1 /**
2 * @file lv_draw_sw_gradient.c
3 *
4 */
5
6 /*********************
7 * INCLUDES
8 *********************/
9 #include "lv_draw_sw_gradient.h"
10 #include "../../misc/lv_gc.h"
11 #include "../../misc/lv_types.h"
12
13 /*********************
14 * DEFINES
15 *********************/
16 #if _DITHER_GRADIENT
17 #define GRAD_CM(r,g,b) LV_COLOR_MAKE32(r,g,b)
18 #define GRAD_CONV(t, x) t.full = lv_color_to32(x)
19 #else
20 #define GRAD_CM(r,g,b) LV_COLOR_MAKE(r,g,b)
21 #define GRAD_CONV(t, x) t = x
22 #endif
23
24 #undef ALIGN
25 #if defined(LV_ARCH_64)
26 #define ALIGN(X) (((X) + 7) & ~7)
27 #else
28 #define ALIGN(X) (((X) + 3) & ~3)
29 #endif
30
31 #if LV_GRAD_CACHE_DEF_SIZE != 0 && LV_GRAD_CACHE_DEF_SIZE < 256
32 #error "LV_GRAD_CACHE_DEF_SIZE is too small"
33 #endif
34
35 /**********************
36 * STATIC PROTOTYPES
37 **********************/
38 static lv_grad_t * next_in_cache(lv_grad_t * item);
39
40 typedef lv_res_t (*op_cache_t)(lv_grad_t * c, void * ctx);
41 static lv_res_t iterate_cache(op_cache_t func, void * ctx, lv_grad_t ** out);
42 static size_t get_cache_item_size(lv_grad_t * c);
43 static lv_grad_t * allocate_item(const lv_grad_dsc_t * g, lv_coord_t w, lv_coord_t h);
44 static lv_res_t find_oldest_item_life(lv_grad_t * c, void * ctx);
45 static lv_res_t kill_oldest_item(lv_grad_t * c, void * ctx);
46 static lv_res_t find_item(lv_grad_t * c, void * ctx);
47 static void free_item(lv_grad_t * c);
48 static uint32_t compute_key(const lv_grad_dsc_t * g, lv_coord_t w, lv_coord_t h);
49
50
51 /**********************
52 * STATIC VARIABLE
53 **********************/
54 static size_t grad_cache_size = 0;
55 static uint8_t * grad_cache_end = 0;
56
57 /**********************
58 * STATIC FUNCTIONS
59 **********************/
60 union void_cast {
61 const void * ptr;
62 const uint32_t value;
63 };
64
compute_key(const lv_grad_dsc_t * g,lv_coord_t size,lv_coord_t w)65 static uint32_t compute_key(const lv_grad_dsc_t * g, lv_coord_t size, lv_coord_t w)
66 {
67 union void_cast v;
68 v.ptr = g;
69 return (v.value ^ size ^ (w >> 1)); /*Yes, this is correct, it's like a hash that changes if the width changes*/
70 }
71
get_cache_item_size(lv_grad_t * c)72 static size_t get_cache_item_size(lv_grad_t * c)
73 {
74 size_t s = ALIGN(sizeof(*c)) + ALIGN(c->alloc_size * sizeof(lv_color_t));
75 #if _DITHER_GRADIENT
76 s += ALIGN(c->size * sizeof(lv_color32_t));
77 #if LV_DITHER_ERROR_DIFFUSION == 1
78 s += ALIGN(c->w * sizeof(lv_scolor24_t));
79 #endif
80 #endif
81 return s;
82 }
83
next_in_cache(lv_grad_t * item)84 static lv_grad_t * next_in_cache(lv_grad_t * item)
85 {
86 if(grad_cache_size == 0) return NULL;
87
88 if(item == NULL)
89 return (lv_grad_t *)LV_GC_ROOT(_lv_grad_cache_mem);
90
91 size_t s = get_cache_item_size(item);
92 /*Compute the size for this cache item*/
93 if((uint8_t *)item + s >= grad_cache_end) return NULL;
94 else return (lv_grad_t *)((uint8_t *)item + s);
95 }
96
iterate_cache(op_cache_t func,void * ctx,lv_grad_t ** out)97 static lv_res_t iterate_cache(op_cache_t func, void * ctx, lv_grad_t ** out)
98 {
99 lv_grad_t * first = next_in_cache(NULL);
100 while(first != NULL && first->life) {
101 if((*func)(first, ctx) == LV_RES_OK) {
102 if(out != NULL) *out = first;
103 return LV_RES_OK;
104 }
105 first = next_in_cache(first);
106 }
107 return LV_RES_INV;
108 }
109
find_oldest_item_life(lv_grad_t * c,void * ctx)110 static lv_res_t find_oldest_item_life(lv_grad_t * c, void * ctx)
111 {
112 uint32_t * min_life = (uint32_t *)ctx;
113 if(c->life < *min_life) *min_life = c->life;
114 return LV_RES_INV;
115 }
116
free_item(lv_grad_t * c)117 static void free_item(lv_grad_t * c)
118 {
119 size_t size = get_cache_item_size(c);
120 size_t next_items_size = (size_t)(grad_cache_end - (uint8_t *)c) - size;
121 grad_cache_end -= size;
122 if(next_items_size) {
123 uint8_t * old = (uint8_t *)c;
124 lv_memcpy(c, ((uint8_t *)c) + size, next_items_size);
125 /* Then need to fix all internal pointers too */
126 while((uint8_t *)c != grad_cache_end) {
127 c->map = (lv_color_t *)(((uint8_t *)c->map) - size);
128 #if _DITHER_GRADIENT
129 c->hmap = (lv_color32_t *)(((uint8_t *)c->hmap) - size);
130 #if LV_DITHER_ERROR_DIFFUSION == 1
131 c->error_acc = (lv_scolor24_t *)(((uint8_t *)c->error_acc) - size);
132 #endif
133 #endif
134 c = (lv_grad_t *)(((uint8_t *)c) + get_cache_item_size(c));
135 }
136 lv_memset_00(old + next_items_size, size);
137 }
138 }
139
kill_oldest_item(lv_grad_t * c,void * ctx)140 static lv_res_t kill_oldest_item(lv_grad_t * c, void * ctx)
141 {
142 uint32_t * min_life = (uint32_t *)ctx;
143 if(c->life == *min_life) {
144 /*Found, let's kill it*/
145 free_item(c);
146 return LV_RES_OK;
147 }
148 return LV_RES_INV;
149 }
150
find_item(lv_grad_t * c,void * ctx)151 static lv_res_t find_item(lv_grad_t * c, void * ctx)
152 {
153 uint32_t * k = (uint32_t *)ctx;
154 if(c->key == *k) return LV_RES_OK;
155 return LV_RES_INV;
156 }
157
allocate_item(const lv_grad_dsc_t * g,lv_coord_t w,lv_coord_t h)158 static lv_grad_t * allocate_item(const lv_grad_dsc_t * g, lv_coord_t w, lv_coord_t h)
159 {
160 lv_coord_t size = g->dir == LV_GRAD_DIR_HOR ? w : h;
161 lv_coord_t map_size = LV_MAX(w, h); /* The map is being used horizontally (width) unless
162 no dithering is selected where it's used vertically */
163
164 size_t req_size = ALIGN(sizeof(lv_grad_t)) + ALIGN(map_size * sizeof(lv_color_t));
165 #if _DITHER_GRADIENT
166 req_size += ALIGN(size * sizeof(lv_color32_t));
167 #if LV_DITHER_ERROR_DIFFUSION == 1
168 req_size += ALIGN(w * sizeof(lv_scolor24_t));
169 #endif
170 #endif
171
172 size_t act_size = (size_t)(grad_cache_end - LV_GC_ROOT(_lv_grad_cache_mem));
173 lv_grad_t * item = NULL;
174 if(req_size + act_size < grad_cache_size) {
175 item = (lv_grad_t *)grad_cache_end;
176 item->not_cached = 0;
177 }
178 else {
179 /*Need to evict items from cache until we find enough space to allocate this one */
180 if(req_size <= grad_cache_size) {
181 while(act_size + req_size > grad_cache_size) {
182 uint32_t oldest_life = UINT32_MAX;
183 iterate_cache(&find_oldest_item_life, &oldest_life, NULL);
184 iterate_cache(&kill_oldest_item, &oldest_life, NULL);
185 act_size = (size_t)(grad_cache_end - LV_GC_ROOT(_lv_grad_cache_mem));
186 }
187 item = (lv_grad_t *)grad_cache_end;
188 item->not_cached = 0;
189 }
190 else {
191 /*The cache is too small. Allocate the item manually and free it later.*/
192 item = lv_mem_alloc(req_size);
193 LV_ASSERT_MALLOC(item);
194 if(item == NULL) return NULL;
195 item->not_cached = 1;
196 }
197 }
198
199 item->key = compute_key(g, size, w);
200 item->life = 1;
201 item->filled = 0;
202 item->alloc_size = map_size;
203 item->size = size;
204 if(item->not_cached) {
205 uint8_t * p = (uint8_t *)item;
206 item->map = (lv_color_t *)(p + ALIGN(sizeof(*item)));
207 #if _DITHER_GRADIENT
208 item->hmap = (lv_color32_t *)(p + ALIGN(sizeof(*item)) + ALIGN(map_size * sizeof(lv_color_t)));
209 #if LV_DITHER_ERROR_DIFFUSION == 1
210 item->error_acc = (lv_scolor24_t *)(p + ALIGN(sizeof(*item)) + ALIGN(size * sizeof(lv_grad_color_t)) +
211 ALIGN(map_size * sizeof(lv_color_t)));
212 item->w = w;
213 #endif
214 #endif
215 }
216 else {
217 item->map = (lv_color_t *)(grad_cache_end + ALIGN(sizeof(*item)));
218 #if _DITHER_GRADIENT
219 item->hmap = (lv_color32_t *)(grad_cache_end + ALIGN(sizeof(*item)) + ALIGN(map_size * sizeof(lv_color_t)));
220 #if LV_DITHER_ERROR_DIFFUSION == 1
221 item->error_acc = (lv_scolor24_t *)(grad_cache_end + ALIGN(sizeof(*item)) + ALIGN(size * sizeof(lv_grad_color_t)) +
222 ALIGN(map_size * sizeof(lv_color_t)));
223 item->w = w;
224 #endif
225 #endif
226 grad_cache_end += req_size;
227 }
228 return item;
229 }
230
231
232 /**********************
233 * FUNCTIONS
234 **********************/
lv_gradient_free_cache(void)235 void lv_gradient_free_cache(void)
236 {
237 lv_mem_free(LV_GC_ROOT(_lv_grad_cache_mem));
238 LV_GC_ROOT(_lv_grad_cache_mem) = grad_cache_end = NULL;
239 grad_cache_size = 0;
240 }
241
lv_gradient_set_cache_size(size_t max_bytes)242 void lv_gradient_set_cache_size(size_t max_bytes)
243 {
244 lv_mem_free(LV_GC_ROOT(_lv_grad_cache_mem));
245 grad_cache_end = LV_GC_ROOT(_lv_grad_cache_mem) = lv_mem_alloc(max_bytes);
246 LV_ASSERT_MALLOC(LV_GC_ROOT(_lv_grad_cache_mem));
247 lv_memset_00(LV_GC_ROOT(_lv_grad_cache_mem), max_bytes);
248 grad_cache_size = max_bytes;
249 }
250
lv_gradient_get(const lv_grad_dsc_t * g,lv_coord_t w,lv_coord_t h)251 lv_grad_t * lv_gradient_get(const lv_grad_dsc_t * g, lv_coord_t w, lv_coord_t h)
252 {
253 /* No gradient, no cache */
254 if(g->dir == LV_GRAD_DIR_NONE) return NULL;
255
256 /* Step 0: Check if the cache exist (else create it) */
257 static bool inited = false;
258 if(!inited) {
259 lv_gradient_set_cache_size(LV_GRAD_CACHE_DEF_SIZE);
260 inited = true;
261 }
262
263 /* Step 1: Search cache for the given key */
264 lv_coord_t size = g->dir == LV_GRAD_DIR_HOR ? w : h;
265 uint32_t key = compute_key(g, size, w);
266 lv_grad_t * item = NULL;
267 if(iterate_cache(&find_item, &key, &item) == LV_RES_OK) {
268 item->life++; /* Don't forget to bump the counter */
269 return item;
270 }
271
272 /* Step 2: Need to allocate an item for it */
273 item = allocate_item(g, w, h);
274 if(item == NULL) {
275 LV_LOG_WARN("Faild to allcoate item for teh gradient");
276 return item;
277 }
278
279 /* Step 3: Fill it with the gradient, as expected */
280 #if _DITHER_GRADIENT
281 for(lv_coord_t i = 0; i < item->size; i++) {
282 item->hmap[i] = lv_gradient_calculate(g, item->size, i);
283 }
284 #if LV_DITHER_ERROR_DIFFUSION == 1
285 lv_memset_00(item->error_acc, w * sizeof(lv_scolor24_t));
286 #endif
287 #else
288 for(lv_coord_t i = 0; i < item->size; i++) {
289 item->map[i] = lv_gradient_calculate(g, item->size, i);
290 }
291 #endif
292
293 return item;
294 }
295
lv_gradient_calculate(const lv_grad_dsc_t * dsc,lv_coord_t range,lv_coord_t frac)296 lv_grad_color_t LV_ATTRIBUTE_FAST_MEM lv_gradient_calculate(const lv_grad_dsc_t * dsc, lv_coord_t range,
297 lv_coord_t frac)
298 {
299 lv_grad_color_t tmp;
300 lv_color32_t one, two;
301 /*Clip out-of-bounds first*/
302 int32_t min = (dsc->stops[0].frac * range) >> 8;
303 if(frac <= min) {
304 GRAD_CONV(tmp, dsc->stops[0].color);
305 return tmp;
306 }
307
308 int32_t max = (dsc->stops[dsc->stops_count - 1].frac * range) >> 8;
309 if(frac >= max) {
310 GRAD_CONV(tmp, dsc->stops[dsc->stops_count - 1].color);
311 return tmp;
312 }
313
314 /*Find the 2 closest stop now*/
315 int32_t d = 0;
316 for(uint8_t i = 1; i < dsc->stops_count; i++) {
317 int32_t cur = (dsc->stops[i].frac * range) >> 8;
318 if(frac <= cur) {
319 one.full = lv_color_to32(dsc->stops[i - 1].color);
320 two.full = lv_color_to32(dsc->stops[i].color);
321 min = (dsc->stops[i - 1].frac * range) >> 8;
322 max = (dsc->stops[i].frac * range) >> 8;
323 d = max - min;
324 break;
325 }
326 }
327
328 LV_ASSERT(d != 0);
329
330 /*Then interpolate*/
331 frac -= min;
332 lv_opa_t mix = (frac * 255) / d;
333 lv_opa_t imix = 255 - mix;
334
335 lv_grad_color_t r = GRAD_CM(LV_UDIV255(two.ch.red * mix + one.ch.red * imix),
336 LV_UDIV255(two.ch.green * mix + one.ch.green * imix),
337 LV_UDIV255(two.ch.blue * mix + one.ch.blue * imix));
338 return r;
339 }
340
lv_gradient_cleanup(lv_grad_t * grad)341 void lv_gradient_cleanup(lv_grad_t * grad)
342 {
343 if(grad->not_cached) {
344 lv_mem_free(grad);
345 }
346 }
347