1 /*
2  *  The RSA public-key cryptosystem
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  */
7 
8 /*
9  *  The following sources were referenced in the design of this implementation
10  *  of the RSA algorithm:
11  *
12  *  [1] A method for obtaining digital signatures and public-key cryptosystems
13  *      R Rivest, A Shamir, and L Adleman
14  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
15  *
16  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
17  *      Menezes, van Oorschot and Vanstone
18  *
19  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
20  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, ClĂ©mentine Maurice and
21  *      Stefan Mangard
22  *      https://arxiv.org/abs/1702.08719v2
23  *
24  */
25 
26 #include "common.h"
27 
28 #if defined(MBEDTLS_RSA_C)
29 
30 #include "mbedtls/rsa.h"
31 #include "bignum_core.h"
32 #include "bignum_internal.h"
33 #include "rsa_alt_helpers.h"
34 #include "rsa_internal.h"
35 #include "mbedtls/oid.h"
36 #include "mbedtls/asn1write.h"
37 #include "mbedtls/platform_util.h"
38 #include "mbedtls/error.h"
39 #include "constant_time_internal.h"
40 #include "mbedtls/constant_time.h"
41 #include "md_psa.h"
42 
43 #include <string.h>
44 
45 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
46 #include <stdlib.h>
47 #endif
48 
49 #include "mbedtls/platform.h"
50 
51 /*
52  * Wrapper around mbedtls_asn1_get_mpi() that rejects zero.
53  *
54  * The value zero is:
55  * - never a valid value for an RSA parameter
56  * - interpreted as "omitted, please reconstruct" by mbedtls_rsa_complete().
57  *
58  * Since values can't be omitted in PKCS#1, passing a zero value to
59  * rsa_complete() would be incorrect, so reject zero values early.
60  */
asn1_get_nonzero_mpi(unsigned char ** p,const unsigned char * end,mbedtls_mpi * X)61 static int asn1_get_nonzero_mpi(unsigned char **p,
62                                 const unsigned char *end,
63                                 mbedtls_mpi *X)
64 {
65     int ret;
66 
67     ret = mbedtls_asn1_get_mpi(p, end, X);
68     if (ret != 0) {
69         return ret;
70     }
71 
72     if (mbedtls_mpi_cmp_int(X, 0) == 0) {
73         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
74     }
75 
76     return 0;
77 }
78 
mbedtls_rsa_parse_key(mbedtls_rsa_context * rsa,const unsigned char * key,size_t keylen)79 int mbedtls_rsa_parse_key(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
80 {
81     int ret, version;
82     size_t len;
83     unsigned char *p, *end;
84 
85     mbedtls_mpi T;
86     mbedtls_mpi_init(&T);
87 
88     p = (unsigned char *) key;
89     end = p + keylen;
90 
91     /*
92      * This function parses the RSAPrivateKey (PKCS#1)
93      *
94      *  RSAPrivateKey ::= SEQUENCE {
95      *      version           Version,
96      *      modulus           INTEGER,  -- n
97      *      publicExponent    INTEGER,  -- e
98      *      privateExponent   INTEGER,  -- d
99      *      prime1            INTEGER,  -- p
100      *      prime2            INTEGER,  -- q
101      *      exponent1         INTEGER,  -- d mod (p-1)
102      *      exponent2         INTEGER,  -- d mod (q-1)
103      *      coefficient       INTEGER,  -- (inverse of q) mod p
104      *      otherPrimeInfos   OtherPrimeInfos OPTIONAL
105      *  }
106      */
107     if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
108                                     MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
109         return ret;
110     }
111 
112     if (end != p + len) {
113         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
114     }
115 
116     if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
117         return ret;
118     }
119 
120     if (version != 0) {
121         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
122     }
123 
124     /* Import N */
125     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
126         (ret = mbedtls_rsa_import(rsa, &T, NULL, NULL,
127                                   NULL, NULL)) != 0) {
128         goto cleanup;
129     }
130 
131     /* Import E */
132     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
133         (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
134                                   NULL, &T)) != 0) {
135         goto cleanup;
136     }
137 
138     /* Import D */
139     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
140         (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
141                                   &T, NULL)) != 0) {
142         goto cleanup;
143     }
144 
145     /* Import P */
146     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
147         (ret = mbedtls_rsa_import(rsa, NULL, &T, NULL,
148                                   NULL, NULL)) != 0) {
149         goto cleanup;
150     }
151 
152     /* Import Q */
153     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
154         (ret = mbedtls_rsa_import(rsa, NULL, NULL, &T,
155                                   NULL, NULL)) != 0) {
156         goto cleanup;
157     }
158 
159 #if !defined(MBEDTLS_RSA_NO_CRT) && !defined(MBEDTLS_RSA_ALT)
160     /*
161      * The RSA CRT parameters DP, DQ and QP are nominally redundant, in
162      * that they can be easily recomputed from D, P and Q. However by
163      * parsing them from the PKCS1 structure it is possible to avoid
164      * recalculating them which both reduces the overhead of loading
165      * RSA private keys into memory and also avoids side channels which
166      * can arise when computing those values, since all of D, P, and Q
167      * are secret. See https://eprint.iacr.org/2020/055 for a
168      * description of one such attack.
169      */
170 
171     /* Import DP */
172     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
173         (ret = mbedtls_mpi_copy(&rsa->DP, &T)) != 0) {
174         goto cleanup;
175     }
176 
177     /* Import DQ */
178     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
179         (ret = mbedtls_mpi_copy(&rsa->DQ, &T)) != 0) {
180         goto cleanup;
181     }
182 
183     /* Import QP */
184     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
185         (ret = mbedtls_mpi_copy(&rsa->QP, &T)) != 0) {
186         goto cleanup;
187     }
188 
189 #else
190     /* Verify existence of the CRT params */
191     if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
192         (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
193         (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0) {
194         goto cleanup;
195     }
196 #endif
197 
198     /* rsa_complete() doesn't complete anything with the default
199      * implementation but is still called:
200      * - for the benefit of alternative implementation that may want to
201      *   pre-compute stuff beyond what's provided (eg Montgomery factors)
202      * - as is also sanity-checks the key
203      *
204      * Furthermore, we also check the public part for consistency with
205      * mbedtls_pk_parse_pubkey(), as it includes size minima for example.
206      */
207     if ((ret = mbedtls_rsa_complete(rsa)) != 0 ||
208         (ret = mbedtls_rsa_check_pubkey(rsa)) != 0) {
209         goto cleanup;
210     }
211 
212     if (p != end) {
213         ret = MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
214     }
215 
216 cleanup:
217 
218     mbedtls_mpi_free(&T);
219 
220     if (ret != 0) {
221         mbedtls_rsa_free(rsa);
222     }
223 
224     return ret;
225 }
226 
mbedtls_rsa_parse_pubkey(mbedtls_rsa_context * rsa,const unsigned char * key,size_t keylen)227 int mbedtls_rsa_parse_pubkey(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
228 {
229     unsigned char *p = (unsigned char *) key;
230     unsigned char *end = (unsigned char *) (key + keylen);
231     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
232     size_t len;
233 
234     /*
235      *  RSAPublicKey ::= SEQUENCE {
236      *      modulus           INTEGER,  -- n
237      *      publicExponent    INTEGER   -- e
238      *  }
239      */
240 
241     if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
242                                     MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
243         return ret;
244     }
245 
246     if (end != p + len) {
247         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
248     }
249 
250     /* Import N */
251     if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
252         return ret;
253     }
254 
255     if ((ret = mbedtls_rsa_import_raw(rsa, p, len, NULL, 0, NULL, 0,
256                                       NULL, 0, NULL, 0)) != 0) {
257         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
258     }
259 
260     p += len;
261 
262     /* Import E */
263     if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
264         return ret;
265     }
266 
267     if ((ret = mbedtls_rsa_import_raw(rsa, NULL, 0, NULL, 0, NULL, 0,
268                                       NULL, 0, p, len)) != 0) {
269         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
270     }
271 
272     p += len;
273 
274     if (mbedtls_rsa_complete(rsa) != 0 ||
275         mbedtls_rsa_check_pubkey(rsa) != 0) {
276         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
277     }
278 
279     if (p != end) {
280         return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
281     }
282 
283     return 0;
284 }
285 
mbedtls_rsa_write_key(const mbedtls_rsa_context * rsa,unsigned char * start,unsigned char ** p)286 int mbedtls_rsa_write_key(const mbedtls_rsa_context *rsa, unsigned char *start,
287                           unsigned char **p)
288 {
289     size_t len = 0;
290     int ret;
291 
292     mbedtls_mpi T; /* Temporary holding the exported parameters */
293 
294     /*
295      * Export the parameters one after another to avoid simultaneous copies.
296      */
297 
298     mbedtls_mpi_init(&T);
299 
300     /* Export QP */
301     if ((ret = mbedtls_rsa_export_crt(rsa, NULL, NULL, &T)) != 0 ||
302         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
303         goto end_of_export;
304     }
305     len += ret;
306 
307     /* Export DQ */
308     if ((ret = mbedtls_rsa_export_crt(rsa, NULL, &T, NULL)) != 0 ||
309         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
310         goto end_of_export;
311     }
312     len += ret;
313 
314     /* Export DP */
315     if ((ret = mbedtls_rsa_export_crt(rsa, &T, NULL, NULL)) != 0 ||
316         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
317         goto end_of_export;
318     }
319     len += ret;
320 
321     /* Export Q */
322     if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, &T, NULL, NULL)) != 0 ||
323         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
324         goto end_of_export;
325     }
326     len += ret;
327 
328     /* Export P */
329     if ((ret = mbedtls_rsa_export(rsa, NULL, &T, NULL, NULL, NULL)) != 0 ||
330         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
331         goto end_of_export;
332     }
333     len += ret;
334 
335     /* Export D */
336     if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, &T, NULL)) != 0 ||
337         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
338         goto end_of_export;
339     }
340     len += ret;
341 
342     /* Export E */
343     if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
344         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
345         goto end_of_export;
346     }
347     len += ret;
348 
349     /* Export N */
350     if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
351         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
352         goto end_of_export;
353     }
354     len += ret;
355 
356 end_of_export:
357 
358     mbedtls_mpi_free(&T);
359     if (ret < 0) {
360         return ret;
361     }
362 
363     MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, start, 0));
364     MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
365     MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start,
366                                                      MBEDTLS_ASN1_CONSTRUCTED |
367                                                      MBEDTLS_ASN1_SEQUENCE));
368 
369     return (int) len;
370 }
371 
372 /*
373  *  RSAPublicKey ::= SEQUENCE {
374  *      modulus           INTEGER,  -- n
375  *      publicExponent    INTEGER   -- e
376  *  }
377  */
mbedtls_rsa_write_pubkey(const mbedtls_rsa_context * rsa,unsigned char * start,unsigned char ** p)378 int mbedtls_rsa_write_pubkey(const mbedtls_rsa_context *rsa, unsigned char *start,
379                              unsigned char **p)
380 {
381     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
382     size_t len = 0;
383     mbedtls_mpi T;
384 
385     mbedtls_mpi_init(&T);
386 
387     /* Export E */
388     if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
389         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
390         goto end_of_export;
391     }
392     len += ret;
393 
394     /* Export N */
395     if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
396         (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
397         goto end_of_export;
398     }
399     len += ret;
400 
401 end_of_export:
402 
403     mbedtls_mpi_free(&T);
404     if (ret < 0) {
405         return ret;
406     }
407 
408     MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
409     MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, MBEDTLS_ASN1_CONSTRUCTED |
410                                                      MBEDTLS_ASN1_SEQUENCE));
411 
412     return (int) len;
413 }
414 
415 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
416 
417 /** This function performs the unpadding part of a PKCS#1 v1.5 decryption
418  *  operation (EME-PKCS1-v1_5 decoding).
419  *
420  * \note The return value from this function is a sensitive value
421  *       (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen
422  *       in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING
423  *       is often a situation that an attacker can provoke and leaking which
424  *       one is the result is precisely the information the attacker wants.
425  *
426  * \param input          The input buffer which is the payload inside PKCS#1v1.5
427  *                       encryption padding, called the "encoded message EM"
428  *                       by the terminology.
429  * \param ilen           The length of the payload in the \p input buffer.
430  * \param output         The buffer for the payload, called "message M" by the
431  *                       PKCS#1 terminology. This must be a writable buffer of
432  *                       length \p output_max_len bytes.
433  * \param olen           The address at which to store the length of
434  *                       the payload. This must not be \c NULL.
435  * \param output_max_len The length in bytes of the output buffer \p output.
436  *
437  * \return      \c 0 on success.
438  * \return      #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE
439  *              The output buffer is too small for the unpadded payload.
440  * \return      #MBEDTLS_ERR_RSA_INVALID_PADDING
441  *              The input doesn't contain properly formatted padding.
442  */
mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char * input,size_t ilen,unsigned char * output,size_t output_max_len,size_t * olen)443 static int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
444                                                 size_t ilen,
445                                                 unsigned char *output,
446                                                 size_t output_max_len,
447                                                 size_t *olen)
448 {
449     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
450     size_t i, plaintext_max_size;
451 
452     /* The following variables take sensitive values: their value must
453      * not leak into the observable behavior of the function other than
454      * the designated outputs (output, olen, return value). Otherwise
455      * this would open the execution of the function to
456      * side-channel-based variants of the Bleichenbacher padding oracle
457      * attack. Potential side channels include overall timing, memory
458      * access patterns (especially visible to an adversary who has access
459      * to a shared memory cache), and branches (especially visible to
460      * an adversary who has access to a shared code cache or to a shared
461      * branch predictor). */
462     size_t pad_count = 0;
463     mbedtls_ct_condition_t bad;
464     mbedtls_ct_condition_t pad_done;
465     size_t plaintext_size = 0;
466     mbedtls_ct_condition_t output_too_large;
467 
468     plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
469                                                         : output_max_len;
470 
471     /* Check and get padding length in constant time and constant
472      * memory trace. The first byte must be 0. */
473     bad = mbedtls_ct_bool(input[0]);
474 
475 
476     /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
477      * where PS must be at least 8 nonzero bytes. */
478     bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(input[1], MBEDTLS_RSA_CRYPT));
479 
480     /* Read the whole buffer. Set pad_done to nonzero if we find
481      * the 0x00 byte and remember the padding length in pad_count. */
482     pad_done = MBEDTLS_CT_FALSE;
483     for (i = 2; i < ilen; i++) {
484         mbedtls_ct_condition_t found = mbedtls_ct_uint_eq(input[i], 0);
485         pad_done   = mbedtls_ct_bool_or(pad_done, found);
486         pad_count += mbedtls_ct_uint_if_else_0(mbedtls_ct_bool_not(pad_done), 1);
487     }
488 
489     /* If pad_done is still zero, there's no data, only unfinished padding. */
490     bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_not(pad_done));
491 
492     /* There must be at least 8 bytes of padding. */
493     bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_gt(8, pad_count));
494 
495     /* If the padding is valid, set plaintext_size to the number of
496      * remaining bytes after stripping the padding. If the padding
497      * is invalid, avoid leaking this fact through the size of the
498      * output: use the maximum message size that fits in the output
499      * buffer. Do it without branches to avoid leaking the padding
500      * validity through timing. RSA keys are small enough that all the
501      * size_t values involved fit in unsigned int. */
502     plaintext_size = mbedtls_ct_uint_if(
503         bad, (unsigned) plaintext_max_size,
504         (unsigned) (ilen - pad_count - 3));
505 
506     /* Set output_too_large to 0 if the plaintext fits in the output
507      * buffer and to 1 otherwise. */
508     output_too_large = mbedtls_ct_uint_gt(plaintext_size,
509                                           plaintext_max_size);
510 
511     /* Set ret without branches to avoid timing attacks. Return:
512      * - INVALID_PADDING if the padding is bad (bad != 0).
513      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
514      *   plaintext does not fit in the output buffer.
515      * - 0 if the padding is correct. */
516     ret = mbedtls_ct_error_if(
517         bad,
518         MBEDTLS_ERR_RSA_INVALID_PADDING,
519         mbedtls_ct_error_if_else_0(output_too_large, MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE)
520         );
521 
522     /* If the padding is bad or the plaintext is too large, zero the
523      * data that we're about to copy to the output buffer.
524      * We need to copy the same amount of data
525      * from the same buffer whether the padding is good or not to
526      * avoid leaking the padding validity through overall timing or
527      * through memory or cache access patterns. */
528     mbedtls_ct_zeroize_if(mbedtls_ct_bool_or(bad, output_too_large), input + 11, ilen - 11);
529 
530     /* If the plaintext is too large, truncate it to the buffer size.
531      * Copy anyway to avoid revealing the length through timing, because
532      * revealing the length is as bad as revealing the padding validity
533      * for a Bleichenbacher attack. */
534     plaintext_size = mbedtls_ct_uint_if(output_too_large,
535                                         (unsigned) plaintext_max_size,
536                                         (unsigned) plaintext_size);
537 
538     /* Move the plaintext to the leftmost position where it can start in
539      * the working buffer, i.e. make it start plaintext_max_size from
540      * the end of the buffer. Do this with a memory access trace that
541      * does not depend on the plaintext size. After this move, the
542      * starting location of the plaintext is no longer sensitive
543      * information. */
544     mbedtls_ct_memmove_left(input + ilen - plaintext_max_size,
545                             plaintext_max_size,
546                             plaintext_max_size - plaintext_size);
547 
548     /* Finally copy the decrypted plaintext plus trailing zeros into the output
549      * buffer. If output_max_len is 0, then output may be an invalid pointer
550      * and the result of memcpy() would be undefined; prevent undefined
551      * behavior making sure to depend only on output_max_len (the size of the
552      * user-provided output buffer), which is independent from plaintext
553      * length, validity of padding, success of the decryption, and other
554      * secrets. */
555     if (output_max_len != 0) {
556         memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
557     }
558 
559     /* Report the amount of data we copied to the output buffer. In case
560      * of errors (bad padding or output too large), the value of *olen
561      * when this function returns is not specified. Making it equivalent
562      * to the good case limits the risks of leaking the padding validity. */
563     *olen = plaintext_size;
564 
565     return ret;
566 }
567 
568 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
569 
570 #if !defined(MBEDTLS_RSA_ALT)
571 
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)572 int mbedtls_rsa_import(mbedtls_rsa_context *ctx,
573                        const mbedtls_mpi *N,
574                        const mbedtls_mpi *P, const mbedtls_mpi *Q,
575                        const mbedtls_mpi *D, const mbedtls_mpi *E)
576 {
577     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
578 
579     if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) ||
580         (P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) ||
581         (Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) ||
582         (D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) ||
583         (E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) {
584         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
585     }
586 
587     if (N != NULL) {
588         ctx->len = mbedtls_mpi_size(&ctx->N);
589     }
590 
591     return 0;
592 }
593 
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)594 int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx,
595                            unsigned char const *N, size_t N_len,
596                            unsigned char const *P, size_t P_len,
597                            unsigned char const *Q, size_t Q_len,
598                            unsigned char const *D, size_t D_len,
599                            unsigned char const *E, size_t E_len)
600 {
601     int ret = 0;
602 
603     if (N != NULL) {
604         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len));
605         ctx->len = mbedtls_mpi_size(&ctx->N);
606     }
607 
608     if (P != NULL) {
609         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len));
610     }
611 
612     if (Q != NULL) {
613         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len));
614     }
615 
616     if (D != NULL) {
617         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len));
618     }
619 
620     if (E != NULL) {
621         MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len));
622     }
623 
624 cleanup:
625 
626     if (ret != 0) {
627         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
628     }
629 
630     return 0;
631 }
632 
633 /*
634  * Checks whether the context fields are set in such a way
635  * that the RSA primitives will be able to execute without error.
636  * It does *not* make guarantees for consistency of the parameters.
637  */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)638 static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv,
639                              int blinding_needed)
640 {
641 #if !defined(MBEDTLS_RSA_NO_CRT)
642     /* blinding_needed is only used for NO_CRT to decide whether
643      * P,Q need to be present or not. */
644     ((void) blinding_needed);
645 #endif
646 
647     if (ctx->len != mbedtls_mpi_size(&ctx->N) ||
648         ctx->len > MBEDTLS_MPI_MAX_SIZE) {
649         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
650     }
651 
652     /*
653      * 1. Modular exponentiation needs positive, odd moduli.
654      */
655 
656     /* Modular exponentiation wrt. N is always used for
657      * RSA public key operations. */
658     if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 ||
659         mbedtls_mpi_get_bit(&ctx->N, 0) == 0) {
660         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
661     }
662 
663 #if !defined(MBEDTLS_RSA_NO_CRT)
664     /* Modular exponentiation for P and Q is only
665      * used for private key operations and if CRT
666      * is used. */
667     if (is_priv &&
668         (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
669          mbedtls_mpi_get_bit(&ctx->P, 0) == 0 ||
670          mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 ||
671          mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) {
672         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
673     }
674 #endif /* !MBEDTLS_RSA_NO_CRT */
675 
676     /*
677      * 2. Exponents must be positive
678      */
679 
680     /* Always need E for public key operations */
681     if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) {
682         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
683     }
684 
685 #if defined(MBEDTLS_RSA_NO_CRT)
686     /* For private key operations, use D or DP & DQ
687      * as (unblinded) exponents. */
688     if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) {
689         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
690     }
691 #else
692     if (is_priv &&
693         (mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 ||
694          mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) {
695         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
696     }
697 #endif /* MBEDTLS_RSA_NO_CRT */
698 
699     /* Blinding shouldn't make exponents negative either,
700      * so check that P, Q >= 1 if that hasn't yet been
701      * done as part of 1. */
702 #if defined(MBEDTLS_RSA_NO_CRT)
703     if (is_priv && blinding_needed &&
704         (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
705          mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) {
706         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
707     }
708 #endif
709 
710     /* It wouldn't lead to an error if it wasn't satisfied,
711      * but check for QP >= 1 nonetheless. */
712 #if !defined(MBEDTLS_RSA_NO_CRT)
713     if (is_priv &&
714         mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) {
715         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
716     }
717 #endif
718 
719     return 0;
720 }
721 
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)722 int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)
723 {
724     int ret = 0;
725     int have_N, have_P, have_Q, have_D, have_E;
726 #if !defined(MBEDTLS_RSA_NO_CRT)
727     int have_DP, have_DQ, have_QP;
728 #endif
729     int n_missing, pq_missing, d_missing, is_pub, is_priv;
730 
731     have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0);
732     have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0);
733     have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0);
734     have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0);
735     have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0);
736 
737 #if !defined(MBEDTLS_RSA_NO_CRT)
738     have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0);
739     have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0);
740     have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0);
741 #endif
742 
743     /*
744      * Check whether provided parameters are enough
745      * to deduce all others. The following incomplete
746      * parameter sets for private keys are supported:
747      *
748      * (1) P, Q missing.
749      * (2) D and potentially N missing.
750      *
751      */
752 
753     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
754     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
755     d_missing  =              have_P &&  have_Q && !have_D && have_E;
756     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
757 
758     /* These three alternatives are mutually exclusive */
759     is_priv = n_missing || pq_missing || d_missing;
760 
761     if (!is_priv && !is_pub) {
762         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
763     }
764 
765     /*
766      * Step 1: Deduce N if P, Q are provided.
767      */
768 
769     if (!have_N && have_P && have_Q) {
770         if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P,
771                                        &ctx->Q)) != 0) {
772             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
773         }
774 
775         ctx->len = mbedtls_mpi_size(&ctx->N);
776     }
777 
778     /*
779      * Step 2: Deduce and verify all remaining core parameters.
780      */
781 
782     if (pq_missing) {
783         ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D,
784                                         &ctx->P, &ctx->Q);
785         if (ret != 0) {
786             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
787         }
788 
789     } else if (d_missing) {
790         if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P,
791                                                        &ctx->Q,
792                                                        &ctx->E,
793                                                        &ctx->D)) != 0) {
794             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
795         }
796     }
797 
798     /*
799      * Step 3: Deduce all additional parameters specific
800      *         to our current RSA implementation.
801      */
802 
803 #if !defined(MBEDTLS_RSA_NO_CRT)
804     if (is_priv && !(have_DP && have_DQ && have_QP)) {
805         ret = mbedtls_rsa_deduce_crt(&ctx->P,  &ctx->Q,  &ctx->D,
806                                      &ctx->DP, &ctx->DQ, &ctx->QP);
807         if (ret != 0) {
808             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
809         }
810     }
811 #endif /* MBEDTLS_RSA_NO_CRT */
812 
813     /*
814      * Step 3: Basic sanity checks
815      */
816 
817     return rsa_check_context(ctx, is_priv, 1);
818 }
819 
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)820 int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx,
821                            unsigned char *N, size_t N_len,
822                            unsigned char *P, size_t P_len,
823                            unsigned char *Q, size_t Q_len,
824                            unsigned char *D, size_t D_len,
825                            unsigned char *E, size_t E_len)
826 {
827     int ret = 0;
828     int is_priv;
829 
830     /* Check if key is private or public */
831     is_priv =
832         mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
833         mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
834         mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
835         mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
836         mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
837 
838     if (!is_priv) {
839         /* If we're trying to export private parameters for a public key,
840          * something must be wrong. */
841         if (P != NULL || Q != NULL || D != NULL) {
842             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
843         }
844 
845     }
846 
847     if (N != NULL) {
848         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len));
849     }
850 
851     if (P != NULL) {
852         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len));
853     }
854 
855     if (Q != NULL) {
856         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len));
857     }
858 
859     if (D != NULL) {
860         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len));
861     }
862 
863     if (E != NULL) {
864         MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len));
865     }
866 
867 cleanup:
868 
869     return ret;
870 }
871 
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)872 int mbedtls_rsa_export(const mbedtls_rsa_context *ctx,
873                        mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
874                        mbedtls_mpi *D, mbedtls_mpi *E)
875 {
876     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
877     int is_priv;
878 
879     /* Check if key is private or public */
880     is_priv =
881         mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
882         mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
883         mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
884         mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
885         mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
886 
887     if (!is_priv) {
888         /* If we're trying to export private parameters for a public key,
889          * something must be wrong. */
890         if (P != NULL || Q != NULL || D != NULL) {
891             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
892         }
893 
894     }
895 
896     /* Export all requested core parameters. */
897 
898     if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) ||
899         (P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) ||
900         (Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) ||
901         (D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) ||
902         (E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) {
903         return ret;
904     }
905 
906     return 0;
907 }
908 
909 /*
910  * Export CRT parameters
911  * This must also be implemented if CRT is not used, for being able to
912  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
913  * can be used in this case.
914  */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)915 int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx,
916                            mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)
917 {
918     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
919     int is_priv;
920 
921     /* Check if key is private or public */
922     is_priv =
923         mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
924         mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
925         mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
926         mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
927         mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
928 
929     if (!is_priv) {
930         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
931     }
932 
933 #if !defined(MBEDTLS_RSA_NO_CRT)
934     /* Export all requested blinding parameters. */
935     if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) ||
936         (DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) ||
937         (QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) {
938         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
939     }
940 #else
941     if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
942                                       DP, DQ, QP)) != 0) {
943         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
944     }
945 #endif
946 
947     return 0;
948 }
949 
950 /*
951  * Initialize an RSA context
952  */
mbedtls_rsa_init(mbedtls_rsa_context * ctx)953 void mbedtls_rsa_init(mbedtls_rsa_context *ctx)
954 {
955     memset(ctx, 0, sizeof(mbedtls_rsa_context));
956 
957     ctx->padding = MBEDTLS_RSA_PKCS_V15;
958     ctx->hash_id = MBEDTLS_MD_NONE;
959 
960 #if defined(MBEDTLS_THREADING_C)
961     /* Set ctx->ver to nonzero to indicate that the mutex has been
962      * initialized and will need to be freed. */
963     ctx->ver = 1;
964     mbedtls_mutex_init(&ctx->mutex);
965 #endif
966 }
967 
968 /*
969  * Set padding for an existing RSA context
970  */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,mbedtls_md_type_t hash_id)971 int mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding,
972                             mbedtls_md_type_t hash_id)
973 {
974     switch (padding) {
975 #if defined(MBEDTLS_PKCS1_V15)
976         case MBEDTLS_RSA_PKCS_V15:
977             break;
978 #endif
979 
980 #if defined(MBEDTLS_PKCS1_V21)
981         case MBEDTLS_RSA_PKCS_V21:
982             break;
983 #endif
984         default:
985             return MBEDTLS_ERR_RSA_INVALID_PADDING;
986     }
987 
988 #if defined(MBEDTLS_PKCS1_V21)
989     if ((padding == MBEDTLS_RSA_PKCS_V21) &&
990         (hash_id != MBEDTLS_MD_NONE)) {
991         /* Just make sure this hash is supported in this build. */
992         if (mbedtls_md_info_from_type(hash_id) == NULL) {
993             return MBEDTLS_ERR_RSA_INVALID_PADDING;
994         }
995     }
996 #endif /* MBEDTLS_PKCS1_V21 */
997 
998     ctx->padding = padding;
999     ctx->hash_id = hash_id;
1000 
1001     return 0;
1002 }
1003 
1004 /*
1005  * Get padding mode of initialized RSA context
1006  */
mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context * ctx)1007 int mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context *ctx)
1008 {
1009     return ctx->padding;
1010 }
1011 
1012 /*
1013  * Get hash identifier of mbedtls_md_type_t type
1014  */
mbedtls_rsa_get_md_alg(const mbedtls_rsa_context * ctx)1015 int mbedtls_rsa_get_md_alg(const mbedtls_rsa_context *ctx)
1016 {
1017     return ctx->hash_id;
1018 }
1019 
1020 /*
1021  * Get length in bits of RSA modulus
1022  */
mbedtls_rsa_get_bitlen(const mbedtls_rsa_context * ctx)1023 size_t mbedtls_rsa_get_bitlen(const mbedtls_rsa_context *ctx)
1024 {
1025     return mbedtls_mpi_bitlen(&ctx->N);
1026 }
1027 
1028 /*
1029  * Get length in bytes of RSA modulus
1030  */
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)1031 size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx)
1032 {
1033     return ctx->len;
1034 }
1035 
1036 #if defined(MBEDTLS_GENPRIME)
1037 
1038 /*
1039  * Generate an RSA keypair
1040  *
1041  * This generation method follows the RSA key pair generation procedure of
1042  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
1043  */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)1044 int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
1045                         int (*f_rng)(void *, unsigned char *, size_t),
1046                         void *p_rng,
1047                         unsigned int nbits, int exponent)
1048 {
1049     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1050     mbedtls_mpi H, G, L;
1051     int prime_quality = 0;
1052 
1053     /*
1054      * If the modulus is 1024 bit long or shorter, then the security strength of
1055      * the RSA algorithm is less than or equal to 80 bits and therefore an error
1056      * rate of 2^-80 is sufficient.
1057      */
1058     if (nbits > 1024) {
1059         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
1060     }
1061 
1062     mbedtls_mpi_init(&H);
1063     mbedtls_mpi_init(&G);
1064     mbedtls_mpi_init(&L);
1065 
1066     if (exponent < 3 || nbits % 2 != 0) {
1067         ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1068         goto cleanup;
1069     }
1070 
1071     if (nbits < MBEDTLS_RSA_GEN_KEY_MIN_BITS) {
1072         ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1073         goto cleanup;
1074     }
1075 
1076     /*
1077      * find primes P and Q with Q < P so that:
1078      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
1079      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
1080      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
1081      */
1082     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent));
1083 
1084     do {
1085         MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1,
1086                                               prime_quality, f_rng, p_rng));
1087 
1088         MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1,
1089                                               prime_quality, f_rng, p_rng));
1090 
1091         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
1092         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q));
1093         if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) {
1094             continue;
1095         }
1096 
1097         /* not required by any standards, but some users rely on the fact that P > Q */
1098         if (H.s < 0) {
1099             mbedtls_mpi_swap(&ctx->P, &ctx->Q);
1100         }
1101 
1102         /* Temporarily replace P,Q by P-1, Q-1 */
1103         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1));
1104         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1));
1105         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q));
1106 
1107         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
1108         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H));
1109         if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
1110             continue;
1111         }
1112 
1113         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
1114         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q));
1115         MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G));
1116         MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L));
1117 
1118         if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) {      // (FIPS 186-4 §B.3.1 criterion 3(a))
1119             continue;
1120         }
1121 
1122         break;
1123     } while (1);
1124 
1125     /* Restore P,Q */
1126     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P,  &ctx->P, 1));
1127     MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q,  &ctx->Q, 1));
1128 
1129     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
1130 
1131     ctx->len = mbedtls_mpi_size(&ctx->N);
1132 
1133 #if !defined(MBEDTLS_RSA_NO_CRT)
1134     /*
1135      * DP = D mod (P - 1)
1136      * DQ = D mod (Q - 1)
1137      * QP = Q^-1 mod P
1138      */
1139     MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
1140                                            &ctx->DP, &ctx->DQ, &ctx->QP));
1141 #endif /* MBEDTLS_RSA_NO_CRT */
1142 
1143     /* Double-check */
1144     MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx));
1145 
1146 cleanup:
1147 
1148     mbedtls_mpi_free(&H);
1149     mbedtls_mpi_free(&G);
1150     mbedtls_mpi_free(&L);
1151 
1152     if (ret != 0) {
1153         mbedtls_rsa_free(ctx);
1154 
1155         if ((-ret & ~0x7f) == 0) {
1156             ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret);
1157         }
1158         return ret;
1159     }
1160 
1161     return 0;
1162 }
1163 
1164 #endif /* MBEDTLS_GENPRIME */
1165 
1166 /*
1167  * Check a public RSA key
1168  */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)1169 int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)
1170 {
1171     if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) {
1172         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1173     }
1174 
1175     if (mbedtls_mpi_bitlen(&ctx->N) < 128) {
1176         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1177     }
1178 
1179     if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 ||
1180         mbedtls_mpi_bitlen(&ctx->E)     < 2  ||
1181         mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) {
1182         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1183     }
1184 
1185     return 0;
1186 }
1187 
1188 /*
1189  * Check for the consistency of all fields in an RSA private key context
1190  */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)1191 int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)
1192 {
1193     if (mbedtls_rsa_check_pubkey(ctx) != 0 ||
1194         rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) {
1195         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1196     }
1197 
1198     if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q,
1199                                     &ctx->D, &ctx->E, NULL, NULL) != 0) {
1200         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1201     }
1202 
1203 #if !defined(MBEDTLS_RSA_NO_CRT)
1204     else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D,
1205                                       &ctx->DP, &ctx->DQ, &ctx->QP) != 0) {
1206         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1207     }
1208 #endif
1209 
1210     return 0;
1211 }
1212 
1213 /*
1214  * Check if contexts holding a public and private key match
1215  */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)1216 int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub,
1217                                const mbedtls_rsa_context *prv)
1218 {
1219     if (mbedtls_rsa_check_pubkey(pub)  != 0 ||
1220         mbedtls_rsa_check_privkey(prv) != 0) {
1221         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1222     }
1223 
1224     if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 ||
1225         mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) {
1226         return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1227     }
1228 
1229     return 0;
1230 }
1231 
1232 /*
1233  * Do an RSA public key operation
1234  */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)1235 int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
1236                        const unsigned char *input,
1237                        unsigned char *output)
1238 {
1239     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1240     size_t olen;
1241     mbedtls_mpi T;
1242 
1243     if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) {
1244         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1245     }
1246 
1247     mbedtls_mpi_init(&T);
1248 
1249 #if defined(MBEDTLS_THREADING_C)
1250     if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
1251         return ret;
1252     }
1253 #endif
1254 
1255     MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
1256 
1257     if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
1258         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1259         goto cleanup;
1260     }
1261 
1262     olen = ctx->len;
1263     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod_unsafe(&T, &T, &ctx->E, &ctx->N, &ctx->RN));
1264     MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
1265 
1266 cleanup:
1267 #if defined(MBEDTLS_THREADING_C)
1268     if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
1269         return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
1270     }
1271 #endif
1272 
1273     mbedtls_mpi_free(&T);
1274 
1275     if (ret != 0) {
1276         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret);
1277     }
1278 
1279     return 0;
1280 }
1281 
1282 /*
1283  * Generate or update blinding values, see section 10 of:
1284  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
1285  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
1286  *  Berlin Heidelberg, 1996. p. 104-113.
1287  */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1288 static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
1289                                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1290 {
1291     int ret, count = 0;
1292     mbedtls_mpi R;
1293 
1294     mbedtls_mpi_init(&R);
1295 
1296     if (ctx->Vf.p != NULL) {
1297         /* We already have blinding values, just update them by squaring */
1298         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
1299         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
1300         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
1301         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N));
1302 
1303         goto cleanup;
1304     }
1305 
1306     /* Unblinding value: Vf = random number, invertible mod N */
1307     do {
1308         if (count++ > 10) {
1309             ret = MBEDTLS_ERR_RSA_RNG_FAILED;
1310             goto cleanup;
1311         }
1312 
1313         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng));
1314 
1315         /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
1316         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng));
1317         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R));
1318         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
1319 
1320         /* At this point, Vi is invertible mod N if and only if both Vf and R
1321          * are invertible mod N. If one of them isn't, we don't need to know
1322          * which one, we just loop and choose new values for both of them.
1323          * (Each iteration succeeds with overwhelming probability.) */
1324         ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N);
1325         if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1326             goto cleanup;
1327         }
1328 
1329     } while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
1330 
1331     /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
1332     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R));
1333     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
1334 
1335     /* Blinding value: Vi = Vf^(-e) mod N
1336      * (Vi already contains Vf^-1 at this point) */
1337     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN));
1338 
1339 
1340 cleanup:
1341     mbedtls_mpi_free(&R);
1342 
1343     return ret;
1344 }
1345 
1346 /*
1347  * Unblind
1348  * T = T * Vf mod N
1349  */
rsa_unblind(mbedtls_mpi * T,mbedtls_mpi * Vf,const mbedtls_mpi * N)1350 static int rsa_unblind(mbedtls_mpi *T, mbedtls_mpi *Vf, const mbedtls_mpi *N)
1351 {
1352     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1353     const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
1354     const size_t nlimbs = N->n;
1355     const size_t tlimbs = mbedtls_mpi_core_montmul_working_limbs(nlimbs);
1356     mbedtls_mpi RR, M_T;
1357 
1358     mbedtls_mpi_init(&RR);
1359     mbedtls_mpi_init(&M_T);
1360 
1361     MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
1362     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&M_T, tlimbs));
1363 
1364     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(T, nlimbs));
1365     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Vf, nlimbs));
1366 
1367     /* T = T * Vf mod N
1368      * Reminder: montmul(A, B, N) = A * B * R^-1 mod N
1369      * Usually both operands are multiplied by R mod N beforehand (by calling
1370      * `to_mont_rep()` on them), yielding a result that's also * R mod N (aka
1371      * "in the Montgomery domain"). Here we only multiply one operand by R mod
1372      * N, so the result is directly what we want - no need to call
1373      * `from_mont_rep()` on it. */
1374     mbedtls_mpi_core_to_mont_rep(T->p, T->p, N->p, nlimbs, mm, RR.p, M_T.p);
1375     mbedtls_mpi_core_montmul(T->p, T->p, Vf->p, nlimbs, N->p, nlimbs, mm, M_T.p);
1376 
1377 cleanup:
1378 
1379     mbedtls_mpi_free(&RR);
1380     mbedtls_mpi_free(&M_T);
1381 
1382     return ret;
1383 }
1384 
1385 /*
1386  * Exponent blinding supposed to prevent side-channel attacks using multiple
1387  * traces of measurements to recover the RSA key. The more collisions are there,
1388  * the more bits of the key can be recovered. See [3].
1389  *
1390  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
1391  * observations on average.
1392  *
1393  * For example with 28 byte blinding to achieve 2 collisions the adversary has
1394  * to make 2^112 observations on average.
1395  *
1396  * (With the currently (as of 2017 April) known best algorithms breaking 2048
1397  * bit RSA requires approximately as much time as trying out 2^112 random keys.
1398  * Thus in this sense with 28 byte blinding the security is not reduced by
1399  * side-channel attacks like the one in [3])
1400  *
1401  * This countermeasure does not help if the key recovery is possible with a
1402  * single trace.
1403  */
1404 #define RSA_EXPONENT_BLINDING 28
1405 
1406 /*
1407  * Do an RSA private key operation
1408  */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)1409 int mbedtls_rsa_private(mbedtls_rsa_context *ctx,
1410                         int (*f_rng)(void *, unsigned char *, size_t),
1411                         void *p_rng,
1412                         const unsigned char *input,
1413                         unsigned char *output)
1414 {
1415     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1416     size_t olen;
1417 
1418     /* Temporary holding the result */
1419     mbedtls_mpi T;
1420 
1421     /* Temporaries holding P-1, Q-1 and the
1422      * exponent blinding factor, respectively. */
1423     mbedtls_mpi P1, Q1, R;
1424 
1425 #if !defined(MBEDTLS_RSA_NO_CRT)
1426     /* Temporaries holding the results mod p resp. mod q. */
1427     mbedtls_mpi TP, TQ;
1428 
1429     /* Temporaries holding the blinded exponents for
1430      * the mod p resp. mod q computation (if used). */
1431     mbedtls_mpi DP_blind, DQ_blind;
1432 #else
1433     /* Temporary holding the blinded exponent (if used). */
1434     mbedtls_mpi D_blind;
1435 #endif /* MBEDTLS_RSA_NO_CRT */
1436 
1437     /* Temporaries holding the initial input and the double
1438      * checked result; should be the same in the end. */
1439     mbedtls_mpi input_blinded, check_result_blinded;
1440 
1441     if (f_rng == NULL) {
1442         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1443     }
1444 
1445     if (rsa_check_context(ctx, 1 /* private key checks */,
1446                           1 /* blinding on        */) != 0) {
1447         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1448     }
1449 
1450 #if defined(MBEDTLS_THREADING_C)
1451     if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
1452         return ret;
1453     }
1454 #endif
1455 
1456     /* MPI Initialization */
1457     mbedtls_mpi_init(&T);
1458 
1459     mbedtls_mpi_init(&P1);
1460     mbedtls_mpi_init(&Q1);
1461     mbedtls_mpi_init(&R);
1462 
1463 #if defined(MBEDTLS_RSA_NO_CRT)
1464     mbedtls_mpi_init(&D_blind);
1465 #else
1466     mbedtls_mpi_init(&DP_blind);
1467     mbedtls_mpi_init(&DQ_blind);
1468 #endif
1469 
1470 #if !defined(MBEDTLS_RSA_NO_CRT)
1471     mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ);
1472 #endif
1473 
1474     mbedtls_mpi_init(&input_blinded);
1475     mbedtls_mpi_init(&check_result_blinded);
1476 
1477     /* End of MPI initialization */
1478 
1479     MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
1480     if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
1481         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1482         goto cleanup;
1483     }
1484 
1485     /*
1486      * Blinding
1487      * T = T * Vi mod N
1488      */
1489     MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng));
1490     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi));
1491     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
1492 
1493     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&input_blinded, &T));
1494 
1495     /*
1496      * Exponent blinding
1497      */
1498     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1));
1499     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1));
1500 
1501 #if defined(MBEDTLS_RSA_NO_CRT)
1502     /*
1503      * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
1504      */
1505     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
1506                                             f_rng, p_rng));
1507     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1));
1508     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R));
1509     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D));
1510 #else
1511     /*
1512      * DP_blind = ( P - 1 ) * R + DP
1513      */
1514     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
1515                                             f_rng, p_rng));
1516     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R));
1517     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind,
1518                                         &ctx->DP));
1519 
1520     /*
1521      * DQ_blind = ( Q - 1 ) * R + DQ
1522      */
1523     MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
1524                                             f_rng, p_rng));
1525     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R));
1526     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind,
1527                                         &ctx->DQ));
1528 #endif /* MBEDTLS_RSA_NO_CRT */
1529 
1530 #if defined(MBEDTLS_RSA_NO_CRT)
1531     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &D_blind, &ctx->N, &ctx->RN));
1532 #else
1533     /*
1534      * Faster decryption using the CRT
1535      *
1536      * TP = input ^ dP mod P
1537      * TQ = input ^ dQ mod Q
1538      */
1539 
1540     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, &DP_blind, &ctx->P, &ctx->RP));
1541     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, &DQ_blind, &ctx->Q, &ctx->RQ));
1542 
1543     /*
1544      * T = (TP - TQ) * (Q^-1 mod P) mod P
1545      */
1546     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ));
1547     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP));
1548     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P));
1549 
1550     /*
1551      * T = TQ + T * Q
1552      */
1553     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q));
1554     MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP));
1555 #endif /* MBEDTLS_RSA_NO_CRT */
1556 
1557     /* Verify the result to prevent glitching attacks. */
1558     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&check_result_blinded, &T, &ctx->E,
1559                                         &ctx->N, &ctx->RN));
1560     if (mbedtls_mpi_cmp_mpi(&check_result_blinded, &input_blinded) != 0) {
1561         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1562         goto cleanup;
1563     }
1564 
1565     /*
1566      * Unblind
1567      * T = T * Vf mod N
1568      */
1569     MBEDTLS_MPI_CHK(rsa_unblind(&T, &ctx->Vf, &ctx->N));
1570 
1571     olen = ctx->len;
1572     MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
1573 
1574 cleanup:
1575 #if defined(MBEDTLS_THREADING_C)
1576     if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
1577         return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
1578     }
1579 #endif
1580 
1581     mbedtls_mpi_free(&P1);
1582     mbedtls_mpi_free(&Q1);
1583     mbedtls_mpi_free(&R);
1584 
1585 #if defined(MBEDTLS_RSA_NO_CRT)
1586     mbedtls_mpi_free(&D_blind);
1587 #else
1588     mbedtls_mpi_free(&DP_blind);
1589     mbedtls_mpi_free(&DQ_blind);
1590 #endif
1591 
1592     mbedtls_mpi_free(&T);
1593 
1594 #if !defined(MBEDTLS_RSA_NO_CRT)
1595     mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ);
1596 #endif
1597 
1598     mbedtls_mpi_free(&check_result_blinded);
1599     mbedtls_mpi_free(&input_blinded);
1600 
1601     if (ret != 0 && ret >= -0x007f) {
1602         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret);
1603     }
1604 
1605     return ret;
1606 }
1607 
1608 #if defined(MBEDTLS_PKCS1_V21)
1609 /**
1610  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1611  *
1612  * \param dst       buffer to mask
1613  * \param dlen      length of destination buffer
1614  * \param src       source of the mask generation
1615  * \param slen      length of the source buffer
1616  * \param md_alg    message digest to use
1617  */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_type_t md_alg)1618 static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src,
1619                     size_t slen, mbedtls_md_type_t md_alg)
1620 {
1621     unsigned char counter[4];
1622     unsigned char *p;
1623     unsigned int hlen;
1624     size_t i, use_len;
1625     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1626     int ret = 0;
1627     const mbedtls_md_info_t *md_info;
1628     mbedtls_md_context_t md_ctx;
1629 
1630     mbedtls_md_init(&md_ctx);
1631     md_info = mbedtls_md_info_from_type(md_alg);
1632     if (md_info == NULL) {
1633         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1634     }
1635 
1636     mbedtls_md_init(&md_ctx);
1637     if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
1638         goto exit;
1639     }
1640 
1641     hlen = mbedtls_md_get_size(md_info);
1642 
1643     memset(mask, 0, sizeof(mask));
1644     memset(counter, 0, 4);
1645 
1646     /* Generate and apply dbMask */
1647     p = dst;
1648 
1649     while (dlen > 0) {
1650         use_len = hlen;
1651         if (dlen < hlen) {
1652             use_len = dlen;
1653         }
1654 
1655         if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
1656             goto exit;
1657         }
1658         if ((ret = mbedtls_md_update(&md_ctx, src, slen)) != 0) {
1659             goto exit;
1660         }
1661         if ((ret = mbedtls_md_update(&md_ctx, counter, 4)) != 0) {
1662             goto exit;
1663         }
1664         if ((ret = mbedtls_md_finish(&md_ctx, mask)) != 0) {
1665             goto exit;
1666         }
1667 
1668         for (i = 0; i < use_len; ++i) {
1669             *p++ ^= mask[i];
1670         }
1671 
1672         counter[3]++;
1673 
1674         dlen -= use_len;
1675     }
1676 
1677 exit:
1678     mbedtls_platform_zeroize(mask, sizeof(mask));
1679     mbedtls_md_free(&md_ctx);
1680 
1681     return ret;
1682 }
1683 
1684 /**
1685  * Generate Hash(M') as in RFC 8017 page 43 points 5 and 6.
1686  *
1687  * \param hash      the input hash
1688  * \param hlen      length of the input hash
1689  * \param salt      the input salt
1690  * \param slen      length of the input salt
1691  * \param out       the output buffer - must be large enough for \p md_alg
1692  * \param md_alg    message digest to use
1693  */
hash_mprime(const unsigned char * hash,size_t hlen,const unsigned char * salt,size_t slen,unsigned char * out,mbedtls_md_type_t md_alg)1694 static int hash_mprime(const unsigned char *hash, size_t hlen,
1695                        const unsigned char *salt, size_t slen,
1696                        unsigned char *out, mbedtls_md_type_t md_alg)
1697 {
1698     const unsigned char zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1699 
1700     mbedtls_md_context_t md_ctx;
1701     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1702 
1703     const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg);
1704     if (md_info == NULL) {
1705         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1706     }
1707 
1708     mbedtls_md_init(&md_ctx);
1709     if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
1710         goto exit;
1711     }
1712     if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
1713         goto exit;
1714     }
1715     if ((ret = mbedtls_md_update(&md_ctx, zeros, sizeof(zeros))) != 0) {
1716         goto exit;
1717     }
1718     if ((ret = mbedtls_md_update(&md_ctx, hash, hlen)) != 0) {
1719         goto exit;
1720     }
1721     if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) {
1722         goto exit;
1723     }
1724     if ((ret = mbedtls_md_finish(&md_ctx, out)) != 0) {
1725         goto exit;
1726     }
1727 
1728 exit:
1729     mbedtls_md_free(&md_ctx);
1730 
1731     return ret;
1732 }
1733 
1734 /**
1735  * Compute a hash.
1736  *
1737  * \param md_alg    algorithm to use
1738  * \param input     input message to hash
1739  * \param ilen      input length
1740  * \param output    the output buffer - must be large enough for \p md_alg
1741  */
compute_hash(mbedtls_md_type_t md_alg,const unsigned char * input,size_t ilen,unsigned char * output)1742 static int compute_hash(mbedtls_md_type_t md_alg,
1743                         const unsigned char *input, size_t ilen,
1744                         unsigned char *output)
1745 {
1746     const mbedtls_md_info_t *md_info;
1747 
1748     md_info = mbedtls_md_info_from_type(md_alg);
1749     if (md_info == NULL) {
1750         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1751     }
1752 
1753     return mbedtls_md(md_info, input, ilen, output);
1754 }
1755 #endif /* MBEDTLS_PKCS1_V21 */
1756 
1757 #if defined(MBEDTLS_PKCS1_V21)
1758 /*
1759  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1760  */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1761 int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx,
1762                                    int (*f_rng)(void *, unsigned char *, size_t),
1763                                    void *p_rng,
1764                                    const unsigned char *label, size_t label_len,
1765                                    size_t ilen,
1766                                    const unsigned char *input,
1767                                    unsigned char *output)
1768 {
1769     size_t olen;
1770     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1771     unsigned char *p = output;
1772     unsigned int hlen;
1773 
1774     if (f_rng == NULL) {
1775         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1776     }
1777 
1778     hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
1779     if (hlen == 0) {
1780         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1781     }
1782 
1783     olen = ctx->len;
1784 
1785     /* first comparison checks for overflow */
1786     if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) {
1787         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1788     }
1789 
1790     memset(output, 0, olen);
1791 
1792     *p++ = 0;
1793 
1794     /* Generate a random octet string seed */
1795     if ((ret = f_rng(p_rng, p, hlen)) != 0) {
1796         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
1797     }
1798 
1799     p += hlen;
1800 
1801     /* Construct DB */
1802     ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, label, label_len, p);
1803     if (ret != 0) {
1804         return ret;
1805     }
1806     p += hlen;
1807     p += olen - 2 * hlen - 2 - ilen;
1808     *p++ = 1;
1809     if (ilen != 0) {
1810         memcpy(p, input, ilen);
1811     }
1812 
1813     /* maskedDB: Apply dbMask to DB */
1814     if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1815                         (mbedtls_md_type_t) ctx->hash_id)) != 0) {
1816         return ret;
1817     }
1818 
1819     /* maskedSeed: Apply seedMask to seed */
1820     if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1821                         (mbedtls_md_type_t) ctx->hash_id)) != 0) {
1822         return ret;
1823     }
1824 
1825     return mbedtls_rsa_public(ctx, output, output);
1826 }
1827 #endif /* MBEDTLS_PKCS1_V21 */
1828 
1829 #if defined(MBEDTLS_PKCS1_V15)
1830 /*
1831  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1832  */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1833 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx,
1834                                         int (*f_rng)(void *, unsigned char *, size_t),
1835                                         void *p_rng, size_t ilen,
1836                                         const unsigned char *input,
1837                                         unsigned char *output)
1838 {
1839     size_t nb_pad, olen;
1840     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1841     unsigned char *p = output;
1842 
1843     olen = ctx->len;
1844 
1845     /* first comparison checks for overflow */
1846     if (ilen + 11 < ilen || olen < ilen + 11) {
1847         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1848     }
1849 
1850     nb_pad = olen - 3 - ilen;
1851 
1852     *p++ = 0;
1853 
1854     if (f_rng == NULL) {
1855         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1856     }
1857 
1858     *p++ = MBEDTLS_RSA_CRYPT;
1859 
1860     while (nb_pad-- > 0) {
1861         int rng_dl = 100;
1862 
1863         do {
1864             ret = f_rng(p_rng, p, 1);
1865         } while (*p == 0 && --rng_dl && ret == 0);
1866 
1867         /* Check if RNG failed to generate data */
1868         if (rng_dl == 0 || ret != 0) {
1869             return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
1870         }
1871 
1872         p++;
1873     }
1874 
1875     *p++ = 0;
1876     if (ilen != 0) {
1877         memcpy(p, input, ilen);
1878     }
1879 
1880     return mbedtls_rsa_public(ctx, output, output);
1881 }
1882 #endif /* MBEDTLS_PKCS1_V15 */
1883 
1884 /*
1885  * Add the message padding, then do an RSA operation
1886  */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1887 int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx,
1888                               int (*f_rng)(void *, unsigned char *, size_t),
1889                               void *p_rng,
1890                               size_t ilen,
1891                               const unsigned char *input,
1892                               unsigned char *output)
1893 {
1894     switch (ctx->padding) {
1895 #if defined(MBEDTLS_PKCS1_V15)
1896         case MBEDTLS_RSA_PKCS_V15:
1897             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng,
1898                                                        ilen, input, output);
1899 #endif
1900 
1901 #if defined(MBEDTLS_PKCS1_V21)
1902         case MBEDTLS_RSA_PKCS_V21:
1903             return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, NULL, 0,
1904                                                   ilen, input, output);
1905 #endif
1906 
1907         default:
1908             return MBEDTLS_ERR_RSA_INVALID_PADDING;
1909     }
1910 }
1911 
1912 #if defined(MBEDTLS_PKCS1_V21)
1913 /*
1914  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1915  */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1916 int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx,
1917                                    int (*f_rng)(void *, unsigned char *, size_t),
1918                                    void *p_rng,
1919                                    const unsigned char *label, size_t label_len,
1920                                    size_t *olen,
1921                                    const unsigned char *input,
1922                                    unsigned char *output,
1923                                    size_t output_max_len)
1924 {
1925     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1926     size_t ilen, i, pad_len;
1927     unsigned char *p;
1928     mbedtls_ct_condition_t bad, in_padding;
1929     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1930     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1931     unsigned int hlen;
1932 
1933     /*
1934      * Parameters sanity checks
1935      */
1936     if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
1937         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1938     }
1939 
1940     ilen = ctx->len;
1941 
1942     if (ilen < 16 || ilen > sizeof(buf)) {
1943         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1944     }
1945 
1946     hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
1947     if (hlen == 0) {
1948         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1949     }
1950 
1951     // checking for integer underflow
1952     if (2 * hlen + 2 > ilen) {
1953         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1954     }
1955 
1956     /*
1957      * RSA operation
1958      */
1959     ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
1960 
1961     if (ret != 0) {
1962         goto cleanup;
1963     }
1964 
1965     /*
1966      * Unmask data and generate lHash
1967      */
1968     /* seed: Apply seedMask to maskedSeed */
1969     if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1970                         (mbedtls_md_type_t) ctx->hash_id)) != 0 ||
1971         /* DB: Apply dbMask to maskedDB */
1972         (ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1973                         (mbedtls_md_type_t) ctx->hash_id)) != 0) {
1974         goto cleanup;
1975     }
1976 
1977     /* Generate lHash */
1978     ret = compute_hash((mbedtls_md_type_t) ctx->hash_id,
1979                        label, label_len, lhash);
1980     if (ret != 0) {
1981         goto cleanup;
1982     }
1983 
1984     /*
1985      * Check contents, in "constant-time"
1986      */
1987     p = buf;
1988 
1989     bad = mbedtls_ct_bool(*p++); /* First byte must be 0 */
1990 
1991     p += hlen; /* Skip seed */
1992 
1993     /* Check lHash */
1994     bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool(mbedtls_ct_memcmp(lhash, p, hlen)));
1995     p += hlen;
1996 
1997     /* Get zero-padding len, but always read till end of buffer
1998      * (minus one, for the 01 byte) */
1999     pad_len = 0;
2000     in_padding = MBEDTLS_CT_TRUE;
2001     for (i = 0; i < ilen - 2 * hlen - 2; i++) {
2002         in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_uint_eq(p[i], 0));
2003         pad_len += mbedtls_ct_uint_if_else_0(in_padding, 1);
2004     }
2005 
2006     p += pad_len;
2007     bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(*p++, 0x01));
2008 
2009     /*
2010      * The only information "leaked" is whether the padding was correct or not
2011      * (eg, no data is copied if it was not correct). This meets the
2012      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
2013      * the different error conditions.
2014      */
2015     if (bad != MBEDTLS_CT_FALSE) {
2016         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2017         goto cleanup;
2018     }
2019 
2020     if (ilen - ((size_t) (p - buf)) > output_max_len) {
2021         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
2022         goto cleanup;
2023     }
2024 
2025     *olen = ilen - ((size_t) (p - buf));
2026     if (*olen != 0) {
2027         memcpy(output, p, *olen);
2028     }
2029     ret = 0;
2030 
2031 cleanup:
2032     mbedtls_platform_zeroize(buf, sizeof(buf));
2033     mbedtls_platform_zeroize(lhash, sizeof(lhash));
2034 
2035     return ret;
2036 }
2037 #endif /* MBEDTLS_PKCS1_V21 */
2038 
2039 #if defined(MBEDTLS_PKCS1_V15)
2040 /*
2041  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
2042  */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)2043 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx,
2044                                         int (*f_rng)(void *, unsigned char *, size_t),
2045                                         void *p_rng,
2046                                         size_t *olen,
2047                                         const unsigned char *input,
2048                                         unsigned char *output,
2049                                         size_t output_max_len)
2050 {
2051     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2052     size_t ilen;
2053     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2054 
2055     ilen = ctx->len;
2056 
2057     if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
2058         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2059     }
2060 
2061     if (ilen < 16 || ilen > sizeof(buf)) {
2062         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2063     }
2064 
2065     ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
2066 
2067     if (ret != 0) {
2068         goto cleanup;
2069     }
2070 
2071     ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(buf, ilen,
2072                                                output, output_max_len, olen);
2073 
2074 cleanup:
2075     mbedtls_platform_zeroize(buf, sizeof(buf));
2076 
2077     return ret;
2078 }
2079 #endif /* MBEDTLS_PKCS1_V15 */
2080 
2081 /*
2082  * Do an RSA operation, then remove the message padding
2083  */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)2084 int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx,
2085                               int (*f_rng)(void *, unsigned char *, size_t),
2086                               void *p_rng,
2087                               size_t *olen,
2088                               const unsigned char *input,
2089                               unsigned char *output,
2090                               size_t output_max_len)
2091 {
2092     switch (ctx->padding) {
2093 #if defined(MBEDTLS_PKCS1_V15)
2094         case MBEDTLS_RSA_PKCS_V15:
2095             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, olen,
2096                                                        input, output, output_max_len);
2097 #endif
2098 
2099 #if defined(MBEDTLS_PKCS1_V21)
2100         case MBEDTLS_RSA_PKCS_V21:
2101             return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, NULL, 0,
2102                                                   olen, input, output,
2103                                                   output_max_len);
2104 #endif
2105 
2106         default:
2107             return MBEDTLS_ERR_RSA_INVALID_PADDING;
2108     }
2109 }
2110 
2111 #if defined(MBEDTLS_PKCS1_V21)
rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)2112 static int rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
2113                                              int (*f_rng)(void *, unsigned char *, size_t),
2114                                              void *p_rng,
2115                                              mbedtls_md_type_t md_alg,
2116                                              unsigned int hashlen,
2117                                              const unsigned char *hash,
2118                                              int saltlen,
2119                                              unsigned char *sig)
2120 {
2121     size_t olen;
2122     unsigned char *p = sig;
2123     unsigned char *salt = NULL;
2124     size_t slen, min_slen, hlen, offset = 0;
2125     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2126     size_t msb;
2127     mbedtls_md_type_t hash_id;
2128 
2129     if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2130         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2131     }
2132 
2133     if (f_rng == NULL) {
2134         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2135     }
2136 
2137     olen = ctx->len;
2138 
2139     if (md_alg != MBEDTLS_MD_NONE) {
2140         /* Gather length of hash to sign */
2141         size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
2142         if (exp_hashlen == 0) {
2143             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2144         }
2145 
2146         if (hashlen != exp_hashlen) {
2147             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2148         }
2149     }
2150 
2151     hash_id = (mbedtls_md_type_t) ctx->hash_id;
2152     if (hash_id == MBEDTLS_MD_NONE) {
2153         hash_id = md_alg;
2154     }
2155     hlen = mbedtls_md_get_size_from_type(hash_id);
2156     if (hlen == 0) {
2157         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2158     }
2159 
2160     if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) {
2161         /* Calculate the largest possible salt length, up to the hash size.
2162          * Normally this is the hash length, which is the maximum salt length
2163          * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
2164          * enough room, use the maximum salt length that fits. The constraint is
2165          * that the hash length plus the salt length plus 2 bytes must be at most
2166          * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
2167          * (PKCS#1 v2.2) §9.1.1 step 3. */
2168         min_slen = hlen - 2;
2169         if (olen < hlen + min_slen + 2) {
2170             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2171         } else if (olen >= hlen + hlen + 2) {
2172             slen = hlen;
2173         } else {
2174             slen = olen - hlen - 2;
2175         }
2176     } else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) {
2177         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2178     } else {
2179         slen = (size_t) saltlen;
2180     }
2181 
2182     memset(sig, 0, olen);
2183 
2184     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
2185     msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
2186     p += olen - hlen - slen - 2;
2187     *p++ = 0x01;
2188 
2189     /* Generate salt of length slen in place in the encoded message */
2190     salt = p;
2191     if ((ret = f_rng(p_rng, salt, slen)) != 0) {
2192         return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
2193     }
2194 
2195     p += slen;
2196 
2197     /* Generate H = Hash( M' ) */
2198     ret = hash_mprime(hash, hashlen, salt, slen, p, hash_id);
2199     if (ret != 0) {
2200         return ret;
2201     }
2202 
2203     /* Compensate for boundary condition when applying mask */
2204     if (msb % 8 == 0) {
2205         offset = 1;
2206     }
2207 
2208     /* maskedDB: Apply dbMask to DB */
2209     ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen, hash_id);
2210     if (ret != 0) {
2211         return ret;
2212     }
2213 
2214     msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
2215     sig[0] &= 0xFF >> (olen * 8 - msb);
2216 
2217     p += hlen;
2218     *p++ = 0xBC;
2219 
2220     return mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig);
2221 }
2222 
rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)2223 static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
2224                                int (*f_rng)(void *, unsigned char *, size_t),
2225                                void *p_rng,
2226                                mbedtls_md_type_t md_alg,
2227                                unsigned int hashlen,
2228                                const unsigned char *hash,
2229                                int saltlen,
2230                                unsigned char *sig)
2231 {
2232     if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
2233         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2234     }
2235     if ((ctx->hash_id == MBEDTLS_MD_NONE) && (md_alg == MBEDTLS_MD_NONE)) {
2236         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2237     }
2238     return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg, hashlen, hash, saltlen,
2239                                              sig);
2240 }
2241 
mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2242 int mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
2243                                               int (*f_rng)(void *, unsigned char *, size_t),
2244                                               void *p_rng,
2245                                               mbedtls_md_type_t md_alg,
2246                                               unsigned int hashlen,
2247                                               const unsigned char *hash,
2248                                               unsigned char *sig)
2249 {
2250     return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg,
2251                                              hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
2252 }
2253 
2254 /*
2255  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
2256  * the option to pass in the salt length.
2257  */
mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)2258 int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx,
2259                                     int (*f_rng)(void *, unsigned char *, size_t),
2260                                     void *p_rng,
2261                                     mbedtls_md_type_t md_alg,
2262                                     unsigned int hashlen,
2263                                     const unsigned char *hash,
2264                                     int saltlen,
2265                                     unsigned char *sig)
2266 {
2267     return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
2268                                hashlen, hash, saltlen, sig);
2269 }
2270 
2271 /*
2272  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
2273  */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2274 int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
2275                                 int (*f_rng)(void *, unsigned char *, size_t),
2276                                 void *p_rng,
2277                                 mbedtls_md_type_t md_alg,
2278                                 unsigned int hashlen,
2279                                 const unsigned char *hash,
2280                                 unsigned char *sig)
2281 {
2282     return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
2283                                hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
2284 }
2285 #endif /* MBEDTLS_PKCS1_V21 */
2286 
2287 #if defined(MBEDTLS_PKCS1_V15)
2288 /*
2289  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
2290  */
2291 
2292 /* Construct a PKCS v1.5 encoding of a hashed message
2293  *
2294  * This is used both for signature generation and verification.
2295  *
2296  * Parameters:
2297  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
2298  *            MBEDTLS_MD_NONE if raw data is signed.
2299  * - hashlen: Length of hash. Must match md_alg if that's not NONE.
2300  * - hash:    Buffer containing the hashed message or the raw data.
2301  * - dst_len: Length of the encoded message.
2302  * - dst:     Buffer to hold the encoded message.
2303  *
2304  * Assumptions:
2305  * - hash has size hashlen.
2306  * - dst points to a buffer of size at least dst_len.
2307  *
2308  */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)2309 static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,
2310                                        unsigned int hashlen,
2311                                        const unsigned char *hash,
2312                                        size_t dst_len,
2313                                        unsigned char *dst)
2314 {
2315     size_t oid_size  = 0;
2316     size_t nb_pad    = dst_len;
2317     unsigned char *p = dst;
2318     const char *oid  = NULL;
2319 
2320     /* Are we signing hashed or raw data? */
2321     if (md_alg != MBEDTLS_MD_NONE) {
2322         unsigned char md_size = mbedtls_md_get_size_from_type(md_alg);
2323         if (md_size == 0) {
2324             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2325         }
2326 
2327         if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) {
2328             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2329         }
2330 
2331         if (hashlen != md_size) {
2332             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2333         }
2334 
2335         /* Double-check that 8 + hashlen + oid_size can be used as a
2336          * 1-byte ASN.1 length encoding and that there's no overflow. */
2337         if (8 + hashlen + oid_size  >= 0x80         ||
2338             10 + hashlen            <  hashlen      ||
2339             10 + hashlen + oid_size <  10 + hashlen) {
2340             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2341         }
2342 
2343         /*
2344          * Static bounds check:
2345          * - Need 10 bytes for five tag-length pairs.
2346          *   (Insist on 1-byte length encodings to protect against variants of
2347          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
2348          * - Need hashlen bytes for hash
2349          * - Need oid_size bytes for hash alg OID.
2350          */
2351         if (nb_pad < 10 + hashlen + oid_size) {
2352             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2353         }
2354         nb_pad -= 10 + hashlen + oid_size;
2355     } else {
2356         if (nb_pad < hashlen) {
2357             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2358         }
2359 
2360         nb_pad -= hashlen;
2361     }
2362 
2363     /* Need space for signature header and padding delimiter (3 bytes),
2364      * and 8 bytes for the minimal padding */
2365     if (nb_pad < 3 + 8) {
2366         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2367     }
2368     nb_pad -= 3;
2369 
2370     /* Now nb_pad is the amount of memory to be filled
2371      * with padding, and at least 8 bytes long. */
2372 
2373     /* Write signature header and padding */
2374     *p++ = 0;
2375     *p++ = MBEDTLS_RSA_SIGN;
2376     memset(p, 0xFF, nb_pad);
2377     p += nb_pad;
2378     *p++ = 0;
2379 
2380     /* Are we signing raw data? */
2381     if (md_alg == MBEDTLS_MD_NONE) {
2382         memcpy(p, hash, hashlen);
2383         return 0;
2384     }
2385 
2386     /* Signing hashed data, add corresponding ASN.1 structure
2387      *
2388      * DigestInfo ::= SEQUENCE {
2389      *   digestAlgorithm DigestAlgorithmIdentifier,
2390      *   digest Digest }
2391      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
2392      * Digest ::= OCTET STRING
2393      *
2394      * Schematic:
2395      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
2396      *                                 TAG-NULL + LEN [ NULL ] ]
2397      *                 TAG-OCTET + LEN [ HASH ] ]
2398      */
2399     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2400     *p++ = (unsigned char) (0x08 + oid_size + hashlen);
2401     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2402     *p++ = (unsigned char) (0x04 + oid_size);
2403     *p++ = MBEDTLS_ASN1_OID;
2404     *p++ = (unsigned char) oid_size;
2405     memcpy(p, oid, oid_size);
2406     p += oid_size;
2407     *p++ = MBEDTLS_ASN1_NULL;
2408     *p++ = 0x00;
2409     *p++ = MBEDTLS_ASN1_OCTET_STRING;
2410     *p++ = (unsigned char) hashlen;
2411     memcpy(p, hash, hashlen);
2412     p += hashlen;
2413 
2414     /* Just a sanity-check, should be automatic
2415      * after the initial bounds check. */
2416     if (p != dst + dst_len) {
2417         mbedtls_platform_zeroize(dst, dst_len);
2418         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2419     }
2420 
2421     return 0;
2422 }
2423 
2424 /*
2425  * Do an RSA operation to sign the message digest
2426  */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2427 int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx,
2428                                       int (*f_rng)(void *, unsigned char *, size_t),
2429                                       void *p_rng,
2430                                       mbedtls_md_type_t md_alg,
2431                                       unsigned int hashlen,
2432                                       const unsigned char *hash,
2433                                       unsigned char *sig)
2434 {
2435     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2436     unsigned char *sig_try = NULL, *verif = NULL;
2437 
2438     if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2439         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2440     }
2441 
2442     if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
2443         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2444     }
2445 
2446     /*
2447      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
2448      */
2449 
2450     if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash,
2451                                            ctx->len, sig)) != 0) {
2452         return ret;
2453     }
2454 
2455     /* Private key operation
2456      *
2457      * In order to prevent Lenstra's attack, make the signature in a
2458      * temporary buffer and check it before returning it.
2459      */
2460 
2461     sig_try = mbedtls_calloc(1, ctx->len);
2462     if (sig_try == NULL) {
2463         return MBEDTLS_ERR_MPI_ALLOC_FAILED;
2464     }
2465 
2466     verif = mbedtls_calloc(1, ctx->len);
2467     if (verif == NULL) {
2468         mbedtls_free(sig_try);
2469         return MBEDTLS_ERR_MPI_ALLOC_FAILED;
2470     }
2471 
2472     MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try));
2473     MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif));
2474 
2475     if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) {
2476         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
2477         goto cleanup;
2478     }
2479 
2480     memcpy(sig, sig_try, ctx->len);
2481 
2482 cleanup:
2483     mbedtls_zeroize_and_free(sig_try, ctx->len);
2484     mbedtls_zeroize_and_free(verif, ctx->len);
2485 
2486     if (ret != 0) {
2487         memset(sig, '!', ctx->len);
2488     }
2489     return ret;
2490 }
2491 #endif /* MBEDTLS_PKCS1_V15 */
2492 
2493 /*
2494  * Do an RSA operation to sign the message digest
2495  */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2496 int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx,
2497                            int (*f_rng)(void *, unsigned char *, size_t),
2498                            void *p_rng,
2499                            mbedtls_md_type_t md_alg,
2500                            unsigned int hashlen,
2501                            const unsigned char *hash,
2502                            unsigned char *sig)
2503 {
2504     if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2505         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2506     }
2507 
2508     switch (ctx->padding) {
2509 #if defined(MBEDTLS_PKCS1_V15)
2510         case MBEDTLS_RSA_PKCS_V15:
2511             return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng,
2512                                                      md_alg, hashlen, hash, sig);
2513 #endif
2514 
2515 #if defined(MBEDTLS_PKCS1_V21)
2516         case MBEDTLS_RSA_PKCS_V21:
2517             return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
2518                                                hashlen, hash, sig);
2519 #endif
2520 
2521         default:
2522             return MBEDTLS_ERR_RSA_INVALID_PADDING;
2523     }
2524 }
2525 
2526 #if defined(MBEDTLS_PKCS1_V21)
2527 /*
2528  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2529  */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)2530 int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx,
2531                                       mbedtls_md_type_t md_alg,
2532                                       unsigned int hashlen,
2533                                       const unsigned char *hash,
2534                                       mbedtls_md_type_t mgf1_hash_id,
2535                                       int expected_salt_len,
2536                                       const unsigned char *sig)
2537 {
2538     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2539     size_t siglen;
2540     unsigned char *p;
2541     unsigned char *hash_start;
2542     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2543     unsigned int hlen;
2544     size_t observed_salt_len, msb;
2545     unsigned char buf[MBEDTLS_MPI_MAX_SIZE] = { 0 };
2546 
2547     if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2548         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2549     }
2550 
2551     siglen = ctx->len;
2552 
2553     if (siglen < 16 || siglen > sizeof(buf)) {
2554         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2555     }
2556 
2557     ret = mbedtls_rsa_public(ctx, sig, buf);
2558 
2559     if (ret != 0) {
2560         return ret;
2561     }
2562 
2563     p = buf;
2564 
2565     if (buf[siglen - 1] != 0xBC) {
2566         return MBEDTLS_ERR_RSA_INVALID_PADDING;
2567     }
2568 
2569     if (md_alg != MBEDTLS_MD_NONE) {
2570         /* Gather length of hash to sign */
2571         size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
2572         if (exp_hashlen == 0) {
2573             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2574         }
2575 
2576         if (hashlen != exp_hashlen) {
2577             return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2578         }
2579     }
2580 
2581     hlen = mbedtls_md_get_size_from_type(mgf1_hash_id);
2582     if (hlen == 0) {
2583         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2584     }
2585 
2586     /*
2587      * Note: EMSA-PSS verification is over the length of N - 1 bits
2588      */
2589     msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
2590 
2591     if (buf[0] >> (8 - siglen * 8 + msb)) {
2592         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2593     }
2594 
2595     /* Compensate for boundary condition when applying mask */
2596     if (msb % 8 == 0) {
2597         p++;
2598         siglen -= 1;
2599     }
2600 
2601     if (siglen < hlen + 2) {
2602         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2603     }
2604     hash_start = p + siglen - hlen - 1;
2605 
2606     ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, mgf1_hash_id);
2607     if (ret != 0) {
2608         return ret;
2609     }
2610 
2611     buf[0] &= 0xFF >> (siglen * 8 - msb);
2612 
2613     while (p < hash_start - 1 && *p == 0) {
2614         p++;
2615     }
2616 
2617     if (*p++ != 0x01) {
2618         return MBEDTLS_ERR_RSA_INVALID_PADDING;
2619     }
2620 
2621     observed_salt_len = (size_t) (hash_start - p);
2622 
2623     if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2624         observed_salt_len != (size_t) expected_salt_len) {
2625         return MBEDTLS_ERR_RSA_INVALID_PADDING;
2626     }
2627 
2628     /*
2629      * Generate H = Hash( M' )
2630      */
2631     ret = hash_mprime(hash, hashlen, p, observed_salt_len,
2632                       result, mgf1_hash_id);
2633     if (ret != 0) {
2634         return ret;
2635     }
2636 
2637     if (memcmp(hash_start, result, hlen) != 0) {
2638         return MBEDTLS_ERR_RSA_VERIFY_FAILED;
2639     }
2640 
2641     return 0;
2642 }
2643 
2644 /*
2645  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2646  */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2647 int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx,
2648                                   mbedtls_md_type_t md_alg,
2649                                   unsigned int hashlen,
2650                                   const unsigned char *hash,
2651                                   const unsigned char *sig)
2652 {
2653     mbedtls_md_type_t mgf1_hash_id;
2654     if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2655         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2656     }
2657 
2658     mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE)
2659                              ? (mbedtls_md_type_t) ctx->hash_id
2660                              : md_alg;
2661 
2662     return mbedtls_rsa_rsassa_pss_verify_ext(ctx,
2663                                              md_alg, hashlen, hash,
2664                                              mgf1_hash_id,
2665                                              MBEDTLS_RSA_SALT_LEN_ANY,
2666                                              sig);
2667 
2668 }
2669 #endif /* MBEDTLS_PKCS1_V21 */
2670 
2671 #if defined(MBEDTLS_PKCS1_V15)
2672 /*
2673  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2674  */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2675 int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx,
2676                                         mbedtls_md_type_t md_alg,
2677                                         unsigned int hashlen,
2678                                         const unsigned char *hash,
2679                                         const unsigned char *sig)
2680 {
2681     int ret = 0;
2682     size_t sig_len;
2683     unsigned char *encoded = NULL, *encoded_expected = NULL;
2684 
2685     if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2686         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2687     }
2688 
2689     sig_len = ctx->len;
2690 
2691     /*
2692      * Prepare expected PKCS1 v1.5 encoding of hash.
2693      */
2694 
2695     if ((encoded          = mbedtls_calloc(1, sig_len)) == NULL ||
2696         (encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) {
2697         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2698         goto cleanup;
2699     }
2700 
2701     if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len,
2702                                            encoded_expected)) != 0) {
2703         goto cleanup;
2704     }
2705 
2706     /*
2707      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2708      */
2709 
2710     ret = mbedtls_rsa_public(ctx, sig, encoded);
2711     if (ret != 0) {
2712         goto cleanup;
2713     }
2714 
2715     /*
2716      * Compare
2717      */
2718 
2719     if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected,
2720                                  sig_len)) != 0) {
2721         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2722         goto cleanup;
2723     }
2724 
2725 cleanup:
2726 
2727     if (encoded != NULL) {
2728         mbedtls_zeroize_and_free(encoded, sig_len);
2729     }
2730 
2731     if (encoded_expected != NULL) {
2732         mbedtls_zeroize_and_free(encoded_expected, sig_len);
2733     }
2734 
2735     return ret;
2736 }
2737 #endif /* MBEDTLS_PKCS1_V15 */
2738 
2739 /*
2740  * Do an RSA operation and check the message digest
2741  */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2742 int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx,
2743                              mbedtls_md_type_t md_alg,
2744                              unsigned int hashlen,
2745                              const unsigned char *hash,
2746                              const unsigned char *sig)
2747 {
2748     if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2749         return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2750     }
2751 
2752     switch (ctx->padding) {
2753 #if defined(MBEDTLS_PKCS1_V15)
2754         case MBEDTLS_RSA_PKCS_V15:
2755             return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, md_alg,
2756                                                        hashlen, hash, sig);
2757 #endif
2758 
2759 #if defined(MBEDTLS_PKCS1_V21)
2760         case MBEDTLS_RSA_PKCS_V21:
2761             return mbedtls_rsa_rsassa_pss_verify(ctx, md_alg,
2762                                                  hashlen, hash, sig);
2763 #endif
2764 
2765         default:
2766             return MBEDTLS_ERR_RSA_INVALID_PADDING;
2767     }
2768 }
2769 
2770 /*
2771  * Copy the components of an RSA key
2772  */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2773 int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src)
2774 {
2775     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2776 
2777     dst->len = src->len;
2778 
2779     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N));
2780     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E));
2781 
2782     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D));
2783     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P));
2784     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q));
2785 
2786 #if !defined(MBEDTLS_RSA_NO_CRT)
2787     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP));
2788     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ));
2789     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP));
2790     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP));
2791     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ));
2792 #endif
2793 
2794     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN));
2795 
2796     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi));
2797     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf));
2798 
2799     dst->padding = src->padding;
2800     dst->hash_id = src->hash_id;
2801 
2802 cleanup:
2803     if (ret != 0) {
2804         mbedtls_rsa_free(dst);
2805     }
2806 
2807     return ret;
2808 }
2809 
2810 /*
2811  * Free the components of an RSA key
2812  */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2813 void mbedtls_rsa_free(mbedtls_rsa_context *ctx)
2814 {
2815     if (ctx == NULL) {
2816         return;
2817     }
2818 
2819     mbedtls_mpi_free(&ctx->Vi);
2820     mbedtls_mpi_free(&ctx->Vf);
2821     mbedtls_mpi_free(&ctx->RN);
2822     mbedtls_mpi_free(&ctx->D);
2823     mbedtls_mpi_free(&ctx->Q);
2824     mbedtls_mpi_free(&ctx->P);
2825     mbedtls_mpi_free(&ctx->E);
2826     mbedtls_mpi_free(&ctx->N);
2827 
2828 #if !defined(MBEDTLS_RSA_NO_CRT)
2829     mbedtls_mpi_free(&ctx->RQ);
2830     mbedtls_mpi_free(&ctx->RP);
2831     mbedtls_mpi_free(&ctx->QP);
2832     mbedtls_mpi_free(&ctx->DQ);
2833     mbedtls_mpi_free(&ctx->DP);
2834 #endif /* MBEDTLS_RSA_NO_CRT */
2835 
2836 #if defined(MBEDTLS_THREADING_C)
2837     /* Free the mutex, but only if it hasn't been freed already. */
2838     if (ctx->ver != 0) {
2839         mbedtls_mutex_free(&ctx->mutex);
2840         ctx->ver = 0;
2841     }
2842 #endif
2843 }
2844 
2845 #endif /* !MBEDTLS_RSA_ALT */
2846 
2847 #if defined(MBEDTLS_SELF_TEST)
2848 
2849 
2850 /*
2851  * Example RSA-1024 keypair, for test purposes
2852  */
2853 #define KEY_LEN 128
2854 
2855 #define RSA_N   "9292758453063D803DD603D5E777D788" \
2856                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2857                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2858                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2859                 "93A89813FBF3C4F8066D2D800F7C38A8" \
2860                 "1AE31942917403FF4946B0A83D3D3E05" \
2861                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2862                 "5E94BB77B07507233A0BC7BAC8F90F79"
2863 
2864 #define RSA_E   "10001"
2865 
2866 #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2867                 "66CA472BC44D253102F8B4A9D3BFA750" \
2868                 "91386C0077937FE33FA3252D28855837" \
2869                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2870                 "DF79C5CE07EE72C7F123142198164234" \
2871                 "CABB724CF78B8173B9F880FC86322407" \
2872                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2873                 "071513A1E85B5DFA031F21ECAE91A34D"
2874 
2875 #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2876                 "2C01CAD19EA484A87EA4377637E75500" \
2877                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2878                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2879 
2880 #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2881                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2882                 "910E4168387E3C30AA1E00C339A79508" \
2883                 "8452DD96A9A5EA5D9DCA68DA636032AF"
2884 
2885 #define PT_LEN  24
2886 #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2887                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2888 
2889 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2890 static int myrand(void *rng_state, unsigned char *output, size_t len)
2891 {
2892 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2893     size_t i;
2894 
2895     if (rng_state != NULL) {
2896         rng_state  = NULL;
2897     }
2898 
2899     for (i = 0; i < len; ++i) {
2900         output[i] = rand();
2901     }
2902 #else
2903     if (rng_state != NULL) {
2904         rng_state = NULL;
2905     }
2906 
2907     arc4random_buf(output, len);
2908 #endif /* !OpenBSD && !NetBSD */
2909 
2910     return 0;
2911 }
2912 #endif /* MBEDTLS_PKCS1_V15 */
2913 
2914 /*
2915  * Checkup routine
2916  */
mbedtls_rsa_self_test(int verbose)2917 int mbedtls_rsa_self_test(int verbose)
2918 {
2919     int ret = 0;
2920 #if defined(MBEDTLS_PKCS1_V15)
2921     size_t len;
2922     mbedtls_rsa_context rsa;
2923     unsigned char rsa_plaintext[PT_LEN];
2924     unsigned char rsa_decrypted[PT_LEN];
2925     unsigned char rsa_ciphertext[KEY_LEN];
2926 #if defined(MBEDTLS_MD_CAN_SHA1)
2927     unsigned char sha1sum[20];
2928 #endif
2929 
2930     mbedtls_mpi K;
2931 
2932     mbedtls_mpi_init(&K);
2933     mbedtls_rsa_init(&rsa);
2934 
2935     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N));
2936     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL));
2937     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P));
2938     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL));
2939     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q));
2940     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL));
2941     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D));
2942     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL));
2943     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E));
2944     MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K));
2945 
2946     MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa));
2947 
2948     if (verbose != 0) {
2949         mbedtls_printf("  RSA key validation: ");
2950     }
2951 
2952     if (mbedtls_rsa_check_pubkey(&rsa) != 0 ||
2953         mbedtls_rsa_check_privkey(&rsa) != 0) {
2954         if (verbose != 0) {
2955             mbedtls_printf("failed\n");
2956         }
2957 
2958         ret = 1;
2959         goto cleanup;
2960     }
2961 
2962     if (verbose != 0) {
2963         mbedtls_printf("passed\n  PKCS#1 encryption : ");
2964     }
2965 
2966     memcpy(rsa_plaintext, RSA_PT, PT_LEN);
2967 
2968     if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL,
2969                                   PT_LEN, rsa_plaintext,
2970                                   rsa_ciphertext) != 0) {
2971         if (verbose != 0) {
2972             mbedtls_printf("failed\n");
2973         }
2974 
2975         ret = 1;
2976         goto cleanup;
2977     }
2978 
2979     if (verbose != 0) {
2980         mbedtls_printf("passed\n  PKCS#1 decryption : ");
2981     }
2982 
2983     if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL,
2984                                   &len, rsa_ciphertext, rsa_decrypted,
2985                                   sizeof(rsa_decrypted)) != 0) {
2986         if (verbose != 0) {
2987             mbedtls_printf("failed\n");
2988         }
2989 
2990         ret = 1;
2991         goto cleanup;
2992     }
2993 
2994     if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) {
2995         if (verbose != 0) {
2996             mbedtls_printf("failed\n");
2997         }
2998 
2999         ret = 1;
3000         goto cleanup;
3001     }
3002 
3003     if (verbose != 0) {
3004         mbedtls_printf("passed\n");
3005     }
3006 
3007 #if defined(MBEDTLS_MD_CAN_SHA1)
3008     if (verbose != 0) {
3009         mbedtls_printf("  PKCS#1 data sign  : ");
3010     }
3011 
3012     if (mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_MD_SHA1),
3013                    rsa_plaintext, PT_LEN, sha1sum) != 0) {
3014         if (verbose != 0) {
3015             mbedtls_printf("failed\n");
3016         }
3017 
3018         return 1;
3019     }
3020 
3021     if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL,
3022                                MBEDTLS_MD_SHA1, 20,
3023                                sha1sum, rsa_ciphertext) != 0) {
3024         if (verbose != 0) {
3025             mbedtls_printf("failed\n");
3026         }
3027 
3028         ret = 1;
3029         goto cleanup;
3030     }
3031 
3032     if (verbose != 0) {
3033         mbedtls_printf("passed\n  PKCS#1 sig. verify: ");
3034     }
3035 
3036     if (mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA1, 20,
3037                                  sha1sum, rsa_ciphertext) != 0) {
3038         if (verbose != 0) {
3039             mbedtls_printf("failed\n");
3040         }
3041 
3042         ret = 1;
3043         goto cleanup;
3044     }
3045 
3046     if (verbose != 0) {
3047         mbedtls_printf("passed\n");
3048     }
3049 #endif /* MBEDTLS_MD_CAN_SHA1 */
3050 
3051     if (verbose != 0) {
3052         mbedtls_printf("\n");
3053     }
3054 
3055 cleanup:
3056     mbedtls_mpi_free(&K);
3057     mbedtls_rsa_free(&rsa);
3058 #else /* MBEDTLS_PKCS1_V15 */
3059     ((void) verbose);
3060 #endif /* MBEDTLS_PKCS1_V15 */
3061     return ret;
3062 }
3063 
3064 #endif /* MBEDTLS_SELF_TEST */
3065 
3066 #endif /* MBEDTLS_RSA_C */
3067