1 /**
2  * \file ecp_internal_alt.h
3  *
4  * \brief Function declarations for alternative implementation of elliptic curve
5  * point arithmetic.
6  */
7 /*
8  *  Copyright The Mbed TLS Contributors
9  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
10  */
11 
12 /*
13  * References:
14  *
15  * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
16  *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
17  *
18  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
19  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
20  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
21  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
22  *
23  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
24  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
25  *     ePrint Archive, 2004, vol. 2004, p. 342.
26  *     <http://eprint.iacr.org/2004/342.pdf>
27  *
28  * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
29  *     <http://www.secg.org/sec2-v2.pdf>
30  *
31  * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
32  *     Curve Cryptography.
33  *
34  * [6] Digital Signature Standard (DSS), FIPS 186-4.
35  *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
36  *
37  * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
38  *     Security (TLS), RFC 4492.
39  *     <https://tools.ietf.org/search/rfc4492>
40  *
41  * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
42  *
43  * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
44  *     Springer Science & Business Media, 1 Aug 2000
45  */
46 
47 #ifndef MBEDTLS_ECP_INTERNAL_H
48 #define MBEDTLS_ECP_INTERNAL_H
49 
50 #include "mbedtls/build_info.h"
51 
52 #if defined(MBEDTLS_ECP_INTERNAL_ALT)
53 
54 /**
55  * \brief           Indicate if the Elliptic Curve Point module extension can
56  *                  handle the group.
57  *
58  * \param grp       The pointer to the elliptic curve group that will be the
59  *                  basis of the cryptographic computations.
60  *
61  * \return          Non-zero if successful.
62  */
63 unsigned char mbedtls_internal_ecp_grp_capable(const mbedtls_ecp_group *grp);
64 
65 /**
66  * \brief           Initialise the Elliptic Curve Point module extension.
67  *
68  *                  If mbedtls_internal_ecp_grp_capable returns true for a
69  *                  group, this function has to be able to initialise the
70  *                  module for it.
71  *
72  *                  This module can be a driver to a crypto hardware
73  *                  accelerator, for which this could be an initialise function.
74  *
75  * \param grp       The pointer to the group the module needs to be
76  *                  initialised for.
77  *
78  * \return          0 if successful.
79  */
80 int mbedtls_internal_ecp_init(const mbedtls_ecp_group *grp);
81 
82 /**
83  * \brief           Frees and deallocates the Elliptic Curve Point module
84  *                  extension.
85  *
86  * \param grp       The pointer to the group the module was initialised for.
87  */
88 void mbedtls_internal_ecp_free(const mbedtls_ecp_group *grp);
89 
90 #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
91 
92 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
93 /**
94  * \brief           Randomize jacobian coordinates:
95  *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
96  *
97  * \param grp       Pointer to the group representing the curve.
98  *
99  * \param pt        The point on the curve to be randomised, given with Jacobian
100  *                  coordinates.
101  *
102  * \param f_rng     A function pointer to the random number generator.
103  *
104  * \param p_rng     A pointer to the random number generator state.
105  *
106  * \return          0 if successful.
107  */
108 int mbedtls_internal_ecp_randomize_jac(const mbedtls_ecp_group *grp,
109                                        mbedtls_ecp_point *pt, int (*f_rng)(void *,
110                                                                            unsigned char *,
111                                                                            size_t),
112                                        void *p_rng);
113 #endif
114 
115 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
116 /**
117  * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates.
118  *
119  *                  The coordinates of Q must be normalized (= affine),
120  *                  but those of P don't need to. R is not normalized.
121  *
122  *                  This function is used only as a subrutine of
123  *                  ecp_mul_comb().
124  *
125  *                  Special cases: (1) P or Q is zero, (2) R is zero,
126  *                      (3) P == Q.
127  *                  None of these cases can happen as intermediate step in
128  *                  ecp_mul_comb():
129  *                      - at each step, P, Q and R are multiples of the base
130  *                      point, the factor being less than its order, so none of
131  *                      them is zero;
132  *                      - Q is an odd multiple of the base point, P an even
133  *                      multiple, due to the choice of precomputed points in the
134  *                      modified comb method.
135  *                  So branches for these cases do not leak secret information.
136  *
137  *                  We accept Q->Z being unset (saving memory in tables) as
138  *                  meaning 1.
139  *
140  *                  Cost in field operations if done by [5] 3.22:
141  *                      1A := 8M + 3S
142  *
143  * \param grp       Pointer to the group representing the curve.
144  *
145  * \param R         Pointer to a point structure to hold the result.
146  *
147  * \param P         Pointer to the first summand, given with Jacobian
148  *                  coordinates
149  *
150  * \param Q         Pointer to the second summand, given with affine
151  *                  coordinates.
152  *
153  * \return          0 if successful.
154  */
155 int mbedtls_internal_ecp_add_mixed(const mbedtls_ecp_group *grp,
156                                    mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
157                                    const mbedtls_ecp_point *Q);
158 #endif
159 
160 /**
161  * \brief           Point doubling R = 2 P, Jacobian coordinates.
162  *
163  *                  Cost:   1D := 3M + 4S    (A ==  0)
164  *                          4M + 4S          (A == -3)
165  *                          3M + 6S + 1a     otherwise
166  *                  when the implementation is based on the "dbl-1998-cmo-2"
167  *                  doubling formulas in [8] and standard optimizations are
168  *                  applied when curve parameter A is one of { 0, -3 }.
169  *
170  * \param grp       Pointer to the group representing the curve.
171  *
172  * \param R         Pointer to a point structure to hold the result.
173  *
174  * \param P         Pointer to the point that has to be doubled, given with
175  *                  Jacobian coordinates.
176  *
177  * \return          0 if successful.
178  */
179 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
180 int mbedtls_internal_ecp_double_jac(const mbedtls_ecp_group *grp,
181                                     mbedtls_ecp_point *R, const mbedtls_ecp_point *P);
182 #endif
183 
184 /**
185  * \brief           Normalize jacobian coordinates of an array of (pointers to)
186  *                  points.
187  *
188  *                  Using Montgomery's trick to perform only one inversion mod P
189  *                  the cost is:
190  *                      1N(t) := 1I + (6t - 3)M + 1S
191  *                  (See for example Algorithm 10.3.4. in [9])
192  *
193  *                  This function is used only as a subrutine of
194  *                  ecp_mul_comb().
195  *
196  *                  Warning: fails (returning an error) if one of the points is
197  *                  zero!
198  *                  This should never happen, see choice of w in ecp_mul_comb().
199  *
200  * \param grp       Pointer to the group representing the curve.
201  *
202  * \param T         Array of pointers to the points to normalise.
203  *
204  * \param t_len     Number of elements in the array.
205  *
206  * \return          0 if successful,
207  *                      an error if one of the points is zero.
208  */
209 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
210 int mbedtls_internal_ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
211                                             mbedtls_ecp_point *T[], size_t t_len);
212 #endif
213 
214 /**
215  * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1.
216  *
217  *                  Cost in field operations if done by [5] 3.2.1:
218  *                      1N := 1I + 3M + 1S
219  *
220  * \param grp       Pointer to the group representing the curve.
221  *
222  * \param pt        pointer to the point to be normalised. This is an
223  *                  input/output parameter.
224  *
225  * \return          0 if successful.
226  */
227 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
228 int mbedtls_internal_ecp_normalize_jac(const mbedtls_ecp_group *grp,
229                                        mbedtls_ecp_point *pt);
230 #endif
231 
232 #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
233 
234 #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
235 
236 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
237 int mbedtls_internal_ecp_double_add_mxz(const mbedtls_ecp_group *grp,
238                                         mbedtls_ecp_point *R,
239                                         mbedtls_ecp_point *S,
240                                         const mbedtls_ecp_point *P,
241                                         const mbedtls_ecp_point *Q,
242                                         const mbedtls_mpi *d);
243 #endif
244 
245 /**
246  * \brief           Randomize projective x/z coordinates:
247  *                      (X, Z) -> (l X, l Z) for random l
248  *
249  * \param grp       pointer to the group representing the curve
250  *
251  * \param P         the point on the curve to be randomised given with
252  *                  projective coordinates. This is an input/output parameter.
253  *
254  * \param f_rng     a function pointer to the random number generator
255  *
256  * \param p_rng     a pointer to the random number generator state
257  *
258  * \return          0 if successful
259  */
260 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
261 int mbedtls_internal_ecp_randomize_mxz(const mbedtls_ecp_group *grp,
262                                        mbedtls_ecp_point *P, int (*f_rng)(void *,
263                                                                           unsigned char *,
264                                                                           size_t),
265                                        void *p_rng);
266 #endif
267 
268 /**
269  * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
270  *
271  * \param grp       pointer to the group representing the curve
272  *
273  * \param P         pointer to the point to be normalised. This is an
274  *                  input/output parameter.
275  *
276  * \return          0 if successful
277  */
278 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
279 int mbedtls_internal_ecp_normalize_mxz(const mbedtls_ecp_group *grp,
280                                        mbedtls_ecp_point *P);
281 #endif
282 
283 #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
284 
285 #endif /* MBEDTLS_ECP_INTERNAL_ALT */
286 
287 #endif /* ecp_internal_alt.h */
288