loader_state *state, struct boot_rsp *rsp)
174 {
175 uint32_t active_slot;
176
177 #if (BOOT_IMAGE_NUMBER > 1)
178 /* Always boot from the first enabled image. */
179 BOOT_CURR_IMG(state) = 0;
180 IMAGES_ITER(BOOT_CURR_IMG(state)) {
181 if (!state->img_mask[BOOT_CURR_IMG(state)]) {
182 break;
183 }
184 }
185 /* At least one image must be active, otherwise skip the execution */
186 if (BOOT_CURR_IMG(state) >= BOOT_IMAGE_NUMBER) {
187 return;
188 }
189 #endif
190
191 #if defined(MCUBOOT_DIRECT_XIP) || defined(MCUBOOT_RAM_LOAD)
192 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
193 #else
194 active_slot = BOOT_PRIMARY_SLOT;
195 #endif
196
197 rsp->br_flash_dev_id = flash_area_get_device_id(BOOT_IMG_AREA(state, active_slot));
198 rsp->br_image_off = boot_img_slot_off(state, active_slot);
199 rsp->br_hdr = boot_img_hdr(state, active_slot);
200 }
201
202 /**
203 * Closes all flash areas.
204 *
205 * @param state Boot loader status information.
206 */
207 static void
close_all_flash_areas(struct boot_loader_state * state)208 close_all_flash_areas(struct boot_loader_state *state)
209 {
210 uint32_t slot;
211
212 IMAGES_ITER(BOOT_CURR_IMG(state)) {
213 #if BOOT_IMAGE_NUMBER > 1
214 if (state->img_mask[BOOT_CURR_IMG(state)]) {
215 continue;
216 }
217 #endif
218 #if MCUBOOT_SWAP_USING_SCRATCH
219 flash_area_close(BOOT_SCRATCH_AREA(state));
220 #endif
221 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
222 flash_area_close(BOOT_IMG_AREA(state, BOOT_NUM_SLOTS - 1 - slot));
223 }
224 }
225 }
226
227 #if !defined(MCUBOOT_DIRECT_XIP)
228 /*
229 * Compute the total size of the given image. Includes the size of
230 * the TLVs.
231 */
232 #if !defined(MCUBOOT_OVERWRITE_ONLY) || defined(MCUBOOT_OVERWRITE_ONLY_FAST)
233 static int
boot_read_image_size(struct boot_loader_state * state,int slot,uint32_t * size)234 boot_read_image_size(struct boot_loader_state *state, int slot, uint32_t *size)
235 {
236 const struct flash_area *fap;
237 struct image_tlv_info info;
238 uint32_t off;
239 uint32_t protect_tlv_size;
240 int area_id;
241 int rc;
242
243 #if (BOOT_IMAGE_NUMBER == 1)
244 (void)state;
245 #endif
246
247 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
248 rc = flash_area_open(area_id, &fap);
249 if (rc != 0) {
250 rc = BOOT_EFLASH;
251 goto done;
252 }
253
254 off = BOOT_TLV_OFF(boot_img_hdr(state, slot));
255
256 if (flash_area_read(fap, off, &info, sizeof(info))) {
257 rc = BOOT_EFLASH;
258 goto done;
259 }
260
261 protect_tlv_size = boot_img_hdr(state, slot)->ih_protect_tlv_size;
262 if (info.it_magic == IMAGE_TLV_PROT_INFO_MAGIC) {
263 if (protect_tlv_size != info.it_tlv_tot) {
264 rc = BOOT_EBADIMAGE;
265 goto done;
266 }
267
268 if (flash_area_read(fap, off + info.it_tlv_tot, &info, sizeof(info))) {
269 rc = BOOT_EFLASH;
270 goto done;
271 }
272 } else if (protect_tlv_size != 0) {
273 rc = BOOT_EBADIMAGE;
274 goto done;
275 }
276
277 if (info.it_magic != IMAGE_TLV_INFO_MAGIC) {
278 rc = BOOT_EBADIMAGE;
279 goto done;
280 }
281
282 *size = off + protect_tlv_size + info.it_tlv_tot;
283 rc = 0;
284
285 done:
286 flash_area_close(fap);
287 return rc;
288 }
289 #endif /* !MCUBOOT_OVERWRITE_ONLY */
290
291 #if !defined(MCUBOOT_RAM_LOAD)
292 static uint32_t
boot_write_sz(struct boot_loader_state * state)293 boot_write_sz(struct boot_loader_state *state)
294 {
295 uint32_t elem_sz;
296 #if MCUBOOT_SWAP_USING_SCRATCH
297 uint32_t align;
298 #endif
299
300 /* Figure out what size to write update status update as. The size depends
301 * on what the minimum write size is for scratch area, active image slot.
302 * We need to use the bigger of those 2 values.
303 */
304 elem_sz = flash_area_align(BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT));
305 #if MCUBOOT_SWAP_USING_SCRATCH
306 align = flash_area_align(BOOT_SCRATCH_AREA(state));
307 if (align > elem_sz) {
308 elem_sz = align;
309 }
310 #endif
311
312 return elem_sz;
313 }
314
315 static int
boot_initialize_area(struct boot_loader_state * state,int flash_area)316 boot_initialize_area(struct boot_loader_state *state, int flash_area)
317 {
318 uint32_t num_sectors = BOOT_MAX_IMG_SECTORS;
319 boot_sector_t *out_sectors;
320 uint32_t *out_num_sectors;
321 int rc;
322
323 num_sectors = BOOT_MAX_IMG_SECTORS;
324
325 if (flash_area == FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state))) {
326 out_sectors = BOOT_IMG(state, BOOT_PRIMARY_SLOT).sectors;
327 out_num_sectors = &BOOT_IMG(state, BOOT_PRIMARY_SLOT).num_sectors;
328 } else if (flash_area == FLASH_AREA_IMAGE_SECONDARY(BOOT_CURR_IMG(state))) {
329 out_sectors = BOOT_IMG(state, BOOT_SECONDARY_SLOT).sectors;
330 out_num_sectors = &BOOT_IMG(state, BOOT_SECONDARY_SLOT).num_sectors;
331 #if MCUBOOT_SWAP_USING_SCRATCH
332 } else if (flash_area == FLASH_AREA_IMAGE_SCRATCH) {
333 out_sectors = state->scratch.sectors;
334 out_num_sectors = &state->scratch.num_sectors;
335 #endif
336 } else {
337 return BOOT_EFLASH;
338 }
339
340 #ifdef MCUBOOT_USE_FLASH_AREA_GET_SECTORS
341 rc = flash_area_get_sectors(flash_area, &num_sectors, out_sectors);
342 #else
343 _Static_assert(sizeof(int) <= sizeof(uint32_t), "Fix needed");
344 rc = flash_area_to_sectors(flash_area, (int *)&num_sectors, out_sectors);
345 #endif /* defined(MCUBOOT_USE_FLASH_AREA_GET_SECTORS) */
346 if (rc != 0) {
347 return rc;
348 }
349 *out_num_sectors = num_sectors;
350 return 0;
351 }
352
353 /**
354 * Determines the sector layout of both image slots and the scratch area.
355 * This information is necessary for calculating the number of bytes to erase
356 * and copy during an image swap. The information collected during this
357 * function is used to populate the state.
358 */
359 static int
boot_read_sectors(struct boot_loader_state * state)360 boot_read_sectors(struct boot_loader_state *state)
361 {
362 uint8_t image_index;
363 int rc;
364
365 image_index = BOOT_CURR_IMG(state);
366
367 rc = boot_initialize_area(state, FLASH_AREA_IMAGE_PRIMARY(image_index));
368 if (rc != 0) {
369 return BOOT_EFLASH;
370 }
371
372 rc = boot_initialize_area(state, FLASH_AREA_IMAGE_SECONDARY(image_index));
373 if (rc != 0) {
374 /* We need to differentiate from the primary image issue */
375 return BOOT_EFLASH_SEC;
376 }
377
378 #if MCUBOOT_SWAP_USING_SCRATCH
379 rc = boot_initialize_area(state, FLASH_AREA_IMAGE_SCRATCH);
380 if (rc != 0) {
381 return BOOT_EFLASH;
382 }
383 #endif
384
385 BOOT_WRITE_SZ(state) = boot_write_sz(state);
386
387 return 0;
388 }
389
390 void
boot_status_reset(struct boot_status * bs)391 boot_status_reset(struct boot_status *bs)
392 {
393 #ifdef MCUBOOT_ENC_IMAGES
394 memset(&bs->enckey, 0xff, BOOT_NUM_SLOTS * BOOT_ENC_KEY_ALIGN_SIZE);
395 #if MCUBOOT_SWAP_SAVE_ENCTLV
396 memset(&bs->enctlv, 0xff, BOOT_NUM_SLOTS * BOOT_ENC_TLV_ALIGN_SIZE);
397 #endif
398 #endif /* MCUBOOT_ENC_IMAGES */
399
400 bs->use_scratch = 0;
401 bs->swap_size = 0;
402 bs->source = 0;
403
404 bs->op = BOOT_STATUS_OP_MOVE;
405 bs->idx = BOOT_STATUS_IDX_0;
406 bs->state = BOOT_STATUS_STATE_0;
407 bs->swap_type = BOOT_SWAP_TYPE_NONE;
408 }
409
410 bool
boot_status_is_reset(const struct boot_status * bs)411 boot_status_is_reset(const struct boot_status *bs)
412 {
413 return (bs->op == BOOT_STATUS_OP_MOVE &&
414 bs->idx == BOOT_STATUS_IDX_0 &&
415 bs->state == BOOT_STATUS_STATE_0);
416 }
417
418 /**
419 * Writes the supplied boot status to the flash file system. The boot status
420 * contains the current state of an in-progress image copy operation.
421 *
422 * @param bs The boot status to write.
423 *
424 * @return 0 on success; nonzero on failure.
425 */
426 int
boot_write_status(const struct boot_loader_state * state,struct boot_status * bs)427 boot_write_status(const struct boot_loader_state *state, struct boot_status *bs)
428 {
429 const struct flash_area *fap;
430 uint32_t off;
431 int area_id;
432 int rc = 0;
433 uint8_t buf[BOOT_MAX_ALIGN];
434 uint32_t align;
435 uint8_t erased_val;
436
437 /* NOTE: The first sector copied (that is the last sector on slot) contains
438 * the trailer. Since in the last step the primary slot is erased, the
439 * first two status writes go to the scratch which will be copied to
440 * the primary slot!
441 */
442
443 #if MCUBOOT_SWAP_USING_SCRATCH
444 if (bs->use_scratch) {
445 /* Write to scratch. */
446 area_id = FLASH_AREA_IMAGE_SCRATCH;
447 } else {
448 #endif
449 /* Write to the primary slot. */
450 area_id = FLASH_AREA_IMAGE_PRIMARY(BOOT_CURR_IMG(state));
451 #if MCUBOOT_SWAP_USING_SCRATCH
452 }
453 #endif
454
455 rc = flash_area_open(area_id, &fap);
456 if (rc != 0) {
457 return BOOT_EFLASH;
458 }
459
460 off = boot_status_off(fap) +
461 boot_status_internal_off(bs, BOOT_WRITE_SZ(state));
462 align = flash_area_align(fap);
463 erased_val = flash_area_erased_val(fap);
464 memset(buf, erased_val, BOOT_MAX_ALIGN);
465 buf[0] = bs->state;
466
467 rc = flash_area_write(fap, off, buf, align);
468 if (rc != 0) {
469 rc = BOOT_EFLASH;
470 }
471
472 flash_area_close(fap);
473
474 return rc;
475 }
476 #endif /* !MCUBOOT_RAM_LOAD */
477 #endif /* !MCUBOOT_DIRECT_XIP */
478
479 /*
480 * Validate image hash/signature and optionally the security counter in a slot.
481 */
482 static fih_ret
boot_image_check(struct boot_loader_state * state,struct image_header * hdr,const struct flash_area * fap,struct boot_status * bs)483 boot_image_check(struct boot_loader_state *state, struct image_header *hdr,
484 const struct flash_area *fap, struct boot_status *bs)
485 {
486 TARGET_STATIC uint8_t tmpbuf[BOOT_TMPBUF_SZ];
487 uint8_t image_index;
488 int rc;
489 FIH_DECLARE(fih_rc, FIH_FAILURE);
490
491 #if (BOOT_IMAGE_NUMBER == 1)
492 (void)state;
493 #endif
494
495 (void)bs;
496 (void)rc;
497
498 image_index = BOOT_CURR_IMG(state);
499
500 /* In the case of ram loading the image has already been decrypted as it is
501 * decrypted when copied in ram */
502 #if defined(MCUBOOT_ENC_IMAGES) && !defined(MCUBOOT_RAM_LOAD)
503 if (MUST_DECRYPT(fap, image_index, hdr)) {
504 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap, bs);
505 if (rc < 0) {
506 FIH_RET(fih_rc);
507 }
508 if (rc == 0 && boot_enc_set_key(BOOT_CURR_ENC(state), 1, bs)) {
509 FIH_RET(fih_rc);
510 }
511 }
512 #endif
513
514 FIH_CALL(bootutil_img_validate, fih_rc, BOOT_CURR_ENC(state), image_index,
515 hdr, fap, tmpbuf, BOOT_TMPBUF_SZ, NULL, 0, NULL);
516
517 FIH_RET(fih_rc);
518 }
519
520 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
521 static fih_ret
split_image_check(struct image_header * app_hdr,const struct flash_area * app_fap,struct image_header * loader_hdr,const struct flash_area * loader_fap)522 split_image_check(struct image_header *app_hdr,
523 const struct flash_area *app_fap,
524 struct image_header *loader_hdr,
525 const struct flash_area *loader_fap)
526 {
527 static void *tmpbuf;
528 uint8_t loader_hash[32];
529 FIH_DECLARE(fih_rc, FIH_FAILURE);
530
531 if (!tmpbuf) {
532 tmpbuf = malloc(BOOT_TMPBUF_SZ);
533 if (!tmpbuf) {
534 goto out;
535 }
536 }
537
538 FIH_CALL(bootutil_img_validate, fih_rc, NULL, 0, loader_hdr, loader_fap,
539 tmpbuf, BOOT_TMPBUF_SZ, NULL, 0, loader_hash);
540 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
541 FIH_RET(fih_rc);
542 }
543
544 FIH_CALL(bootutil_img_validate, fih_rc, NULL, 0, app_hdr, app_fap,
545 tmpbuf, BOOT_TMPBUF_SZ, loader_hash, 32, NULL);
546
547 out:
548 FIH_RET(fih_rc);
549 }
550 #endif /* !MCUBOOT_DIRECT_XIP && !MCUBOOT_RAM_LOAD */
551
552 /*
553 * Check that this is a valid header. Valid means that the magic is
554 * correct, and that the sizes/offsets are "sane". Sane means that
555 * there is no overflow on the arithmetic, and that the result fits
556 * within the flash area we are in.
557 */
558 static bool
boot_is_header_valid(const struct image_header * hdr,const struct flash_area * fap)559 boot_is_header_valid(const struct image_header *hdr, const struct flash_area *fap)
560 {
561 uint32_t size;
562
563 if (hdr->ih_magic != IMAGE_MAGIC) {
564 return false;
565 }
566
567 if (!boot_u32_safe_add(&size, hdr->ih_img_size, hdr->ih_hdr_size)) {
568 return false;
569 }
570
571 if (size >= flash_area_get_size(fap)) {
572 return false;
573 }
574
575 return true;
576 }
577
578 /*
579 * Check that a memory area consists of a given value.
580 */
581 static inline bool
boot_data_is_set_to(uint8_t val,void * data,size_t len)582 boot_data_is_set_to(uint8_t val, void *data, size_t len)
583 {
584 uint8_t i;
585 uint8_t *p = (uint8_t *)data;
586 for (i = 0; i < len; i++) {
587 if (val != p[i]) {
588 return false;
589 }
590 }
591 return true;
592 }
593
594 static int
boot_check_header_erased(struct boot_loader_state * state,int slot)595 boot_check_header_erased(struct boot_loader_state *state, int slot)
596 {
597 const struct flash_area *fap;
598 struct image_header *hdr;
599 uint8_t erased_val;
600 int area_id;
601 int rc;
602
603 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
604 rc = flash_area_open(area_id, &fap);
605 if (rc != 0) {
606 return -1;
607 }
608
609 erased_val = flash_area_erased_val(fap);
610 flash_area_close(fap);
611
612 hdr = boot_img_hdr(state, slot);
613 if (!boot_data_is_set_to(erased_val, &hdr->ih_magic, sizeof(hdr->ih_magic))) {
614 return -1;
615 }
616
617 return 0;
618 }
619
620 #if (BOOT_IMAGE_NUMBER > 1) || \
621 defined(MCUBOOT_DIRECT_XIP) || \
622 defined(MCUBOOT_RAM_LOAD) || \
623 defined(MCUBOOT_DOWNGRADE_PREVENTION)
624 /**
625 * Compare image version numbers
626 *
627 * By default, the comparison does not take build number into account.
628 * Enable MCUBOOT_VERSION_CMP_USE_BUILD_NUMBER to take the build number into account.
629 *
630 * @param ver1 Pointer to the first image version to compare.
631 * @param ver2 Pointer to the second image version to compare.
632 *
633 * @retval -1 If ver1 is less than ver2.
634 * @retval 0 If the image version numbers are equal.
635 * @retval 1 If ver1 is greater than ver2.
636 */
637 static int
boot_version_cmp(const struct image_version * ver1,const struct image_version * ver2)638 boot_version_cmp(const struct image_version *ver1,
639 const struct image_version *ver2)
640 {
641 if (ver1->iv_major > ver2->iv_major) {
642 return 1;
643 }
644 if (ver1->iv_major < ver2->iv_major) {
645 return -1;
646 }
647 /* The major version numbers are equal, continue comparison. */
648 if (ver1->iv_minor > ver2->iv_minor) {
649 return 1;
650 }
651 if (ver1->iv_minor < ver2->iv_minor) {
652 return -1;
653 }
654 /* The minor version numbers are equal, continue comparison. */
655 if (ver1->iv_revision > ver2->iv_revision) {
656 return 1;
657 }
658 if (ver1->iv_revision < ver2->iv_revision) {
659 return -1;
660 }
661
662 #if defined(MCUBOOT_VERSION_CMP_USE_BUILD_NUMBER)
663 /* The revisions are equal, continue comparison. */
664 if (ver1->iv_build_num > ver2->iv_build_num) {
665 return 1;
666 }
667 if (ver1->iv_build_num < ver2->iv_build_num) {
668 return -1;
669 }
670 #endif
671
672 return 0;
673 }
674 #endif
675
676 #if defined(MCUBOOT_DIRECT_XIP)
677 /**
678 * Check if image in slot has been set with specific ROM address to run from
679 * and whether the slot starts at that address.
680 *
681 * @returns 0 if IMAGE_F_ROM_FIXED flag is not set;
682 * 0 if IMAGE_F_ROM_FIXED flag is set and ROM address specified in
683 * header matches the slot address;
684 * 1 if IMF_F_ROM_FIXED flag is set but ROM address specified in header
685 * does not match the slot address.
686 */
687 static bool
boot_rom_address_check(struct boot_loader_state * state)688 boot_rom_address_check(struct boot_loader_state *state)
689 {
690 uint32_t active_slot;
691 const struct image_header *hdr;
692 uint32_t f_off;
693
694 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
695 hdr = boot_img_hdr(state, active_slot);
696 f_off = boot_img_slot_off(state, active_slot);
697
698 if (hdr->ih_flags & IMAGE_F_ROM_FIXED && hdr->ih_load_addr != f_off) {
699 BOOT_LOG_WRN("Image in %s slot at 0x%x has been built for offset 0x%x"\
700 ", skipping",
701 active_slot == 0 ? "primary" : "secondary", f_off,
702 hdr->ih_load_addr);
703
704 /* If there is address mismatch, the image is not bootable from this
705 * slot.
706 */
707 return 1;
708 }
709 return 0;
710 }
711 #endif
712
713 /*
714 * Check that there is a valid image in a slot
715 *
716 * @returns
717 * FIH_SUCCESS if image was successfully validated
718 * FIH_NO_BOOTABLE_IMAGE if no bootloable image was found
719 * FIH_FAILURE on any errors
720 */
721 static fih_ret
boot_validate_slot(struct boot_loader_state * state,int slot,struct boot_status * bs)722 boot_validate_slot(struct boot_loader_state *state, int slot,
723 struct boot_status *bs)
724 {
725 const struct flash_area *fap;
726 struct image_header *hdr;
727 int area_id;
728 FIH_DECLARE(fih_rc, FIH_FAILURE);
729 int rc;
730
731 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
732 rc = flash_area_open(area_id, &fap);
733 if (rc != 0) {
734 FIH_RET(fih_rc);
735 }
736
737 hdr = boot_img_hdr(state, slot);
738 if (boot_check_header_erased(state, slot) == 0 ||
739 (hdr->ih_flags & IMAGE_F_NON_BOOTABLE)) {
740
741 #if defined(MCUBOOT_SWAP_USING_SCRATCH) || defined(MCUBOOT_SWAP_USING_MOVE)
742 /*
743 * This fixes an issue where an image might be erased, but a trailer
744 * be left behind. It can happen if the image is in the secondary slot
745 * and did not pass validation, in which case the whole slot is erased.
746 * If during the erase operation, a reset occurs, parts of the slot
747 * might have been erased while some did not. The concerning part is
748 * the trailer because it might disable a new image from being loaded
749 * through mcumgr; so we just get rid of the trailer here, if the header
750 * is erased.
751 */
752 if (slot != BOOT_PRIMARY_SLOT) {
753 swap_erase_trailer_sectors(state, fap);
754 }
755 #endif
756
757 /* No bootable image in slot; continue booting from the primary slot. */
758 fih_rc = FIH_NO_BOOTABLE_IMAGE;
759 goto out;
760 }
761
762 #if defined(MCUBOOT_OVERWRITE_ONLY) && defined(MCUBOOT_DOWNGRADE_PREVENTION)
763 if (slot != BOOT_PRIMARY_SLOT) {
764 /* Check if version of secondary slot is sufficient */
765 rc = boot_version_cmp(
766 &boot_img_hdr(state, BOOT_SECONDARY_SLOT)->ih_ver,
767 &boot_img_hdr(state, BOOT_PRIMARY_SLOT)->ih_ver);
768 if (rc < 0 && boot_check_header_erased(state, BOOT_PRIMARY_SLOT)) {
769 BOOT_LOG_ERR("insufficient version in secondary slot");
770 flash_area_erase(fap, 0, flash_area_get_size(fap));
771 /* Image in the secondary slot does not satisfy version requirement.
772 * Erase the image and continue booting from the primary slot.
773 */
774 fih_rc = FIH_NO_BOOTABLE_IMAGE;
775 goto out;
776 }
777 }
778 #endif
779 BOOT_HOOK_CALL_FIH(boot_image_check_hook, FIH_BOOT_HOOK_REGULAR,
780 fih_rc, BOOT_CURR_IMG(state), slot);
781 if (FIH_EQ(fih_rc, FIH_BOOT_HOOK_REGULAR))
782 {
783 FIH_CALL(boot_image_check, fih_rc, state, hdr, fap, bs);
784 }
785 if (!boot_is_header_valid(hdr, fap) || FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
786 if ((slot != BOOT_PRIMARY_SLOT) || ARE_SLOTS_EQUIVALENT()) {
787 flash_area_erase(fap, 0, flash_area_get_size(fap));
788 /* Image is invalid, erase it to prevent further unnecessary
789 * attempts to validate and boot it.
790 */
791 }
792 #if !defined(__BOOTSIM__)
793 BOOT_LOG_ERR("Image in the %s slot is not valid!",
794 (slot == BOOT_PRIMARY_SLOT) ? "primary" : "secondary");
795 #endif
796 fih_rc = FIH_NO_BOOTABLE_IMAGE;
797 goto out;
798 }
799
800 #if MCUBOOT_IMAGE_NUMBER > 1 && !defined(MCUBOOT_ENC_IMAGES) && defined(MCUBOOT_VERIFY_IMG_ADDRESS)
801 /* Verify that the image in the secondary slot has a reset address
802 * located in the primary slot. This is done to avoid users incorrectly
803 * overwriting an application written to the incorrect slot.
804 * This feature is only supported by ARM platforms.
805 */
806 if (area_id == FLASH_AREA_IMAGE_SECONDARY(BOOT_CURR_IMG(state))) {
807 const struct flash_area *pri_fa = BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT);
808 struct image_header *secondary_hdr = boot_img_hdr(state, slot);
809 uint32_t reset_value = 0;
810 uint32_t reset_addr = secondary_hdr->ih_hdr_size + sizeof(reset_value);
811
812 rc = flash_area_read(fap, reset_addr, &reset_value, sizeof(reset_value));
813 if (rc != 0) {
814 fih_rc = FIH_NO_BOOTABLE_IMAGE;
815 goto out;
816 }
817
818 if (reset_value < pri_fa->fa_off || reset_value> (pri_fa->fa_off + pri_fa->fa_size)) {
819 BOOT_LOG_ERR("Reset address of image in secondary slot is not in the primary slot");
820 BOOT_LOG_ERR("Erasing image from secondary slot");
821
822 /* The vector table in the image located in the secondary
823 * slot does not target the primary slot. This might
824 * indicate that the image was loaded to the wrong slot.
825 *
826 * Erase the image and continue booting from the primary slot.
827 */
828 flash_area_erase(fap, 0, fap->fa_size);
829 fih_rc = FIH_NO_BOOTABLE_IMAGE;
830 goto out;
831 }
832 }
833 #endif
834
835 out:
836 flash_area_close(fap);
837
838 FIH_RET(fih_rc);
839 }
840
841 #ifdef MCUBOOT_HW_ROLLBACK_PROT
842 /**
843 * Updates the stored security counter value with the image's security counter
844 * value which resides in the given slot, only if it's greater than the stored
845 * value.
846 *
847 * @param image_index Index of the image to determine which security
848 * counter to update.
849 * @param slot Slot number of the image.
850 * @param hdr Pointer to the image header structure of the image
851 * that is currently stored in the given slot.
852 *
853 * @return 0 on success; nonzero on failure.
854 */
855 static int
boot_update_security_counter(uint8_t image_index,int slot,struct image_header * hdr)856 boot_update_security_counter(uint8_t image_index, int slot,
857 struct image_header *hdr)
858 {
859 const struct flash_area *fap = NULL;
860 uint32_t img_security_cnt;
861 int rc;
862
863 rc = flash_area_open(flash_area_id_from_multi_image_slot(image_index, slot),
864 &fap);
865 if (rc != 0) {
866 rc = BOOT_EFLASH;
867 goto done;
868 }
869
870 rc = bootutil_get_img_security_cnt(hdr, fap, &img_security_cnt);
871 if (rc != 0) {
872 goto done;
873 }
874
875 rc = boot_nv_security_counter_update(image_index, img_security_cnt);
876 if (rc != 0) {
877 goto done;
878 }
879
880 done:
881 flash_area_close(fap);
882 return rc;
883 }
884 #endif /* MCUBOOT_HW_ROLLBACK_PROT */
885
886 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
887 /**
888 * Determines which swap operation to perform, if any. If it is determined
889 * that a swap operation is required, the image in the secondary slot is checked
890 * for validity. If the image in the secondary slot is invalid, it is erased,
891 * and a swap type of "none" is indicated.
892 *
893 * @return The type of swap to perform (BOOT_SWAP_TYPE...)
894 */
895 static int
boot_validated_swap_type(struct boot_loader_state * state,struct boot_status * bs)896 boot_validated_swap_type(struct boot_loader_state *state,
897 struct boot_status *bs)
898 {
899 int swap_type;
900 FIH_DECLARE(fih_rc, FIH_FAILURE);
901
902 swap_type = boot_swap_type_multi(BOOT_CURR_IMG(state));
903 if (BOOT_IS_UPGRADE(swap_type)) {
904 /* Boot loader wants to switch to the secondary slot.
905 * Ensure image is valid.
906 */
907 FIH_CALL(boot_validate_slot, fih_rc, state, BOOT_SECONDARY_SLOT, bs);
908 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
909 if (FIH_EQ(fih_rc, FIH_NO_BOOTABLE_IMAGE)) {
910 swap_type = BOOT_SWAP_TYPE_NONE;
911 } else {
912 swap_type = BOOT_SWAP_TYPE_FAIL;
913 }
914 }
915 }
916
917 return swap_type;
918 }
919 #endif
920
921 /**
922 * Erases a region of flash.
923 *
924 * @param flash_area The flash_area containing the region to erase.
925 * @param off The offset within the flash area to start the
926 * erase.
927 * @param sz The number of bytes to erase.
928 *
929 * @return 0 on success; nonzero on failure.
930 */
931 int
boot_erase_region(const struct flash_area * fap,uint32_t off,uint32_t sz)932 boot_erase_region(const struct flash_area *fap, uint32_t off, uint32_t sz)
933 {
934 return flash_area_erase(fap, off, sz);
935 }
936
937 #if !defined(MCUBOOT_DIRECT_XIP) && !defined(MCUBOOT_RAM_LOAD)
938
939 #if defined(MCUBOOT_ENC_IMAGES) || defined(MCUBOOT_SWAP_SAVE_ENCTLV)
940 /* Replacement for memset(p, 0, sizeof(*p) that does not get
941 * optimized out.
942 */
like_mbedtls_zeroize(void * p,size_t n)943 static void like_mbedtls_zeroize(void *p, size_t n)
944 {
945 volatile unsigned char *v = (unsigned char *)p;
946
947 for (size_t i = 0; i < n; i++) {
948 v[i] = 0;
949 }
950 }
951 #endif
952
953 /**
954 * Copies the contents of one flash region to another. You must erase the
955 * destination region prior to calling this function.
956 *
957 * @param flash_area_id_src The ID of the source flash area.
958 * @param flash_area_id_dst The ID of the destination flash area.
959 * @param off_src The offset within the source flash area to
960 * copy from.
961 * @param off_dst The offset within the destination flash area to
962 * copy to.
963 * @param sz The number of bytes to copy.
964 *
965 * @return 0 on success; nonzero on failure.
966 */
967 int
boot_copy_region(struct boot_loader_state * state,const struct flash_area * fap_src,const struct flash_area * fap_dst,uint32_t off_src,uint32_t off_dst,uint32_t sz)968 boot_copy_region(struct boot_loader_state *state,
969 const struct flash_area *fap_src,
970 const struct flash_area *fap_dst,
971 uint32_t off_src, uint32_t off_dst, uint32_t sz)
972 {
973 uint32_t bytes_copied;
974 int chunk_sz;
975 int rc;
976 #ifdef MCUBOOT_ENC_IMAGES
977 uint32_t off;
978 uint32_t tlv_off;
979 size_t blk_off;
980 struct image_header *hdr;
981 uint16_t idx;
982 uint32_t blk_sz;
983 uint8_t image_index;
984 #endif
985
986 TARGET_STATIC uint8_t buf[BUF_SZ] __attribute__((aligned(4)));
987
988 #if !defined(MCUBOOT_ENC_IMAGES)
989 (void)state;
990 #endif
991
992 bytes_copied = 0;
993 while (bytes_copied < sz) {
994 if (sz - bytes_copied > sizeof buf) {
995 chunk_sz = sizeof buf;
996 } else {
997 chunk_sz = sz - bytes_copied;
998 }
999
1000 rc = flash_area_read(fap_src, off_src + bytes_copied, buf, chunk_sz);
1001 if (rc != 0) {
1002 return BOOT_EFLASH;
1003 }
1004
1005 #ifdef MCUBOOT_ENC_IMAGES
1006 image_index = BOOT_CURR_IMG(state);
1007 if ((flash_area_get_id(fap_src) == FLASH_AREA_IMAGE_SECONDARY(image_index) ||
1008 flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index)) &&
1009 !(flash_area_get_id(fap_src) == FLASH_AREA_IMAGE_SECONDARY(image_index) &&
1010 flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index))) {
1011 /* assume the secondary slot as src, needs decryption */
1012 hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT);
1013 #if !defined(MCUBOOT_SWAP_USING_MOVE)
1014 off = off_src;
1015 if (flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index)) {
1016 /* might need encryption (metadata from the primary slot) */
1017 hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT);
1018 off = off_dst;
1019 }
1020 #else
1021 off = off_dst;
1022 if (flash_area_get_id(fap_dst) == FLASH_AREA_IMAGE_SECONDARY(image_index)) {
1023 hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT);
1024 }
1025 #endif
1026 if (IS_ENCRYPTED(hdr)) {
1027 uint32_t abs_off = off + bytes_copied;
1028 if (abs_off < hdr->ih_hdr_size) {
1029 /* do not decrypt header */
1030 if (abs_off + chunk_sz > hdr->ih_hdr_size) {
1031 /* The lower part of the chunk contains header data */
1032 blk_off = 0;
1033 blk_sz = chunk_sz - (hdr->ih_hdr_size - abs_off);
1034 idx = hdr->ih_hdr_size - abs_off;
1035 } else {
1036 /* The chunk contains exclusively header data */
1037 blk_sz = 0; /* nothing to decrypt */
1038 }
1039 } else {
1040 idx = 0;
1041 blk_sz = chunk_sz;
1042 blk_off = (abs_off - hdr->ih_hdr_size) & 0xf;
1043 }
1044
1045 if (blk_sz > 0)
1046 {
1047 tlv_off = BOOT_TLV_OFF(hdr);
1048 if (abs_off + chunk_sz > tlv_off) {
1049 /* do not decrypt TLVs */
1050 if (abs_off >= tlv_off) {
1051 blk_sz = 0;
1052 } else {
1053 blk_sz = tlv_off - abs_off;
1054 }
1055 }
1056 boot_encrypt(BOOT_CURR_ENC(state), image_index, fap_src,
1057 (abs_off + idx) - hdr->ih_hdr_size, blk_sz,
1058 blk_off, &buf[idx]);
1059 }
1060 }
1061 }
1062 #endif
1063
1064 rc = flash_area_write(fap_dst, off_dst + bytes_copied, buf, chunk_sz);
1065 if (rc != 0) {
1066 return BOOT_EFLASH;
1067 }
1068
1069 bytes_copied += chunk_sz;
1070
1071 MCUBOOT_WATCHDOG_FEED();
1072 }
1073
1074 return 0;
1075 }
1076
1077 /**
1078 * Overwrite primary slot with the image contained in the secondary slot.
1079 * If a prior copy operation was interrupted by a system reset, this function
1080 * redos the copy.
1081 *
1082 * @param bs The current boot status. This function reads
1083 * this struct to determine if it is resuming
1084 * an interrupted swap operation. This
1085 * function writes the updated status to this
1086 * function on return.
1087 *
1088 * @return 0 on success; nonzero on failure.
1089 */
1090 #if defined(MCUBOOT_OVERWRITE_ONLY) || defined(MCUBOOT_BOOTSTRAP)
1091 static int
boot_copy_image(struct boot_loader_state * state,struct boot_status * bs)1092 boot_copy_image(struct boot_loader_state *state, struct boot_status *bs)
1093 {
1094 size_t sect_count;
1095 size_t sect;
1096 int rc;
1097 size_t size;
1098 size_t this_size;
1099 size_t last_sector;
1100 const struct flash_area *fap_primary_slot;
1101 const struct flash_area *fap_secondary_slot;
1102 uint8_t image_index;
1103
1104 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1105 uint32_t sector;
1106 uint32_t trailer_sz;
1107 uint32_t off;
1108 uint32_t sz;
1109 #endif
1110
1111 (void)bs;
1112
1113 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1114 uint32_t src_size = 0;
1115 rc = boot_read_image_size(state, BOOT_SECONDARY_SLOT, &src_size);
1116 assert(rc == 0);
1117 #endif
1118
1119 BOOT_LOG_INF("Image upgrade secondary slot -> primary slot");
1120 BOOT_LOG_INF("Erasing the primary slot");
1121
1122 image_index = BOOT_CURR_IMG(state);
1123
1124 rc = flash_area_open(FLASH_AREA_IMAGE_PRIMARY(image_index),
1125 &fap_primary_slot);
1126 assert (rc == 0);
1127
1128 rc = flash_area_open(FLASH_AREA_IMAGE_SECONDARY(image_index),
1129 &fap_secondary_slot);
1130 assert (rc == 0);
1131
1132 sect_count = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT);
1133 for (sect = 0, size = 0; sect < sect_count; sect++) {
1134 this_size = boot_img_sector_size(state, BOOT_PRIMARY_SLOT, sect);
1135 rc = boot_erase_region(fap_primary_slot, size, this_size);
1136 assert(rc == 0);
1137
1138 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1139 if ((size + this_size) >= src_size) {
1140 size += src_size - size;
1141 size += BOOT_WRITE_SZ(state) - (size % BOOT_WRITE_SZ(state));
1142 break;
1143 }
1144 #endif
1145
1146 size += this_size;
1147 }
1148
1149 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1150 trailer_sz = boot_trailer_sz(BOOT_WRITE_SZ(state));
1151 sector = boot_img_num_sectors(state, BOOT_PRIMARY_SLOT) - 1;
1152 sz = 0;
1153 do {
1154 sz += boot_img_sector_size(state, BOOT_PRIMARY_SLOT, sector);
1155 off = boot_img_sector_off(state, BOOT_PRIMARY_SLOT, sector);
1156 sector--;
1157 } while (sz < trailer_sz);
1158
1159 rc = boot_erase_region(fap_primary_slot, off, sz);
1160 assert(rc == 0);
1161 #endif
1162
1163 #ifdef MCUBOOT_ENC_IMAGES
1164 if (IS_ENCRYPTED(boot_img_hdr(state, BOOT_SECONDARY_SLOT))) {
1165 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index,
1166 boot_img_hdr(state, BOOT_SECONDARY_SLOT),
1167 fap_secondary_slot, bs);
1168
1169 if (rc < 0) {
1170 return BOOT_EBADIMAGE;
1171 }
1172 if (rc == 0 && boot_enc_set_key(BOOT_CURR_ENC(state), 1, bs)) {
1173 return BOOT_EBADIMAGE;
1174 }
1175 }
1176 #endif
1177
1178 BOOT_LOG_INF("Copying the secondary slot to the primary slot: 0x%zx bytes",
1179 size);
1180 rc = boot_copy_region(state, fap_secondary_slot, fap_primary_slot, 0, 0, size);
1181 if (rc != 0) {
1182 return rc;
1183 }
1184
1185 #if defined(MCUBOOT_OVERWRITE_ONLY_FAST)
1186 rc = boot_write_magic(fap_primary_slot);
1187 if (rc != 0) {
1188 return rc;
1189 }
1190 #endif
1191
1192 rc = BOOT_HOOK_CALL(boot_copy_region_post_hook, 0, BOOT_CURR_IMG(state),
1193 BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT), size);
1194 if (rc != 0) {
1195 return rc;
1196 }
1197
1198 #ifdef MCUBOOT_HW_ROLLBACK_PROT
1199 /* Update the stored security counter with the new image's security counter
1200 * value. Both slots hold the new image at this point, but the secondary
1201 * slot's image header must be passed since the image headers in the
1202 * boot_data structure have not been updated yet.
1203 */
1204 rc = boot_update_security_counter(BOOT_CURR_IMG(state), BOOT_PRIMARY_SLOT,
1205 boot_img_hdr(state, BOOT_SECONDARY_SLOT));
1206 if (rc != 0) {
1207 BOOT_LOG_ERR("Security counter update failed after image upgrade.");
1208 return rc;
1209 }
1210 #endif /* MCUBOOT_HW_ROLLBACK_PROT */
1211
1212 /*
1213 * Erases header and trailer. The trailer is erased because when a new
1214 * image is written without a trailer as is the case when using newt, the
1215 * trailer that was left might trigger a new upgrade.
1216 */
1217 BOOT_LOG_DBG("erasing secondary header");
1218 rc = boot_erase_region(fap_secondary_slot,
1219 boot_img_sector_off(state, BOOT_SECONDARY_SLOT, 0),
1220 boot_img_sector_size(state, BOOT_SECONDARY_SLOT, 0));
1221 assert(rc == 0);
1222 last_sector = boot_img_num_sectors(state, BOOT_SECONDARY_SLOT) - 1;
1223 BOOT_LOG_DBG("erasing secondary trailer");
1224 rc = boot_erase_region(fap_secondary_slot,
1225 boot_img_sector_off(state, BOOT_SECONDARY_SLOT,
1226 last_sector),
1227 boot_img_sector_size(state, BOOT_SECONDARY_SLOT,
1228 last_sector));
1229 assert(rc == 0);
1230
1231 flash_area_close(fap_primary_slot);
1232 flash_area_close(fap_secondary_slot);
1233
1234 /* TODO: Perhaps verify the primary slot's signature again? */
1235
1236 return 0;
1237 }
1238 #endif
1239
1240 #if !defined(MCUBOOT_OVERWRITE_ONLY)
1241 /**
1242 * Swaps the two images in flash. If a prior copy operation was interrupted
1243 * by a system reset, this function completes that operation.
1244 *
1245 * @param bs The current boot status. This function reads
1246 * this struct to determine if it is resuming
1247 * an interrupted swap operation. This
1248 * function writes the updated status to this
1249 * function on return.
1250 *
1251 * @return 0 on success; nonzero on failure.
1252 */
1253 static int
boot_swap_image(struct boot_loader_state * state,struct boot_status * bs)1254 boot_swap_image(struct boot_loader_state *state, struct boot_status *bs)
1255 {
1256 struct image_header *hdr;
1257 const struct flash_area *fap;
1258 #ifdef MCUBOOT_ENC_IMAGES
1259 uint8_t slot;
1260 uint8_t i;
1261 #endif
1262 uint32_t size;
1263 uint32_t copy_size;
1264 uint8_t image_index;
1265 int rc;
1266
1267 /* FIXME: just do this if asked by user? */
1268
1269 size = copy_size = 0;
1270 image_index = BOOT_CURR_IMG(state);
1271
1272 if (boot_status_is_reset(bs)) {
1273 /*
1274 * No swap ever happened, so need to find the largest image which
1275 * will be used to determine the amount of sectors to swap.
1276 */
1277 hdr = boot_img_hdr(state, BOOT_PRIMARY_SLOT);
1278 if (hdr->ih_magic == IMAGE_MAGIC) {
1279 rc = boot_read_image_size(state, BOOT_PRIMARY_SLOT, ©_size);
1280 assert(rc == 0);
1281 }
1282
1283 #ifdef MCUBOOT_ENC_IMAGES
1284 if (IS_ENCRYPTED(hdr)) {
1285 fap = BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT);
1286 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap, bs);
1287 assert(rc >= 0);
1288
1289 if (rc == 0) {
1290 rc = boot_enc_set_key(BOOT_CURR_ENC(state), 0, bs);
1291 assert(rc == 0);
1292 } else {
1293 rc = 0;
1294 }
1295 } else {
1296 memset(bs->enckey[0], 0xff, BOOT_ENC_KEY_ALIGN_SIZE);
1297 }
1298 #endif
1299
1300 hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT);
1301 if (hdr->ih_magic == IMAGE_MAGIC) {
1302 rc = boot_read_image_size(state, BOOT_SECONDARY_SLOT, &size);
1303 assert(rc == 0);
1304 }
1305
1306 #ifdef MCUBOOT_ENC_IMAGES
1307 hdr = boot_img_hdr(state, BOOT_SECONDARY_SLOT);
1308 if (IS_ENCRYPTED(hdr)) {
1309 fap = BOOT_IMG_AREA(state, BOOT_SECONDARY_SLOT);
1310 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap, bs);
1311 assert(rc >= 0);
1312
1313 if (rc == 0) {
1314 rc = boot_enc_set_key(BOOT_CURR_ENC(state), 1, bs);
1315 assert(rc == 0);
1316 } else {
1317 rc = 0;
1318 }
1319 } else {
1320 memset(bs->enckey[1], 0xff, BOOT_ENC_KEY_ALIGN_SIZE);
1321 }
1322 #endif
1323
1324 if (size > copy_size) {
1325 copy_size = size;
1326 }
1327
1328 bs->swap_size = copy_size;
1329 } else {
1330 /*
1331 * If a swap was under way, the swap_size should already be present
1332 * in the trailer...
1333 */
1334
1335 rc = boot_find_status(image_index, &fap);
1336 assert(fap != NULL);
1337 rc = boot_read_swap_size(fap, &bs->swap_size);
1338 assert(rc == 0);
1339
1340 copy_size = bs->swap_size;
1341
1342 #ifdef MCUBOOT_ENC_IMAGES
1343 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
1344 rc = boot_read_enc_key(fap, slot, bs);
1345 assert(rc == 0);
1346
1347 for (i = 0; i < BOOT_ENC_KEY_SIZE; i++) {
1348 if (bs->enckey[slot][i] != 0xff) {
1349 break;
1350 }
1351 }
1352
1353 if (i != BOOT_ENC_KEY_SIZE) {
1354 boot_enc_set_key(BOOT_CURR_ENC(state), slot, bs);
1355 }
1356 }
1357 #endif
1358 flash_area_close(fap);
1359 }
1360
1361 swap_run(state, bs, copy_size);
1362
1363 #ifdef MCUBOOT_VALIDATE_PRIMARY_SLOT
1364 extern int boot_status_fails;
1365 if (boot_status_fails > 0) {
1366 BOOT_LOG_WRN("%d status write fails performing the swap",
1367 boot_status_fails);
1368 }
1369 #endif
1370 rc = BOOT_HOOK_CALL(boot_copy_region_post_hook, 0, BOOT_CURR_IMG(state),
1371 BOOT_IMG_AREA(state, BOOT_PRIMARY_SLOT), size);
1372
1373 return 0;
1374 }
1375 #endif
1376
1377 #if (BOOT_IMAGE_NUMBER > 1)
1378 /**
1379 * Check the image dependency whether it is satisfied and modify
1380 * the swap type if necessary.
1381 *
1382 * @param dep Image dependency which has to be verified.
1383 *
1384 * @return 0 on success; nonzero on failure.
1385 */
1386 static int
boot_verify_slot_dependency(struct boot_loader_state * state,struct image_dependency * dep)1387 boot_verify_slot_dependency(struct boot_loader_state *state,
1388 struct image_dependency *dep)
1389 {
1390 struct image_version *dep_version;
1391 size_t dep_slot;
1392 int rc;
1393 uint8_t swap_type;
1394
1395 /* Determine the source of the image which is the subject of
1396 * the dependency and get it's version. */
1397 swap_type = state->swap_type[dep->image_id];
1398 dep_slot = BOOT_IS_UPGRADE(swap_type) ? BOOT_SECONDARY_SLOT
1399 : BOOT_PRIMARY_SLOT;
1400 dep_version = &state->imgs[dep->image_id][dep_slot].hdr.ih_ver;
1401
1402 rc = boot_version_cmp(dep_version, &dep->image_min_version);
1403 if (rc < 0) {
1404 /* Dependency not satisfied.
1405 * Modify the swap type to decrease the version number of the image
1406 * (which will be located in the primary slot after the boot process),
1407 * consequently the number of unsatisfied dependencies will be
1408 * decreased or remain the same.
1409 */
1410 switch (BOOT_SWAP_TYPE(state)) {
1411 case BOOT_SWAP_TYPE_TEST:
1412 case BOOT_SWAP_TYPE_PERM:
1413 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1414 break;
1415 case BOOT_SWAP_TYPE_NONE:
1416 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_REVERT;
1417 break;
1418 default:
1419 break;
1420 }
1421 } else {
1422 /* Dependency satisfied. */
1423 rc = 0;
1424 }
1425
1426 return rc;
1427 }
1428
1429 /**
1430 * Read all dependency TLVs of an image from the flash and verify
1431 * one after another to see if they are all satisfied.
1432 *
1433 * @param slot Image slot number.
1434 *
1435 * @return 0 on success; nonzero on failure.
1436 */
1437 static int
boot_verify_slot_dependencies(struct boot_loader_state * state,uint32_t slot)1438 boot_verify_slot_dependencies(struct boot_loader_state *state, uint32_t slot)
1439 {
1440 const struct flash_area *fap;
1441 struct image_tlv_iter it;
1442 struct image_dependency dep;
1443 uint32_t off;
1444 uint16_t len;
1445 int area_id;
1446 int rc;
1447
1448 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
1449 rc = flash_area_open(area_id, &fap);
1450 if (rc != 0) {
1451 rc = BOOT_EFLASH;
1452 goto done;
1453 }
1454
1455 rc = bootutil_tlv_iter_begin(&it, boot_img_hdr(state, slot), fap,
1456 IMAGE_TLV_DEPENDENCY, true);
1457 if (rc != 0) {
1458 goto done;
1459 }
1460
1461 while (true) {
1462 rc = bootutil_tlv_iter_next(&it, &off, &len, NULL);
1463 if (rc < 0) {
1464 return -1;
1465 } else if (rc > 0) {
1466 rc = 0;
1467 break;
1468 }
1469
1470 if (len != sizeof(dep)) {
1471 rc = BOOT_EBADIMAGE;
1472 goto done;
1473 }
1474
1475 rc = flash_area_read(fap, off, &dep, len);
1476 if (rc != 0) {
1477 rc = BOOT_EFLASH;
1478 goto done;
1479 }
1480
1481 if (dep.image_id >= BOOT_IMAGE_NUMBER) {
1482 rc = BOOT_EBADARGS;
1483 goto done;
1484 }
1485
1486 /* Verify dependency and modify the swap type if not satisfied. */
1487 rc = boot_verify_slot_dependency(state, &dep);
1488 if (rc != 0) {
1489 /* Dependency not satisfied. */
1490 goto done;
1491 }
1492 }
1493
1494 done:
1495 flash_area_close(fap);
1496 return rc;
1497 }
1498
1499 /**
1500 * Iterate over all the images and verify whether the image dependencies in the
1501 * TLV area are all satisfied and update the related swap type if necessary.
1502 */
1503 static int
boot_verify_dependencies(struct boot_loader_state * state)1504 boot_verify_dependencies(struct boot_loader_state *state)
1505 {
1506 int rc = -1;
1507 uint8_t slot;
1508
1509 BOOT_CURR_IMG(state) = 0;
1510 while (BOOT_CURR_IMG(state) < BOOT_IMAGE_NUMBER) {
1511 if (state->img_mask[BOOT_CURR_IMG(state)]) {
1512 BOOT_CURR_IMG(state)++;
1513 continue;
1514 }
1515 if (BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_NONE &&
1516 BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_FAIL) {
1517 slot = BOOT_SECONDARY_SLOT;
1518 } else {
1519 slot = BOOT_PRIMARY_SLOT;
1520 }
1521
1522 rc = boot_verify_slot_dependencies(state, slot);
1523 if (rc == 0) {
1524 /* All dependencies've been satisfied, continue with next image. */
1525 BOOT_CURR_IMG(state)++;
1526 } else {
1527 /* Cannot upgrade due to non-met dependencies, so disable all
1528 * image upgrades.
1529 */
1530 for (int idx = 0; idx < BOOT_IMAGE_NUMBER; idx++) {
1531 BOOT_CURR_IMG(state) = idx;
1532 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1533 }
1534 break;
1535 }
1536 }
1537 return rc;
1538 }
1539 #endif /* (BOOT_IMAGE_NUMBER > 1) */
1540
1541 /**
1542 * Performs a clean (not aborted) image update.
1543 *
1544 * @param bs The current boot status.
1545 *
1546 * @return 0 on success; nonzero on failure.
1547 */
1548 static int
boot_perform_update(struct boot_loader_state * state,struct boot_status * bs)1549 boot_perform_update(struct boot_loader_state *state, struct boot_status *bs)
1550 {
1551 int rc;
1552 #ifndef MCUBOOT_OVERWRITE_ONLY
1553 uint8_t swap_type;
1554 #endif
1555
1556 /* At this point there are no aborted swaps. */
1557 #if defined(MCUBOOT_OVERWRITE_ONLY)
1558 rc = boot_copy_image(state, bs);
1559 #elif defined(MCUBOOT_BOOTSTRAP)
1560 /* Check if the image update was triggered by a bad image in the
1561 * primary slot (the validity of the image in the secondary slot had
1562 * already been checked).
1563 */
1564 FIH_DECLARE(fih_rc, FIH_FAILURE);
1565 rc = boot_check_header_erased(state, BOOT_PRIMARY_SLOT);
1566 FIH_CALL(boot_validate_slot, fih_rc, state, BOOT_PRIMARY_SLOT, bs);
1567 if (rc == 0 || FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
1568 rc = boot_copy_image(state, bs);
1569 } else {
1570 rc = boot_swap_image(state, bs);
1571 }
1572 #else
1573 rc = boot_swap_image(state, bs);
1574 #endif
1575 assert(rc == 0);
1576
1577 #ifndef MCUBOOT_OVERWRITE_ONLY
1578 /* The following state needs image_ok be explicitly set after the
1579 * swap was finished to avoid a new revert.
1580 */
1581 swap_type = BOOT_SWAP_TYPE(state);
1582 if (swap_type == BOOT_SWAP_TYPE_REVERT ||
1583 swap_type == BOOT_SWAP_TYPE_PERM) {
1584 rc = swap_set_image_ok(BOOT_CURR_IMG(state));
1585 if (rc != 0) {
1586 BOOT_SWAP_TYPE(state) = swap_type = BOOT_SWAP_TYPE_PANIC;
1587 }
1588 }
1589
1590 #ifdef MCUBOOT_HW_ROLLBACK_PROT
1591 if (swap_type == BOOT_SWAP_TYPE_PERM) {
1592 /* Update the stored security counter with the new image's security
1593 * counter value. The primary slot holds the new image at this point,
1594 * but the secondary slot's image header must be passed since image
1595 * headers in the boot_data structure have not been updated yet.
1596 *
1597 * In case of a permanent image swap mcuboot will never attempt to
1598 * revert the images on the next reboot. Therefore, the security
1599 * counter must be increased right after the image upgrade.
1600 */
1601 rc = boot_update_security_counter(
1602 BOOT_CURR_IMG(state),
1603 BOOT_PRIMARY_SLOT,
1604 boot_img_hdr(state, BOOT_SECONDARY_SLOT));
1605 if (rc != 0) {
1606 BOOT_LOG_ERR("Security counter update failed after "
1607 "image upgrade.");
1608 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1609 }
1610 }
1611 #endif /* MCUBOOT_HW_ROLLBACK_PROT */
1612
1613 if (BOOT_IS_UPGRADE(swap_type)) {
1614 rc = swap_set_copy_done(BOOT_CURR_IMG(state));
1615 if (rc != 0) {
1616 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1617 }
1618 }
1619 #endif /* !MCUBOOT_OVERWRITE_ONLY */
1620
1621 return rc;
1622 }
1623
1624 /**
1625 * Completes a previously aborted image swap.
1626 *
1627 * @param bs The current boot status.
1628 *
1629 * @return 0 on success; nonzero on failure.
1630 */
1631 #if !defined(MCUBOOT_OVERWRITE_ONLY)
1632 static int
boot_complete_partial_swap(struct boot_loader_state * state,struct boot_status * bs)1633 boot_complete_partial_swap(struct boot_loader_state *state,
1634 struct boot_status *bs)
1635 {
1636 int rc;
1637
1638 /* Determine the type of swap operation being resumed from the
1639 * `swap-type` trailer field.
1640 */
1641 rc = boot_swap_image(state, bs);
1642 assert(rc == 0);
1643
1644 BOOT_SWAP_TYPE(state) = bs->swap_type;
1645
1646 /* The following states need image_ok be explicitly set after the
1647 * swap was finished to avoid a new revert.
1648 */
1649 if (bs->swap_type == BOOT_SWAP_TYPE_REVERT ||
1650 bs->swap_type == BOOT_SWAP_TYPE_PERM) {
1651 rc = swap_set_image_ok(BOOT_CURR_IMG(state));
1652 if (rc != 0) {
1653 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1654 }
1655 }
1656
1657 if (BOOT_IS_UPGRADE(bs->swap_type)) {
1658 rc = swap_set_copy_done(BOOT_CURR_IMG(state));
1659 if (rc != 0) {
1660 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
1661 }
1662 }
1663
1664 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_PANIC) {
1665 BOOT_LOG_ERR("panic!");
1666 assert(0);
1667
1668 /* Loop forever... */
1669 while (1) {}
1670 }
1671
1672 return rc;
1673 }
1674 #endif /* !MCUBOOT_OVERWRITE_ONLY */
1675
1676 #if (BOOT_IMAGE_NUMBER > 1)
1677 /**
1678 * Review the validity of previously determined swap types of other images.
1679 *
1680 * @param aborted_swap The current image upgrade is a
1681 * partial/aborted swap.
1682 */
1683 static void
boot_review_image_swap_types(struct boot_loader_state * state,bool aborted_swap)1684 boot_review_image_swap_types(struct boot_loader_state *state,
1685 bool aborted_swap)
1686 {
1687 /* In that case if we rebooted in the middle of an image upgrade process, we
1688 * must review the validity of swap types, that were previously determined
1689 * for other images. The image_ok flag had not been set before the reboot
1690 * for any of the updated images (only the copy_done flag) and thus falsely
1691 * the REVERT swap type has been determined for the previous images that had
1692 * been updated before the reboot.
1693 *
1694 * There are two separate scenarios that we have to deal with:
1695 *
1696 * 1. The reboot has happened during swapping an image:
1697 * The current image upgrade has been determined as a
1698 * partial/aborted swap.
1699 * 2. The reboot has happened between two separate image upgrades:
1700 * In this scenario we must check the swap type of the current image.
1701 * In those cases if it is NONE or REVERT we cannot certainly determine
1702 * the fact of a reboot. In a consistent state images must move in the
1703 * same direction or stay in place, e.g. in practice REVERT and TEST
1704 * swap types cannot be present at the same time. If the swap type of
1705 * the current image is either TEST, PERM or FAIL we must review the
1706 * already determined swap types of other images and set each false
1707 * REVERT swap types to NONE (these images had been successfully
1708 * updated before the system rebooted between two separate image
1709 * upgrades).
1710 */
1711
1712 if (BOOT_CURR_IMG(state) == 0) {
1713 /* Nothing to do */
1714 return;
1715 }
1716
1717 if (!aborted_swap) {
1718 if ((BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) ||
1719 (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_REVERT)) {
1720 /* Nothing to do */
1721 return;
1722 }
1723 }
1724
1725 for (uint8_t i = 0; i < BOOT_CURR_IMG(state); i++) {
1726 if (state->swap_type[i] == BOOT_SWAP_TYPE_REVERT) {
1727 state->swap_type[i] = BOOT_SWAP_TYPE_NONE;
1728 }
1729 }
1730 }
1731 #endif
1732
1733 /**
1734 * Prepare image to be updated if required.
1735 *
1736 * Prepare image to be updated if required with completing an image swap
1737 * operation if one was aborted and/or determining the type of the
1738 * swap operation. In case of any error set the swap type to NONE.
1739 *
1740 * @param state TODO
1741 * @param bs Pointer where the read and possibly updated
1742 * boot status can be written to.
1743 */
1744 static void
boot_prepare_image_for_update(struct boot_loader_state * state,struct boot_status * bs)1745 boot_prepare_image_for_update(struct boot_loader_state *state,
1746 struct boot_status *bs)
1747 {
1748 int rc;
1749 FIH_DECLARE(fih_rc, FIH_FAILURE);
1750
1751 /* Determine the sector layout of the image slots and scratch area. */
1752 rc = boot_read_sectors(state);
1753 if (rc != 0) {
1754 BOOT_LOG_WRN("Failed reading sectors; BOOT_MAX_IMG_SECTORS=%d"
1755 " - too small?", BOOT_MAX_IMG_SECTORS);
1756 /* Unable to determine sector layout, continue with next image
1757 * if there is one.
1758 */
1759 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1760 if (rc == BOOT_EFLASH)
1761 {
1762 /* Only return on error from the primary image flash */
1763 return;
1764 }
1765 }
1766
1767 /* Attempt to read an image header from each slot. */
1768 rc = boot_read_image_headers(state, false, NULL);
1769 if (rc != 0) {
1770 /* Continue with next image if there is one. */
1771 BOOT_LOG_WRN("Failed reading image headers; Image=%u",
1772 BOOT_CURR_IMG(state));
1773 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1774 return;
1775 }
1776
1777 /* If the current image's slots aren't compatible, no swap is possible.
1778 * Just boot into primary slot.
1779 */
1780 if (boot_slots_compatible(state)) {
1781 boot_status_reset(bs);
1782
1783 #ifndef MCUBOOT_OVERWRITE_ONLY
1784 rc = swap_read_status(state, bs);
1785 if (rc != 0) {
1786 BOOT_LOG_WRN("Failed reading boot status; Image=%u",
1787 BOOT_CURR_IMG(state));
1788 /* Continue with next image if there is one. */
1789 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1790 return;
1791 }
1792 #endif
1793
1794 #ifdef MCUBOOT_SWAP_USING_MOVE
1795 /*
1796 * Must re-read image headers because the boot status might
1797 * have been updated in the previous function call.
1798 */
1799 rc = boot_read_image_headers(state, !boot_status_is_reset(bs), bs);
1800 #ifdef MCUBOOT_BOOTSTRAP
1801 /* When bootstrapping it's OK to not have image magic in the primary slot */
1802 if (rc != 0 && (BOOT_CURR_IMG(state) != BOOT_PRIMARY_SLOT ||
1803 boot_check_header_erased(state, BOOT_PRIMARY_SLOT) != 0)) {
1804 #else
1805 if (rc != 0) {
1806 #endif
1807
1808 /* Continue with next image if there is one. */
1809 BOOT_LOG_WRN("Failed reading image headers; Image=%u",
1810 BOOT_CURR_IMG(state));
1811 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1812 return;
1813 }
1814 #endif
1815
1816 /* Determine if we rebooted in the middle of an image swap
1817 * operation. If a partial swap was detected, complete it.
1818 */
1819 if (!boot_status_is_reset(bs)) {
1820
1821 #if (BOOT_IMAGE_NUMBER > 1)
1822 boot_review_image_swap_types(state, true);
1823 #endif
1824
1825 #ifdef MCUBOOT_OVERWRITE_ONLY
1826 /* Should never arrive here, overwrite-only mode has
1827 * no swap state.
1828 */
1829 assert(0);
1830 #else
1831 /* Determine the type of swap operation being resumed from the
1832 * `swap-type` trailer field.
1833 */
1834 rc = boot_complete_partial_swap(state, bs);
1835 assert(rc == 0);
1836 #endif
1837 /* Attempt to read an image header from each slot. Ensure that
1838 * image headers in slots are aligned with headers in boot_data.
1839 */
1840 rc = boot_read_image_headers(state, false, bs);
1841 assert(rc == 0);
1842
1843 /* Swap has finished set to NONE */
1844 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1845 } else {
1846 /* There was no partial swap, determine swap type. */
1847 if (bs->swap_type == BOOT_SWAP_TYPE_NONE) {
1848 BOOT_SWAP_TYPE(state) = boot_validated_swap_type(state, bs);
1849 } else {
1850 FIH_CALL(boot_validate_slot, fih_rc,
1851 state, BOOT_SECONDARY_SLOT, bs);
1852 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
1853 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_FAIL;
1854 } else {
1855 BOOT_SWAP_TYPE(state) = bs->swap_type;
1856 }
1857 }
1858
1859 #if (BOOT_IMAGE_NUMBER > 1)
1860 boot_review_image_swap_types(state, false);
1861 #endif
1862
1863 #ifdef MCUBOOT_BOOTSTRAP
1864 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) {
1865 /* Header checks are done first because they are
1866 * inexpensive. Since overwrite-only copies starting from
1867 * offset 0, if interrupted, it might leave a valid header
1868 * magic, so also run validation on the primary slot to be
1869 * sure it's not OK.
1870 */
1871 rc = boot_check_header_erased(state, BOOT_PRIMARY_SLOT);
1872 FIH_CALL(boot_validate_slot, fih_rc,
1873 state, BOOT_PRIMARY_SLOT, bs);
1874
1875 if (rc == 0 || FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
1876
1877 rc = (boot_img_hdr(state, BOOT_SECONDARY_SLOT)->ih_magic == IMAGE_MAGIC) ? 1: 0;
1878 FIH_CALL(boot_validate_slot, fih_rc,
1879 state, BOOT_SECONDARY_SLOT, bs);
1880
1881 if (rc == 1 && FIH_EQ(fih_rc, FIH_SUCCESS)) {
1882 /* Set swap type to REVERT to overwrite the primary
1883 * slot with the image contained in secondary slot
1884 * and to trigger the explicit setting of the
1885 * image_ok flag.
1886 */
1887 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_REVERT;
1888 }
1889 }
1890 }
1891 #endif
1892 }
1893 } else {
1894 /* In that case if slots are not compatible. */
1895 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
1896 }
1897 }
1898
1899 /**
1900 * Updates the security counter for the current image.
1901 *
1902 * @param state Boot loader status information.
1903 *
1904 * @return 0 on success; nonzero on failure.
1905 */
1906 static int
1907 boot_update_hw_rollback_protection(struct boot_loader_state *state)
1908 {
1909 #ifdef MCUBOOT_HW_ROLLBACK_PROT
1910 int rc;
1911
1912 /* Update the stored security counter with the active image's security
1913 * counter value. It will only be updated if the new security counter is
1914 * greater than the stored value.
1915 *
1916 * In case of a successful image swapping when the swap type is TEST the
1917 * security counter can be increased only after a reset, when the swap
1918 * type is NONE and the image has marked itself "OK" (the image_ok flag
1919 * has been set). This way a "revert" can be performed when it's
1920 * necessary.
1921 */
1922 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_NONE) {
1923 rc = boot_update_security_counter(
1924 BOOT_CURR_IMG(state),
1925 BOOT_PRIMARY_SLOT,
1926 boot_img_hdr(state, BOOT_PRIMARY_SLOT));
1927 if (rc != 0) {
1928 BOOT_LOG_ERR("Security counter update failed after image "
1929 "validation.");
1930 return rc;
1931 }
1932 }
1933
1934 return 0;
1935
1936 #else /* MCUBOOT_HW_ROLLBACK_PROT */
1937 (void) (state);
1938
1939 return 0;
1940 #endif
1941 }
1942
1943 /**
1944 * Checks test swap downgrade prevention conditions.
1945 *
1946 * Function called only for swap upgrades test run. It may prevent
1947 * swap if slot 1 image has <= version number or < security counter
1948 *
1949 * @param state Boot loader status information.
1950 *
1951 * @return 0 - image can be swapped, -1 downgrade prevention
1952 */
1953 static int
1954 check_downgrade_prevention(struct boot_loader_state *state)
1955 {
1956 #if defined(MCUBOOT_DOWNGRADE_PREVENTION) && \
1957 (defined(MCUBOOT_SWAP_USING_MOVE) || defined(MCUBOOT_SWAP_USING_SCRATCH))
1958 uint32_t security_counter[2];
1959 int rc;
1960
1961 if (MCUBOOT_DOWNGRADE_PREVENTION_SECURITY_COUNTER) {
1962 /* If there was security no counter in slot 0, allow swap */
1963 rc = bootutil_get_img_security_cnt(&(BOOT_IMG(state, 0).hdr),
1964 BOOT_IMG(state, 0).area,
1965 &security_counter[0]);
1966 if (rc != 0) {
1967 return 0;
1968 }
1969 /* If there is no security counter in slot 1, or it's lower than
1970 * that of slot 0, prevent downgrade */
1971 rc = bootutil_get_img_security_cnt(&(BOOT_IMG(state, 1).hdr),
1972 BOOT_IMG(state, 1).area,
1973 &security_counter[1]);
1974 if (rc != 0 || security_counter[0] > security_counter[1]) {
1975 rc = -1;
1976 }
1977 }
1978 else {
1979 rc = boot_version_cmp(&boot_img_hdr(state, BOOT_SECONDARY_SLOT)->ih_ver,
1980 &boot_img_hdr(state, BOOT_PRIMARY_SLOT)->ih_ver);
1981 }
1982 if (rc < 0) {
1983 /* Image in slot 0 prevents downgrade, delete image in slot 1 */
1984 BOOT_LOG_INF("Image in slot 1 erased due to downgrade prevention");
1985 flash_area_erase(BOOT_IMG(state, 1).area, 0,
1986 flash_area_get_size(BOOT_IMG(state, 1).area));
1987 } else {
1988 rc = 0;
1989 }
1990 return rc;
1991 #else
1992 (void)state;
1993 return 0;
1994 #endif
1995 }
1996
1997 fih_ret
1998 context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp)
1999 {
2000 size_t slot;
2001 struct boot_status bs;
2002 int rc = -1;
2003 FIH_DECLARE(fih_rc, FIH_FAILURE);
2004 int fa_id;
2005 int image_index;
2006 bool has_upgrade;
2007 volatile int fih_cnt;
2008
2009 /* The array of slot sectors are defined here (as opposed to file scope) so
2010 * that they don't get allocated for non-boot-loader apps. This is
2011 * necessary because the gcc option "-fdata-sections" doesn't seem to have
2012 * any effect in older gcc versions (e.g., 4.8.4).
2013 */
2014 TARGET_STATIC boot_sector_t primary_slot_sectors[BOOT_IMAGE_NUMBER][BOOT_MAX_IMG_SECTORS];
2015 TARGET_STATIC boot_sector_t secondary_slot_sectors[BOOT_IMAGE_NUMBER][BOOT_MAX_IMG_SECTORS];
2016 #if MCUBOOT_SWAP_USING_SCRATCH
2017 TARGET_STATIC boot_sector_t scratch_sectors[BOOT_MAX_IMG_SECTORS];
2018 #endif
2019
2020 has_upgrade = false;
2021
2022 #if (BOOT_IMAGE_NUMBER == 1)
2023 (void)has_upgrade;
2024 #endif
2025
2026 /* Iterate over all the images. By the end of the loop the swap type has
2027 * to be determined for each image and all aborted swaps have to be
2028 * completed.
2029 */
2030 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2031 #if BOOT_IMAGE_NUMBER > 1
2032 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2033 continue;
2034 }
2035 #endif
2036 #if defined(MCUBOOT_ENC_IMAGES) && (BOOT_IMAGE_NUMBER > 1)
2037 /* The keys used for encryption may no longer be valid (could belong to
2038 * another images). Therefore, mark them as invalid to force their reload
2039 * by boot_enc_load().
2040 */
2041 boot_enc_zeroize(BOOT_CURR_ENC(state));
2042 #endif
2043
2044 image_index = BOOT_CURR_IMG(state);
2045
2046 BOOT_IMG(state, BOOT_PRIMARY_SLOT).sectors =
2047 primary_slot_sectors[image_index];
2048 BOOT_IMG(state, BOOT_SECONDARY_SLOT).sectors =
2049 secondary_slot_sectors[image_index];
2050 #if MCUBOOT_SWAP_USING_SCRATCH
2051 state->scratch.sectors = scratch_sectors;
2052 #endif
2053
2054 /* Open primary and secondary image areas for the duration
2055 * of this call.
2056 */
2057 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2058 fa_id = flash_area_id_from_multi_image_slot(image_index, slot);
2059 rc = flash_area_open(fa_id, &BOOT_IMG_AREA(state, slot));
2060 assert(rc == 0);
2061 }
2062 #if MCUBOOT_SWAP_USING_SCRATCH
2063 rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH,
2064 &BOOT_SCRATCH_AREA(state));
2065 assert(rc == 0);
2066 #endif
2067
2068 /* Determine swap type and complete swap if it has been aborted. */
2069 boot_prepare_image_for_update(state, &bs);
2070
2071 if (BOOT_IS_UPGRADE(BOOT_SWAP_TYPE(state))) {
2072 has_upgrade = true;
2073 }
2074 }
2075
2076 #if (BOOT_IMAGE_NUMBER > 1)
2077 if (has_upgrade) {
2078 /* Iterate over all the images and verify whether the image dependencies
2079 * are all satisfied and update swap type if necessary.
2080 */
2081 rc = boot_verify_dependencies(state);
2082 if (rc != 0) {
2083 /*
2084 * It was impossible to upgrade because the expected dependency version
2085 * was not available. Here we already changed the swap_type so that
2086 * instead of asserting the bootloader, we continue and no upgrade is
2087 * performed.
2088 */
2089 rc = 0;
2090 }
2091 }
2092 #endif
2093
2094 /* Trigger status change callback with upgrading status */
2095 mcuboot_status_change(MCUBOOT_STATUS_UPGRADING);
2096
2097 /* Iterate over all the images. At this point there are no aborted swaps
2098 * and the swap types are determined for each image. By the end of the loop
2099 * all required update operations will have been finished.
2100 */
2101 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2102 #if (BOOT_IMAGE_NUMBER > 1)
2103 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2104 continue;
2105 }
2106
2107 #ifdef MCUBOOT_ENC_IMAGES
2108 /* The keys used for encryption may no longer be valid (could belong to
2109 * another images). Therefore, mark them as invalid to force their reload
2110 * by boot_enc_load().
2111 */
2112 boot_enc_zeroize(BOOT_CURR_ENC(state));
2113 #endif /* MCUBOOT_ENC_IMAGES */
2114
2115 /* Indicate that swap is not aborted */
2116 boot_status_reset(&bs);
2117 #endif /* (BOOT_IMAGE_NUMBER > 1) */
2118
2119 /* Set the previously determined swap type */
2120 bs.swap_type = BOOT_SWAP_TYPE(state);
2121
2122 switch (BOOT_SWAP_TYPE(state)) {
2123 case BOOT_SWAP_TYPE_NONE:
2124 break;
2125
2126 case BOOT_SWAP_TYPE_TEST:
2127 if (check_downgrade_prevention(state) != 0) {
2128 /* Downgrade prevented */
2129 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_NONE;
2130 break;
2131 }
2132 /* fallthrough */
2133 case BOOT_SWAP_TYPE_PERM: /* fallthrough */
2134 case BOOT_SWAP_TYPE_REVERT:
2135 rc = BOOT_HOOK_CALL(boot_perform_update_hook, BOOT_HOOK_REGULAR,
2136 BOOT_CURR_IMG(state), &(BOOT_IMG(state, 1).hdr),
2137 BOOT_IMG_AREA(state, BOOT_SECONDARY_SLOT));
2138 if (rc == BOOT_HOOK_REGULAR)
2139 {
2140 rc = boot_perform_update(state, &bs);
2141 }
2142 assert(rc == 0);
2143 break;
2144
2145 case BOOT_SWAP_TYPE_FAIL:
2146 /* The image in secondary slot was invalid and is now erased. Ensure
2147 * we don't try to boot into it again on the next reboot. Do this by
2148 * pretending we just reverted back to primary slot.
2149 */
2150 #ifndef MCUBOOT_OVERWRITE_ONLY
2151 /* image_ok needs to be explicitly set to avoid a new revert. */
2152 rc = swap_set_image_ok(BOOT_CURR_IMG(state));
2153 if (rc != 0) {
2154 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
2155 }
2156 #endif /* !MCUBOOT_OVERWRITE_ONLY */
2157 break;
2158
2159 default:
2160 BOOT_SWAP_TYPE(state) = BOOT_SWAP_TYPE_PANIC;
2161 }
2162
2163 if (BOOT_SWAP_TYPE(state) == BOOT_SWAP_TYPE_PANIC) {
2164 BOOT_LOG_ERR("panic!");
2165 assert(0);
2166
2167 /* Loop forever... */
2168 FIH_PANIC;
2169 }
2170 }
2171
2172 /* Iterate over all the images. At this point all required update operations
2173 * have finished. By the end of the loop each image in the primary slot will
2174 * have been re-validated.
2175 */
2176 FIH_SET(fih_cnt, 0);
2177 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2178 #if BOOT_IMAGE_NUMBER > 1
2179 /* Hardenned to prevent from skipping check of a given image,
2180 * tmp_img_mask is declared volatile
2181 */
2182 volatile bool tmp_img_mask;
2183 FIH_SET(tmp_img_mask, state->img_mask[BOOT_CURR_IMG(state)]);
2184 if (FIH_EQ(tmp_img_mask, true)) {
2185 ++fih_cnt;
2186 continue;
2187 }
2188 #endif
2189 if (BOOT_SWAP_TYPE(state) != BOOT_SWAP_TYPE_NONE) {
2190 /* Attempt to read an image header from each slot. Ensure that image
2191 * headers in slots are aligned with headers in boot_data.
2192 */
2193 rc = boot_read_image_headers(state, false, &bs);
2194 if (rc != 0) {
2195 FIH_SET(fih_rc, FIH_FAILURE);
2196 goto out;
2197 }
2198 /* Since headers were reloaded, it can be assumed we just performed
2199 * a swap or overwrite. Now the header info that should be used to
2200 * provide the data for the bootstrap, which previously was at
2201 * secondary slot, was updated to primary slot.
2202 */
2203 }
2204
2205 #ifdef MCUBOOT_VALIDATE_PRIMARY_SLOT
2206 FIH_CALL(boot_validate_slot, fih_rc, state, BOOT_PRIMARY_SLOT, NULL);
2207 /* Check for all possible values is redundant in normal operation it
2208 * is meant to prevent FI attack.
2209 */
2210 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS) ||
2211 FIH_EQ(fih_rc, FIH_FAILURE) ||
2212 FIH_EQ(fih_rc, FIH_NO_BOOTABLE_IMAGE)) {
2213 FIH_SET(fih_rc, FIH_FAILURE);
2214 goto out;
2215 }
2216 #else
2217 /* Even if we're not re-validating the primary slot, we could be booting
2218 * onto an empty flash chip. At least do a basic sanity check that
2219 * the magic number on the image is OK.
2220 */
2221 if (BOOT_IMG(state, BOOT_PRIMARY_SLOT).hdr.ih_magic != IMAGE_MAGIC) {
2222 BOOT_LOG_ERR("bad image magic 0x%lx; Image=%u", (unsigned long)
2223 BOOT_IMG(state, BOOT_PRIMARY_SLOT).hdr.ih_magic,
2224 BOOT_CURR_IMG(state));
2225 rc = BOOT_EBADIMAGE;
2226 FIH_SET(fih_rc, FIH_FAILURE);
2227 goto out;
2228 }
2229 #endif /* MCUBOOT_VALIDATE_PRIMARY_SLOT */
2230
2231 rc = boot_update_hw_rollback_protection(state);
2232 if (rc != 0) {
2233 FIH_SET(fih_rc, FIH_FAILURE);
2234 goto out;
2235 }
2236
2237 rc = boot_add_shared_data(state, BOOT_PRIMARY_SLOT);
2238 if (rc != 0) {
2239 FIH_SET(fih_rc, FIH_FAILURE);
2240 goto out;
2241 }
2242 ++fih_cnt;
2243 }
2244 /*
2245 * fih_cnt should be equal to BOOT_IMAGE_NUMBER now.
2246 * If this is not the case, at least one iteration of the loop
2247 * has been skipped.
2248 */
2249 if(FIH_NOT_EQ(fih_cnt, BOOT_IMAGE_NUMBER)) {
2250 FIH_PANIC;
2251 }
2252
2253 fill_rsp(state, rsp);
2254
2255 fih_rc = FIH_SUCCESS;
2256 out:
2257 /*
2258 * Since the boot_status struct stores plaintext encryption keys, reset
2259 * them here to avoid the possibility of jumping into an image that could
2260 * easily recover them.
2261 */
2262 #if defined(MCUBOOT_ENC_IMAGES) || defined(MCUBOOT_SWAP_SAVE_ENCTLV)
2263 like_mbedtls_zeroize(&bs, sizeof(bs));
2264 #else
2265 memset(&bs, 0, sizeof(struct boot_status));
2266 #endif
2267
2268 close_all_flash_areas(state);
2269 FIH_RET(fih_rc);
2270 }
2271
2272 fih_ret
2273 split_go(int loader_slot, int split_slot, void **entry)
2274 {
2275 boot_sector_t *sectors;
2276 uintptr_t entry_val;
2277 int loader_flash_id;
2278 int split_flash_id;
2279 int rc;
2280 FIH_DECLARE(fih_rc, FIH_FAILURE);
2281
2282 sectors = malloc(BOOT_MAX_IMG_SECTORS * 2 * sizeof *sectors);
2283 if (sectors == NULL) {
2284 FIH_RET(FIH_FAILURE);
2285 }
2286 BOOT_IMG(&boot_data, loader_slot).sectors = sectors + 0;
2287 BOOT_IMG(&boot_data, split_slot).sectors = sectors + BOOT_MAX_IMG_SECTORS;
2288
2289 loader_flash_id = flash_area_id_from_image_slot(loader_slot);
2290 rc = flash_area_open(loader_flash_id,
2291 &BOOT_IMG_AREA(&boot_data, loader_slot));
2292 assert(rc == 0);
2293 split_flash_id = flash_area_id_from_image_slot(split_slot);
2294 rc = flash_area_open(split_flash_id,
2295 &BOOT_IMG_AREA(&boot_data, split_slot));
2296 assert(rc == 0);
2297
2298 /* Determine the sector layout of the image slots and scratch area. */
2299 rc = boot_read_sectors(&boot_data);
2300 if (rc != 0) {
2301 rc = SPLIT_GO_ERR;
2302 goto done;
2303 }
2304
2305 rc = boot_read_image_headers(&boot_data, true, NULL);
2306 if (rc != 0) {
2307 goto done;
2308 }
2309
2310 /* Don't check the bootable image flag because we could really call a
2311 * bootable or non-bootable image. Just validate that the image check
2312 * passes which is distinct from the normal check.
2313 */
2314 FIH_CALL(split_image_check, fih_rc,
2315 boot_img_hdr(&boot_data, split_slot),
2316 BOOT_IMG_AREA(&boot_data, split_slot),
2317 boot_img_hdr(&boot_data, loader_slot),
2318 BOOT_IMG_AREA(&boot_data, loader_slot));
2319 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
2320 goto done;
2321 }
2322
2323 entry_val = boot_img_slot_off(&boot_data, split_slot) +
2324 boot_img_hdr(&boot_data, split_slot)->ih_hdr_size;
2325 *entry = (void *) entry_val;
2326 rc = SPLIT_GO_OK;
2327
2328 done:
2329 flash_area_close(BOOT_IMG_AREA(&boot_data, split_slot));
2330 flash_area_close(BOOT_IMG_AREA(&boot_data, loader_slot));
2331 free(sectors);
2332
2333 if (rc) {
2334 FIH_SET(fih_rc, FIH_FAILURE);
2335 }
2336
2337 FIH_RET(fih_rc);
2338 }
2339
2340 #else /* MCUBOOT_DIRECT_XIP || MCUBOOT_RAM_LOAD */
2341
2342 #define NO_ACTIVE_SLOT UINT32_MAX
2343
2344 /**
2345 * Opens all flash areas and checks which contain an image with a valid header.
2346 *
2347 * @param state Boot loader status information.
2348 *
2349 * @return 0 on success; nonzero on failure.
2350 */
2351 static int
2352 boot_get_slot_usage(struct boot_loader_state *state)
2353 {
2354 uint32_t slot;
2355 int fa_id;
2356 int rc;
2357 struct image_header *hdr = NULL;
2358
2359 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2360 #if BOOT_IMAGE_NUMBER > 1
2361 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2362 continue;
2363 }
2364 #endif
2365 /* Open all the slots */
2366 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2367 fa_id = flash_area_id_from_multi_image_slot(
2368 BOOT_CURR_IMG(state), slot);
2369 rc = flash_area_open(fa_id, &BOOT_IMG_AREA(state, slot));
2370 assert(rc == 0);
2371 }
2372
2373 /* Attempt to read an image header from each slot. */
2374 rc = boot_read_image_headers(state, false, NULL);
2375 if (rc != 0) {
2376 BOOT_LOG_WRN("Failed reading image headers.");
2377 return rc;
2378 }
2379
2380 /* Check headers in all slots */
2381 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2382 hdr = boot_img_hdr(state, slot);
2383
2384 if (boot_is_header_valid(hdr, BOOT_IMG_AREA(state, slot))) {
2385 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[slot] = true;
2386 BOOT_LOG_IMAGE_INFO(slot, hdr);
2387 } else {
2388 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[slot] = false;
2389 BOOT_LOG_INF("Image %d %s slot: Image not found",
2390 BOOT_CURR_IMG(state),
2391 (slot == BOOT_PRIMARY_SLOT)
2392 ? "Primary" : "Secondary");
2393 }
2394 }
2395
2396 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
2397 }
2398
2399 return 0;
2400 }
2401
2402 /**
2403 * Finds the slot containing the image with the highest version number for the
2404 * current image.
2405 *
2406 * @param state Boot loader status information.
2407 *
2408 * @return NO_ACTIVE_SLOT if no available slot found, number of
2409 * the found slot otherwise.
2410 */
2411 static uint32_t
2412 find_slot_with_highest_version(struct boot_loader_state *state)
2413 {
2414 uint32_t slot;
2415 uint32_t candidate_slot = NO_ACTIVE_SLOT;
2416 int rc;
2417
2418 for (slot = 0; slot < BOOT_NUM_SLOTS; slot++) {
2419 if (state->slot_usage[BOOT_CURR_IMG(state)].slot_available[slot]) {
2420 if (candidate_slot == NO_ACTIVE_SLOT) {
2421 candidate_slot = slot;
2422 } else {
2423 rc = boot_version_cmp(
2424 &boot_img_hdr(state, slot)->ih_ver,
2425 &boot_img_hdr(state, candidate_slot)->ih_ver);
2426 if (rc == 1) {
2427 /* The version of the image being examined is greater than
2428 * the version of the current candidate.
2429 */
2430 candidate_slot = slot;
2431 }
2432 }
2433 }
2434 }
2435
2436 return candidate_slot;
2437 }
2438
2439 #ifdef MCUBOOT_HAVE_LOGGING
2440 /**
2441 * Prints the state of the loaded images.
2442 *
2443 * @param state Boot loader status information.
2444 */
2445 static void
2446 print_loaded_images(struct boot_loader_state *state)
2447 {
2448 uint32_t active_slot;
2449
2450 (void)state;
2451
2452 IMAGES_ITER(BOOT_CURR_IMG(state)) {
2453 #if BOOT_IMAGE_NUMBER > 1
2454 if (state->img_mask[BOOT_CURR_IMG(state)]) {
2455 continue;
2456 }
2457 #endif
2458 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
2459
2460 BOOT_LOG_INF("Image %d loaded from the %s slot",
2461 BOOT_CURR_IMG(state),
2462 (active_slot == BOOT_PRIMARY_SLOT) ?
2463 "primary" : "secondary");
2464 }
2465 }
2466 #endif
2467
2468 #if defined(MCUBOOT_DIRECT_XIP) && defined(MCUBOOT_DIRECT_XIP_REVERT)
2469 /**
2470 * Checks whether the active slot of the current image was previously selected
2471 * to run. Erases the image if it was selected but its execution failed,
2472 * otherwise marks it as selected if it has not been before.
2473 *
2474 * @param state Boot loader status information.
2475 *
2476 * @return 0 on success; nonzero on failure.
2477 */
2478 static int
2479 boot_select_or_erase(struct boot_loader_state *state)
2480 {
2481 const struct flash_area *fap;
2482 int fa_id;
2483 int rc;
2484 uint32_t active_slot;
2485 struct boot_swap_state* active_swap_state;
2486
2487 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
2488
2489 fa_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), active_slot);
2490 rc = flash_area_open(fa_id, &fap);
2491 assert(rc == 0);
2492
2493 active_swap_state = &(state->slot_usage[BOOT_CURR_IMG(state)].swap_state);
2494
2495 memset(active_swap_state, 0, sizeof(struct boot_swap_state));
2496 rc = boot_read_swap_state(fap, active_swap_state);
2497 assert(rc == 0);
2498
2499 if (active_swap_state->magic != BOOT_MAGIC_GOOD ||
2500 (active_swap_state->copy_done == BOOT_FLAG_SET &&
2501 active_swap_state->image_ok != BOOT_FLAG_SET)) {
2502 /*
2503 * A reboot happened without the image being confirmed at
2504 * runtime or its trailer is corrupted/invalid. Erase the image
2505 * to prevent it from being selected again on the next reboot.
2506 */
2507 BOOT_LOG_DBG("Erasing faulty image in the %s slot.",
2508 (active_slot == BOOT_PRIMARY_SLOT) ? "primary" : "secondary");
2509 rc = flash_area_erase(fap, 0, flash_area_get_size(fap));
2510 assert(rc == 0);
2511
2512 flash_area_close(fap);
2513 rc = -1;
2514 } else {
2515 if (active_swap_state->copy_done != BOOT_FLAG_SET) {
2516 if (active_swap_state->copy_done == BOOT_FLAG_BAD) {
2517 BOOT_LOG_DBG("The copy_done flag had an unexpected value. Its "
2518 "value was neither 'set' nor 'unset', but 'bad'.");
2519 }
2520 /*
2521 * Set the copy_done flag, indicating that the image has been
2522 * selected to boot. It can be set in advance, before even
2523 * validating the image, because in case the validation fails, the
2524 * entire image slot will be erased (including the trailer).
2525 */
2526 rc = boot_write_copy_done(fap);
2527 if (rc != 0) {
2528 BOOT_LOG_WRN("Failed to set copy_done flag of the image in "
2529 "the %s slot.", (active_slot == BOOT_PRIMARY_SLOT) ?
2530 "primary" : "secondary");
2531 rc = 0;
2532 }
2533 }
2534 flash_area_close(fap);
2535 }
2536
2537 return rc;
2538 }
2539 #endif /* MCUBOOT_DIRECT_XIP && MCUBOOT_DIRECT_XIP_REVERT */
2540
2541 #ifdef MCUBOOT_RAM_LOAD
2542
2543 #ifndef MULTIPLE_EXECUTABLE_RAM_REGIONS
2544 #if !defined(IMAGE_EXECUTABLE_RAM_START) || !defined(IMAGE_EXECUTABLE_RAM_SIZE)
2545 #error "Platform MUST define executable RAM bounds in case of RAM_LOAD"
2546 #endif
2547 #endif
2548
2549 /**
2550 * Verifies that the active slot of the current image can be loaded within the
2551 * predefined bounds that are allowed to be used by executable images.
2552 *
2553 * @param state Boot loader status information.
2554 *
2555 * @return 0 on success; nonzero on failure.
2556 */
2557 static int
2558 boot_verify_ram_load_address(struct boot_loader_state *state)
2559 {
2560 uint32_t img_dst;
2561 uint32_t img_sz;
2562 uint32_t img_end_addr;
2563 uint32_t exec_ram_start;
2564 uint32_t exec_ram_size;
2565
2566 (void)state;
2567
2568 #ifdef MULTIPLE_EXECUTABLE_RAM_REGIONS
2569 int rc;
2570
2571 rc = boot_get_image_exec_ram_info(BOOT_CURR_IMG(state), &exec_ram_start,
2572 &exec_ram_size);
2573 if (rc != 0) {
2574 return BOOT_EBADSTATUS;
2575 }
2576 #else
2577 exec_ram_start = IMAGE_EXECUTABLE_RAM_START;
2578 exec_ram_size = IMAGE_EXECUTABLE_RAM_SIZE;
2579 #endif
2580
2581 img_dst = state->slot_usage[BOOT_CURR_IMG(state)].img_dst;
2582 img_sz = state->slot_usage[BOOT_CURR_IMG(state)].img_sz;
2583
2584 if (img_dst < exec_ram_start) {
2585 return BOOT_EBADIMAGE;
2586 }
2587
2588 if (!boot_u32_safe_add(&img_end_addr, img_dst, img_sz)) {
2589 return BOOT_EBADIMAGE;
2590 }
2591
2592 if (img_end_addr > (exec_ram_start + exec_ram_size)) {
2593 return BOOT_EBADIMAGE;
2594 }
2595
2596 return 0;
2597 }
2598
2599 #ifdef MCUBOOT_ENC_IMAGES
2600
2601 /**
2602 * Copies and decrypts an image from a slot in the flash to an SRAM address.
2603 *
2604 * @param state Boot loader status information.
2605 * @param slot The flash slot of the image to be copied to SRAM.
2606 * @param hdr The image header.
2607 * @param src_sz Size of the image.
2608 * @param img_dst Pointer to the address at which the image needs to be
2609 * copied to SRAM.
2610 *
2611 * @return 0 on success; nonzero on failure.
2612 */
2613 static int
2614 boot_decrypt_and_copy_image_to_sram(struct boot_loader_state *state,
2615 uint32_t slot, struct image_header *hdr,
2616 uint32_t src_sz, uint32_t img_dst)
2617 {
2618 /* The flow for the decryption and copy of the image is as follows :
2619 * 1. The whole image is copied to the RAM (header + payload + TLV).
2620 * 2. The encryption key is loaded from the TLV in flash.
2621 * 3. The image is then decrypted chunk by chunk in RAM (1 chunk
2622 * is 1024 bytes). Only the payload section is decrypted.
2623 * 4. The image is authenticated in RAM.
2624 */
2625 const struct flash_area *fap_src = NULL;
2626 struct boot_status bs;
2627 uint32_t blk_off;
2628 uint32_t tlv_off;
2629 uint32_t blk_sz;
2630 uint32_t bytes_copied = hdr->ih_hdr_size;
2631 uint32_t chunk_sz;
2632 uint32_t max_sz = 1024;
2633 uint16_t idx;
2634 uint8_t image_index;
2635 uint8_t * cur_dst;
2636 int area_id;
2637 int rc;
2638 uint8_t * ram_dst = (void *)(IMAGE_RAM_BASE + img_dst);
2639
2640 image_index = BOOT_CURR_IMG(state);
2641 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
2642 rc = flash_area_open(area_id, &fap_src);
2643 if (rc != 0){
2644 return BOOT_EFLASH;
2645 }
2646
2647 tlv_off = BOOT_TLV_OFF(hdr);
2648
2649 /* Copying the whole image in RAM */
2650 rc = flash_area_read(fap_src, 0, ram_dst, src_sz);
2651 if (rc != 0) {
2652 goto done;
2653 }
2654
2655 rc = boot_enc_load(BOOT_CURR_ENC(state), image_index, hdr, fap_src, &bs);
2656 if (rc < 0) {
2657 goto done;
2658 }
2659
2660 /* if rc > 0 then the key has already been loaded */
2661 if (rc == 0 && boot_enc_set_key(BOOT_CURR_ENC(state), slot, &bs)) {
2662 goto done;
2663 }
2664
2665 /* Starting at the end of the header as the header section is not encrypted */
2666 while (bytes_copied < tlv_off) { /* TLV section copied previously */
2667 if (src_sz - bytes_copied > max_sz) {
2668 chunk_sz = max_sz;
2669 } else {
2670 chunk_sz = src_sz - bytes_copied;
2671 }
2672
2673 cur_dst = ram_dst + bytes_copied;
2674 blk_sz = chunk_sz;
2675 idx = 0;
2676 if (bytes_copied + chunk_sz > tlv_off) {
2677 /* Going over TLV section
2678 * Part of the chunk is encrypted payload */
2679 blk_off = ((bytes_copied) - hdr->ih_hdr_size) & 0xf;
2680 blk_sz = tlv_off - (bytes_copied);
2681 boot_encrypt(BOOT_CURR_ENC(state), image_index, fap_src,
2682 (bytes_copied + idx) - hdr->ih_hdr_size, blk_sz,
2683 blk_off, cur_dst);
2684 } else {
2685 /* Image encrypted payload section */
2686 blk_off = ((bytes_copied) - hdr->ih_hdr_size) & 0xf;
2687 boot_encrypt(BOOT_CURR_ENC(state), image_index, fap_src,
2688 (bytes_copied + idx) - hdr->ih_hdr_size, blk_sz,
2689 blk_off, cur_dst);
2690 }
2691
2692 bytes_copied += chunk_sz;
2693 }
2694 rc = 0;
2695
2696 done:
2697 flash_area_close(fap_src);
2698
2699 return rc;
2700 }
2701
2702 #endif /* MCUBOOT_ENC_IMAGES */
2703 /**
2704 * Copies a slot of the current image into SRAM.
2705 *
2706 * @param state Boot loader status information.
2707 * @param slot The flash slot of the image to be copied to SRAM.
2708 * @param img_dst The address at which the image needs to be copied to
2709 * SRAM.
2710 * @param img_sz The size of the image that needs to be copied to SRAM.
2711 *
2712 * @return 0 on success; nonzero on failure.
2713 */
2714 static int
2715 boot_copy_image_to_sram(struct boot_loader_state *state, int slot,
2716 uint32_t img_dst, uint32_t img_sz)
2717 {
2718 int rc;
2719 const struct flash_area *fap_src = NULL;
2720 int area_id;
2721
2722 #if (BOOT_IMAGE_NUMBER == 1)
2723 (void)state;
2724 #endif
2725
2726 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
2727
2728 rc = flash_area_open(area_id, &fap_src);
2729 if (rc != 0) {
2730 return BOOT_EFLASH;
2731 }
2732
2733 /* Direct copy from flash to its new location in SRAM. */
2734 rc = flash_area_read(fap_src, 0, (void *)(IMAGE_RAM_BASE + img_dst), img_sz);
2735 if (rc != 0) {
2736 BOOT_LOG_INF("Error whilst copying image from Flash to SRAM: %d", rc);
2737 }
2738
2739 flash_area_close(fap_src);
2740
2741 return rc;
2742 }
2743
2744 #if (BOOT_IMAGE_NUMBER > 1)
2745 /**
2746 * Checks if two memory regions (A and B) are overlap or not.
2747 *
2748 * @param start_a Start of the A region.
2749 * @param end_a End of the A region.
2750 * @param start_b Start of the B region.
2751 * @param end_b End of the B region.
2752 *
2753 * @return true if there is overlap; false otherwise.
2754 */
2755 static bool
2756 do_regions_overlap(uint32_t start_a, uint32_t end_a,
2757 uint32_t start_b, uint32_t end_b)
2758 {
2759 if (start_b > end_a) {
2760 return false;
2761 } else if (start_b >= start_a) {
2762 return true;
2763 } else if (end_b > start_a) {
2764 return true;
2765 }
2766
2767 return false;
2768 }
2769
2770 /**
2771 * Checks if the image we want to load to memory overlap with an already
2772 * ramloaded image.
2773 *
2774 * @param state Boot loader status information.
2775 *
2776 * @return 0 if there is no overlap; nonzero otherwise.
2777 */
2778 static int
2779 boot_check_ram_load_overlapping(struct boot_loader_state *state)
2780 {
2781 uint32_t i;
2782
2783 uint32_t start_a;
2784 uint32_t end_a;
2785 uint32_t start_b;
2786 uint32_t end_b;
2787 uint32_t image_id_to_check = BOOT_CURR_IMG(state);
2788
2789 start_a = state->slot_usage[image_id_to_check].img_dst;
2790 /* Safe to add here, values are already verified in
2791 * boot_verify_ram_load_address() */
2792 end_a = start_a + state->slot_usage[image_id_to_check].img_sz;
2793
2794 for (i = 0; i < BOOT_IMAGE_NUMBER; i++) {
2795 if (state->slot_usage[i].active_slot == NO_ACTIVE_SLOT
2796 || i == image_id_to_check) {
2797 continue;
2798 }
2799
2800 start_b = state->slot_usage[i].img_dst;
2801 /* Safe to add here, values are already verified in
2802 * boot_verify_ram_load_address() */
2803 end_b = start_b + state->slot_usage[i].img_sz;
2804
2805 if (do_regions_overlap(start_a, end_a, start_b, end_b)) {
2806 return -1;
2807 }
2808 }
2809
2810 return 0;
2811 }
2812 #endif
2813
2814 /**
2815 * Loads the active slot of the current image into SRAM. The load address and
2816 * image size is extracted from the image header.
2817 *
2818 * @param state Boot loader status information.
2819 *
2820 * @return 0 on success; nonzero on failure.
2821 */
2822 static int
2823 boot_load_image_to_sram(struct boot_loader_state *state)
2824 {
2825 uint32_t active_slot;
2826 struct image_header *hdr = NULL;
2827 uint32_t img_dst;
2828 uint32_t img_sz;
2829 int rc;
2830
2831 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
2832 hdr = boot_img_hdr(state, active_slot);
2833
2834 if (hdr->ih_flags & IMAGE_F_RAM_LOAD) {
2835
2836 img_dst = hdr->ih_load_addr;
2837
2838 rc = boot_read_image_size(state, active_slot, &img_sz);
2839 if (rc != 0) {
2840 return rc;
2841 }
2842
2843 state->slot_usage[BOOT_CURR_IMG(state)].img_dst = img_dst;
2844 state->slot_usage[BOOT_CURR_IMG(state)].img_sz = img_sz;
2845
2846 rc = boot_verify_ram_load_address(state);
2847 if (rc != 0) {
2848 BOOT_LOG_INF("Image RAM load address 0x%x is invalid.", img_dst);
2849 return rc;
2850 }
2851
2852 #if (BOOT_IMAGE_NUMBER > 1)
2853 rc = boot_check_ram_load_overlapping(state);
2854 if (rc != 0) {
2855 BOOT_LOG_INF("Image RAM loading to address 0x%x would overlap with\
2856 another image.", img_dst);
2857 return rc;
2858 }
2859 #endif
2860 #ifdef MCUBOOT_ENC_IMAGES
2861 /* decrypt image if encrypted and copy it to RAM */
2862 if (IS_ENCRYPTED(hdr)) {
2863 rc = boot_decrypt_and_copy_image_to_sram(state, active_slot, hdr, img_sz, img_dst);
2864 } else {
2865 rc = boot_copy_image_to_sram(state, active_slot, img_dst, img_sz);
2866 }
2867 #else
2868 /* Copy image to the load address from where it currently resides in
2869 * flash.
2870 */
2871 rc = boot_copy_image_to_sram(state, active_slot, img_dst, img_sz);
2872 #endif
2873 if (rc != 0) {
2874 BOOT_LOG_INF("RAM loading to 0x%x is failed.", img_dst);
2875 } else {
2876 BOOT_LOG_INF("RAM loading to 0x%x is succeeded.", img_dst);
2877 }
2878 } else {
2879 /* Only images that support IMAGE_F_RAM_LOAD are allowed if
2880 * MCUBOOT_RAM_LOAD is set.
2881 */
2882 rc = BOOT_EBADIMAGE;
2883 }
2884
2885 if (rc != 0) {
2886 state->slot_usage[BOOT_CURR_IMG(state)].img_dst = 0;
2887 state->slot_usage[BOOT_CURR_IMG(state)].img_sz = 0;
2888 }
2889
2890 return rc;
2891 }
2892
2893 /**
2894 * Removes an image from SRAM, by overwriting it with zeros.
2895 *
2896 * @param state Boot loader status information.
2897 *
2898 * @return 0 on success; nonzero on failure.
2899 */
2900 static inline int
2901 boot_remove_image_from_sram(struct boot_loader_state *state)
2902 {
2903 (void)state;
2904
2905 BOOT_LOG_INF("Removing image from SRAM at address 0x%x",
2906 state->slot_usage[BOOT_CURR_IMG(state)].img_dst);
2907
2908 memset((void*)(IMAGE_RAM_BASE + state->slot_usage[BOOT_CURR_IMG(state)].img_dst),
2909 0, state->slot_usage[BOOT_CURR_IMG(state)].img_sz);
2910
2911 state->slot_usage[BOOT_CURR_IMG(state)].img_dst = 0;
2912 state->slot_usage[BOOT_CURR_IMG(state)].img_sz = 0;
2913
2914 return 0;
2915 }
2916
2917 /**
2918 * Removes an image from flash by erasing the corresponding flash area
2919 *
2920 * @param state Boot loader status information.
2921 * @param slot The flash slot of the image to be erased.
2922 *
2923 * @return 0 on success; nonzero on failure.
2924 */
2925 static inline int
2926 boot_remove_image_from_flash(struct boot_loader_state *state, uint32_t slot)
2927 {
2928 int area_id;
2929 int rc;
2930 const struct flash_area *fap;
2931
2932 (void)state;
2933
2934 BOOT_LOG_INF("Removing image %d slot %d from flash", BOOT_CURR_IMG(state),
2935 slot);
2936 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state), slot);
2937 rc = flash_area_open(area_id, &fap);
2938 if (rc == 0) {
2939 flash_area_erase(fap, 0, flash_area_get_size(fap));
2940 flash_area_close(fap);
2941 }
2942
2943 return rc;
2944 }
2945 #endif /* MCUBOOT_RAM_LOAD */
2946
2947 #if (BOOT_IMAGE_NUMBER > 1)
2948 /**
2949 * Checks the image dependency whether it is satisfied.
2950 *
2951 * @param state Boot loader status information.
2952 * @param dep Image dependency which has to be verified.
2953 *
2954 * @return 0 if dependencies are met; nonzero otherwise.
2955 */
2956 static int
2957 boot_verify_slot_dependency(struct boot_loader_state *state,
2958 struct image_dependency *dep)
2959 {
2960 struct image_version *dep_version;
2961 uint32_t dep_slot;
2962 int rc;
2963
2964 /* Determine the source of the image which is the subject of
2965 * the dependency and get it's version.
2966 */
2967 dep_slot = state->slot_usage[dep->image_id].active_slot;
2968 dep_version = &state->imgs[dep->image_id][dep_slot].hdr.ih_ver;
2969
2970 rc = boot_version_cmp(dep_version, &dep->image_min_version);
2971 if (rc >= 0) {
2972 /* Dependency satisfied. */
2973 rc = 0;
2974 }
2975
2976 return rc;
2977 }
2978
2979 /**
2980 * Reads all dependency TLVs of an image and verifies one after another to see
2981 * if they are all satisfied.
2982 *
2983 * @param state Boot loader status information.
2984 *
2985 * @return 0 if dependencies are met; nonzero otherwise.
2986 */
2987 static int
2988 boot_verify_slot_dependencies(struct boot_loader_state *state)
2989 {
2990 uint32_t active_slot;
2991 const struct flash_area *fap;
2992 struct image_tlv_iter it;
2993 struct image_dependency dep;
2994 uint32_t off;
2995 uint16_t len;
2996 int area_id;
2997 int rc;
2998
2999 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
3000
3001 area_id = flash_area_id_from_multi_image_slot(BOOT_CURR_IMG(state),
3002 active_slot);
3003 rc = flash_area_open(area_id, &fap);
3004 if (rc != 0) {
3005 rc = BOOT_EFLASH;
3006 goto done;
3007 }
3008
3009 rc = bootutil_tlv_iter_begin(&it, boot_img_hdr(state, active_slot), fap,
3010 IMAGE_TLV_DEPENDENCY, true);
3011 if (rc != 0) {
3012 goto done;
3013 }
3014
3015 while (true) {
3016 rc = bootutil_tlv_iter_next(&it, &off, &len, NULL);
3017 if (rc < 0) {
3018 return -1;
3019 } else if (rc > 0) {
3020 rc = 0;
3021 break;
3022 }
3023
3024 if (len != sizeof(dep)) {
3025 rc = BOOT_EBADIMAGE;
3026 goto done;
3027 }
3028
3029 rc = LOAD_IMAGE_DATA(boot_img_hdr(state, active_slot),
3030 fap, off, &dep, len);
3031 if (rc != 0) {
3032 rc = BOOT_EFLASH;
3033 goto done;
3034 }
3035
3036 if (dep.image_id >= BOOT_IMAGE_NUMBER) {
3037 rc = BOOT_EBADARGS;
3038 goto done;
3039 }
3040
3041 rc = boot_verify_slot_dependency(state, &dep);
3042 if (rc != 0) {
3043 /* Dependency not satisfied. */
3044 goto done;
3045 }
3046 }
3047
3048 done:
3049 flash_area_close(fap);
3050 return rc;
3051 }
3052
3053 /**
3054 * Checks the dependency of all the active slots. If an image found with
3055 * invalid or not satisfied dependencies the image is removed from SRAM (in
3056 * case of MCUBOOT_RAM_LOAD strategy) and its slot is set to unavailable.
3057 *
3058 * @param state Boot loader status information.
3059 *
3060 * @return 0 if dependencies are met; nonzero otherwise.
3061 */
3062 static int
3063 boot_verify_dependencies(struct boot_loader_state *state)
3064 {
3065 int rc = -1;
3066 uint32_t active_slot;
3067
3068 IMAGES_ITER(BOOT_CURR_IMG(state)) {
3069 if (state->img_mask[BOOT_CURR_IMG(state)]) {
3070 continue;
3071 }
3072 rc = boot_verify_slot_dependencies(state);
3073 if (rc != 0) {
3074 /* Dependencies not met or invalid dependencies. */
3075
3076 #ifdef MCUBOOT_RAM_LOAD
3077 boot_remove_image_from_sram(state);
3078 #endif /* MCUBOOT_RAM_LOAD */
3079
3080 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
3081 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3082 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3083
3084 return rc;
3085 }
3086 }
3087
3088 return rc;
3089 }
3090 #endif /* (BOOT_IMAGE_NUMBER > 1) */
3091
3092 /**
3093 * Tries to load a slot for all the images with validation.
3094 *
3095 * @param state Boot loader status information.
3096 *
3097 * @return 0 on success; nonzero on failure.
3098 */
3099 fih_ret
3100 boot_load_and_validate_images(struct boot_loader_state *state)
3101 {
3102 uint32_t active_slot;
3103 int rc;
3104 fih_ret fih_rc;
3105
3106 /* Go over all the images and try to load one */
3107 IMAGES_ITER(BOOT_CURR_IMG(state)) {
3108 /* All slots tried until a valid image found. Breaking from this loop
3109 * means that a valid image found or already loaded. If no slot is
3110 * found the function returns with error code. */
3111 while (true) {
3112 /* Go over all the slots and try to load one */
3113 active_slot = state->slot_usage[BOOT_CURR_IMG(state)].active_slot;
3114 if (active_slot != NO_ACTIVE_SLOT){
3115 /* A slot is already active, go to next image. */
3116 break;
3117 }
3118
3119 active_slot = find_slot_with_highest_version(state);
3120 if (active_slot == NO_ACTIVE_SLOT) {
3121 BOOT_LOG_INF("No slot to load for image %d",
3122 BOOT_CURR_IMG(state));
3123 FIH_RET(FIH_FAILURE);
3124 }
3125
3126 /* Save the number of the active slot. */
3127 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = active_slot;
3128
3129 #if BOOT_IMAGE_NUMBER > 1
3130 if (state->img_mask[BOOT_CURR_IMG(state)]) {
3131 continue;
3132 }
3133 #endif
3134
3135 #ifdef MCUBOOT_DIRECT_XIP
3136 rc = boot_rom_address_check(state);
3137 if (rc != 0) {
3138 /* The image is placed in an unsuitable slot. */
3139 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3140 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3141 continue;
3142 }
3143
3144 #ifdef MCUBOOT_DIRECT_XIP_REVERT
3145 rc = boot_select_or_erase(state);
3146 if (rc != 0) {
3147 /* The selected image slot has been erased. */
3148 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3149 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3150 continue;
3151 }
3152 #endif /* MCUBOOT_DIRECT_XIP_REVERT */
3153 #endif /* MCUBOOT_DIRECT_XIP */
3154
3155 #ifdef MCUBOOT_RAM_LOAD
3156 /* Image is first loaded to RAM and authenticated there in order to
3157 * prevent TOCTOU attack during image copy. This could be applied
3158 * when loading images from external (untrusted) flash to internal
3159 * (trusted) RAM and image is authenticated before copying.
3160 */
3161 rc = boot_load_image_to_sram(state);
3162 if (rc != 0 ) {
3163 /* Image cannot be ramloaded. */
3164 boot_remove_image_from_flash(state, active_slot);
3165 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3166 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3167 continue;
3168 }
3169 #endif /* MCUBOOT_RAM_LOAD */
3170
3171 FIH_CALL(boot_validate_slot, fih_rc, state, active_slot, NULL);
3172 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
3173 /* Image is invalid. */
3174 #ifdef MCUBOOT_RAM_LOAD
3175 boot_remove_image_from_sram(state);
3176 #endif /* MCUBOOT_RAM_LOAD */
3177 state->slot_usage[BOOT_CURR_IMG(state)].slot_available[active_slot] = false;
3178 state->slot_usage[BOOT_CURR_IMG(state)].active_slot = NO_ACTIVE_SLOT;
3179 continue;
3180 }
3181
3182 /* Valid image loaded from a slot, go to next image. */
3183 break;
3184 }
3185 }
3186
3187 FIH_RET(FIH_SUCCESS);
3188 }
3189
3190 /**
3191 * Updates the security counter for the current image.
3192 *
3193 * @param state Boot loader status information.
3194 *
3195 * @return 0 on success; nonzero on failure.
3196 */
3197 static int
3198 boot_update_hw_rollback_protection(struct boot_loader_state *state)
3199 {
3200 #ifdef MCUBOOT_HW_ROLLBACK_PROT
3201 int rc;
3202
3203 /* Update the stored security counter with the newer (active) image's
3204 * security counter value.
3205 */
3206 #if defined(MCUBOOT_DIRECT_XIP) && defined(MCUBOOT_DIRECT_XIP_REVERT)
3207 /* When the 'revert' mechanism is enabled in direct-xip mode, the
3208 * security counter can be increased only after reboot, if the image
3209 * has been confirmed at runtime (the image_ok flag has been set).
3210 * This way a 'revert' can be performed when it's necessary.
3211 */
3212 if (state->slot_usage[BOOT_CURR_IMG(state)].swap_state.image_ok == BOOT_FLAG_SET) {
3213 #endif
3214 rc = boot_update_security_counter(BOOT_CURR_IMG(state),
3215 state->slot_usage[BOOT_CURR_IMG(state)].active_slot,
3216 boot_img_hdr(state, state->slot_usage[BOOT_CURR_IMG(state)].active_slot));
3217 if (rc != 0) {
3218 BOOT_LOG_ERR("Security counter update failed after image "
3219 "validation.");
3220 return rc;
3221 }
3222 #if defined(MCUBOOT_DIRECT_XIP) && defined(MCUBOOT_DIRECT_XIP_REVERT)
3223 }
3224 #endif
3225
3226 return 0;
3227
3228 #else /* MCUBOOT_HW_ROLLBACK_PROT */
3229 (void) (state);
3230 return 0;
3231 #endif
3232 }
3233
3234 fih_ret
3235 context_boot_go(struct boot_loader_state *state, struct boot_rsp *rsp)
3236 {
3237 int rc;
3238 FIH_DECLARE(fih_rc, FIH_FAILURE);
3239
3240 rc = boot_get_slot_usage(state);
3241 if (rc != 0) {
3242 goto out;
3243 }
3244
3245 #if (BOOT_IMAGE_NUMBER > 1)
3246 while (true) {
3247 #endif
3248 FIH_CALL(boot_load_and_validate_images, fih_rc, state);
3249 if (FIH_NOT_EQ(fih_rc, FIH_SUCCESS)) {
3250 FIH_SET(fih_rc, FIH_FAILURE);
3251 goto out;
3252 }
3253
3254 #if (BOOT_IMAGE_NUMBER > 1)
3255 rc = boot_verify_dependencies(state);
3256 if (rc != 0) {
3257 /* Dependency check failed for an image, it has been removed from
3258 * SRAM in case of MCUBOOT_RAM_LOAD strategy, and set to
3259 * unavailable. Try to load an image from another slot.
3260 */
3261 continue;
3262 }
3263 /* Dependency check was successful. */
3264 break;
3265 }
3266 #endif
3267
3268 IMAGES_ITER(BOOT_CURR_IMG(state)) {
3269 #if BOOT_IMAGE_NUMBER > 1
3270 if (state->img_mask[BOOT_CURR_IMG(state)]) {
3271 continue;
3272 }
3273 #endif
3274 rc = boot_update_hw_rollback_protection(state);
3275 if (rc != 0) {
3276 FIH_SET(fih_rc, FIH_FAILURE);
3277 goto out;
3278 }
3279
3280 rc = boot_add_shared_data(state, state->slot_usage[BOOT_CURR_IMG(state)].active_slot);
3281 if (rc != 0) {
3282 FIH_SET(fih_rc, FIH_FAILURE);
3283 goto out;
3284 }
3285 }
3286
3287 /* All image loaded successfully. */
3288 #ifdef MCUBOOT_HAVE_LOGGING
3289 print_loaded_images(state);
3290 #endif
3291
3292 fill_rsp(state, rsp);
3293
3294 out:
3295 close_all_flash_areas(state);
3296
3297 if (rc != 0) {
3298 FIH_SET(fih_rc, FIH_FAILURE);
3299 }
3300
3301 FIH_RET(fih_rc);
3302 }
3303 #endif /* MCUBOOT_DIRECT_XIP || MCUBOOT_RAM_LOAD */
3304
3305 /**
3306 * Prepares the booting process. This function moves images around in flash as
3307 * appropriate, and tells you what address to boot from.
3308 *
3309 * @param rsp On success, indicates how booting should occur.
3310 *
3311 * @return FIH_SUCCESS on success; nonzero on failure.
3312 */
3313 fih_ret
3314 boot_go(struct boot_rsp *rsp)
3315 {
3316 FIH_DECLARE(fih_rc, FIH_FAILURE);
3317
3318 boot_state_clear(NULL);
3319
3320 FIH_CALL(context_boot_go, fih_rc, &boot_data, rsp);
3321 FIH_RET(fih_rc);
3322 }
3323
3324 /**
3325 * Prepares the booting process, considering only a single image. This function
3326 * moves images around in flash as appropriate, and tells you what address to
3327 * boot from.
3328 *
3329 * @param rsp On success, indicates how booting should occur.
3330 *
3331 * @param image_id The image ID to prepare the boot process for.
3332 *
3333 * @return FIH_SUCCESS on success; nonzero on failure.
3334 */
3335 fih_ret
3336 boot_go_for_image_id(struct boot_rsp *rsp, uint32_t image_id)
3337 {
3338 FIH_DECLARE(fih_rc, FIH_FAILURE);
3339
3340 if (image_id >= BOOT_IMAGE_NUMBER) {
3341 FIH_RET(FIH_FAILURE);
3342 }
3343
3344 #if BOOT_IMAGE_NUMBER > 1
3345 memset(&boot_data.img_mask, 1, BOOT_IMAGE_NUMBER);
3346 boot_data.img_mask[image_id] = 0;
3347 #endif
3348
3349 FIH_CALL(context_boot_go, fih_rc, &boot_data, rsp);
3350 FIH_RET(fih_rc);
3351 }
3352
3353 /**
3354 * Clears the boot state, so that previous operations have no effect on new
3355 * ones.
3356 *
3357 * @param state The state that should be cleared. If the value
3358 * is NULL, the default bootloader state will be
3359 * cleared.
3360 */
3361 void boot_state_clear(struct boot_loader_state *state)
3362 {
3363 if (state != NULL) {
3364 memset(state, 0, sizeof(struct boot_loader_state));
3365 } else {
3366 memset(&boot_data, 0, sizeof(struct boot_loader_state));
3367 }
3368 }
3369