1 /* Run the boot image. */
2
3 #include <assert.h>
4 #include <setjmp.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <bootutil/bootutil.h>
9 #include <bootutil/image.h>
10
11 #include <flash_map_backend/flash_map_backend.h>
12
13 #include "../../../boot/bootutil/src/bootutil_priv.h"
14 #include "bootsim.h"
15
16 #ifdef MCUBOOT_ENCRYPT_RSA
17 #include "mbedtls/rsa.h"
18 #include "mbedtls/asn1.h"
19 #endif
20
21 #ifdef MCUBOOT_ENCRYPT_KW
22 #include "mbedtls/nist_kw.h"
23 #endif
24
25 #define BOOT_LOG_LEVEL BOOT_LOG_LEVEL_ERROR
26 #include <bootutil/bootutil_log.h>
27
28 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
29
30 struct area_desc;
31 extern struct area_desc *sim_get_flash_areas(void);
32 extern void sim_set_flash_areas(struct area_desc *areas);
33 extern void sim_reset_flash_areas(void);
34
35 struct sim_context;
36 extern struct sim_context *sim_get_context(void);
37 extern void sim_set_context(struct sim_context *ctx);
38 extern void sim_reset_context(void);
39
40 extern int sim_flash_erase(uint8_t flash_id, uint32_t offset, uint32_t size);
41 extern int sim_flash_read(uint8_t flash_id, uint32_t offset, uint8_t *dest,
42 uint32_t size);
43 extern int sim_flash_write(uint8_t flash_id, uint32_t offset, const uint8_t *src,
44 uint32_t size);
45 extern uint16_t sim_flash_align(uint8_t flash_id);
46 extern uint8_t sim_flash_erased_val(uint8_t flash_id);
47
48 struct sim_context {
49 int flash_counter;
50 int jumped;
51 uint8_t c_asserts;
52 uint8_t c_catch_asserts;
53 jmp_buf boot_jmpbuf;
54 };
55
56 #ifdef MCUBOOT_ENCRYPT_RSA
57 static int
parse_pubkey(mbedtls_rsa_context * ctx,uint8_t ** p,uint8_t * end)58 parse_pubkey(mbedtls_rsa_context *ctx, uint8_t **p, uint8_t *end)
59 {
60 int rc;
61 size_t len;
62
63 if ((rc = mbedtls_asn1_get_tag(p, end, &len,
64 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
65 return -1;
66 }
67
68 if (*p + len != end) {
69 return -2;
70 }
71
72 if ((rc = mbedtls_asn1_get_tag(p, end, &len,
73 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
74 return -3;
75 }
76
77 *p += len;
78
79 if ((rc = mbedtls_asn1_get_tag(p, end, &len, MBEDTLS_ASN1_BIT_STRING)) != 0) {
80 return -4;
81 }
82
83 if (**p != MBEDTLS_ASN1_PRIMITIVE) {
84 return -5;
85 }
86
87 *p += 1;
88
89 if ((rc = mbedtls_asn1_get_tag(p, end, &len,
90 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
91 return -6;
92 }
93
94 if (mbedtls_asn1_get_mpi(p, end, &ctx->N) != 0) {
95 return -7;
96 }
97
98 if (mbedtls_asn1_get_mpi(p, end, &ctx->E) != 0) {
99 return -8;
100 }
101
102 ctx->len = mbedtls_mpi_size(&ctx->N);
103
104 if (*p != end) {
105 return -9;
106 }
107
108 if (mbedtls_rsa_check_pubkey(ctx) != 0) {
109 return -10;
110 }
111
112 return 0;
113 }
114
115 static int
fake_rng(void * p_rng,unsigned char * output,size_t len)116 fake_rng(void *p_rng, unsigned char *output, size_t len)
117 {
118 size_t i;
119
120 (void)p_rng;
121 for (i = 0; i < len; i++) {
122 output[i] = (char)i;
123 }
124
125 return 0;
126 }
127 #endif
128
129 int mbedtls_platform_set_calloc_free(void * (*calloc_func)(size_t, size_t),
130 void (*free_func)(void *));
131
rsa_oaep_encrypt_(const uint8_t * pubkey,unsigned pubkey_len,const uint8_t * seckey,unsigned seckey_len,uint8_t * encbuf)132 int rsa_oaep_encrypt_(const uint8_t *pubkey, unsigned pubkey_len,
133 const uint8_t *seckey, unsigned seckey_len,
134 uint8_t *encbuf)
135 {
136 #ifdef MCUBOOT_ENCRYPT_RSA
137 mbedtls_rsa_context ctx;
138 uint8_t *cp;
139 uint8_t *cpend;
140 int rc;
141
142 mbedtls_platform_set_calloc_free(calloc, free);
143
144 mbedtls_rsa_init(&ctx, MBEDTLS_RSA_PKCS_V21, MBEDTLS_MD_SHA256);
145
146 cp = (uint8_t *)pubkey;
147 cpend = cp + pubkey_len;
148
149 rc = parse_pubkey(&ctx, &cp, cpend);
150 if (rc) {
151 goto done;
152 }
153
154 rc = mbedtls_rsa_rsaes_oaep_encrypt(&ctx, fake_rng, NULL, MBEDTLS_RSA_PUBLIC,
155 NULL, 0, seckey_len, seckey, encbuf);
156 if (rc) {
157 goto done;
158 }
159
160 done:
161 mbedtls_rsa_free(&ctx);
162 return rc;
163
164 #else
165 (void)pubkey;
166 (void)pubkey_len;
167 (void)seckey;
168 (void)seckey_len;
169 (void)encbuf;
170 return 0;
171 #endif
172 }
173
kw_encrypt_(const uint8_t * kek,const uint8_t * seckey,uint8_t * encbuf)174 int kw_encrypt_(const uint8_t *kek, const uint8_t *seckey, uint8_t *encbuf)
175 {
176 #ifdef MCUBOOT_ENCRYPT_KW
177 #ifdef MCUBOOT_AES_256
178 int key_len = 256;
179 int out_size = 40;
180 int in_len = 32;
181 #else
182 int key_len = 128;
183 int out_size = 24;
184 int in_len = 16;
185 #endif
186 mbedtls_nist_kw_context kw;
187 size_t olen;
188 int rc;
189
190 mbedtls_platform_set_calloc_free(calloc, free);
191
192 mbedtls_nist_kw_init(&kw);
193
194 rc = mbedtls_nist_kw_setkey(&kw, MBEDTLS_CIPHER_ID_AES, kek, key_len, 1);
195 if (rc) {
196 goto done;
197 }
198
199 rc = mbedtls_nist_kw_wrap(&kw, MBEDTLS_KW_MODE_KW, seckey, in_len, encbuf,
200 &olen, out_size);
201
202 done:
203 mbedtls_nist_kw_free(&kw);
204 return rc;
205
206 #else
207 (void)kek;
208 (void)seckey;
209 (void)encbuf;
210 return 0;
211 #endif
212 }
213
flash_area_align(const struct flash_area * area)214 uint16_t flash_area_align(const struct flash_area *area)
215 {
216 return sim_flash_align(area->fa_device_id);
217 }
218
flash_area_erased_val(const struct flash_area * area)219 uint8_t flash_area_erased_val(const struct flash_area *area)
220 {
221 return sim_flash_erased_val(area->fa_device_id);
222 }
223
224 struct area {
225 struct flash_area whole;
226 struct flash_area *areas;
227 uint32_t num_areas;
228 uint8_t id;
229 };
230
231 struct area_desc {
232 struct area slots[16];
233 uint32_t num_slots;
234 };
235
invoke_boot_go(struct sim_context * ctx,struct area_desc * adesc)236 int invoke_boot_go(struct sim_context *ctx, struct area_desc *adesc)
237 {
238 int res;
239 struct boot_rsp rsp;
240 struct boot_loader_state *state;
241
242 #if defined(MCUBOOT_SIGN_RSA) || \
243 (defined(MCUBOOT_SIGN_EC256) && defined(MCUBOOT_USE_MBED_TLS)) ||\
244 (defined(MCUBOOT_ENCRYPT_EC256) && defined(MCUBOOT_USE_MBED_TLS)) ||\
245 (defined(MCUBOOT_ENCRYPT_X25519) && defined(MCUBOOT_USE_MBED_TLS))
246 mbedtls_platform_set_calloc_free(calloc, free);
247 #endif
248
249 // NOTE: cleared internally by context_boot_go
250 state = malloc(sizeof(struct boot_loader_state));
251
252 sim_set_flash_areas(adesc);
253 sim_set_context(ctx);
254
255 if (setjmp(ctx->boot_jmpbuf) == 0) {
256 res = context_boot_go(state, &rsp);
257 sim_reset_flash_areas();
258 sim_reset_context();
259 free(state);
260 /* printf("boot_go off: %d (0x%08x)\n", res, rsp.br_image_off); */
261 return res;
262 } else {
263 sim_reset_flash_areas();
264 sim_reset_context();
265 free(state);
266 return -0x13579;
267 }
268 }
269
os_malloc(size_t size)270 void *os_malloc(size_t size)
271 {
272 // printf("os_malloc 0x%x bytes\n", size);
273 return malloc(size);
274 }
275
flash_area_id_from_multi_image_slot(int image_index,int slot)276 int flash_area_id_from_multi_image_slot(int image_index, int slot)
277 {
278 switch (slot) {
279 case 0: return FLASH_AREA_IMAGE_PRIMARY(image_index);
280 case 1: return FLASH_AREA_IMAGE_SECONDARY(image_index);
281 case 2: return FLASH_AREA_IMAGE_SCRATCH;
282 }
283
284 printf("Image flash area ID not found\n");
285 return -1; /* flash_area_open will fail on that */
286 }
287
flash_area_open(uint8_t id,const struct flash_area ** area)288 int flash_area_open(uint8_t id, const struct flash_area **area)
289 {
290 uint32_t i;
291 struct area_desc *flash_areas;
292
293 flash_areas = sim_get_flash_areas();
294 for (i = 0; i < flash_areas->num_slots; i++) {
295 if (flash_areas->slots[i].id == id)
296 break;
297 }
298 if (i == flash_areas->num_slots) {
299 printf("Unsupported area\n");
300 abort();
301 }
302
303 /* Unsure if this is right, just returning the first area. */
304 *area = &flash_areas->slots[i].whole;
305 return 0;
306 }
307
flash_area_close(const struct flash_area * area)308 void flash_area_close(const struct flash_area *area)
309 {
310 (void)area;
311 }
312
313 /*
314 * Read/write/erase. Offset is relative from beginning of flash area.
315 */
flash_area_read(const struct flash_area * area,uint32_t off,void * dst,uint32_t len)316 int flash_area_read(const struct flash_area *area, uint32_t off, void *dst,
317 uint32_t len)
318 {
319 BOOT_LOG_SIM("%s: area=%d, off=%x, len=%x",
320 __func__, area->fa_id, off, len);
321 return sim_flash_read(area->fa_device_id, area->fa_off + off, dst, len);
322 }
323
flash_area_write(const struct flash_area * area,uint32_t off,const void * src,uint32_t len)324 int flash_area_write(const struct flash_area *area, uint32_t off, const void *src,
325 uint32_t len)
326 {
327 BOOT_LOG_SIM("%s: area=%d, off=%x, len=%x", __func__,
328 area->fa_id, off, len);
329 struct sim_context *ctx = sim_get_context();
330 if (--(ctx->flash_counter) == 0) {
331 ctx->jumped++;
332 longjmp(ctx->boot_jmpbuf, 1);
333 }
334 return sim_flash_write(area->fa_device_id, area->fa_off + off, src, len);
335 }
336
flash_area_erase(const struct flash_area * area,uint32_t off,uint32_t len)337 int flash_area_erase(const struct flash_area *area, uint32_t off, uint32_t len)
338 {
339 BOOT_LOG_SIM("%s: area=%d, off=%x, len=%x", __func__,
340 area->fa_id, off, len);
341 struct sim_context *ctx = sim_get_context();
342 if (--(ctx->flash_counter) == 0) {
343 ctx->jumped++;
344 longjmp(ctx->boot_jmpbuf, 1);
345 }
346 return sim_flash_erase(area->fa_device_id, area->fa_off + off, len);
347 }
348
flash_area_to_sectors(int idx,int * cnt,struct flash_area * ret)349 int flash_area_to_sectors(int idx, int *cnt, struct flash_area *ret)
350 {
351 uint32_t i;
352 struct area *slot;
353 struct area_desc *flash_areas;
354
355 flash_areas = sim_get_flash_areas();
356 for (i = 0; i < flash_areas->num_slots; i++) {
357 if (flash_areas->slots[i].id == idx)
358 break;
359 }
360 if (i == flash_areas->num_slots) {
361 printf("Unsupported area\n");
362 abort();
363 }
364
365 slot = &flash_areas->slots[i];
366
367 if (slot->num_areas > (uint32_t)*cnt) {
368 printf("Too many areas in slot\n");
369 abort();
370 }
371
372 *cnt = slot->num_areas;
373 memcpy(ret, slot->areas, slot->num_areas * sizeof(struct flash_area));
374
375 return 0;
376 }
377
flash_area_get_sectors(int fa_id,uint32_t * count,struct flash_sector * sectors)378 int flash_area_get_sectors(int fa_id, uint32_t *count,
379 struct flash_sector *sectors)
380 {
381 uint32_t i;
382 struct area *slot;
383 struct area_desc *flash_areas;
384
385 flash_areas = sim_get_flash_areas();
386 for (i = 0; i < flash_areas->num_slots; i++) {
387 if (flash_areas->slots[i].id == fa_id)
388 break;
389 }
390 if (i == flash_areas->num_slots) {
391 printf("Unsupported area\n");
392 abort();
393 }
394
395 slot = &flash_areas->slots[i];
396
397 if (slot->num_areas > *count) {
398 printf("Too many areas in slot\n");
399 abort();
400 }
401
402 for (i = 0; i < slot->num_areas; i++) {
403 sectors[i].fs_off = slot->areas[i].fa_off -
404 slot->whole.fa_off;
405 sectors[i].fs_size = slot->areas[i].fa_size;
406 }
407 *count = slot->num_areas;
408
409 return 0;
410 }
411
flash_area_id_to_multi_image_slot(int image_index,int area_id)412 int flash_area_id_to_multi_image_slot(int image_index, int area_id)
413 {
414 if (area_id == FLASH_AREA_IMAGE_PRIMARY(image_index)) {
415 return 0;
416 }
417 if (area_id == FLASH_AREA_IMAGE_SECONDARY(image_index)) {
418 return 1;
419 }
420
421 printf("Unsupported image area ID\n");
422 abort();
423 }
424
sim_assert(int x,const char * assertion,const char * file,unsigned int line,const char * function)425 void sim_assert(int x, const char *assertion, const char *file, unsigned int line, const char *function)
426 {
427 if (!(x)) {
428 struct sim_context *ctx = sim_get_context();
429 if (ctx->c_catch_asserts) {
430 ctx->c_asserts++;
431 } else {
432 BOOT_LOG_ERR("%s:%d: %s: Assertion `%s' failed.", file, line, function, assertion);
433
434 /* NOTE: if the assert below is triggered, the place where it was originally
435 * asserted is printed by the message above...
436 */
437 assert(x);
438 }
439 }
440 }
441
boot_max_align(void)442 uint32_t boot_max_align(void)
443 {
444 return BOOT_MAX_ALIGN;
445 }
446
boot_magic_sz(void)447 uint32_t boot_magic_sz(void)
448 {
449 return BOOT_MAGIC_SZ;
450 }
451