1 /*
2  * SPDX-License-Identifier: Apache-2.0
3  *
4  * Copyright (c) 2017-2018 Linaro LTD
5  * Copyright (c) 2017-2019 JUUL Labs
6  * Copyright (c) 2020 Arm Limited
7  *
8  * Original license:
9  *
10  * Licensed to the Apache Software Foundation (ASF) under one
11  * or more contributor license agreements.  See the NOTICE file
12  * distributed with this work for additional information
13  * regarding copyright ownership.  The ASF licenses this file
14  * to you under the Apache License, Version 2.0 (the
15  * "License"); you may not use this file except in compliance
16  * with the License.  You may obtain a copy of the License at
17  *
18  *  http://www.apache.org/licenses/LICENSE-2.0
19  *
20  * Unless required by applicable law or agreed to in writing,
21  * software distributed under the License is distributed on an
22  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
23  * KIND, either express or implied.  See the License for the
24  * specific language governing permissions and limitations
25  * under the License.
26  */
27 
28 #include <string.h>
29 
30 #include "mcuboot_config/mcuboot_config.h"
31 
32 #ifdef MCUBOOT_SIGN_RSA
33 #include "bootutil/sign_key.h"
34 #include "bootutil/crypto/sha256.h"
35 
36 #include "mbedtls/rsa.h"
37 #include "mbedtls/asn1.h"
38 #include "mbedtls/version.h"
39 
40 #include "bootutil_priv.h"
41 #include "bootutil/fault_injection_hardening.h"
42 
43 /*
44  * Constants for this particular constrained implementation of
45  * RSA-PSS.  In particular, we support RSA 2048, with a SHA256 hash,
46  * and a 32-byte salt.  A signature with different parameters will be
47  * rejected as invalid.
48  */
49 
50 /* The size, in octets, of the message. */
51 #define PSS_EMLEN (MCUBOOT_SIGN_RSA_LEN / 8)
52 
53 /* The size of the hash function.  For SHA256, this is 32 bytes. */
54 #define PSS_HLEN 32
55 
56 /* Size of the salt, should be fixed. */
57 #define PSS_SLEN 32
58 
59 /* The length of the mask: emLen - hLen - 1. */
60 #define PSS_MASK_LEN (PSS_EMLEN - PSS_HLEN - 1)
61 
62 #define PSS_HASH_OFFSET PSS_MASK_LEN
63 
64 /* For the mask itself, how many bytes should be all zeros. */
65 #define PSS_MASK_ZERO_COUNT (PSS_MASK_LEN - PSS_SLEN - 1)
66 #define PSS_MASK_ONE_POS   PSS_MASK_ZERO_COUNT
67 
68 /* Where the salt starts. */
69 #define PSS_MASK_SALT_POS   (PSS_MASK_ONE_POS + 1)
70 
71 static const uint8_t pss_zeros[8] = {0};
72 
73 /*
74  * Parse the public key used for signing. Simple RSA format.
75  */
76 static int
bootutil_parse_rsakey(mbedtls_rsa_context * ctx,uint8_t ** p,uint8_t * end)77 bootutil_parse_rsakey(mbedtls_rsa_context *ctx, uint8_t **p, uint8_t *end)
78 {
79     int rc;
80     size_t len;
81 
82     if ((rc = mbedtls_asn1_get_tag(p, end, &len,
83           MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
84         return -1;
85     }
86 
87     if (*p + len != end) {
88         return -2;
89     }
90 
91     if ((rc = mbedtls_asn1_get_mpi(p, end, &ctx->N)) != 0 ||
92       (rc = mbedtls_asn1_get_mpi(p, end, &ctx->E)) != 0) {
93         return -3;
94     }
95 
96     ctx->len = mbedtls_mpi_size(&ctx->N);
97 
98     if (*p != end) {
99         return -4;
100     }
101 
102     /* The mbedtls version is more than 2.6.1 */
103 #if MBEDTLS_VERSION_NUMBER > 0x02060100
104     rc = mbedtls_rsa_import(ctx, &ctx->N, NULL, NULL, NULL, &ctx->E);
105     if (rc != 0) {
106         return -5;
107     }
108 #endif
109 
110     rc = mbedtls_rsa_check_pubkey(ctx);
111     if (rc != 0) {
112         return -6;
113     }
114 
115     ctx->len = mbedtls_mpi_size(&ctx->N);
116 
117     return 0;
118 }
119 
120 /*
121  * Compute the RSA-PSS mask-generation function, MGF1.  Assumptions
122  * are that the mask length will be less than 256 * PSS_HLEN, and
123  * therefore we never need to increment anything other than the low
124  * byte of the counter.
125  *
126  * This is described in PKCS#1, B.2.1.
127  */
128 static void
pss_mgf1(uint8_t * mask,const uint8_t * hash)129 pss_mgf1(uint8_t *mask, const uint8_t *hash)
130 {
131     bootutil_sha256_context ctx;
132     uint8_t counter[4] = { 0, 0, 0, 0 };
133     uint8_t htmp[PSS_HLEN];
134     int count = PSS_MASK_LEN;
135     int bytes;
136 
137     while (count > 0) {
138         bootutil_sha256_init(&ctx);
139         bootutil_sha256_update(&ctx, hash, PSS_HLEN);
140         bootutil_sha256_update(&ctx, counter, 4);
141         bootutil_sha256_finish(&ctx, htmp);
142 
143         counter[3]++;
144 
145         bytes = PSS_HLEN;
146         if (bytes > count)
147             bytes = count;
148 
149         memcpy(mask, htmp, bytes);
150         mask += bytes;
151         count -= bytes;
152     }
153 
154     bootutil_sha256_drop(&ctx);
155 }
156 
157 /*
158  * Validate an RSA signature, using RSA-PSS, as described in PKCS #1
159  * v2.2, section 9.1.2, with many parameters required to have fixed
160  * values.
161  */
162 static fih_int
bootutil_cmp_rsasig(mbedtls_rsa_context * ctx,uint8_t * hash,uint32_t hlen,uint8_t * sig)163 bootutil_cmp_rsasig(mbedtls_rsa_context *ctx, uint8_t *hash, uint32_t hlen,
164   uint8_t *sig)
165 {
166     bootutil_sha256_context shactx;
167     uint8_t em[MBEDTLS_MPI_MAX_SIZE];
168     uint8_t db_mask[PSS_MASK_LEN];
169     uint8_t h2[PSS_HLEN];
170     int i;
171     int rc = 0;
172     fih_int fih_rc = FIH_FAILURE;
173 
174     if (ctx->len != PSS_EMLEN || PSS_EMLEN > MBEDTLS_MPI_MAX_SIZE) {
175         rc = -1;
176         goto out;
177     }
178 
179     if (hlen != PSS_HLEN) {
180         rc = -1;
181         goto out;
182     }
183 
184     if (mbedtls_rsa_public(ctx, sig, em)) {
185         rc = -1;
186         goto out;
187     }
188 
189     /*
190      * PKCS #1 v2.2, 9.1.2 EMSA-PSS-Verify
191      *
192      * emBits is 2048
193      * emLen = ceil(emBits/8) = 256
194      *
195      * The salt length is not known at the beginning.
196      */
197 
198     /* Step 1.  The message is constrained by the address space of a
199      * 32-bit processor, which is far less than the 2^61-1 limit of
200      * SHA-256.
201      */
202 
203     /* Step 2.  mHash is passed in as 'hash', with hLen the hlen
204      * argument. */
205 
206     /* Step 3.  if emLen < hLen + sLen + 2, inconsistent and stop.
207      * The salt length is not known at this point.
208      */
209 
210     /* Step 4.  If the rightmost octet of EM does have the value
211      * 0xbc, output inconsistent and stop.
212      */
213     if (em[PSS_EMLEN - 1] != 0xbc) {
214         rc = -1;
215         goto out;
216     }
217 
218     /* Step 5.  Let maskedDB be the leftmost emLen - hLen - 1 octets
219      * of EM, and H be the next hLen octets.
220      *
221      * maskedDB is then the first 256 - 32 - 1 = 0-222
222      * H is 32 bytes 223-254
223      */
224 
225     /* Step 6.  If the leftmost 8emLen - emBits bits of the leftmost
226      * octet in maskedDB are not all equal to zero, output
227      * inconsistent and stop.
228      *
229      * 8emLen - emBits is zero, so there is nothing to test here.
230      */
231 
232     /* Step 7.  let dbMask = MGF(H, emLen - hLen - 1). */
233     pss_mgf1(db_mask, &em[PSS_HASH_OFFSET]);
234 
235     /* Step 8.  let DB = maskedDB xor dbMask.
236      * To avoid needing an additional buffer, store the 'db' in the
237      * same buffer as db_mask.  From now, to the end of this function,
238      * db_mask refers to the unmasked 'db'. */
239     for (i = 0; i < PSS_MASK_LEN; i++) {
240         db_mask[i] ^= em[i];
241     }
242 
243     /* Step 9.  Set the leftmost 8emLen - emBits bits of the leftmost
244      * octet in DB to zero.
245      * pycrypto seems to always make the emBits 2047, so we need to
246      * clear the top bit. */
247     db_mask[0] &= 0x7F;
248 
249     /* Step 10.  If the emLen - hLen - sLen - 2 leftmost octets of DB
250      * are not zero or if the octet at position emLen - hLen - sLen -
251      * 1 (the leftmost position is "position 1") does not have
252      * hexadecimal value 0x01, output "inconsistent" and stop. */
253     for (i = 0; i < PSS_MASK_ZERO_COUNT; i++) {
254         if (db_mask[i] != 0) {
255             rc = -1;
256             goto out;
257         }
258     }
259 
260     if (db_mask[PSS_MASK_ONE_POS] != 1) {
261         rc = -1;
262         goto out;
263     }
264 
265     /* Step 11. Let salt be the last sLen octets of DB */
266 
267     /* Step 12.  Let M' = 0x00 00 00 00 00 00 00 00 || mHash || salt; */
268 
269     /* Step 13.  Let H' = Hash(M') */
270     bootutil_sha256_init(&shactx);
271     bootutil_sha256_update(&shactx, pss_zeros, 8);
272     bootutil_sha256_update(&shactx, hash, PSS_HLEN);
273     bootutil_sha256_update(&shactx, &db_mask[PSS_MASK_SALT_POS], PSS_SLEN);
274     bootutil_sha256_finish(&shactx, h2);
275     bootutil_sha256_drop(&shactx);
276 
277     /* Step 14.  If H = H', output "consistent".  Otherwise, output
278      * "inconsistent". */
279     FIH_CALL(boot_fih_memequal, fih_rc, h2, &em[PSS_HASH_OFFSET], PSS_HLEN);
280 
281 out:
282     if (rc) {
283         fih_rc = fih_int_encode(rc);
284     }
285 
286     FIH_RET(fih_rc);
287 }
288 
289 fih_int
bootutil_verify_sig(uint8_t * hash,uint32_t hlen,uint8_t * sig,size_t slen,uint8_t key_id)290 bootutil_verify_sig(uint8_t *hash, uint32_t hlen, uint8_t *sig, size_t slen,
291   uint8_t key_id)
292 {
293     mbedtls_rsa_context ctx;
294     int rc;
295     fih_int fih_rc = FIH_FAILURE;
296     uint8_t *cp;
297     uint8_t *end;
298 
299     mbedtls_rsa_init(&ctx, 0, 0);
300 
301     cp = (uint8_t *)bootutil_keys[key_id].key;
302     end = cp + *bootutil_keys[key_id].len;
303 
304     rc = bootutil_parse_rsakey(&ctx, &cp, end);
305     if (rc || slen != ctx.len) {
306         mbedtls_rsa_free(&ctx);
307         goto out;
308     }
309     FIH_CALL(bootutil_cmp_rsasig, fih_rc, &ctx, hash, hlen, sig);
310 
311 out:
312     mbedtls_rsa_free(&ctx);
313 
314     FIH_RET(fih_rc);
315 }
316 #endif /* MCUBOOT_SIGN_RSA */
317