1 /*
2 * The RSA public-key cryptosystem
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8 /*
9 * The following sources were referenced in the design of this implementation
10 * of the RSA algorithm:
11 *
12 * [1] A method for obtaining digital signatures and public-key cryptosystems
13 * R Rivest, A Shamir, and L Adleman
14 * http://people.csail.mit.edu/rivest/pubs.html#RSA78
15 *
16 * [2] Handbook of Applied Cryptography - 1997, Chapter 8
17 * Menezes, van Oorschot and Vanstone
18 *
19 * [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
20 * Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
21 * Stefan Mangard
22 * https://arxiv.org/abs/1702.08719v2
23 *
24 */
25
26 #include "common.h"
27
28 #if defined(MBEDTLS_RSA_C)
29
30 #include "mbedtls/rsa.h"
31 #include "bignum_core.h"
32 #include "bignum_internal.h"
33 #include "rsa_alt_helpers.h"
34 #include "rsa_internal.h"
35 #include "mbedtls/oid.h"
36 #include "mbedtls/asn1write.h"
37 #include "mbedtls/platform_util.h"
38 #include "mbedtls/error.h"
39 #include "constant_time_internal.h"
40 #include "mbedtls/constant_time.h"
41 #include "md_psa.h"
42
43 #include <string.h>
44
45 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
46 #include <stdlib.h>
47 #endif
48
49 #include "mbedtls/platform.h"
50
51 /*
52 * Wrapper around mbedtls_asn1_get_mpi() that rejects zero.
53 *
54 * The value zero is:
55 * - never a valid value for an RSA parameter
56 * - interpreted as "omitted, please reconstruct" by mbedtls_rsa_complete().
57 *
58 * Since values can't be omitted in PKCS#1, passing a zero value to
59 * rsa_complete() would be incorrect, so reject zero values early.
60 */
asn1_get_nonzero_mpi(unsigned char ** p,const unsigned char * end,mbedtls_mpi * X)61 static int asn1_get_nonzero_mpi(unsigned char **p,
62 const unsigned char *end,
63 mbedtls_mpi *X)
64 {
65 int ret;
66
67 ret = mbedtls_asn1_get_mpi(p, end, X);
68 if (ret != 0) {
69 return ret;
70 }
71
72 if (mbedtls_mpi_cmp_int(X, 0) == 0) {
73 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
74 }
75
76 return 0;
77 }
78
mbedtls_rsa_parse_key(mbedtls_rsa_context * rsa,const unsigned char * key,size_t keylen)79 int mbedtls_rsa_parse_key(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
80 {
81 int ret, version;
82 size_t len;
83 unsigned char *p, *end;
84
85 mbedtls_mpi T;
86 mbedtls_mpi_init(&T);
87
88 p = (unsigned char *) key;
89 end = p + keylen;
90
91 /*
92 * This function parses the RSAPrivateKey (PKCS#1)
93 *
94 * RSAPrivateKey ::= SEQUENCE {
95 * version Version,
96 * modulus INTEGER, -- n
97 * publicExponent INTEGER, -- e
98 * privateExponent INTEGER, -- d
99 * prime1 INTEGER, -- p
100 * prime2 INTEGER, -- q
101 * exponent1 INTEGER, -- d mod (p-1)
102 * exponent2 INTEGER, -- d mod (q-1)
103 * coefficient INTEGER, -- (inverse of q) mod p
104 * otherPrimeInfos OtherPrimeInfos OPTIONAL
105 * }
106 */
107 if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
108 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
109 return ret;
110 }
111
112 if (end != p + len) {
113 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
114 }
115
116 if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
117 return ret;
118 }
119
120 if (version != 0) {
121 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
122 }
123
124 /* Import N */
125 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
126 (ret = mbedtls_rsa_import(rsa, &T, NULL, NULL,
127 NULL, NULL)) != 0) {
128 goto cleanup;
129 }
130
131 /* Import E */
132 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
133 (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
134 NULL, &T)) != 0) {
135 goto cleanup;
136 }
137
138 /* Import D */
139 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
140 (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
141 &T, NULL)) != 0) {
142 goto cleanup;
143 }
144
145 /* Import P */
146 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
147 (ret = mbedtls_rsa_import(rsa, NULL, &T, NULL,
148 NULL, NULL)) != 0) {
149 goto cleanup;
150 }
151
152 /* Import Q */
153 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
154 (ret = mbedtls_rsa_import(rsa, NULL, NULL, &T,
155 NULL, NULL)) != 0) {
156 goto cleanup;
157 }
158
159 #if !defined(MBEDTLS_RSA_NO_CRT) && !defined(MBEDTLS_RSA_ALT)
160 /*
161 * The RSA CRT parameters DP, DQ and QP are nominally redundant, in
162 * that they can be easily recomputed from D, P and Q. However by
163 * parsing them from the PKCS1 structure it is possible to avoid
164 * recalculating them which both reduces the overhead of loading
165 * RSA private keys into memory and also avoids side channels which
166 * can arise when computing those values, since all of D, P, and Q
167 * are secret. See https://eprint.iacr.org/2020/055 for a
168 * description of one such attack.
169 */
170
171 /* Import DP */
172 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
173 (ret = mbedtls_mpi_copy(&rsa->DP, &T)) != 0) {
174 goto cleanup;
175 }
176
177 /* Import DQ */
178 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
179 (ret = mbedtls_mpi_copy(&rsa->DQ, &T)) != 0) {
180 goto cleanup;
181 }
182
183 /* Import QP */
184 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
185 (ret = mbedtls_mpi_copy(&rsa->QP, &T)) != 0) {
186 goto cleanup;
187 }
188
189 #else
190 /* Verify existence of the CRT params */
191 if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
192 (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
193 (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0) {
194 goto cleanup;
195 }
196 #endif
197
198 /* rsa_complete() doesn't complete anything with the default
199 * implementation but is still called:
200 * - for the benefit of alternative implementation that may want to
201 * pre-compute stuff beyond what's provided (eg Montgomery factors)
202 * - as is also sanity-checks the key
203 *
204 * Furthermore, we also check the public part for consistency with
205 * mbedtls_pk_parse_pubkey(), as it includes size minima for example.
206 */
207 if ((ret = mbedtls_rsa_complete(rsa)) != 0 ||
208 (ret = mbedtls_rsa_check_pubkey(rsa)) != 0) {
209 goto cleanup;
210 }
211
212 if (p != end) {
213 ret = MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
214 }
215
216 cleanup:
217
218 mbedtls_mpi_free(&T);
219
220 if (ret != 0) {
221 mbedtls_rsa_free(rsa);
222 }
223
224 return ret;
225 }
226
mbedtls_rsa_parse_pubkey(mbedtls_rsa_context * rsa,const unsigned char * key,size_t keylen)227 int mbedtls_rsa_parse_pubkey(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
228 {
229 unsigned char *p = (unsigned char *) key;
230 unsigned char *end = (unsigned char *) (key + keylen);
231 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
232 size_t len;
233
234 /*
235 * RSAPublicKey ::= SEQUENCE {
236 * modulus INTEGER, -- n
237 * publicExponent INTEGER -- e
238 * }
239 */
240
241 if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
242 MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
243 return ret;
244 }
245
246 if (end != p + len) {
247 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
248 }
249
250 /* Import N */
251 if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
252 return ret;
253 }
254
255 if ((ret = mbedtls_rsa_import_raw(rsa, p, len, NULL, 0, NULL, 0,
256 NULL, 0, NULL, 0)) != 0) {
257 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
258 }
259
260 p += len;
261
262 /* Import E */
263 if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
264 return ret;
265 }
266
267 if ((ret = mbedtls_rsa_import_raw(rsa, NULL, 0, NULL, 0, NULL, 0,
268 NULL, 0, p, len)) != 0) {
269 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
270 }
271
272 p += len;
273
274 if (mbedtls_rsa_complete(rsa) != 0 ||
275 mbedtls_rsa_check_pubkey(rsa) != 0) {
276 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
277 }
278
279 if (p != end) {
280 return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
281 }
282
283 return 0;
284 }
285
mbedtls_rsa_write_key(const mbedtls_rsa_context * rsa,unsigned char * start,unsigned char ** p)286 int mbedtls_rsa_write_key(const mbedtls_rsa_context *rsa, unsigned char *start,
287 unsigned char **p)
288 {
289 size_t len = 0;
290 int ret;
291
292 mbedtls_mpi T; /* Temporary holding the exported parameters */
293
294 /*
295 * Export the parameters one after another to avoid simultaneous copies.
296 */
297
298 mbedtls_mpi_init(&T);
299
300 /* Export QP */
301 if ((ret = mbedtls_rsa_export_crt(rsa, NULL, NULL, &T)) != 0 ||
302 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
303 goto end_of_export;
304 }
305 len += ret;
306
307 /* Export DQ */
308 if ((ret = mbedtls_rsa_export_crt(rsa, NULL, &T, NULL)) != 0 ||
309 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
310 goto end_of_export;
311 }
312 len += ret;
313
314 /* Export DP */
315 if ((ret = mbedtls_rsa_export_crt(rsa, &T, NULL, NULL)) != 0 ||
316 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
317 goto end_of_export;
318 }
319 len += ret;
320
321 /* Export Q */
322 if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, &T, NULL, NULL)) != 0 ||
323 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
324 goto end_of_export;
325 }
326 len += ret;
327
328 /* Export P */
329 if ((ret = mbedtls_rsa_export(rsa, NULL, &T, NULL, NULL, NULL)) != 0 ||
330 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
331 goto end_of_export;
332 }
333 len += ret;
334
335 /* Export D */
336 if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, &T, NULL)) != 0 ||
337 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
338 goto end_of_export;
339 }
340 len += ret;
341
342 /* Export E */
343 if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
344 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
345 goto end_of_export;
346 }
347 len += ret;
348
349 /* Export N */
350 if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
351 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
352 goto end_of_export;
353 }
354 len += ret;
355
356 end_of_export:
357
358 mbedtls_mpi_free(&T);
359 if (ret < 0) {
360 return ret;
361 }
362
363 MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, start, 0));
364 MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
365 MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start,
366 MBEDTLS_ASN1_CONSTRUCTED |
367 MBEDTLS_ASN1_SEQUENCE));
368
369 return (int) len;
370 }
371
372 /*
373 * RSAPublicKey ::= SEQUENCE {
374 * modulus INTEGER, -- n
375 * publicExponent INTEGER -- e
376 * }
377 */
mbedtls_rsa_write_pubkey(const mbedtls_rsa_context * rsa,unsigned char * start,unsigned char ** p)378 int mbedtls_rsa_write_pubkey(const mbedtls_rsa_context *rsa, unsigned char *start,
379 unsigned char **p)
380 {
381 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
382 size_t len = 0;
383 mbedtls_mpi T;
384
385 mbedtls_mpi_init(&T);
386
387 /* Export E */
388 if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
389 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
390 goto end_of_export;
391 }
392 len += ret;
393
394 /* Export N */
395 if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
396 (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
397 goto end_of_export;
398 }
399 len += ret;
400
401 end_of_export:
402
403 mbedtls_mpi_free(&T);
404 if (ret < 0) {
405 return ret;
406 }
407
408 MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
409 MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, MBEDTLS_ASN1_CONSTRUCTED |
410 MBEDTLS_ASN1_SEQUENCE));
411
412 return (int) len;
413 }
414
415 #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT)
416
417 /** This function performs the unpadding part of a PKCS#1 v1.5 decryption
418 * operation (EME-PKCS1-v1_5 decoding).
419 *
420 * \note The return value from this function is a sensitive value
421 * (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen
422 * in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING
423 * is often a situation that an attacker can provoke and leaking which
424 * one is the result is precisely the information the attacker wants.
425 *
426 * \param input The input buffer which is the payload inside PKCS#1v1.5
427 * encryption padding, called the "encoded message EM"
428 * by the terminology.
429 * \param ilen The length of the payload in the \p input buffer.
430 * \param output The buffer for the payload, called "message M" by the
431 * PKCS#1 terminology. This must be a writable buffer of
432 * length \p output_max_len bytes.
433 * \param olen The address at which to store the length of
434 * the payload. This must not be \c NULL.
435 * \param output_max_len The length in bytes of the output buffer \p output.
436 *
437 * \return \c 0 on success.
438 * \return #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE
439 * The output buffer is too small for the unpadded payload.
440 * \return #MBEDTLS_ERR_RSA_INVALID_PADDING
441 * The input doesn't contain properly formatted padding.
442 */
mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char * input,size_t ilen,unsigned char * output,size_t output_max_len,size_t * olen)443 static int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
444 size_t ilen,
445 unsigned char *output,
446 size_t output_max_len,
447 size_t *olen)
448 {
449 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
450 size_t i, plaintext_max_size;
451
452 /* The following variables take sensitive values: their value must
453 * not leak into the observable behavior of the function other than
454 * the designated outputs (output, olen, return value). Otherwise
455 * this would open the execution of the function to
456 * side-channel-based variants of the Bleichenbacher padding oracle
457 * attack. Potential side channels include overall timing, memory
458 * access patterns (especially visible to an adversary who has access
459 * to a shared memory cache), and branches (especially visible to
460 * an adversary who has access to a shared code cache or to a shared
461 * branch predictor). */
462 size_t pad_count = 0;
463 mbedtls_ct_condition_t bad;
464 mbedtls_ct_condition_t pad_done;
465 size_t plaintext_size = 0;
466 mbedtls_ct_condition_t output_too_large;
467
468 plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
469 : output_max_len;
470
471 /* Check and get padding length in constant time and constant
472 * memory trace. The first byte must be 0. */
473 bad = mbedtls_ct_bool(input[0]);
474
475
476 /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
477 * where PS must be at least 8 nonzero bytes. */
478 bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(input[1], MBEDTLS_RSA_CRYPT));
479
480 /* Read the whole buffer. Set pad_done to nonzero if we find
481 * the 0x00 byte and remember the padding length in pad_count. */
482 pad_done = MBEDTLS_CT_FALSE;
483 for (i = 2; i < ilen; i++) {
484 mbedtls_ct_condition_t found = mbedtls_ct_uint_eq(input[i], 0);
485 pad_done = mbedtls_ct_bool_or(pad_done, found);
486 pad_count += mbedtls_ct_uint_if_else_0(mbedtls_ct_bool_not(pad_done), 1);
487 }
488
489 /* If pad_done is still zero, there's no data, only unfinished padding. */
490 bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_not(pad_done));
491
492 /* There must be at least 8 bytes of padding. */
493 bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_gt(8, pad_count));
494
495 /* If the padding is valid, set plaintext_size to the number of
496 * remaining bytes after stripping the padding. If the padding
497 * is invalid, avoid leaking this fact through the size of the
498 * output: use the maximum message size that fits in the output
499 * buffer. Do it without branches to avoid leaking the padding
500 * validity through timing. RSA keys are small enough that all the
501 * size_t values involved fit in unsigned int. */
502 plaintext_size = mbedtls_ct_uint_if(
503 bad, (unsigned) plaintext_max_size,
504 (unsigned) (ilen - pad_count - 3));
505
506 /* Set output_too_large to 0 if the plaintext fits in the output
507 * buffer and to 1 otherwise. */
508 output_too_large = mbedtls_ct_uint_gt(plaintext_size,
509 plaintext_max_size);
510
511 /* Set ret without branches to avoid timing attacks. Return:
512 * - INVALID_PADDING if the padding is bad (bad != 0).
513 * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
514 * plaintext does not fit in the output buffer.
515 * - 0 if the padding is correct. */
516 ret = mbedtls_ct_error_if(
517 bad,
518 MBEDTLS_ERR_RSA_INVALID_PADDING,
519 mbedtls_ct_error_if_else_0(output_too_large, MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE)
520 );
521
522 /* If the padding is bad or the plaintext is too large, zero the
523 * data that we're about to copy to the output buffer.
524 * We need to copy the same amount of data
525 * from the same buffer whether the padding is good or not to
526 * avoid leaking the padding validity through overall timing or
527 * through memory or cache access patterns. */
528 mbedtls_ct_zeroize_if(mbedtls_ct_bool_or(bad, output_too_large), input + 11, ilen - 11);
529
530 /* If the plaintext is too large, truncate it to the buffer size.
531 * Copy anyway to avoid revealing the length through timing, because
532 * revealing the length is as bad as revealing the padding validity
533 * for a Bleichenbacher attack. */
534 plaintext_size = mbedtls_ct_uint_if(output_too_large,
535 (unsigned) plaintext_max_size,
536 (unsigned) plaintext_size);
537
538 /* Move the plaintext to the leftmost position where it can start in
539 * the working buffer, i.e. make it start plaintext_max_size from
540 * the end of the buffer. Do this with a memory access trace that
541 * does not depend on the plaintext size. After this move, the
542 * starting location of the plaintext is no longer sensitive
543 * information. */
544 mbedtls_ct_memmove_left(input + ilen - plaintext_max_size,
545 plaintext_max_size,
546 plaintext_max_size - plaintext_size);
547
548 /* Finally copy the decrypted plaintext plus trailing zeros into the output
549 * buffer. If output_max_len is 0, then output may be an invalid pointer
550 * and the result of memcpy() would be undefined; prevent undefined
551 * behavior making sure to depend only on output_max_len (the size of the
552 * user-provided output buffer), which is independent from plaintext
553 * length, validity of padding, success of the decryption, and other
554 * secrets. */
555 if (output_max_len != 0) {
556 memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
557 }
558
559 /* Report the amount of data we copied to the output buffer. In case
560 * of errors (bad padding or output too large), the value of *olen
561 * when this function returns is not specified. Making it equivalent
562 * to the good case limits the risks of leaking the padding validity. */
563 *olen = plaintext_size;
564
565 return ret;
566 }
567
568 #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */
569
570 #if !defined(MBEDTLS_RSA_ALT)
571
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)572 int mbedtls_rsa_import(mbedtls_rsa_context *ctx,
573 const mbedtls_mpi *N,
574 const mbedtls_mpi *P, const mbedtls_mpi *Q,
575 const mbedtls_mpi *D, const mbedtls_mpi *E)
576 {
577 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
578
579 if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) ||
580 (P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) ||
581 (Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) ||
582 (D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) ||
583 (E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) {
584 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
585 }
586
587 if (N != NULL) {
588 ctx->len = mbedtls_mpi_size(&ctx->N);
589 }
590
591 return 0;
592 }
593
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)594 int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx,
595 unsigned char const *N, size_t N_len,
596 unsigned char const *P, size_t P_len,
597 unsigned char const *Q, size_t Q_len,
598 unsigned char const *D, size_t D_len,
599 unsigned char const *E, size_t E_len)
600 {
601 int ret = 0;
602
603 if (N != NULL) {
604 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len));
605 ctx->len = mbedtls_mpi_size(&ctx->N);
606 }
607
608 if (P != NULL) {
609 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len));
610 }
611
612 if (Q != NULL) {
613 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len));
614 }
615
616 if (D != NULL) {
617 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len));
618 }
619
620 if (E != NULL) {
621 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len));
622 }
623
624 cleanup:
625
626 if (ret != 0) {
627 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
628 }
629
630 return 0;
631 }
632
633 /*
634 * Checks whether the context fields are set in such a way
635 * that the RSA primitives will be able to execute without error.
636 * It does *not* make guarantees for consistency of the parameters.
637 */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)638 static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv,
639 int blinding_needed)
640 {
641 #if !defined(MBEDTLS_RSA_NO_CRT)
642 /* blinding_needed is only used for NO_CRT to decide whether
643 * P,Q need to be present or not. */
644 ((void) blinding_needed);
645 #endif
646
647 if (ctx->len != mbedtls_mpi_size(&ctx->N) ||
648 ctx->len > MBEDTLS_MPI_MAX_SIZE) {
649 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
650 }
651
652 /*
653 * 1. Modular exponentiation needs positive, odd moduli.
654 */
655
656 /* Modular exponentiation wrt. N is always used for
657 * RSA public key operations. */
658 if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 ||
659 mbedtls_mpi_get_bit(&ctx->N, 0) == 0) {
660 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
661 }
662
663 #if !defined(MBEDTLS_RSA_NO_CRT)
664 /* Modular exponentiation for P and Q is only
665 * used for private key operations and if CRT
666 * is used. */
667 if (is_priv &&
668 (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
669 mbedtls_mpi_get_bit(&ctx->P, 0) == 0 ||
670 mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 ||
671 mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) {
672 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
673 }
674 #endif /* !MBEDTLS_RSA_NO_CRT */
675
676 /*
677 * 2. Exponents must be positive
678 */
679
680 /* Always need E for public key operations */
681 if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) {
682 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
683 }
684
685 #if defined(MBEDTLS_RSA_NO_CRT)
686 /* For private key operations, use D or DP & DQ
687 * as (unblinded) exponents. */
688 if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) {
689 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
690 }
691 #else
692 if (is_priv &&
693 (mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 ||
694 mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) {
695 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
696 }
697 #endif /* MBEDTLS_RSA_NO_CRT */
698
699 /* Blinding shouldn't make exponents negative either,
700 * so check that P, Q >= 1 if that hasn't yet been
701 * done as part of 1. */
702 #if defined(MBEDTLS_RSA_NO_CRT)
703 if (is_priv && blinding_needed &&
704 (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
705 mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) {
706 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
707 }
708 #endif
709
710 /* It wouldn't lead to an error if it wasn't satisfied,
711 * but check for QP >= 1 nonetheless. */
712 #if !defined(MBEDTLS_RSA_NO_CRT)
713 if (is_priv &&
714 mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) {
715 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
716 }
717 #endif
718
719 return 0;
720 }
721
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)722 int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)
723 {
724 int ret = 0;
725 int have_N, have_P, have_Q, have_D, have_E;
726 #if !defined(MBEDTLS_RSA_NO_CRT)
727 int have_DP, have_DQ, have_QP;
728 #endif
729 int n_missing, pq_missing, d_missing, is_pub, is_priv;
730
731 have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0);
732 have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0);
733 have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0);
734 have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0);
735 have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0);
736
737 #if !defined(MBEDTLS_RSA_NO_CRT)
738 have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0);
739 have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0);
740 have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0);
741 #endif
742
743 /*
744 * Check whether provided parameters are enough
745 * to deduce all others. The following incomplete
746 * parameter sets for private keys are supported:
747 *
748 * (1) P, Q missing.
749 * (2) D and potentially N missing.
750 *
751 */
752
753 n_missing = have_P && have_Q && have_D && have_E;
754 pq_missing = have_N && !have_P && !have_Q && have_D && have_E;
755 d_missing = have_P && have_Q && !have_D && have_E;
756 is_pub = have_N && !have_P && !have_Q && !have_D && have_E;
757
758 /* These three alternatives are mutually exclusive */
759 is_priv = n_missing || pq_missing || d_missing;
760
761 if (!is_priv && !is_pub) {
762 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
763 }
764
765 /*
766 * Step 1: Deduce N if P, Q are provided.
767 */
768
769 if (!have_N && have_P && have_Q) {
770 if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P,
771 &ctx->Q)) != 0) {
772 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
773 }
774
775 ctx->len = mbedtls_mpi_size(&ctx->N);
776 }
777
778 /*
779 * Step 2: Deduce and verify all remaining core parameters.
780 */
781
782 if (pq_missing) {
783 ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D,
784 &ctx->P, &ctx->Q);
785 if (ret != 0) {
786 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
787 }
788
789 } else if (d_missing) {
790 if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P,
791 &ctx->Q,
792 &ctx->E,
793 &ctx->D)) != 0) {
794 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
795 }
796 }
797
798 /*
799 * Step 3: Deduce all additional parameters specific
800 * to our current RSA implementation.
801 */
802
803 #if !defined(MBEDTLS_RSA_NO_CRT)
804 if (is_priv && !(have_DP && have_DQ && have_QP)) {
805 ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
806 &ctx->DP, &ctx->DQ, &ctx->QP);
807 if (ret != 0) {
808 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
809 }
810 }
811 #endif /* MBEDTLS_RSA_NO_CRT */
812
813 /*
814 * Step 3: Basic sanity checks
815 */
816
817 return rsa_check_context(ctx, is_priv, 1);
818 }
819
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)820 int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx,
821 unsigned char *N, size_t N_len,
822 unsigned char *P, size_t P_len,
823 unsigned char *Q, size_t Q_len,
824 unsigned char *D, size_t D_len,
825 unsigned char *E, size_t E_len)
826 {
827 int ret = 0;
828 int is_priv;
829
830 /* Check if key is private or public */
831 is_priv =
832 mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
833 mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
834 mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
835 mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
836 mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
837
838 if (!is_priv) {
839 /* If we're trying to export private parameters for a public key,
840 * something must be wrong. */
841 if (P != NULL || Q != NULL || D != NULL) {
842 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
843 }
844
845 }
846
847 if (N != NULL) {
848 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len));
849 }
850
851 if (P != NULL) {
852 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len));
853 }
854
855 if (Q != NULL) {
856 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len));
857 }
858
859 if (D != NULL) {
860 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len));
861 }
862
863 if (E != NULL) {
864 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len));
865 }
866
867 cleanup:
868
869 return ret;
870 }
871
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)872 int mbedtls_rsa_export(const mbedtls_rsa_context *ctx,
873 mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
874 mbedtls_mpi *D, mbedtls_mpi *E)
875 {
876 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
877 int is_priv;
878
879 /* Check if key is private or public */
880 is_priv =
881 mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
882 mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
883 mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
884 mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
885 mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
886
887 if (!is_priv) {
888 /* If we're trying to export private parameters for a public key,
889 * something must be wrong. */
890 if (P != NULL || Q != NULL || D != NULL) {
891 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
892 }
893
894 }
895
896 /* Export all requested core parameters. */
897
898 if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) ||
899 (P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) ||
900 (Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) ||
901 (D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) ||
902 (E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) {
903 return ret;
904 }
905
906 return 0;
907 }
908
909 /*
910 * Export CRT parameters
911 * This must also be implemented if CRT is not used, for being able to
912 * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
913 * can be used in this case.
914 */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)915 int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx,
916 mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)
917 {
918 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
919 int is_priv;
920
921 /* Check if key is private or public */
922 is_priv =
923 mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
924 mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
925 mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
926 mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
927 mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
928
929 if (!is_priv) {
930 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
931 }
932
933 #if !defined(MBEDTLS_RSA_NO_CRT)
934 /* Export all requested blinding parameters. */
935 if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) ||
936 (DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) ||
937 (QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) {
938 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
939 }
940 #else
941 if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
942 DP, DQ, QP)) != 0) {
943 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
944 }
945 #endif
946
947 return 0;
948 }
949
950 /*
951 * Initialize an RSA context
952 */
mbedtls_rsa_init(mbedtls_rsa_context * ctx)953 void mbedtls_rsa_init(mbedtls_rsa_context *ctx)
954 {
955 memset(ctx, 0, sizeof(mbedtls_rsa_context));
956
957 ctx->padding = MBEDTLS_RSA_PKCS_V15;
958 ctx->hash_id = MBEDTLS_MD_NONE;
959
960 #if defined(MBEDTLS_THREADING_C)
961 /* Set ctx->ver to nonzero to indicate that the mutex has been
962 * initialized and will need to be freed. */
963 ctx->ver = 1;
964 mbedtls_mutex_init(&ctx->mutex);
965 #endif
966 }
967
968 /*
969 * Set padding for an existing RSA context
970 */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,mbedtls_md_type_t hash_id)971 int mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding,
972 mbedtls_md_type_t hash_id)
973 {
974 switch (padding) {
975 #if defined(MBEDTLS_PKCS1_V15)
976 case MBEDTLS_RSA_PKCS_V15:
977 break;
978 #endif
979
980 #if defined(MBEDTLS_PKCS1_V21)
981 case MBEDTLS_RSA_PKCS_V21:
982 break;
983 #endif
984 default:
985 return MBEDTLS_ERR_RSA_INVALID_PADDING;
986 }
987
988 #if defined(MBEDTLS_PKCS1_V21)
989 if ((padding == MBEDTLS_RSA_PKCS_V21) &&
990 (hash_id != MBEDTLS_MD_NONE)) {
991 /* Just make sure this hash is supported in this build. */
992 if (mbedtls_md_info_from_type(hash_id) == NULL) {
993 return MBEDTLS_ERR_RSA_INVALID_PADDING;
994 }
995 }
996 #endif /* MBEDTLS_PKCS1_V21 */
997
998 ctx->padding = padding;
999 ctx->hash_id = hash_id;
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * Get padding mode of initialized RSA context
1006 */
mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context * ctx)1007 int mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context *ctx)
1008 {
1009 return ctx->padding;
1010 }
1011
1012 /*
1013 * Get hash identifier of mbedtls_md_type_t type
1014 */
mbedtls_rsa_get_md_alg(const mbedtls_rsa_context * ctx)1015 int mbedtls_rsa_get_md_alg(const mbedtls_rsa_context *ctx)
1016 {
1017 return ctx->hash_id;
1018 }
1019
1020 /*
1021 * Get length in bits of RSA modulus
1022 */
mbedtls_rsa_get_bitlen(const mbedtls_rsa_context * ctx)1023 size_t mbedtls_rsa_get_bitlen(const mbedtls_rsa_context *ctx)
1024 {
1025 return mbedtls_mpi_bitlen(&ctx->N);
1026 }
1027
1028 /*
1029 * Get length in bytes of RSA modulus
1030 */
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)1031 size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx)
1032 {
1033 return ctx->len;
1034 }
1035
1036 #if defined(MBEDTLS_GENPRIME)
1037
1038 /*
1039 * Generate an RSA keypair
1040 *
1041 * This generation method follows the RSA key pair generation procedure of
1042 * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
1043 */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)1044 int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
1045 int (*f_rng)(void *, unsigned char *, size_t),
1046 void *p_rng,
1047 unsigned int nbits, int exponent)
1048 {
1049 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1050 mbedtls_mpi H, G, L;
1051 int prime_quality = 0;
1052
1053 /*
1054 * If the modulus is 1024 bit long or shorter, then the security strength of
1055 * the RSA algorithm is less than or equal to 80 bits and therefore an error
1056 * rate of 2^-80 is sufficient.
1057 */
1058 if (nbits > 1024) {
1059 prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
1060 }
1061
1062 mbedtls_mpi_init(&H);
1063 mbedtls_mpi_init(&G);
1064 mbedtls_mpi_init(&L);
1065
1066 if (exponent < 3 || nbits % 2 != 0) {
1067 ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1068 goto cleanup;
1069 }
1070
1071 if (nbits < MBEDTLS_RSA_GEN_KEY_MIN_BITS) {
1072 ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1073 goto cleanup;
1074 }
1075
1076 /*
1077 * find primes P and Q with Q < P so that:
1078 * 1. |P-Q| > 2^( nbits / 2 - 100 )
1079 * 2. GCD( E, (P-1)*(Q-1) ) == 1
1080 * 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
1081 */
1082 MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent));
1083
1084 do {
1085 MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1,
1086 prime_quality, f_rng, p_rng));
1087
1088 MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1,
1089 prime_quality, f_rng, p_rng));
1090
1091 /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
1092 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q));
1093 if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) {
1094 continue;
1095 }
1096
1097 /* not required by any standards, but some users rely on the fact that P > Q */
1098 if (H.s < 0) {
1099 mbedtls_mpi_swap(&ctx->P, &ctx->Q);
1100 }
1101
1102 /* Temporarily replace P,Q by P-1, Q-1 */
1103 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1));
1104 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1));
1105 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q));
1106
1107 /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
1108 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H));
1109 if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
1110 continue;
1111 }
1112
1113 /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
1114 MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q));
1115 MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G));
1116 MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L));
1117
1118 if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) { // (FIPS 186-4 §B.3.1 criterion 3(a))
1119 continue;
1120 }
1121
1122 break;
1123 } while (1);
1124
1125 /* Restore P,Q */
1126 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P, &ctx->P, 1));
1127 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q, &ctx->Q, 1));
1128
1129 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
1130
1131 ctx->len = mbedtls_mpi_size(&ctx->N);
1132
1133 #if !defined(MBEDTLS_RSA_NO_CRT)
1134 /*
1135 * DP = D mod (P - 1)
1136 * DQ = D mod (Q - 1)
1137 * QP = Q^-1 mod P
1138 */
1139 MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
1140 &ctx->DP, &ctx->DQ, &ctx->QP));
1141 #endif /* MBEDTLS_RSA_NO_CRT */
1142
1143 /* Double-check */
1144 MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx));
1145
1146 cleanup:
1147
1148 mbedtls_mpi_free(&H);
1149 mbedtls_mpi_free(&G);
1150 mbedtls_mpi_free(&L);
1151
1152 if (ret != 0) {
1153 mbedtls_rsa_free(ctx);
1154
1155 if ((-ret & ~0x7f) == 0) {
1156 ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret);
1157 }
1158 return ret;
1159 }
1160
1161 return 0;
1162 }
1163
1164 #endif /* MBEDTLS_GENPRIME */
1165
1166 /*
1167 * Check a public RSA key
1168 */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)1169 int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)
1170 {
1171 if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) {
1172 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1173 }
1174
1175 if (mbedtls_mpi_bitlen(&ctx->N) < 128) {
1176 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1177 }
1178
1179 if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 ||
1180 mbedtls_mpi_bitlen(&ctx->E) < 2 ||
1181 mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) {
1182 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1183 }
1184
1185 return 0;
1186 }
1187
1188 /*
1189 * Check for the consistency of all fields in an RSA private key context
1190 */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)1191 int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)
1192 {
1193 if (mbedtls_rsa_check_pubkey(ctx) != 0 ||
1194 rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) {
1195 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1196 }
1197
1198 if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q,
1199 &ctx->D, &ctx->E, NULL, NULL) != 0) {
1200 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1201 }
1202
1203 #if !defined(MBEDTLS_RSA_NO_CRT)
1204 else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D,
1205 &ctx->DP, &ctx->DQ, &ctx->QP) != 0) {
1206 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1207 }
1208 #endif
1209
1210 return 0;
1211 }
1212
1213 /*
1214 * Check if contexts holding a public and private key match
1215 */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)1216 int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub,
1217 const mbedtls_rsa_context *prv)
1218 {
1219 if (mbedtls_rsa_check_pubkey(pub) != 0 ||
1220 mbedtls_rsa_check_privkey(prv) != 0) {
1221 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1222 }
1223
1224 if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 ||
1225 mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) {
1226 return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
1227 }
1228
1229 return 0;
1230 }
1231
1232 /*
1233 * Do an RSA public key operation
1234 */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)1235 int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
1236 const unsigned char *input,
1237 unsigned char *output)
1238 {
1239 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1240 size_t olen;
1241 mbedtls_mpi T;
1242
1243 if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) {
1244 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1245 }
1246
1247 mbedtls_mpi_init(&T);
1248
1249 #if defined(MBEDTLS_THREADING_C)
1250 if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
1251 return ret;
1252 }
1253 #endif
1254
1255 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
1256
1257 if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
1258 ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1259 goto cleanup;
1260 }
1261
1262 olen = ctx->len;
1263 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod_unsafe(&T, &T, &ctx->E, &ctx->N, &ctx->RN));
1264 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
1265
1266 cleanup:
1267 #if defined(MBEDTLS_THREADING_C)
1268 if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
1269 return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
1270 }
1271 #endif
1272
1273 mbedtls_mpi_free(&T);
1274
1275 if (ret != 0) {
1276 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret);
1277 }
1278
1279 return 0;
1280 }
1281
1282 /*
1283 * Generate or update blinding values, see section 10 of:
1284 * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
1285 * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
1286 * Berlin Heidelberg, 1996. p. 104-113.
1287 */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)1288 static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
1289 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1290 {
1291 int ret, count = 0;
1292 mbedtls_mpi R;
1293
1294 mbedtls_mpi_init(&R);
1295
1296 if (ctx->Vf.p != NULL) {
1297 /* We already have blinding values, just update them by squaring */
1298 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
1299 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
1300 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
1301 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N));
1302
1303 goto cleanup;
1304 }
1305
1306 /* Unblinding value: Vf = random number, invertible mod N */
1307 do {
1308 if (count++ > 10) {
1309 ret = MBEDTLS_ERR_RSA_RNG_FAILED;
1310 goto cleanup;
1311 }
1312
1313 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng));
1314
1315 /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
1316 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng));
1317 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R));
1318 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
1319
1320 /* At this point, Vi is invertible mod N if and only if both Vf and R
1321 * are invertible mod N. If one of them isn't, we don't need to know
1322 * which one, we just loop and choose new values for both of them.
1323 * (Each iteration succeeds with overwhelming probability.) */
1324 ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N);
1325 if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1326 goto cleanup;
1327 }
1328
1329 } while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
1330
1331 /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
1332 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R));
1333 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
1334
1335 /* Blinding value: Vi = Vf^(-e) mod N
1336 * (Vi already contains Vf^-1 at this point) */
1337 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN));
1338
1339
1340 cleanup:
1341 mbedtls_mpi_free(&R);
1342
1343 return ret;
1344 }
1345
1346 /*
1347 * Unblind
1348 * T = T * Vf mod N
1349 */
rsa_unblind(mbedtls_mpi * T,mbedtls_mpi * Vf,const mbedtls_mpi * N)1350 static int rsa_unblind(mbedtls_mpi *T, mbedtls_mpi *Vf, const mbedtls_mpi *N)
1351 {
1352 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1353 const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
1354 const size_t nlimbs = N->n;
1355 const size_t tlimbs = mbedtls_mpi_core_montmul_working_limbs(nlimbs);
1356 mbedtls_mpi RR, M_T;
1357
1358 mbedtls_mpi_init(&RR);
1359 mbedtls_mpi_init(&M_T);
1360
1361 MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
1362 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&M_T, tlimbs));
1363
1364 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(T, nlimbs));
1365 MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Vf, nlimbs));
1366
1367 /* T = T * Vf mod N
1368 * Reminder: montmul(A, B, N) = A * B * R^-1 mod N
1369 * Usually both operands are multiplied by R mod N beforehand (by calling
1370 * `to_mont_rep()` on them), yielding a result that's also * R mod N (aka
1371 * "in the Montgomery domain"). Here we only multiply one operand by R mod
1372 * N, so the result is directly what we want - no need to call
1373 * `from_mont_rep()` on it. */
1374 mbedtls_mpi_core_to_mont_rep(T->p, T->p, N->p, nlimbs, mm, RR.p, M_T.p);
1375 mbedtls_mpi_core_montmul(T->p, T->p, Vf->p, nlimbs, N->p, nlimbs, mm, M_T.p);
1376
1377 cleanup:
1378
1379 mbedtls_mpi_free(&RR);
1380 mbedtls_mpi_free(&M_T);
1381
1382 return ret;
1383 }
1384
1385 /*
1386 * Exponent blinding supposed to prevent side-channel attacks using multiple
1387 * traces of measurements to recover the RSA key. The more collisions are there,
1388 * the more bits of the key can be recovered. See [3].
1389 *
1390 * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
1391 * observations on average.
1392 *
1393 * For example with 28 byte blinding to achieve 2 collisions the adversary has
1394 * to make 2^112 observations on average.
1395 *
1396 * (With the currently (as of 2017 April) known best algorithms breaking 2048
1397 * bit RSA requires approximately as much time as trying out 2^112 random keys.
1398 * Thus in this sense with 28 byte blinding the security is not reduced by
1399 * side-channel attacks like the one in [3])
1400 *
1401 * This countermeasure does not help if the key recovery is possible with a
1402 * single trace.
1403 */
1404 #define RSA_EXPONENT_BLINDING 28
1405
1406 /*
1407 * Do an RSA private key operation
1408 */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)1409 int mbedtls_rsa_private(mbedtls_rsa_context *ctx,
1410 int (*f_rng)(void *, unsigned char *, size_t),
1411 void *p_rng,
1412 const unsigned char *input,
1413 unsigned char *output)
1414 {
1415 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1416 size_t olen;
1417
1418 /* Temporary holding the result */
1419 mbedtls_mpi T;
1420
1421 /* Temporaries holding P-1, Q-1 and the
1422 * exponent blinding factor, respectively. */
1423 mbedtls_mpi P1, Q1, R;
1424
1425 #if !defined(MBEDTLS_RSA_NO_CRT)
1426 /* Temporaries holding the results mod p resp. mod q. */
1427 mbedtls_mpi TP, TQ;
1428
1429 /* Temporaries holding the blinded exponents for
1430 * the mod p resp. mod q computation (if used). */
1431 mbedtls_mpi DP_blind, DQ_blind;
1432 #else
1433 /* Temporary holding the blinded exponent (if used). */
1434 mbedtls_mpi D_blind;
1435 #endif /* MBEDTLS_RSA_NO_CRT */
1436
1437 /* Temporaries holding the initial input and the double
1438 * checked result; should be the same in the end. */
1439 mbedtls_mpi input_blinded, check_result_blinded;
1440
1441 if (f_rng == NULL) {
1442 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1443 }
1444
1445 if (rsa_check_context(ctx, 1 /* private key checks */,
1446 1 /* blinding on */) != 0) {
1447 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1448 }
1449
1450 #if defined(MBEDTLS_THREADING_C)
1451 if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
1452 return ret;
1453 }
1454 #endif
1455
1456 /* MPI Initialization */
1457 mbedtls_mpi_init(&T);
1458
1459 mbedtls_mpi_init(&P1);
1460 mbedtls_mpi_init(&Q1);
1461 mbedtls_mpi_init(&R);
1462
1463 #if defined(MBEDTLS_RSA_NO_CRT)
1464 mbedtls_mpi_init(&D_blind);
1465 #else
1466 mbedtls_mpi_init(&DP_blind);
1467 mbedtls_mpi_init(&DQ_blind);
1468 #endif
1469
1470 #if !defined(MBEDTLS_RSA_NO_CRT)
1471 mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ);
1472 #endif
1473
1474 mbedtls_mpi_init(&input_blinded);
1475 mbedtls_mpi_init(&check_result_blinded);
1476
1477 /* End of MPI initialization */
1478
1479 MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
1480 if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
1481 ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
1482 goto cleanup;
1483 }
1484
1485 /*
1486 * Blinding
1487 * T = T * Vi mod N
1488 */
1489 MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng));
1490 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi));
1491 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
1492
1493 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&input_blinded, &T));
1494
1495 /*
1496 * Exponent blinding
1497 */
1498 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1));
1499 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1));
1500
1501 #if defined(MBEDTLS_RSA_NO_CRT)
1502 /*
1503 * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
1504 */
1505 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
1506 f_rng, p_rng));
1507 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1));
1508 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R));
1509 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D));
1510 #else
1511 /*
1512 * DP_blind = ( P - 1 ) * R + DP
1513 */
1514 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
1515 f_rng, p_rng));
1516 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R));
1517 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind,
1518 &ctx->DP));
1519
1520 /*
1521 * DQ_blind = ( Q - 1 ) * R + DQ
1522 */
1523 MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
1524 f_rng, p_rng));
1525 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R));
1526 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind,
1527 &ctx->DQ));
1528 #endif /* MBEDTLS_RSA_NO_CRT */
1529
1530 #if defined(MBEDTLS_RSA_NO_CRT)
1531 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &D_blind, &ctx->N, &ctx->RN));
1532 #else
1533 /*
1534 * Faster decryption using the CRT
1535 *
1536 * TP = input ^ dP mod P
1537 * TQ = input ^ dQ mod Q
1538 */
1539
1540 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, &DP_blind, &ctx->P, &ctx->RP));
1541 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, &DQ_blind, &ctx->Q, &ctx->RQ));
1542
1543 /*
1544 * T = (TP - TQ) * (Q^-1 mod P) mod P
1545 */
1546 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ));
1547 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP));
1548 MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P));
1549
1550 /*
1551 * T = TQ + T * Q
1552 */
1553 MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q));
1554 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP));
1555 #endif /* MBEDTLS_RSA_NO_CRT */
1556
1557 /* Verify the result to prevent glitching attacks. */
1558 MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&check_result_blinded, &T, &ctx->E,
1559 &ctx->N, &ctx->RN));
1560 if (mbedtls_mpi_cmp_mpi(&check_result_blinded, &input_blinded) != 0) {
1561 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1562 goto cleanup;
1563 }
1564
1565 /*
1566 * Unblind
1567 * T = T * Vf mod N
1568 */
1569 MBEDTLS_MPI_CHK(rsa_unblind(&T, &ctx->Vf, &ctx->N));
1570
1571 olen = ctx->len;
1572 MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
1573
1574 cleanup:
1575 #if defined(MBEDTLS_THREADING_C)
1576 if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
1577 return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
1578 }
1579 #endif
1580
1581 mbedtls_mpi_free(&P1);
1582 mbedtls_mpi_free(&Q1);
1583 mbedtls_mpi_free(&R);
1584
1585 #if defined(MBEDTLS_RSA_NO_CRT)
1586 mbedtls_mpi_free(&D_blind);
1587 #else
1588 mbedtls_mpi_free(&DP_blind);
1589 mbedtls_mpi_free(&DQ_blind);
1590 #endif
1591
1592 mbedtls_mpi_free(&T);
1593
1594 #if !defined(MBEDTLS_RSA_NO_CRT)
1595 mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ);
1596 #endif
1597
1598 mbedtls_mpi_free(&check_result_blinded);
1599 mbedtls_mpi_free(&input_blinded);
1600
1601 if (ret != 0 && ret >= -0x007f) {
1602 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret);
1603 }
1604
1605 return ret;
1606 }
1607
1608 #if defined(MBEDTLS_PKCS1_V21)
1609 /**
1610 * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1611 *
1612 * \param dst buffer to mask
1613 * \param dlen length of destination buffer
1614 * \param src source of the mask generation
1615 * \param slen length of the source buffer
1616 * \param md_alg message digest to use
1617 */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_type_t md_alg)1618 static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src,
1619 size_t slen, mbedtls_md_type_t md_alg)
1620 {
1621 unsigned char counter[4];
1622 unsigned char *p;
1623 unsigned int hlen;
1624 size_t i, use_len;
1625 unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1626 int ret = 0;
1627 const mbedtls_md_info_t *md_info;
1628 mbedtls_md_context_t md_ctx;
1629
1630 mbedtls_md_init(&md_ctx);
1631 md_info = mbedtls_md_info_from_type(md_alg);
1632 if (md_info == NULL) {
1633 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1634 }
1635
1636 mbedtls_md_init(&md_ctx);
1637 if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
1638 goto exit;
1639 }
1640
1641 hlen = mbedtls_md_get_size(md_info);
1642
1643 memset(mask, 0, sizeof(mask));
1644 memset(counter, 0, 4);
1645
1646 /* Generate and apply dbMask */
1647 p = dst;
1648
1649 while (dlen > 0) {
1650 use_len = hlen;
1651 if (dlen < hlen) {
1652 use_len = dlen;
1653 }
1654
1655 if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
1656 goto exit;
1657 }
1658 if ((ret = mbedtls_md_update(&md_ctx, src, slen)) != 0) {
1659 goto exit;
1660 }
1661 if ((ret = mbedtls_md_update(&md_ctx, counter, 4)) != 0) {
1662 goto exit;
1663 }
1664 if ((ret = mbedtls_md_finish(&md_ctx, mask)) != 0) {
1665 goto exit;
1666 }
1667
1668 for (i = 0; i < use_len; ++i) {
1669 *p++ ^= mask[i];
1670 }
1671
1672 counter[3]++;
1673
1674 dlen -= use_len;
1675 }
1676
1677 exit:
1678 mbedtls_platform_zeroize(mask, sizeof(mask));
1679 mbedtls_md_free(&md_ctx);
1680
1681 return ret;
1682 }
1683
1684 /**
1685 * Generate Hash(M') as in RFC 8017 page 43 points 5 and 6.
1686 *
1687 * \param hash the input hash
1688 * \param hlen length of the input hash
1689 * \param salt the input salt
1690 * \param slen length of the input salt
1691 * \param out the output buffer - must be large enough for \p md_alg
1692 * \param md_alg message digest to use
1693 */
hash_mprime(const unsigned char * hash,size_t hlen,const unsigned char * salt,size_t slen,unsigned char * out,mbedtls_md_type_t md_alg)1694 static int hash_mprime(const unsigned char *hash, size_t hlen,
1695 const unsigned char *salt, size_t slen,
1696 unsigned char *out, mbedtls_md_type_t md_alg)
1697 {
1698 const unsigned char zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1699
1700 mbedtls_md_context_t md_ctx;
1701 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1702
1703 const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg);
1704 if (md_info == NULL) {
1705 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1706 }
1707
1708 mbedtls_md_init(&md_ctx);
1709 if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
1710 goto exit;
1711 }
1712 if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
1713 goto exit;
1714 }
1715 if ((ret = mbedtls_md_update(&md_ctx, zeros, sizeof(zeros))) != 0) {
1716 goto exit;
1717 }
1718 if ((ret = mbedtls_md_update(&md_ctx, hash, hlen)) != 0) {
1719 goto exit;
1720 }
1721 if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) {
1722 goto exit;
1723 }
1724 if ((ret = mbedtls_md_finish(&md_ctx, out)) != 0) {
1725 goto exit;
1726 }
1727
1728 exit:
1729 mbedtls_md_free(&md_ctx);
1730
1731 return ret;
1732 }
1733
1734 /**
1735 * Compute a hash.
1736 *
1737 * \param md_alg algorithm to use
1738 * \param input input message to hash
1739 * \param ilen input length
1740 * \param output the output buffer - must be large enough for \p md_alg
1741 */
compute_hash(mbedtls_md_type_t md_alg,const unsigned char * input,size_t ilen,unsigned char * output)1742 static int compute_hash(mbedtls_md_type_t md_alg,
1743 const unsigned char *input, size_t ilen,
1744 unsigned char *output)
1745 {
1746 const mbedtls_md_info_t *md_info;
1747
1748 md_info = mbedtls_md_info_from_type(md_alg);
1749 if (md_info == NULL) {
1750 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1751 }
1752
1753 return mbedtls_md(md_info, input, ilen, output);
1754 }
1755 #endif /* MBEDTLS_PKCS1_V21 */
1756
1757 #if defined(MBEDTLS_PKCS1_V21)
1758 /*
1759 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1760 */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1761 int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx,
1762 int (*f_rng)(void *, unsigned char *, size_t),
1763 void *p_rng,
1764 const unsigned char *label, size_t label_len,
1765 size_t ilen,
1766 const unsigned char *input,
1767 unsigned char *output)
1768 {
1769 size_t olen;
1770 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1771 unsigned char *p = output;
1772 unsigned int hlen;
1773
1774 if (f_rng == NULL) {
1775 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1776 }
1777
1778 hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
1779 if (hlen == 0) {
1780 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1781 }
1782
1783 olen = ctx->len;
1784
1785 /* first comparison checks for overflow */
1786 if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) {
1787 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1788 }
1789
1790 memset(output, 0, olen);
1791
1792 *p++ = 0;
1793
1794 /* Generate a random octet string seed */
1795 if ((ret = f_rng(p_rng, p, hlen)) != 0) {
1796 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
1797 }
1798
1799 p += hlen;
1800
1801 /* Construct DB */
1802 ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, label, label_len, p);
1803 if (ret != 0) {
1804 return ret;
1805 }
1806 p += hlen;
1807 p += olen - 2 * hlen - 2 - ilen;
1808 *p++ = 1;
1809 if (ilen != 0) {
1810 memcpy(p, input, ilen);
1811 }
1812
1813 /* maskedDB: Apply dbMask to DB */
1814 if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1815 (mbedtls_md_type_t) ctx->hash_id)) != 0) {
1816 return ret;
1817 }
1818
1819 /* maskedSeed: Apply seedMask to seed */
1820 if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1821 (mbedtls_md_type_t) ctx->hash_id)) != 0) {
1822 return ret;
1823 }
1824
1825 return mbedtls_rsa_public(ctx, output, output);
1826 }
1827 #endif /* MBEDTLS_PKCS1_V21 */
1828
1829 #if defined(MBEDTLS_PKCS1_V15)
1830 /*
1831 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1832 */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1833 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx,
1834 int (*f_rng)(void *, unsigned char *, size_t),
1835 void *p_rng, size_t ilen,
1836 const unsigned char *input,
1837 unsigned char *output)
1838 {
1839 size_t nb_pad, olen;
1840 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1841 unsigned char *p = output;
1842
1843 olen = ctx->len;
1844
1845 /* first comparison checks for overflow */
1846 if (ilen + 11 < ilen || olen < ilen + 11) {
1847 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1848 }
1849
1850 nb_pad = olen - 3 - ilen;
1851
1852 *p++ = 0;
1853
1854 if (f_rng == NULL) {
1855 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1856 }
1857
1858 *p++ = MBEDTLS_RSA_CRYPT;
1859
1860 while (nb_pad-- > 0) {
1861 int rng_dl = 100;
1862
1863 do {
1864 ret = f_rng(p_rng, p, 1);
1865 } while (*p == 0 && --rng_dl && ret == 0);
1866
1867 /* Check if RNG failed to generate data */
1868 if (rng_dl == 0 || ret != 0) {
1869 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
1870 }
1871
1872 p++;
1873 }
1874
1875 *p++ = 0;
1876 if (ilen != 0) {
1877 memcpy(p, input, ilen);
1878 }
1879
1880 return mbedtls_rsa_public(ctx, output, output);
1881 }
1882 #endif /* MBEDTLS_PKCS1_V15 */
1883
1884 /*
1885 * Add the message padding, then do an RSA operation
1886 */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t ilen,const unsigned char * input,unsigned char * output)1887 int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx,
1888 int (*f_rng)(void *, unsigned char *, size_t),
1889 void *p_rng,
1890 size_t ilen,
1891 const unsigned char *input,
1892 unsigned char *output)
1893 {
1894 switch (ctx->padding) {
1895 #if defined(MBEDTLS_PKCS1_V15)
1896 case MBEDTLS_RSA_PKCS_V15:
1897 return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng,
1898 ilen, input, output);
1899 #endif
1900
1901 #if defined(MBEDTLS_PKCS1_V21)
1902 case MBEDTLS_RSA_PKCS_V21:
1903 return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, NULL, 0,
1904 ilen, input, output);
1905 #endif
1906
1907 default:
1908 return MBEDTLS_ERR_RSA_INVALID_PADDING;
1909 }
1910 }
1911
1912 #if defined(MBEDTLS_PKCS1_V21)
1913 /*
1914 * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1915 */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1916 int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx,
1917 int (*f_rng)(void *, unsigned char *, size_t),
1918 void *p_rng,
1919 const unsigned char *label, size_t label_len,
1920 size_t *olen,
1921 const unsigned char *input,
1922 unsigned char *output,
1923 size_t output_max_len)
1924 {
1925 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1926 size_t ilen, i, pad_len;
1927 unsigned char *p;
1928 mbedtls_ct_condition_t bad, in_padding;
1929 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1930 unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1931 unsigned int hlen;
1932
1933 /*
1934 * Parameters sanity checks
1935 */
1936 if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
1937 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1938 }
1939
1940 ilen = ctx->len;
1941
1942 if (ilen < 16 || ilen > sizeof(buf)) {
1943 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1944 }
1945
1946 hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
1947 if (hlen == 0) {
1948 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1949 }
1950
1951 // checking for integer underflow
1952 if (2 * hlen + 2 > ilen) {
1953 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
1954 }
1955
1956 /*
1957 * RSA operation
1958 */
1959 ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
1960
1961 if (ret != 0) {
1962 goto cleanup;
1963 }
1964
1965 /*
1966 * Unmask data and generate lHash
1967 */
1968 /* seed: Apply seedMask to maskedSeed */
1969 if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1970 (mbedtls_md_type_t) ctx->hash_id)) != 0 ||
1971 /* DB: Apply dbMask to maskedDB */
1972 (ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1973 (mbedtls_md_type_t) ctx->hash_id)) != 0) {
1974 goto cleanup;
1975 }
1976
1977 /* Generate lHash */
1978 ret = compute_hash((mbedtls_md_type_t) ctx->hash_id,
1979 label, label_len, lhash);
1980 if (ret != 0) {
1981 goto cleanup;
1982 }
1983
1984 /*
1985 * Check contents, in "constant-time"
1986 */
1987 p = buf;
1988
1989 bad = mbedtls_ct_bool(*p++); /* First byte must be 0 */
1990
1991 p += hlen; /* Skip seed */
1992
1993 /* Check lHash */
1994 bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool(mbedtls_ct_memcmp(lhash, p, hlen)));
1995 p += hlen;
1996
1997 /* Get zero-padding len, but always read till end of buffer
1998 * (minus one, for the 01 byte) */
1999 pad_len = 0;
2000 in_padding = MBEDTLS_CT_TRUE;
2001 for (i = 0; i < ilen - 2 * hlen - 2; i++) {
2002 in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_uint_eq(p[i], 0));
2003 pad_len += mbedtls_ct_uint_if_else_0(in_padding, 1);
2004 }
2005
2006 p += pad_len;
2007 bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(*p++, 0x01));
2008
2009 /*
2010 * The only information "leaked" is whether the padding was correct or not
2011 * (eg, no data is copied if it was not correct). This meets the
2012 * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
2013 * the different error conditions.
2014 */
2015 if (bad != MBEDTLS_CT_FALSE) {
2016 ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2017 goto cleanup;
2018 }
2019
2020 if (ilen - ((size_t) (p - buf)) > output_max_len) {
2021 ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
2022 goto cleanup;
2023 }
2024
2025 *olen = ilen - ((size_t) (p - buf));
2026 if (*olen != 0) {
2027 memcpy(output, p, *olen);
2028 }
2029 ret = 0;
2030
2031 cleanup:
2032 mbedtls_platform_zeroize(buf, sizeof(buf));
2033 mbedtls_platform_zeroize(lhash, sizeof(lhash));
2034
2035 return ret;
2036 }
2037 #endif /* MBEDTLS_PKCS1_V21 */
2038
2039 #if defined(MBEDTLS_PKCS1_V15)
2040 /*
2041 * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
2042 */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)2043 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx,
2044 int (*f_rng)(void *, unsigned char *, size_t),
2045 void *p_rng,
2046 size_t *olen,
2047 const unsigned char *input,
2048 unsigned char *output,
2049 size_t output_max_len)
2050 {
2051 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2052 size_t ilen;
2053 unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2054
2055 ilen = ctx->len;
2056
2057 if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
2058 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2059 }
2060
2061 if (ilen < 16 || ilen > sizeof(buf)) {
2062 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2063 }
2064
2065 ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
2066
2067 if (ret != 0) {
2068 goto cleanup;
2069 }
2070
2071 ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(buf, ilen,
2072 output, output_max_len, olen);
2073
2074 cleanup:
2075 mbedtls_platform_zeroize(buf, sizeof(buf));
2076
2077 return ret;
2078 }
2079 #endif /* MBEDTLS_PKCS1_V15 */
2080
2081 /*
2082 * Do an RSA operation, then remove the message padding
2083 */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)2084 int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx,
2085 int (*f_rng)(void *, unsigned char *, size_t),
2086 void *p_rng,
2087 size_t *olen,
2088 const unsigned char *input,
2089 unsigned char *output,
2090 size_t output_max_len)
2091 {
2092 switch (ctx->padding) {
2093 #if defined(MBEDTLS_PKCS1_V15)
2094 case MBEDTLS_RSA_PKCS_V15:
2095 return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, olen,
2096 input, output, output_max_len);
2097 #endif
2098
2099 #if defined(MBEDTLS_PKCS1_V21)
2100 case MBEDTLS_RSA_PKCS_V21:
2101 return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, NULL, 0,
2102 olen, input, output,
2103 output_max_len);
2104 #endif
2105
2106 default:
2107 return MBEDTLS_ERR_RSA_INVALID_PADDING;
2108 }
2109 }
2110
2111 #if defined(MBEDTLS_PKCS1_V21)
rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)2112 static int rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
2113 int (*f_rng)(void *, unsigned char *, size_t),
2114 void *p_rng,
2115 mbedtls_md_type_t md_alg,
2116 unsigned int hashlen,
2117 const unsigned char *hash,
2118 int saltlen,
2119 unsigned char *sig)
2120 {
2121 size_t olen;
2122 unsigned char *p = sig;
2123 unsigned char *salt = NULL;
2124 size_t slen, min_slen, hlen, offset = 0;
2125 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2126 size_t msb;
2127 mbedtls_md_type_t hash_id;
2128
2129 if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2130 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2131 }
2132
2133 if (f_rng == NULL) {
2134 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2135 }
2136
2137 olen = ctx->len;
2138
2139 if (md_alg != MBEDTLS_MD_NONE) {
2140 /* Gather length of hash to sign */
2141 size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
2142 if (exp_hashlen == 0) {
2143 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2144 }
2145
2146 if (hashlen != exp_hashlen) {
2147 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2148 }
2149 }
2150
2151 hash_id = (mbedtls_md_type_t) ctx->hash_id;
2152 if (hash_id == MBEDTLS_MD_NONE) {
2153 hash_id = md_alg;
2154 }
2155 hlen = mbedtls_md_get_size_from_type(hash_id);
2156 if (hlen == 0) {
2157 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2158 }
2159
2160 if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) {
2161 /* Calculate the largest possible salt length, up to the hash size.
2162 * Normally this is the hash length, which is the maximum salt length
2163 * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
2164 * enough room, use the maximum salt length that fits. The constraint is
2165 * that the hash length plus the salt length plus 2 bytes must be at most
2166 * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
2167 * (PKCS#1 v2.2) §9.1.1 step 3. */
2168 min_slen = hlen - 2;
2169 if (olen < hlen + min_slen + 2) {
2170 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2171 } else if (olen >= hlen + hlen + 2) {
2172 slen = hlen;
2173 } else {
2174 slen = olen - hlen - 2;
2175 }
2176 } else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) {
2177 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2178 } else {
2179 slen = (size_t) saltlen;
2180 }
2181
2182 memset(sig, 0, olen);
2183
2184 /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
2185 msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
2186 p += olen - hlen - slen - 2;
2187 *p++ = 0x01;
2188
2189 /* Generate salt of length slen in place in the encoded message */
2190 salt = p;
2191 if ((ret = f_rng(p_rng, salt, slen)) != 0) {
2192 return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
2193 }
2194
2195 p += slen;
2196
2197 /* Generate H = Hash( M' ) */
2198 ret = hash_mprime(hash, hashlen, salt, slen, p, hash_id);
2199 if (ret != 0) {
2200 return ret;
2201 }
2202
2203 /* Compensate for boundary condition when applying mask */
2204 if (msb % 8 == 0) {
2205 offset = 1;
2206 }
2207
2208 /* maskedDB: Apply dbMask to DB */
2209 ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen, hash_id);
2210 if (ret != 0) {
2211 return ret;
2212 }
2213
2214 msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
2215 sig[0] &= 0xFF >> (olen * 8 - msb);
2216
2217 p += hlen;
2218 *p++ = 0xBC;
2219
2220 return mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig);
2221 }
2222
rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)2223 static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
2224 int (*f_rng)(void *, unsigned char *, size_t),
2225 void *p_rng,
2226 mbedtls_md_type_t md_alg,
2227 unsigned int hashlen,
2228 const unsigned char *hash,
2229 int saltlen,
2230 unsigned char *sig)
2231 {
2232 if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
2233 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2234 }
2235 if ((ctx->hash_id == MBEDTLS_MD_NONE) && (md_alg == MBEDTLS_MD_NONE)) {
2236 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2237 }
2238 return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg, hashlen, hash, saltlen,
2239 sig);
2240 }
2241
mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2242 int mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
2243 int (*f_rng)(void *, unsigned char *, size_t),
2244 void *p_rng,
2245 mbedtls_md_type_t md_alg,
2246 unsigned int hashlen,
2247 const unsigned char *hash,
2248 unsigned char *sig)
2249 {
2250 return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg,
2251 hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
2252 }
2253
2254 /*
2255 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
2256 * the option to pass in the salt length.
2257 */
mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)2258 int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx,
2259 int (*f_rng)(void *, unsigned char *, size_t),
2260 void *p_rng,
2261 mbedtls_md_type_t md_alg,
2262 unsigned int hashlen,
2263 const unsigned char *hash,
2264 int saltlen,
2265 unsigned char *sig)
2266 {
2267 return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
2268 hashlen, hash, saltlen, sig);
2269 }
2270
2271 /*
2272 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
2273 */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2274 int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
2275 int (*f_rng)(void *, unsigned char *, size_t),
2276 void *p_rng,
2277 mbedtls_md_type_t md_alg,
2278 unsigned int hashlen,
2279 const unsigned char *hash,
2280 unsigned char *sig)
2281 {
2282 return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
2283 hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
2284 }
2285 #endif /* MBEDTLS_PKCS1_V21 */
2286
2287 #if defined(MBEDTLS_PKCS1_V15)
2288 /*
2289 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
2290 */
2291
2292 /* Construct a PKCS v1.5 encoding of a hashed message
2293 *
2294 * This is used both for signature generation and verification.
2295 *
2296 * Parameters:
2297 * - md_alg: Identifies the hash algorithm used to generate the given hash;
2298 * MBEDTLS_MD_NONE if raw data is signed.
2299 * - hashlen: Length of hash. Must match md_alg if that's not NONE.
2300 * - hash: Buffer containing the hashed message or the raw data.
2301 * - dst_len: Length of the encoded message.
2302 * - dst: Buffer to hold the encoded message.
2303 *
2304 * Assumptions:
2305 * - hash has size hashlen.
2306 * - dst points to a buffer of size at least dst_len.
2307 *
2308 */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)2309 static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,
2310 unsigned int hashlen,
2311 const unsigned char *hash,
2312 size_t dst_len,
2313 unsigned char *dst)
2314 {
2315 size_t oid_size = 0;
2316 size_t nb_pad = dst_len;
2317 unsigned char *p = dst;
2318 const char *oid = NULL;
2319
2320 /* Are we signing hashed or raw data? */
2321 if (md_alg != MBEDTLS_MD_NONE) {
2322 unsigned char md_size = mbedtls_md_get_size_from_type(md_alg);
2323 if (md_size == 0) {
2324 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2325 }
2326
2327 if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) {
2328 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2329 }
2330
2331 if (hashlen != md_size) {
2332 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2333 }
2334
2335 /* Double-check that 8 + hashlen + oid_size can be used as a
2336 * 1-byte ASN.1 length encoding and that there's no overflow. */
2337 if (8 + hashlen + oid_size >= 0x80 ||
2338 10 + hashlen < hashlen ||
2339 10 + hashlen + oid_size < 10 + hashlen) {
2340 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2341 }
2342
2343 /*
2344 * Static bounds check:
2345 * - Need 10 bytes for five tag-length pairs.
2346 * (Insist on 1-byte length encodings to protect against variants of
2347 * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
2348 * - Need hashlen bytes for hash
2349 * - Need oid_size bytes for hash alg OID.
2350 */
2351 if (nb_pad < 10 + hashlen + oid_size) {
2352 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2353 }
2354 nb_pad -= 10 + hashlen + oid_size;
2355 } else {
2356 if (nb_pad < hashlen) {
2357 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2358 }
2359
2360 nb_pad -= hashlen;
2361 }
2362
2363 /* Need space for signature header and padding delimiter (3 bytes),
2364 * and 8 bytes for the minimal padding */
2365 if (nb_pad < 3 + 8) {
2366 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2367 }
2368 nb_pad -= 3;
2369
2370 /* Now nb_pad is the amount of memory to be filled
2371 * with padding, and at least 8 bytes long. */
2372
2373 /* Write signature header and padding */
2374 *p++ = 0;
2375 *p++ = MBEDTLS_RSA_SIGN;
2376 memset(p, 0xFF, nb_pad);
2377 p += nb_pad;
2378 *p++ = 0;
2379
2380 /* Are we signing raw data? */
2381 if (md_alg == MBEDTLS_MD_NONE) {
2382 memcpy(p, hash, hashlen);
2383 return 0;
2384 }
2385
2386 /* Signing hashed data, add corresponding ASN.1 structure
2387 *
2388 * DigestInfo ::= SEQUENCE {
2389 * digestAlgorithm DigestAlgorithmIdentifier,
2390 * digest Digest }
2391 * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
2392 * Digest ::= OCTET STRING
2393 *
2394 * Schematic:
2395 * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ]
2396 * TAG-NULL + LEN [ NULL ] ]
2397 * TAG-OCTET + LEN [ HASH ] ]
2398 */
2399 *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2400 *p++ = (unsigned char) (0x08 + oid_size + hashlen);
2401 *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2402 *p++ = (unsigned char) (0x04 + oid_size);
2403 *p++ = MBEDTLS_ASN1_OID;
2404 *p++ = (unsigned char) oid_size;
2405 memcpy(p, oid, oid_size);
2406 p += oid_size;
2407 *p++ = MBEDTLS_ASN1_NULL;
2408 *p++ = 0x00;
2409 *p++ = MBEDTLS_ASN1_OCTET_STRING;
2410 *p++ = (unsigned char) hashlen;
2411 memcpy(p, hash, hashlen);
2412 p += hashlen;
2413
2414 /* Just a sanity-check, should be automatic
2415 * after the initial bounds check. */
2416 if (p != dst + dst_len) {
2417 mbedtls_platform_zeroize(dst, dst_len);
2418 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2419 }
2420
2421 return 0;
2422 }
2423
2424 /*
2425 * Do an RSA operation to sign the message digest
2426 */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2427 int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx,
2428 int (*f_rng)(void *, unsigned char *, size_t),
2429 void *p_rng,
2430 mbedtls_md_type_t md_alg,
2431 unsigned int hashlen,
2432 const unsigned char *hash,
2433 unsigned char *sig)
2434 {
2435 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2436 unsigned char *sig_try = NULL, *verif = NULL;
2437
2438 if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2439 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2440 }
2441
2442 if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
2443 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2444 }
2445
2446 /*
2447 * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
2448 */
2449
2450 if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash,
2451 ctx->len, sig)) != 0) {
2452 return ret;
2453 }
2454
2455 /* Private key operation
2456 *
2457 * In order to prevent Lenstra's attack, make the signature in a
2458 * temporary buffer and check it before returning it.
2459 */
2460
2461 sig_try = mbedtls_calloc(1, ctx->len);
2462 if (sig_try == NULL) {
2463 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
2464 }
2465
2466 verif = mbedtls_calloc(1, ctx->len);
2467 if (verif == NULL) {
2468 mbedtls_free(sig_try);
2469 return MBEDTLS_ERR_MPI_ALLOC_FAILED;
2470 }
2471
2472 MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try));
2473 MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif));
2474
2475 if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) {
2476 ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
2477 goto cleanup;
2478 }
2479
2480 memcpy(sig, sig_try, ctx->len);
2481
2482 cleanup:
2483 mbedtls_zeroize_and_free(sig_try, ctx->len);
2484 mbedtls_zeroize_and_free(verif, ctx->len);
2485
2486 if (ret != 0) {
2487 memset(sig, '!', ctx->len);
2488 }
2489 return ret;
2490 }
2491 #endif /* MBEDTLS_PKCS1_V15 */
2492
2493 /*
2494 * Do an RSA operation to sign the message digest
2495 */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2496 int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx,
2497 int (*f_rng)(void *, unsigned char *, size_t),
2498 void *p_rng,
2499 mbedtls_md_type_t md_alg,
2500 unsigned int hashlen,
2501 const unsigned char *hash,
2502 unsigned char *sig)
2503 {
2504 if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2505 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2506 }
2507
2508 switch (ctx->padding) {
2509 #if defined(MBEDTLS_PKCS1_V15)
2510 case MBEDTLS_RSA_PKCS_V15:
2511 return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng,
2512 md_alg, hashlen, hash, sig);
2513 #endif
2514
2515 #if defined(MBEDTLS_PKCS1_V21)
2516 case MBEDTLS_RSA_PKCS_V21:
2517 return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
2518 hashlen, hash, sig);
2519 #endif
2520
2521 default:
2522 return MBEDTLS_ERR_RSA_INVALID_PADDING;
2523 }
2524 }
2525
2526 #if defined(MBEDTLS_PKCS1_V21)
2527 /*
2528 * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2529 */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)2530 int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx,
2531 mbedtls_md_type_t md_alg,
2532 unsigned int hashlen,
2533 const unsigned char *hash,
2534 mbedtls_md_type_t mgf1_hash_id,
2535 int expected_salt_len,
2536 const unsigned char *sig)
2537 {
2538 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2539 size_t siglen;
2540 unsigned char *p;
2541 unsigned char *hash_start;
2542 unsigned char result[MBEDTLS_MD_MAX_SIZE];
2543 unsigned int hlen;
2544 size_t observed_salt_len, msb;
2545 unsigned char buf[MBEDTLS_MPI_MAX_SIZE] = { 0 };
2546
2547 if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2548 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2549 }
2550
2551 siglen = ctx->len;
2552
2553 if (siglen < 16 || siglen > sizeof(buf)) {
2554 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2555 }
2556
2557 ret = mbedtls_rsa_public(ctx, sig, buf);
2558
2559 if (ret != 0) {
2560 return ret;
2561 }
2562
2563 p = buf;
2564
2565 if (buf[siglen - 1] != 0xBC) {
2566 return MBEDTLS_ERR_RSA_INVALID_PADDING;
2567 }
2568
2569 if (md_alg != MBEDTLS_MD_NONE) {
2570 /* Gather length of hash to sign */
2571 size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
2572 if (exp_hashlen == 0) {
2573 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2574 }
2575
2576 if (hashlen != exp_hashlen) {
2577 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2578 }
2579 }
2580
2581 hlen = mbedtls_md_get_size_from_type(mgf1_hash_id);
2582 if (hlen == 0) {
2583 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2584 }
2585
2586 /*
2587 * Note: EMSA-PSS verification is over the length of N - 1 bits
2588 */
2589 msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
2590
2591 if (buf[0] >> (8 - siglen * 8 + msb)) {
2592 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2593 }
2594
2595 /* Compensate for boundary condition when applying mask */
2596 if (msb % 8 == 0) {
2597 p++;
2598 siglen -= 1;
2599 }
2600
2601 if (siglen < hlen + 2) {
2602 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2603 }
2604 hash_start = p + siglen - hlen - 1;
2605
2606 ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, mgf1_hash_id);
2607 if (ret != 0) {
2608 return ret;
2609 }
2610
2611 buf[0] &= 0xFF >> (siglen * 8 - msb);
2612
2613 while (p < hash_start - 1 && *p == 0) {
2614 p++;
2615 }
2616
2617 if (*p++ != 0x01) {
2618 return MBEDTLS_ERR_RSA_INVALID_PADDING;
2619 }
2620
2621 observed_salt_len = (size_t) (hash_start - p);
2622
2623 if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2624 observed_salt_len != (size_t) expected_salt_len) {
2625 return MBEDTLS_ERR_RSA_INVALID_PADDING;
2626 }
2627
2628 /*
2629 * Generate H = Hash( M' )
2630 */
2631 ret = hash_mprime(hash, hashlen, p, observed_salt_len,
2632 result, mgf1_hash_id);
2633 if (ret != 0) {
2634 return ret;
2635 }
2636
2637 if (memcmp(hash_start, result, hlen) != 0) {
2638 return MBEDTLS_ERR_RSA_VERIFY_FAILED;
2639 }
2640
2641 return 0;
2642 }
2643
2644 /*
2645 * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2646 */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2647 int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx,
2648 mbedtls_md_type_t md_alg,
2649 unsigned int hashlen,
2650 const unsigned char *hash,
2651 const unsigned char *sig)
2652 {
2653 mbedtls_md_type_t mgf1_hash_id;
2654 if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2655 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2656 }
2657
2658 mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE)
2659 ? (mbedtls_md_type_t) ctx->hash_id
2660 : md_alg;
2661
2662 return mbedtls_rsa_rsassa_pss_verify_ext(ctx,
2663 md_alg, hashlen, hash,
2664 mgf1_hash_id,
2665 MBEDTLS_RSA_SALT_LEN_ANY,
2666 sig);
2667
2668 }
2669 #endif /* MBEDTLS_PKCS1_V21 */
2670
2671 #if defined(MBEDTLS_PKCS1_V15)
2672 /*
2673 * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2674 */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2675 int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx,
2676 mbedtls_md_type_t md_alg,
2677 unsigned int hashlen,
2678 const unsigned char *hash,
2679 const unsigned char *sig)
2680 {
2681 int ret = 0;
2682 size_t sig_len;
2683 unsigned char *encoded = NULL, *encoded_expected = NULL;
2684
2685 if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2686 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2687 }
2688
2689 sig_len = ctx->len;
2690
2691 /*
2692 * Prepare expected PKCS1 v1.5 encoding of hash.
2693 */
2694
2695 if ((encoded = mbedtls_calloc(1, sig_len)) == NULL ||
2696 (encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) {
2697 ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2698 goto cleanup;
2699 }
2700
2701 if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len,
2702 encoded_expected)) != 0) {
2703 goto cleanup;
2704 }
2705
2706 /*
2707 * Apply RSA primitive to get what should be PKCS1 encoded hash.
2708 */
2709
2710 ret = mbedtls_rsa_public(ctx, sig, encoded);
2711 if (ret != 0) {
2712 goto cleanup;
2713 }
2714
2715 /*
2716 * Compare
2717 */
2718
2719 if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected,
2720 sig_len)) != 0) {
2721 ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2722 goto cleanup;
2723 }
2724
2725 cleanup:
2726
2727 if (encoded != NULL) {
2728 mbedtls_zeroize_and_free(encoded, sig_len);
2729 }
2730
2731 if (encoded_expected != NULL) {
2732 mbedtls_zeroize_and_free(encoded_expected, sig_len);
2733 }
2734
2735 return ret;
2736 }
2737 #endif /* MBEDTLS_PKCS1_V15 */
2738
2739 /*
2740 * Do an RSA operation and check the message digest
2741 */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2742 int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx,
2743 mbedtls_md_type_t md_alg,
2744 unsigned int hashlen,
2745 const unsigned char *hash,
2746 const unsigned char *sig)
2747 {
2748 if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
2749 return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
2750 }
2751
2752 switch (ctx->padding) {
2753 #if defined(MBEDTLS_PKCS1_V15)
2754 case MBEDTLS_RSA_PKCS_V15:
2755 return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, md_alg,
2756 hashlen, hash, sig);
2757 #endif
2758
2759 #if defined(MBEDTLS_PKCS1_V21)
2760 case MBEDTLS_RSA_PKCS_V21:
2761 return mbedtls_rsa_rsassa_pss_verify(ctx, md_alg,
2762 hashlen, hash, sig);
2763 #endif
2764
2765 default:
2766 return MBEDTLS_ERR_RSA_INVALID_PADDING;
2767 }
2768 }
2769
2770 /*
2771 * Copy the components of an RSA key
2772 */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2773 int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src)
2774 {
2775 int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2776
2777 dst->len = src->len;
2778
2779 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N));
2780 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E));
2781
2782 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D));
2783 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P));
2784 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q));
2785
2786 #if !defined(MBEDTLS_RSA_NO_CRT)
2787 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP));
2788 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ));
2789 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP));
2790 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP));
2791 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ));
2792 #endif
2793
2794 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN));
2795
2796 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi));
2797 MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf));
2798
2799 dst->padding = src->padding;
2800 dst->hash_id = src->hash_id;
2801
2802 cleanup:
2803 if (ret != 0) {
2804 mbedtls_rsa_free(dst);
2805 }
2806
2807 return ret;
2808 }
2809
2810 /*
2811 * Free the components of an RSA key
2812 */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2813 void mbedtls_rsa_free(mbedtls_rsa_context *ctx)
2814 {
2815 if (ctx == NULL) {
2816 return;
2817 }
2818
2819 mbedtls_mpi_free(&ctx->Vi);
2820 mbedtls_mpi_free(&ctx->Vf);
2821 mbedtls_mpi_free(&ctx->RN);
2822 mbedtls_mpi_free(&ctx->D);
2823 mbedtls_mpi_free(&ctx->Q);
2824 mbedtls_mpi_free(&ctx->P);
2825 mbedtls_mpi_free(&ctx->E);
2826 mbedtls_mpi_free(&ctx->N);
2827
2828 #if !defined(MBEDTLS_RSA_NO_CRT)
2829 mbedtls_mpi_free(&ctx->RQ);
2830 mbedtls_mpi_free(&ctx->RP);
2831 mbedtls_mpi_free(&ctx->QP);
2832 mbedtls_mpi_free(&ctx->DQ);
2833 mbedtls_mpi_free(&ctx->DP);
2834 #endif /* MBEDTLS_RSA_NO_CRT */
2835
2836 #if defined(MBEDTLS_THREADING_C)
2837 /* Free the mutex, but only if it hasn't been freed already. */
2838 if (ctx->ver != 0) {
2839 mbedtls_mutex_free(&ctx->mutex);
2840 ctx->ver = 0;
2841 }
2842 #endif
2843 }
2844
2845 #endif /* !MBEDTLS_RSA_ALT */
2846
2847 #if defined(MBEDTLS_SELF_TEST)
2848
2849
2850 /*
2851 * Example RSA-1024 keypair, for test purposes
2852 */
2853 #define KEY_LEN 128
2854
2855 #define RSA_N "9292758453063D803DD603D5E777D788" \
2856 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2857 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2858 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2859 "93A89813FBF3C4F8066D2D800F7C38A8" \
2860 "1AE31942917403FF4946B0A83D3D3E05" \
2861 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2862 "5E94BB77B07507233A0BC7BAC8F90F79"
2863
2864 #define RSA_E "10001"
2865
2866 #define RSA_D "24BF6185468786FDD303083D25E64EFC" \
2867 "66CA472BC44D253102F8B4A9D3BFA750" \
2868 "91386C0077937FE33FA3252D28855837" \
2869 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2870 "DF79C5CE07EE72C7F123142198164234" \
2871 "CABB724CF78B8173B9F880FC86322407" \
2872 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2873 "071513A1E85B5DFA031F21ECAE91A34D"
2874
2875 #define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2876 "2C01CAD19EA484A87EA4377637E75500" \
2877 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2878 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2879
2880 #define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
2881 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2882 "910E4168387E3C30AA1E00C339A79508" \
2883 "8452DD96A9A5EA5D9DCA68DA636032AF"
2884
2885 #define PT_LEN 24
2886 #define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2887 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2888
2889 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2890 static int myrand(void *rng_state, unsigned char *output, size_t len)
2891 {
2892 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2893 size_t i;
2894
2895 if (rng_state != NULL) {
2896 rng_state = NULL;
2897 }
2898
2899 for (i = 0; i < len; ++i) {
2900 output[i] = rand();
2901 }
2902 #else
2903 if (rng_state != NULL) {
2904 rng_state = NULL;
2905 }
2906
2907 arc4random_buf(output, len);
2908 #endif /* !OpenBSD && !NetBSD */
2909
2910 return 0;
2911 }
2912 #endif /* MBEDTLS_PKCS1_V15 */
2913
2914 /*
2915 * Checkup routine
2916 */
mbedtls_rsa_self_test(int verbose)2917 int mbedtls_rsa_self_test(int verbose)
2918 {
2919 int ret = 0;
2920 #if defined(MBEDTLS_PKCS1_V15)
2921 size_t len;
2922 mbedtls_rsa_context rsa;
2923 unsigned char rsa_plaintext[PT_LEN];
2924 unsigned char rsa_decrypted[PT_LEN];
2925 unsigned char rsa_ciphertext[KEY_LEN];
2926 #if defined(MBEDTLS_MD_CAN_SHA1)
2927 unsigned char sha1sum[20];
2928 #endif
2929
2930 mbedtls_mpi K;
2931
2932 mbedtls_mpi_init(&K);
2933 mbedtls_rsa_init(&rsa);
2934
2935 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N));
2936 MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL));
2937 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P));
2938 MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL));
2939 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q));
2940 MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL));
2941 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D));
2942 MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL));
2943 MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E));
2944 MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K));
2945
2946 MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa));
2947
2948 if (verbose != 0) {
2949 mbedtls_printf(" RSA key validation: ");
2950 }
2951
2952 if (mbedtls_rsa_check_pubkey(&rsa) != 0 ||
2953 mbedtls_rsa_check_privkey(&rsa) != 0) {
2954 if (verbose != 0) {
2955 mbedtls_printf("failed\n");
2956 }
2957
2958 ret = 1;
2959 goto cleanup;
2960 }
2961
2962 if (verbose != 0) {
2963 mbedtls_printf("passed\n PKCS#1 encryption : ");
2964 }
2965
2966 memcpy(rsa_plaintext, RSA_PT, PT_LEN);
2967
2968 if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL,
2969 PT_LEN, rsa_plaintext,
2970 rsa_ciphertext) != 0) {
2971 if (verbose != 0) {
2972 mbedtls_printf("failed\n");
2973 }
2974
2975 ret = 1;
2976 goto cleanup;
2977 }
2978
2979 if (verbose != 0) {
2980 mbedtls_printf("passed\n PKCS#1 decryption : ");
2981 }
2982
2983 if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL,
2984 &len, rsa_ciphertext, rsa_decrypted,
2985 sizeof(rsa_decrypted)) != 0) {
2986 if (verbose != 0) {
2987 mbedtls_printf("failed\n");
2988 }
2989
2990 ret = 1;
2991 goto cleanup;
2992 }
2993
2994 if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) {
2995 if (verbose != 0) {
2996 mbedtls_printf("failed\n");
2997 }
2998
2999 ret = 1;
3000 goto cleanup;
3001 }
3002
3003 if (verbose != 0) {
3004 mbedtls_printf("passed\n");
3005 }
3006
3007 #if defined(MBEDTLS_MD_CAN_SHA1)
3008 if (verbose != 0) {
3009 mbedtls_printf(" PKCS#1 data sign : ");
3010 }
3011
3012 if (mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_MD_SHA1),
3013 rsa_plaintext, PT_LEN, sha1sum) != 0) {
3014 if (verbose != 0) {
3015 mbedtls_printf("failed\n");
3016 }
3017
3018 return 1;
3019 }
3020
3021 if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL,
3022 MBEDTLS_MD_SHA1, 20,
3023 sha1sum, rsa_ciphertext) != 0) {
3024 if (verbose != 0) {
3025 mbedtls_printf("failed\n");
3026 }
3027
3028 ret = 1;
3029 goto cleanup;
3030 }
3031
3032 if (verbose != 0) {
3033 mbedtls_printf("passed\n PKCS#1 sig. verify: ");
3034 }
3035
3036 if (mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA1, 20,
3037 sha1sum, rsa_ciphertext) != 0) {
3038 if (verbose != 0) {
3039 mbedtls_printf("failed\n");
3040 }
3041
3042 ret = 1;
3043 goto cleanup;
3044 }
3045
3046 if (verbose != 0) {
3047 mbedtls_printf("passed\n");
3048 }
3049 #endif /* MBEDTLS_MD_CAN_SHA1 */
3050
3051 if (verbose != 0) {
3052 mbedtls_printf("\n");
3053 }
3054
3055 cleanup:
3056 mbedtls_mpi_free(&K);
3057 mbedtls_rsa_free(&rsa);
3058 #else /* MBEDTLS_PKCS1_V15 */
3059 ((void) verbose);
3060 #endif /* MBEDTLS_PKCS1_V15 */
3061 return ret;
3062 }
3063
3064 #endif /* MBEDTLS_SELF_TEST */
3065
3066 #endif /* MBEDTLS_RSA_C */
3067