1.. _lcd_stm32_guide:
2
3=========================================================================
4Step-by-step Guide: How to use the LVGL v9 LCD drivers with STM32 devices
5=========================================================================
6
7Introduction
8------------
9
10This guide is intended to be a step-by-step instruction of how to configure the STM32Cube HAL with the new TFT-LCD display drivers introduced in LVGL v9.0. The example code has been tested on the STM32F746-based Nucleo-F746ZG board with an ST7789-based LCD panel connected via SPI. The application itself and the hardware configuration code were generated with the STM32CubeIDE 1.14.0 tool.
11
12.. tip::
13	ST Micro provide their own TFT-LCD drivers in their X-CUBE-DISPLAY Software Extension Package. While these drivers can be used with LVGL as well, the LVGL LCD drivers do not depend on this package.
14
15	The LVGL LCD drivers are meant as an alternative, simple to use API to implement LCD support for your LVGL-based project on any platform. Moreover, even in the initial release we support more LCD controllers than X-CUBE-DISPLAY currently provides, and we plan to add support for even more LCD controllers in the future.
16
17	Please note however, that – unlike X-CUBE-DISPLAY – the LVGL LCD drivers do not implement the communication part, whether SPI, parallel i8080 bus or other. It is the user's responsibility to implement – and optimize – these on their chosen platform. LVGL will only provide examples for the most popular platforms.
18
19By following the steps you will have a fully functional program, which can be used as the foundation of your own LVGL-based project. If you are in a hurry and not interested in the details, you can find the final project `here <https://github.com/lvgl/lv_port_lcd_stm32>`__. You will only need to configure LVGL to use the driver corresponding to your hardware (if it is other than the ST7789), and implement the function ``ui_init()`` to create your widgets.
20
21.. note::
22
23	This example is not meant as the best possible implementation, or the recommended solution. It relies solely on the HAL drivers provided by ST Micro, which favor portability over performance. Despite of this the performance is very good, thanks to the efficient, DMA-based implementation of the drivers.
24
25.. note::
26
27	Although the example uses FreeRTOS, this is not a strict requirement with the LVGL LCD display drivers.
28
29You can find the source code snippets of this guide in the `lv_port_lcd_stm32_template.c <https://github.com/lvgl/lvgl/examples/porting/lv_port_lcd_stm32_template.c>`__ example.
30
31Hardware configuration
32----------------------
33
34In this example we'll use the SPI1 peripheral to connect the microcontroller to the LCD panel. Besides the hardware-controlled SPI pins SCK and MOSI we need some additional output pins for the chip select, command/data select, and LCD reset:
35
36==== ============= ======= ==========
37pin  configuration LCD     user label
38==== ============= ======= ==========
39PA4  GPIO_Output   CS	   LCD_CS
40PA5  SPI1_SCK	   SCK	   --
41PA7  SPI1_MOSI	   SDI     --
42PA15 GPIO_Output   RESET   LCD_RESET
43PB10 GPIO_Output   DC      LCD_DCX
44==== ============= ======= ==========
45
46Step-by-step instructions
47-------------------------
48
49#. Create new project in File/New/STM32 Project.
50#. Select target processor/board.
51#. Set project name and location.
52#. Set Targeted Project Type to STM32Cube and press Finish.
53#. Say "Yes" to Initialize peripherals with their default Mode? After the project is created, the configuration file (.ioc) is opened automatically.
54#. Switch to the Pinout & Configuration tab.
55#. In the System Core category switch to RCC.
56#. Set High Speed Clock to "BYPASS Clock Source", and Low Speed Clock to "Crystal/Ceramic Resonator".
57#. In the System Core category select SYS, and set Timebase Source to other than SysTick (in our example, TIM2).
58#. Switch to the Clock Configuration tab.
59#. Set the HCLK clock frequency to the maximum value (216 MHz for the STM32F746).
60#. Switch back to the Pinout & Configuration tab, and in the Middleware and Software Packs category select FREERTOS.
61#. Select Interface: CMSIS_V1.
62#. In the Advanced Settings tab enable USE_NEWLIB_REENTRANT. We are finished here.
63#. In the Pinout view configure PA5 as SPI1_SCK, PA7 as SPI1_MOSI (right click the pin and select the function).
64#. In the Pinout & Configuration/Connectivity category select SPI1.
65#. Set Mode to Transmit Only Master, and Hardware NSS Signal to Disable.
66#. In the Configuration subwindow switch to Parameter Settings.
67#. Set Frame Format to Motorola, Data Size to 8 Bits, First Bit to MSB First.
68#. Set the Prescaler to the maximum value according to the LCD controller’s datasheet (e.g., 15 MBits/s). Set CPOL/CPHA as required (leave as default).
69#. Set NSSP Mode to Disabled and NSS Signal Type to Software.
70#. In DMA Settings add a new Request for SPI1_TX (when using SPI1).
71#. Set Priority to Medium, Data Width to Half Word.
72#. In NVIC Settings enable SPI1 global interrupt.
73#. In GPIO Settings set SPI1_SCK to Pull-down and Very High output speed and set the User Label to ``LCD_SCK``.
74#. Set SPI1_MOSI to Pull-up and Very High, and name it ``LCD_SDI``.
75#. Select System Core/GPIO category. In the Pinout view configure additional pins for chip select, reset and command/data select. Name them ``LCD_CS``, ``LCD_RESET`` and ``LCD_DCX``, respectively. Configure them as GPIO Output. (In this example we will use PA4 for ``LCD_CS``, PA15 for ``LCD_RESET`` and PB10 for ``LCD_DCX``.)
76#. Set ``LCD_CS`` to No pull-up and no pull-down, Low level and Very High speed.
77#. Set ``LCD_RESET`` to Pull-up and High level.
78#. Set ``LCD_DCX`` to No pull-up and no pull-down, High level and Very High speed.
79#. Open the Project Manager tab, and select Advanced Settings. On the right hand side there is a Register Callback window. Select SPI and set it to ENABLE.
80#. We are ready with the hardware configuration. Save the configuration and let STM32Cube generate the source.
81#. In the project tree clone the LVGL repository into the Middlewares/Third_Party folder (this tutorial uses the release/v9.0 branch of LVGL):
82
83	.. code-block:: dosbatch
84
85		git clone https://github.com/lvgl/lvgl.git -b release/v9.0
86
87#. Cloning should create an 'lvgl' subfolder inside the 'Third_Party' folder. From the 'lvgl' folder copy 'lv_conf_template.h' into the 'Middlewares' folder, and rename it to 'lv_conf.h'. Refresh the project tree.
88#. Open 'lv_conf.h', and in line 15 change ``#if 0`` to ``#if 1``.
89#. Search for the string ``LV_USE_ST7735``, and enable the appropriate LCD driver by setting its value to 1. This example uses the ST7789 driver:
90
91	.. code-block:: c
92
93		#define LV_USE_ST7789		1
94
95#. Right click the folder 'Middlewares/Third_Party/lvgl/tests', select Resource Configurations/Exclude from Build..., check both Debug and Release, then press OK.
96#. Right click the project name and select "Properties". In the C/C++ Build/Settings panel select MCU GCC Compiler/Include paths. In the Configuration dropdown select [ All configurations ]. Add the following Include path:
97
98	.. code-block:: c
99
100		../Middlewares/Third_Party/lvgl
101
102#. Open Core/Src/stm32xxx_it.c (the file name depends on the processor variation). Add 'lv_tick.h' to the Private includes section:
103
104	.. code-block:: c
105
106		/* Private includes ----------------------------------------------------------*/
107		/* USER CODE BEGIN Includes */
108		#include "./src/tick/lv_tick.h"
109		/* USER CODE END Includes */
110
111#. Find the function ``TIM2_IRQHandler``. Add a call to ``lv_tick_inc()``:
112
113	.. code-block:: c
114
115		void TIM2_IRQHandler(void)
116		{
117		  /* USER CODE BEGIN TIM2_IRQn 0 */
118
119		  /* USER CODE END TIM2_IRQn 0 */
120		  HAL_TIM_IRQHandler(&htim2);
121		  /* USER CODE BEGIN TIM2_IRQn 1 */
122		  lv_tick_inc(1);
123		  /* USER CODE END TIM2_IRQn 1 */
124		}
125
126
127#. Save the file, then open Core/Src/main.c. Add the following lines to the Private includes (if your LCD uses other than the ST7789, replace the driver path and header with the appropriate one):
128
129	.. code-block:: c
130
131		/* Private includes ----------------------------------------------------------*/
132		/* USER CODE BEGIN Includes */
133		#include "lvgl.h"
134		#include "./src/drivers/display/st7789/lv_st7789.h"
135		/* USER CODE END Includes */
136
137#. Add the following lines to Private defines (change them according to your LCD specs):
138
139	.. code-block:: c
140
141		#define LCD_H_RES	240
142		#define LCD_V_RES	320
143		#define BUS_SPI1_POLL_TIMEOUT 0x1000U
144
145
146#. Add the following lines to the Private variables:
147
148	.. code-block:: c
149
150		osThreadId LvglTaskHandle;
151		lv_display_t *lcd_disp;
152		volatile int lcd_bus_busy = 0;
153
154#. Add the following line to the Private function prototypes:
155
156	.. code-block:: c
157
158		void ui_init(lv_display_t *disp);
159		void LVGL_Task(void const *argument);
160
161#. Add the following lines after USER CODE BEGIN RTOS_THREADS:
162
163	.. code-block:: c
164
165		osThreadDef(LvglTask, LVGL_Task, osPriorityIdle, 0, 1024);
166		LvglTaskHandle = osThreadCreate(osThread(LvglTask), NULL);
167
168#. Copy and paste the hardware initialization and the transfer callback functions from the example code after USER CODE BEGIN 4:
169
170	.. code-block:: c
171
172		/* USER CODE BEGIN 4 */
173
174		void lcd_color_transfer_ready_cb(SPI_HandleTypeDef *hspi)
175		{
176			/* CS high */
177			HAL_GPIO_WritePin(LCD_CS_GPIO_Port, LCD_CS_Pin, GPIO_PIN_SET);
178			lcd_bus_busy = 0;
179			lv_display_flush_ready(lcd_disp);
180		}
181
182		/* Initialize LCD I/O bus, reset LCD */
183		static int32_t lcd_io_init(void)
184		{
185			/* Register SPI Tx Complete Callback */
186			HAL_SPI_RegisterCallback(&hspi1, HAL_SPI_TX_COMPLETE_CB_ID, lcd_color_transfer_ready_cb);
187
188			/* reset LCD */
189			HAL_GPIO_WritePin(LCD_RESET_GPIO_Port, LCD_RESET_Pin, GPIO_PIN_RESET);
190			HAL_Delay(100);
191			HAL_GPIO_WritePin(LCD_RESET_GPIO_Port, LCD_RESET_Pin, GPIO_PIN_SET);
192			HAL_Delay(100);
193
194			HAL_GPIO_WritePin(LCD_CS_GPIO_Port, LCD_CS_Pin, GPIO_PIN_SET);
195			HAL_GPIO_WritePin(LCD_DCX_GPIO_Port, LCD_DCX_Pin, GPIO_PIN_SET);
196
197			return HAL_OK;
198		}
199
200		/* Platform-specific implementation of the LCD send command function. In general this should use polling transfer. */
201		static void lcd_send_cmd(lv_display_t *disp, const uint8_t *cmd, size_t cmd_size, const uint8_t *param, size_t param_size)
202		{
203			LV_UNUSED(disp);
204			while (lcd_bus_busy);	/* wait until previous transfer is finished */
205			/* Set the SPI in 8-bit mode */
206			hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
207			HAL_SPI_Init(&hspi1);
208			/* DCX low (command) */
209			HAL_GPIO_WritePin(LCD_DCX_GPIO_Port, LCD_DCX_Pin, GPIO_PIN_RESET);
210			/* CS low */
211			HAL_GPIO_WritePin(LCD_CS_GPIO_Port, LCD_CS_Pin, GPIO_PIN_RESET);
212			/* send command */
213			if (HAL_SPI_Transmit(&hspi1, cmd, cmd_size, BUS_SPI1_POLL_TIMEOUT) == HAL_OK) {
214				/* DCX high (data) */
215				HAL_GPIO_WritePin(LCD_DCX_GPIO_Port, LCD_DCX_Pin, GPIO_PIN_SET);
216				/* for short data blocks we use polling transfer */
217				HAL_SPI_Transmit(&hspi1, (uint8_t *)param, (uint16_t)param_size, BUS_SPI1_POLL_TIMEOUT);
218				/* CS high */
219				HAL_GPIO_WritePin(LCD_CS_GPIO_Port, LCD_CS_Pin, GPIO_PIN_SET);
220			}
221		}
222
223		/* Platform-specific implementation of the LCD send color function. For better performance this should use DMA transfer.
224		 * In case of a DMA transfer a callback must be installed to notify LVGL about the end of the transfer.
225		 */
226		static void lcd_send_color(lv_display_t *disp, const uint8_t *cmd, size_t cmd_size, uint8_t *param, size_t param_size)
227		{
228			LV_UNUSED(disp);
229			while (lcd_bus_busy);	/* wait until previous transfer is finished */
230			/* Set the SPI in 8-bit mode */
231			hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
232			HAL_SPI_Init(&hspi1);
233			/* DCX low (command) */
234			HAL_GPIO_WritePin(LCD_DCX_GPIO_Port, LCD_DCX_Pin, GPIO_PIN_RESET);
235			/* CS low */
236			HAL_GPIO_WritePin(LCD_CS_GPIO_Port, LCD_CS_Pin, GPIO_PIN_RESET);
237			/* send command */
238			if (HAL_SPI_Transmit(&hspi1, cmd, cmd_size, BUS_SPI1_POLL_TIMEOUT) == HAL_OK) {
239				/* DCX high (data) */
240				HAL_GPIO_WritePin(LCD_DCX_GPIO_Port, LCD_DCX_Pin, GPIO_PIN_SET);
241				/* for color data use DMA transfer */
242				/* Set the SPI in 16-bit mode to match endianness */
243				hspi1.Init.DataSize = SPI_DATASIZE_16BIT;
244				HAL_SPI_Init(&hspi1);
245				lcd_bus_busy = 1;
246				HAL_SPI_Transmit_DMA(&hspi1, param, (uint16_t)param_size / 2);
247				/* NOTE: CS will be reset in the transfer ready callback */
248			}
249		}
250
251#. Add the LVGL_Task() function. Replace the ``lv_st7789_create()`` call with the appropriate driver. You can change the default orientation by adjusting the parameter of ``lv_display_set_rotation()``. You will also need to create the display buffers here. This example uses a double buffering scheme with 1/10th size partial buffers. In most cases this is a good compromise between the required memory size and performance, but you are free to experiment with other settings.
252
253	.. code-block:: c
254
255		void LVGL_Task(void const *argument)
256		{
257			/* Initialize LVGL */
258			lv_init();
259
260			/* Initialize LCD I/O */
261			if (lcd_io_init() != 0)
262				return;
263
264			/* Create the LVGL display object and the LCD display driver */
265			lcd_disp = lv_st7789_create(LCD_H_RES, LCD_V_RES, LV_LCD_FLAG_NONE, lcd_send_cmd, lcd_send_color);
266			lv_display_set_rotation(lcd_disp, LV_DISPLAY_ROTATION_270);
267
268			/* Allocate draw buffers on the heap. In this example we use two partial buffers of 1/10th size of the screen */
269			lv_color_t * buf1 = NULL;
270			lv_color_t * buf2 = NULL;
271
272			uint32_t buf_size = LCD_H_RES * LCD_V_RES / 10 * lv_color_format_get_size(lv_display_get_color_format(lcd_disp));
273
274			buf1 = lv_malloc(buf_size);
275			if(buf1 == NULL) {
276				LV_LOG_ERROR("display draw buffer malloc failed");
277				return;
278			}
279
280			buf2 = lv_malloc(buf_size);
281			if(buf2 == NULL) {
282				LV_LOG_ERROR("display buffer malloc failed");
283				lv_free(buf1);
284				return;
285			}
286			lv_display_set_buffers(lcd_disp, buf1, buf2, buf_size, LV_DISPLAY_RENDER_MODE_PARTIAL);
287
288			ui_init(lcd_disp);
289
290			for(;;)	{
291				/* The task running lv_timer_handler should have lower priority than that running `lv_tick_inc` */
292				lv_timer_handler();
293				/* raise the task priority of LVGL and/or reduce the handler period can improve the performance */
294				osDelay(10);
295			}
296		}
297
298#. All that's left is to implement ``ui_init()`` to create the screen. Here's a simple "Hello World" example:
299
300	.. code-block:: c
301
302		void ui_init(lv_display_t *disp)
303		{
304			lv_obj_t *obj;
305
306			/* set screen background to white */
307			lv_obj_t *scr = lv_screen_active();
308			lv_obj_set_style_bg_color(scr, lv_color_white(), 0);
309			lv_obj_set_style_bg_opa(scr, LV_OPA_100, 0);
310
311			/* create label */
312			obj = lv_label_create(scr);
313            lv_obj_set_align(widget, LV_ALIGN_CENTER);
314            lv_obj_set_height(widget, LV_SIZE_CONTENT);
315            lv_obj_set_width(widget, LV_SIZE_CONTENT);
316            lv_obj_set_style_text_font(widget, &lv_font_montserrat_14, 0);
317            lv_obj_set_style_text_color(widget, lv_color_black(), 0);
318            lv_label_set_text(widget, "Hello World!");
319		}
320
321