1 /*
2 * AES-NI support functions
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8 /*
9 * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
10 * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
11 */
12
13 #include "common.h"
14
15 #if defined(MBEDTLS_AESNI_C)
16
17 #include "aesni.h"
18
19 #include <string.h>
20
21 #if defined(MBEDTLS_AESNI_HAVE_CODE)
22
23 #if MBEDTLS_AESNI_HAVE_CODE == 2
24 #if !defined(_WIN32)
25 #include <cpuid.h>
26 #else
27 #include <intrin.h>
28 #endif
29 #include <immintrin.h>
30 #endif
31
32 #if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
33 /*
34 * AES-NI support detection routine
35 */
mbedtls_aesni_has_support(unsigned int what)36 int mbedtls_aesni_has_support(unsigned int what)
37 {
38 static int done = 0;
39 static unsigned int c = 0;
40
41 if (!done) {
42 #if MBEDTLS_AESNI_HAVE_CODE == 2
43 static unsigned info[4] = { 0, 0, 0, 0 };
44 #if defined(_MSC_VER)
45 __cpuid(info, 1);
46 #else
47 __cpuid(1, info[0], info[1], info[2], info[3]);
48 #endif
49 c = info[2];
50 #else /* AESNI using asm */
51 asm ("movl $1, %%eax \n\t"
52 "cpuid \n\t"
53 : "=c" (c)
54 :
55 : "eax", "ebx", "edx");
56 #endif /* MBEDTLS_AESNI_HAVE_CODE */
57 done = 1;
58 }
59
60 return (c & what) != 0;
61 }
62 #endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
63
64 #if MBEDTLS_AESNI_HAVE_CODE == 2
65
66 /*
67 * AES-NI AES-ECB block en(de)cryption
68 */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])69 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
70 int mode,
71 const unsigned char input[16],
72 unsigned char output[16])
73 {
74 const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
75 unsigned nr = ctx->nr; // Number of remaining rounds
76
77 // Load round key 0
78 __m128i state;
79 memcpy(&state, input, 16);
80 state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
81 ++rk;
82 --nr;
83
84 if (mode == 0) {
85 while (nr != 0) {
86 state = _mm_aesdec_si128(state, *rk);
87 ++rk;
88 --nr;
89 }
90 state = _mm_aesdeclast_si128(state, *rk);
91 } else {
92 while (nr != 0) {
93 state = _mm_aesenc_si128(state, *rk);
94 ++rk;
95 --nr;
96 }
97 state = _mm_aesenclast_si128(state, *rk);
98 }
99
100 memcpy(output, &state, 16);
101 return 0;
102 }
103
104 /*
105 * GCM multiplication: c = a times b in GF(2^128)
106 * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
107 */
108
gcm_clmul(const __m128i aa,const __m128i bb,__m128i * cc,__m128i * dd)109 static void gcm_clmul(const __m128i aa, const __m128i bb,
110 __m128i *cc, __m128i *dd)
111 {
112 /*
113 * Caryless multiplication dd:cc = aa * bb
114 * using [CLMUL-WP] algorithm 1 (p. 12).
115 */
116 *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
117 *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
118 __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
119 __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
120 ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
121 ee = ff; // e1+f1:e0+f0
122 ff = _mm_srli_si128(ff, 8); // 0:e1+f1
123 ee = _mm_slli_si128(ee, 8); // e0+f0:0
124 *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
125 *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
126 }
127
gcm_shift(__m128i * cc,__m128i * dd)128 static void gcm_shift(__m128i *cc, __m128i *dd)
129 {
130 /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
131 * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
132 // // *cc = r1:r0
133 // // *dd = r3:r2
134 __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
135 __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
136 __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
137 __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
138 __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
139 cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
140 dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
141
142 *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
143 *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
144 }
145
gcm_reduce(__m128i xx)146 static __m128i gcm_reduce(__m128i xx)
147 {
148 // // xx = x1:x0
149 /* [CLMUL-WP] Algorithm 5 Step 2 */
150 __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
151 __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
152 __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
153 __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
154 return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
155 }
156
gcm_mix(__m128i dx)157 static __m128i gcm_mix(__m128i dx)
158 {
159 /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
160 __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
161 __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
162 __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
163
164 // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
165 // bits carried from d. Now get those bits back in.
166 __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
167 __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
168 __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
169 __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
170
171 return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
172 }
173
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])174 void mbedtls_aesni_gcm_mult(unsigned char c[16],
175 const unsigned char a[16],
176 const unsigned char b[16])
177 {
178 __m128i aa, bb, cc, dd;
179
180 /* The inputs are in big-endian order, so byte-reverse them */
181 for (size_t i = 0; i < 16; i++) {
182 ((uint8_t *) &aa)[i] = a[15 - i];
183 ((uint8_t *) &bb)[i] = b[15 - i];
184 }
185
186 gcm_clmul(aa, bb, &cc, &dd);
187 gcm_shift(&cc, &dd);
188 /*
189 * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
190 * using [CLMUL-WP] algorithm 5 (p. 18).
191 * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
192 */
193 __m128i dx = gcm_reduce(cc);
194 __m128i xh = gcm_mix(dx);
195 cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
196
197 /* Now byte-reverse the outputs */
198 for (size_t i = 0; i < 16; i++) {
199 c[i] = ((uint8_t *) &cc)[15 - i];
200 }
201
202 return;
203 }
204
205 /*
206 * Compute decryption round keys from encryption round keys
207 */
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)208 void mbedtls_aesni_inverse_key(unsigned char *invkey,
209 const unsigned char *fwdkey, int nr)
210 {
211 __m128i *ik = (__m128i *) invkey;
212 const __m128i *fk = (const __m128i *) fwdkey + nr;
213
214 *ik = *fk;
215 for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
216 *ik = _mm_aesimc_si128(*fk);
217 }
218 *ik = *fk;
219 }
220
221 /*
222 * Key expansion, 128-bit case
223 */
aesni_set_rk_128(__m128i state,__m128i xword)224 static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
225 {
226 /*
227 * Finish generating the next round key.
228 *
229 * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
230 * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
231 *
232 * On exit, xword is r7:r6:r5:r4
233 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
234 * and this is returned, to be written to the round key buffer.
235 */
236 xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
237 xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
238 state = _mm_slli_si128(state, 4); // r2:r1:r0:0
239 xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
240 state = _mm_slli_si128(state, 4); // r1:r0:0:0
241 xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
242 state = _mm_slli_si128(state, 4); // r0:0:0:0
243 state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
244 return state;
245 }
246
aesni_setkey_enc_128(unsigned char * rk_bytes,const unsigned char * key)247 static void aesni_setkey_enc_128(unsigned char *rk_bytes,
248 const unsigned char *key)
249 {
250 __m128i *rk = (__m128i *) rk_bytes;
251
252 memcpy(&rk[0], key, 16);
253 rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
254 rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
255 rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
256 rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
257 rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
258 rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
259 rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
260 rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
261 rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
262 rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
263 }
264
265 /*
266 * Key expansion, 192-bit case
267 */
268 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_set_rk_192(__m128i * state0,__m128i * state1,__m128i xword,unsigned char * rk)269 static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
270 unsigned char *rk)
271 {
272 /*
273 * Finish generating the next 6 quarter-keys.
274 *
275 * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
276 * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
277 * (obtained with AESKEYGENASSIST).
278 *
279 * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
280 * and those are written to the round key buffer.
281 */
282 xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
283 xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
284 *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
285 xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
286 *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
287 xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
288 *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
289 xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
290 *state0 = xword; // = r9:r8:r7:r6
291
292 xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
293 xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
294 *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
295 xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
296 *state1 = xword; // = stuff:stuff:r11:r10
297
298 /* Store state0 and the low half of state1 into rk, which is conceptually
299 * an array of 24-byte elements. Since 24 is not a multiple of 16,
300 * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
301 memcpy(rk, state0, 16);
302 memcpy(rk + 16, state1, 8);
303 }
304
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)305 static void aesni_setkey_enc_192(unsigned char *rk,
306 const unsigned char *key)
307 {
308 /* First round: use original key */
309 memcpy(rk, key, 24);
310 /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
311 __m128i state0 = ((__m128i *) rk)[0];
312 __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
313
314 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
315 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
316 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
317 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
318 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
319 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
320 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
321 aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
322 }
323 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
324
325 /*
326 * Key expansion, 256-bit case
327 */
328 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_set_rk_256(__m128i state0,__m128i state1,__m128i xword,__m128i * rk0,__m128i * rk1)329 static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
330 __m128i *rk0, __m128i *rk1)
331 {
332 /*
333 * Finish generating the next two round keys.
334 *
335 * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
336 * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
337 * (obtained with AESKEYGENASSIST).
338 *
339 * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
340 */
341 xword = _mm_shuffle_epi32(xword, 0xff);
342 xword = _mm_xor_si128(xword, state0);
343 state0 = _mm_slli_si128(state0, 4);
344 xword = _mm_xor_si128(xword, state0);
345 state0 = _mm_slli_si128(state0, 4);
346 xword = _mm_xor_si128(xword, state0);
347 state0 = _mm_slli_si128(state0, 4);
348 state0 = _mm_xor_si128(state0, xword);
349 *rk0 = state0;
350
351 /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
352 * and proceed to generate next round key from there */
353 xword = _mm_aeskeygenassist_si128(state0, 0x00);
354 xword = _mm_shuffle_epi32(xword, 0xaa);
355 xword = _mm_xor_si128(xword, state1);
356 state1 = _mm_slli_si128(state1, 4);
357 xword = _mm_xor_si128(xword, state1);
358 state1 = _mm_slli_si128(state1, 4);
359 xword = _mm_xor_si128(xword, state1);
360 state1 = _mm_slli_si128(state1, 4);
361 state1 = _mm_xor_si128(state1, xword);
362 *rk1 = state1;
363 }
364
aesni_setkey_enc_256(unsigned char * rk_bytes,const unsigned char * key)365 static void aesni_setkey_enc_256(unsigned char *rk_bytes,
366 const unsigned char *key)
367 {
368 __m128i *rk = (__m128i *) rk_bytes;
369
370 memcpy(&rk[0], key, 16);
371 memcpy(&rk[1], key + 16, 16);
372
373 /*
374 * Main "loop" - Generating one more key than necessary,
375 * see definition of mbedtls_aes_context.buf
376 */
377 aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
378 aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
379 aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
380 aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
381 aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
382 aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
383 aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
384 }
385 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
386
387 #else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
388
389 #if defined(__has_feature)
390 #if __has_feature(memory_sanitizer)
391 #warning \
392 "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
393 #endif
394 #endif
395
396 /*
397 * Binutils needs to be at least 2.19 to support AES-NI instructions.
398 * Unfortunately, a lot of users have a lower version now (2014-04).
399 * Emit bytecode directly in order to support "old" version of gas.
400 *
401 * Opcodes from the Intel architecture reference manual, vol. 3.
402 * We always use registers, so we don't need prefixes for memory operands.
403 * Operand macros are in gas order (src, dst) as opposed to Intel order
404 * (dst, src) in order to blend better into the surrounding assembly code.
405 */
406 #define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
407 #define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
408 #define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
409 #define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
410 #define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
411 #define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
412 #define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
413
414 #define xmm0_xmm0 "0xC0"
415 #define xmm0_xmm1 "0xC8"
416 #define xmm0_xmm2 "0xD0"
417 #define xmm0_xmm3 "0xD8"
418 #define xmm0_xmm4 "0xE0"
419 #define xmm1_xmm0 "0xC1"
420 #define xmm1_xmm2 "0xD1"
421
422 /*
423 * AES-NI AES-ECB block en(de)cryption
424 */
mbedtls_aesni_crypt_ecb(mbedtls_aes_context * ctx,int mode,const unsigned char input[16],unsigned char output[16])425 int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
426 int mode,
427 const unsigned char input[16],
428 unsigned char output[16])
429 {
430 asm ("movdqu (%3), %%xmm0 \n\t" // load input
431 "movdqu (%1), %%xmm1 \n\t" // load round key 0
432 "pxor %%xmm1, %%xmm0 \n\t" // round 0
433 "add $16, %1 \n\t" // point to next round key
434 "subl $1, %0 \n\t" // normal rounds = nr - 1
435 "test %2, %2 \n\t" // mode?
436 "jz 2f \n\t" // 0 = decrypt
437
438 "1: \n\t" // encryption loop
439 "movdqu (%1), %%xmm1 \n\t" // load round key
440 AESENC(xmm1_xmm0) // do round
441 "add $16, %1 \n\t" // point to next round key
442 "subl $1, %0 \n\t" // loop
443 "jnz 1b \n\t"
444 "movdqu (%1), %%xmm1 \n\t" // load round key
445 AESENCLAST(xmm1_xmm0) // last round
446 "jmp 3f \n\t"
447
448 "2: \n\t" // decryption loop
449 "movdqu (%1), %%xmm1 \n\t"
450 AESDEC(xmm1_xmm0) // do round
451 "add $16, %1 \n\t"
452 "subl $1, %0 \n\t"
453 "jnz 2b \n\t"
454 "movdqu (%1), %%xmm1 \n\t" // load round key
455 AESDECLAST(xmm1_xmm0) // last round
456
457 "3: \n\t"
458 "movdqu %%xmm0, (%4) \n\t" // export output
459 :
460 : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
461 : "memory", "cc", "xmm0", "xmm1");
462
463
464 return 0;
465 }
466
467 /*
468 * GCM multiplication: c = a times b in GF(2^128)
469 * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
470 */
mbedtls_aesni_gcm_mult(unsigned char c[16],const unsigned char a[16],const unsigned char b[16])471 void mbedtls_aesni_gcm_mult(unsigned char c[16],
472 const unsigned char a[16],
473 const unsigned char b[16])
474 {
475 unsigned char aa[16], bb[16], cc[16];
476 size_t i;
477
478 /* The inputs are in big-endian order, so byte-reverse them */
479 for (i = 0; i < 16; i++) {
480 aa[i] = a[15 - i];
481 bb[i] = b[15 - i];
482 }
483
484 asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
485 "movdqu (%1), %%xmm1 \n\t" // b1:b0
486
487 /*
488 * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
489 * using [CLMUL-WP] algorithm 1 (p. 12).
490 */
491 "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
492 "movdqa %%xmm1, %%xmm3 \n\t" // same
493 "movdqa %%xmm1, %%xmm4 \n\t" // same
494 PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
495 PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
496 PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
497 PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
498 "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
499 "movdqa %%xmm4, %%xmm3 \n\t" // same
500 "psrldq $8, %%xmm4 \n\t" // 0:e1+f1
501 "pslldq $8, %%xmm3 \n\t" // e0+f0:0
502 "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
503 "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
504
505 /*
506 * Now shift the result one bit to the left,
507 * taking advantage of [CLMUL-WP] eq 27 (p. 18)
508 */
509 "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
510 "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
511 "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
512 "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
513 "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
514 "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
515 "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
516 "pslldq $8, %%xmm3 \n\t" // r0>>63:0
517 "pslldq $8, %%xmm4 \n\t" // r2>>63:0
518 "psrldq $8, %%xmm5 \n\t" // 0:r1>>63
519 "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
520 "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
521 "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
522
523 /*
524 * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
525 * using [CLMUL-WP] algorithm 5 (p. 18).
526 * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
527 */
528 /* Step 2 (1) */
529 "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
530 "movdqa %%xmm1, %%xmm4 \n\t" // same
531 "movdqa %%xmm1, %%xmm5 \n\t" // same
532 "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
533 "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
534 "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
535
536 /* Step 2 (2) */
537 "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
538 "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
539 "pslldq $8, %%xmm3 \n\t" // a+b+c:0
540 "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
541
542 /* Steps 3 and 4 */
543 "movdqa %%xmm1,%%xmm0 \n\t" // d:x0
544 "movdqa %%xmm1,%%xmm4 \n\t" // same
545 "movdqa %%xmm1,%%xmm5 \n\t" // same
546 "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
547 "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
548 "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
549 "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
550 "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
551 // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
552 // bits carried from d. Now get those\t bits back in.
553 "movdqa %%xmm1,%%xmm3 \n\t" // d:x0
554 "movdqa %%xmm1,%%xmm4 \n\t" // same
555 "movdqa %%xmm1,%%xmm5 \n\t" // same
556 "psllq $63, %%xmm3 \n\t" // d<<63:stuff
557 "psllq $62, %%xmm4 \n\t" // d<<62:stuff
558 "psllq $57, %%xmm5 \n\t" // d<<57:stuff
559 "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
560 "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
561 "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
562 "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
563 "pxor %%xmm1, %%xmm0 \n\t" // h1:h0
564 "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
565
566 "movdqu %%xmm0, (%2) \n\t" // done
567 :
568 : "r" (aa), "r" (bb), "r" (cc)
569 : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
570
571 /* Now byte-reverse the outputs */
572 for (i = 0; i < 16; i++) {
573 c[i] = cc[15 - i];
574 }
575
576 return;
577 }
578
579 /*
580 * Compute decryption round keys from encryption round keys
581 */
mbedtls_aesni_inverse_key(unsigned char * invkey,const unsigned char * fwdkey,int nr)582 void mbedtls_aesni_inverse_key(unsigned char *invkey,
583 const unsigned char *fwdkey, int nr)
584 {
585 unsigned char *ik = invkey;
586 const unsigned char *fk = fwdkey + 16 * nr;
587
588 memcpy(ik, fk, 16);
589
590 for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
591 asm ("movdqu (%0), %%xmm0 \n\t"
592 AESIMC(xmm0_xmm0)
593 "movdqu %%xmm0, (%1) \n\t"
594 :
595 : "r" (fk), "r" (ik)
596 : "memory", "xmm0");
597 }
598
599 memcpy(ik, fk, 16);
600 }
601
602 /*
603 * Key expansion, 128-bit case
604 */
aesni_setkey_enc_128(unsigned char * rk,const unsigned char * key)605 static void aesni_setkey_enc_128(unsigned char *rk,
606 const unsigned char *key)
607 {
608 asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
609 "movdqu %%xmm0, (%0) \n\t" // as round key 0
610 "jmp 2f \n\t" // skip auxiliary routine
611
612 /*
613 * Finish generating the next round key.
614 *
615 * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
616 * with X = rot( sub( r3 ) ) ^ RCON.
617 *
618 * On exit, xmm0 is r7:r6:r5:r4
619 * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
620 * and those are written to the round key buffer.
621 */
622 "1: \n\t"
623 "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
624 "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
625 "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
626 "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
627 "pslldq $4, %%xmm0 \n\t" // etc
628 "pxor %%xmm0, %%xmm1 \n\t"
629 "pslldq $4, %%xmm0 \n\t"
630 "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
631 "add $16, %0 \n\t" // point to next round key
632 "movdqu %%xmm0, (%0) \n\t" // write it
633 "ret \n\t"
634
635 /* Main "loop" */
636 "2: \n\t"
637 AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
638 AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
639 AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
640 AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
641 AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
642 AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
643 AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
644 AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
645 AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
646 AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
647 :
648 : "r" (rk), "r" (key)
649 : "memory", "cc", "0");
650 }
651
652 /*
653 * Key expansion, 192-bit case
654 */
655 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_setkey_enc_192(unsigned char * rk,const unsigned char * key)656 static void aesni_setkey_enc_192(unsigned char *rk,
657 const unsigned char *key)
658 {
659 asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
660 "movdqu %%xmm0, (%0) \n\t"
661 "add $16, %0 \n\t"
662 "movq 16(%1), %%xmm1 \n\t"
663 "movq %%xmm1, (%0) \n\t"
664 "add $8, %0 \n\t"
665 "jmp 2f \n\t" // skip auxiliary routine
666
667 /*
668 * Finish generating the next 6 quarter-keys.
669 *
670 * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
671 * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
672 *
673 * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
674 * and those are written to the round key buffer.
675 */
676 "1: \n\t"
677 "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
678 "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
679 "pslldq $4, %%xmm0 \n\t" // etc
680 "pxor %%xmm0, %%xmm2 \n\t"
681 "pslldq $4, %%xmm0 \n\t"
682 "pxor %%xmm0, %%xmm2 \n\t"
683 "pslldq $4, %%xmm0 \n\t"
684 "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
685 "movdqu %%xmm0, (%0) \n\t"
686 "add $16, %0 \n\t"
687 "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
688 "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
689 "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
690 "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
691 "movq %%xmm1, (%0) \n\t"
692 "add $8, %0 \n\t"
693 "ret \n\t"
694
695 "2: \n\t"
696 AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
697 AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
698 AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
699 AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
700 AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
701 AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
702 AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
703 AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
704
705 :
706 : "r" (rk), "r" (key)
707 : "memory", "cc", "0");
708 }
709 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
710
711 /*
712 * Key expansion, 256-bit case
713 */
714 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
aesni_setkey_enc_256(unsigned char * rk,const unsigned char * key)715 static void aesni_setkey_enc_256(unsigned char *rk,
716 const unsigned char *key)
717 {
718 asm ("movdqu (%1), %%xmm0 \n\t"
719 "movdqu %%xmm0, (%0) \n\t"
720 "add $16, %0 \n\t"
721 "movdqu 16(%1), %%xmm1 \n\t"
722 "movdqu %%xmm1, (%0) \n\t"
723 "jmp 2f \n\t" // skip auxiliary routine
724
725 /*
726 * Finish generating the next two round keys.
727 *
728 * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
729 * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
730 *
731 * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
732 * and those have been written to the output buffer.
733 */
734 "1: \n\t"
735 "pshufd $0xff, %%xmm2, %%xmm2 \n\t"
736 "pxor %%xmm0, %%xmm2 \n\t"
737 "pslldq $4, %%xmm0 \n\t"
738 "pxor %%xmm0, %%xmm2 \n\t"
739 "pslldq $4, %%xmm0 \n\t"
740 "pxor %%xmm0, %%xmm2 \n\t"
741 "pslldq $4, %%xmm0 \n\t"
742 "pxor %%xmm2, %%xmm0 \n\t"
743 "add $16, %0 \n\t"
744 "movdqu %%xmm0, (%0) \n\t"
745
746 /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
747 * and proceed to generate next round key from there */
748 AESKEYGENA(xmm0_xmm2, "0x00")
749 "pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
750 "pxor %%xmm1, %%xmm2 \n\t"
751 "pslldq $4, %%xmm1 \n\t"
752 "pxor %%xmm1, %%xmm2 \n\t"
753 "pslldq $4, %%xmm1 \n\t"
754 "pxor %%xmm1, %%xmm2 \n\t"
755 "pslldq $4, %%xmm1 \n\t"
756 "pxor %%xmm2, %%xmm1 \n\t"
757 "add $16, %0 \n\t"
758 "movdqu %%xmm1, (%0) \n\t"
759 "ret \n\t"
760
761 /*
762 * Main "loop" - Generating one more key than necessary,
763 * see definition of mbedtls_aes_context.buf
764 */
765 "2: \n\t"
766 AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
767 AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
768 AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
769 AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
770 AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
771 AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
772 AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
773 :
774 : "r" (rk), "r" (key)
775 : "memory", "cc", "0");
776 }
777 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
778
779 #endif /* MBEDTLS_AESNI_HAVE_CODE */
780
781 /*
782 * Key expansion, wrapper
783 */
mbedtls_aesni_setkey_enc(unsigned char * rk,const unsigned char * key,size_t bits)784 int mbedtls_aesni_setkey_enc(unsigned char *rk,
785 const unsigned char *key,
786 size_t bits)
787 {
788 switch (bits) {
789 case 128: aesni_setkey_enc_128(rk, key); break;
790 #if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
791 case 192: aesni_setkey_enc_192(rk, key); break;
792 case 256: aesni_setkey_enc_256(rk, key); break;
793 #endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
794 default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
795 }
796
797 return 0;
798 }
799
800 #endif /* MBEDTLS_AESNI_HAVE_CODE */
801
802 #endif /* MBEDTLS_AESNI_C */
803