1 /******************************************************************************
2 *
3 * Copyright 2022 Google LLC
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #include "sns.h"
20 #include "tables.h"
21
22
23 /* ----------------------------------------------------------------------------
24 * DCT-16
25 * -------------------------------------------------------------------------- */
26
27 /**
28 * Matrix of DCT-16 coefficients
29 *
30 * M[n][k] = 2f cos( Pi k (2n + 1) / 2N )
31 *
32 * k = [0..N-1], n = [0..N-1], N = 16
33 * f = sqrt(1/4N) for k=0, sqrt(1/2N) otherwise
34 */
35 static const float dct16_m[16][16] = {
36
37 { 2.50000000e-01, 3.51850934e-01, 3.46759961e-01, 3.38329500e-01,
38 3.26640741e-01, 3.11806253e-01, 2.93968901e-01, 2.73300467e-01,
39 2.50000000e-01, 2.24291897e-01, 1.96423740e-01, 1.66663915e-01,
40 1.35299025e-01, 1.02631132e-01, 6.89748448e-02, 3.46542923e-02 },
41
42 { 2.50000000e-01, 3.38329500e-01, 2.93968901e-01, 2.24291897e-01,
43 1.35299025e-01, 3.46542923e-02, -6.89748448e-02, -1.66663915e-01,
44 -2.50000000e-01, -3.11806253e-01, -3.46759961e-01, -3.51850934e-01,
45 -3.26640741e-01, -2.73300467e-01, -1.96423740e-01, -1.02631132e-01 },
46
47 { 2.50000000e-01, 3.11806253e-01, 1.96423740e-01, 3.46542923e-02,
48 -1.35299025e-01, -2.73300467e-01, -3.46759961e-01, -3.38329500e-01,
49 -2.50000000e-01, -1.02631132e-01, 6.89748448e-02, 2.24291897e-01,
50 3.26640741e-01, 3.51850934e-01, 2.93968901e-01, 1.66663915e-01 },
51
52 { 2.50000000e-01, 2.73300467e-01, 6.89748448e-02, -1.66663915e-01,
53 -3.26640741e-01, -3.38329500e-01, -1.96423740e-01, 3.46542923e-02,
54 2.50000000e-01, 3.51850934e-01, 2.93968901e-01, 1.02631132e-01,
55 -1.35299025e-01, -3.11806253e-01, -3.46759961e-01, -2.24291897e-01 },
56
57 { 2.50000000e-01, 2.24291897e-01, -6.89748448e-02, -3.11806253e-01,
58 -3.26640741e-01, -1.02631132e-01, 1.96423740e-01, 3.51850934e-01,
59 2.50000000e-01, -3.46542923e-02, -2.93968901e-01, -3.38329500e-01,
60 -1.35299025e-01, 1.66663915e-01, 3.46759961e-01, 2.73300467e-01 },
61
62 { 2.50000000e-01, 1.66663915e-01, -1.96423740e-01, -3.51850934e-01,
63 -1.35299025e-01, 2.24291897e-01, 3.46759961e-01, 1.02631132e-01,
64 -2.50000000e-01, -3.38329500e-01, -6.89748448e-02, 2.73300467e-01,
65 3.26640741e-01, 3.46542923e-02, -2.93968901e-01, -3.11806253e-01 },
66
67 { 2.50000000e-01, 1.02631132e-01, -2.93968901e-01, -2.73300467e-01,
68 1.35299025e-01, 3.51850934e-01, 6.89748448e-02, -3.11806253e-01,
69 -2.50000000e-01, 1.66663915e-01, 3.46759961e-01, 3.46542923e-02,
70 -3.26640741e-01, -2.24291897e-01, 1.96423740e-01, 3.38329500e-01 },
71
72 { 2.50000000e-01, 3.46542923e-02, -3.46759961e-01, -1.02631132e-01,
73 3.26640741e-01, 1.66663915e-01, -2.93968901e-01, -2.24291897e-01,
74 2.50000000e-01, 2.73300467e-01, -1.96423740e-01, -3.11806253e-01,
75 1.35299025e-01, 3.38329500e-01, -6.89748448e-02, -3.51850934e-01 },
76
77 { 2.50000000e-01, -3.46542923e-02, -3.46759961e-01, 1.02631132e-01,
78 3.26640741e-01, -1.66663915e-01, -2.93968901e-01, 2.24291897e-01,
79 2.50000000e-01, -2.73300467e-01, -1.96423740e-01, 3.11806253e-01,
80 1.35299025e-01, -3.38329500e-01, -6.89748448e-02, 3.51850934e-01 },
81
82 { 2.50000000e-01, -1.02631132e-01, -2.93968901e-01, 2.73300467e-01,
83 1.35299025e-01, -3.51850934e-01, 6.89748448e-02, 3.11806253e-01,
84 -2.50000000e-01, -1.66663915e-01, 3.46759961e-01, -3.46542923e-02,
85 -3.26640741e-01, 2.24291897e-01, 1.96423740e-01, -3.38329500e-01 },
86
87 { 2.50000000e-01, -1.66663915e-01, -1.96423740e-01, 3.51850934e-01,
88 -1.35299025e-01, -2.24291897e-01, 3.46759961e-01, -1.02631132e-01,
89 -2.50000000e-01, 3.38329500e-01, -6.89748448e-02, -2.73300467e-01,
90 3.26640741e-01, -3.46542923e-02, -2.93968901e-01, 3.11806253e-01 },
91
92 { 2.50000000e-01, -2.24291897e-01, -6.89748448e-02, 3.11806253e-01,
93 -3.26640741e-01, 1.02631132e-01, 1.96423740e-01, -3.51850934e-01,
94 2.50000000e-01, 3.46542923e-02, -2.93968901e-01, 3.38329500e-01,
95 -1.35299025e-01, -1.66663915e-01, 3.46759961e-01, -2.73300467e-01 },
96
97 { 2.50000000e-01, -2.73300467e-01, 6.89748448e-02, 1.66663915e-01,
98 -3.26640741e-01, 3.38329500e-01, -1.96423740e-01, -3.46542923e-02,
99 2.50000000e-01, -3.51850934e-01, 2.93968901e-01, -1.02631132e-01,
100 -1.35299025e-01, 3.11806253e-01, -3.46759961e-01, 2.24291897e-01 },
101
102 { 2.50000000e-01, -3.11806253e-01, 1.96423740e-01, -3.46542923e-02,
103 -1.35299025e-01, 2.73300467e-01, -3.46759961e-01, 3.38329500e-01,
104 -2.50000000e-01, 1.02631132e-01, 6.89748448e-02, -2.24291897e-01,
105 3.26640741e-01, -3.51850934e-01, 2.93968901e-01, -1.66663915e-01 },
106
107 { 2.50000000e-01, -3.38329500e-01, 2.93968901e-01, -2.24291897e-01,
108 1.35299025e-01, -3.46542923e-02, -6.89748448e-02, 1.66663915e-01,
109 -2.50000000e-01, 3.11806253e-01, -3.46759961e-01, 3.51850934e-01,
110 -3.26640741e-01, 2.73300467e-01, -1.96423740e-01, 1.02631132e-01 },
111
112 { 2.50000000e-01, -3.51850934e-01, 3.46759961e-01, -3.38329500e-01,
113 3.26640741e-01, -3.11806253e-01, 2.93968901e-01, -2.73300467e-01,
114 2.50000000e-01, -2.24291897e-01, 1.96423740e-01, -1.66663915e-01,
115 1.35299025e-01, -1.02631132e-01, 6.89748448e-02, -3.46542923e-02 },
116
117 };
118
119 /**
120 * Forward DCT-16 transformation
121 * x, y Input and output 16 values
122 */
dct16_forward(const float * x,float * y)123 LC3_HOT static void dct16_forward(const float *x, float *y)
124 {
125 for (int i = 0, j; i < 16; i++)
126 for (y[i] = 0, j = 0; j < 16; j++)
127 y[i] += x[j] * dct16_m[j][i];
128 }
129
130 /**
131 * Inverse DCT-16 transformation
132 * x, y Input and output 16 values
133 */
dct16_inverse(const float * x,float * y)134 LC3_HOT static void dct16_inverse(const float *x, float *y)
135 {
136 for (int i = 0, j; i < 16; i++)
137 for (y[i] = 0, j = 0; j < 16; j++)
138 y[i] += x[j] * dct16_m[i][j];
139 }
140
141
142 /* ----------------------------------------------------------------------------
143 * Scale factors
144 * -------------------------------------------------------------------------- */
145
146 /**
147 * Scale factors
148 * dt, sr Duration and samplerate of the frame
149 * nbytes Size in bytes of the frame
150 * eb Energy estimation per bands
151 * att 1: Attack detected 0: Otherwise
152 * scf Output 16 scale factors
153 */
compute_scale_factors(enum lc3_dt dt,enum lc3_srate sr,int nbytes,const float * eb,bool att,float * scf)154 LC3_HOT static void compute_scale_factors(
155 enum lc3_dt dt, enum lc3_srate sr, int nbytes,
156 const float *eb, bool att, float *scf)
157 {
158 /* Pre-emphasis gain table :
159 * Ge[b] = 10 ^ (b * g_tilt) / 630 , b = [0..63] */
160
161 static const float ge_14[LC3_MAX_BANDS] = { /* g_tilt = 14 */
162 1.00000000e+00, 1.05250029e+00, 1.10775685e+00, 1.16591440e+00,
163 1.22712524e+00, 1.29154967e+00, 1.35935639e+00, 1.43072299e+00,
164 1.50583635e+00, 1.58489319e+00, 1.66810054e+00, 1.75567629e+00,
165 1.84784980e+00, 1.94486244e+00, 2.04696827e+00, 2.15443469e+00,
166 2.26754313e+00, 2.38658979e+00, 2.51188643e+00, 2.64376119e+00,
167 2.78255940e+00, 2.92864456e+00, 3.08239924e+00, 3.24422608e+00,
168 3.41454887e+00, 3.59381366e+00, 3.78248991e+00, 3.98107171e+00,
169 4.19007911e+00, 4.41005945e+00, 4.64158883e+00, 4.88527357e+00,
170 5.14175183e+00, 5.41169527e+00, 5.69581081e+00, 5.99484250e+00,
171 6.30957344e+00, 6.64082785e+00, 6.98947321e+00, 7.35642254e+00,
172 7.74263683e+00, 8.14912747e+00, 8.57695899e+00, 9.02725178e+00,
173 9.50118507e+00, 1.00000000e+01, 1.05250029e+01, 1.10775685e+01,
174 1.16591440e+01, 1.22712524e+01, 1.29154967e+01, 1.35935639e+01,
175 1.43072299e+01, 1.50583635e+01, 1.58489319e+01, 1.66810054e+01,
176 1.75567629e+01, 1.84784980e+01, 1.94486244e+01, 2.04696827e+01,
177 2.15443469e+01, 2.26754313e+01, 2.38658979e+01, 2.51188643e+01 };
178
179 static const float ge_18[LC3_MAX_BANDS] = { /* g_tilt = 18 */
180 1.00000000e+00, 1.06800043e+00, 1.14062492e+00, 1.21818791e+00,
181 1.30102522e+00, 1.38949549e+00, 1.48398179e+00, 1.58489319e+00,
182 1.69266662e+00, 1.80776868e+00, 1.93069773e+00, 2.06198601e+00,
183 2.20220195e+00, 2.35195264e+00, 2.51188643e+00, 2.68269580e+00,
184 2.86512027e+00, 3.05994969e+00, 3.26802759e+00, 3.49025488e+00,
185 3.72759372e+00, 3.98107171e+00, 4.25178630e+00, 4.54090961e+00,
186 4.84969343e+00, 5.17947468e+00, 5.53168120e+00, 5.90783791e+00,
187 6.30957344e+00, 6.73862717e+00, 7.19685673e+00, 7.68624610e+00,
188 8.20891416e+00, 8.76712387e+00, 9.36329209e+00, 1.00000000e+01,
189 1.06800043e+01, 1.14062492e+01, 1.21818791e+01, 1.30102522e+01,
190 1.38949549e+01, 1.48398179e+01, 1.58489319e+01, 1.69266662e+01,
191 1.80776868e+01, 1.93069773e+01, 2.06198601e+01, 2.20220195e+01,
192 2.35195264e+01, 2.51188643e+01, 2.68269580e+01, 2.86512027e+01,
193 3.05994969e+01, 3.26802759e+01, 3.49025488e+01, 3.72759372e+01,
194 3.98107171e+01, 4.25178630e+01, 4.54090961e+01, 4.84969343e+01,
195 5.17947468e+01, 5.53168120e+01, 5.90783791e+01, 6.30957344e+01 };
196
197 static const float ge_22[LC3_MAX_BANDS] = { /* g_tilt = 22 */
198 1.00000000e+00, 1.08372885e+00, 1.17446822e+00, 1.27280509e+00,
199 1.37937560e+00, 1.49486913e+00, 1.62003281e+00, 1.75567629e+00,
200 1.90267705e+00, 2.06198601e+00, 2.23463373e+00, 2.42173704e+00,
201 2.62450630e+00, 2.84425319e+00, 3.08239924e+00, 3.34048498e+00,
202 3.62017995e+00, 3.92329345e+00, 4.25178630e+00, 4.60778348e+00,
203 4.99358789e+00, 5.41169527e+00, 5.86481029e+00, 6.35586411e+00,
204 6.88803330e+00, 7.46476041e+00, 8.08977621e+00, 8.76712387e+00,
205 9.50118507e+00, 1.02967084e+01, 1.11588399e+01, 1.20931568e+01,
206 1.31057029e+01, 1.42030283e+01, 1.53922315e+01, 1.66810054e+01,
207 1.80776868e+01, 1.95913107e+01, 2.12316686e+01, 2.30093718e+01,
208 2.49359200e+01, 2.70237760e+01, 2.92864456e+01, 3.17385661e+01,
209 3.43959997e+01, 3.72759372e+01, 4.03970086e+01, 4.37794036e+01,
210 4.74450028e+01, 5.14175183e+01, 5.57226480e+01, 6.03882412e+01,
211 6.54444792e+01, 7.09240702e+01, 7.68624610e+01, 8.32980665e+01,
212 9.02725178e+01, 9.78309319e+01, 1.06022203e+02, 1.14899320e+02,
213 1.24519708e+02, 1.34945600e+02, 1.46244440e+02, 1.58489319e+02 };
214
215 static const float ge_26[LC3_MAX_BANDS] = { /* g_tilt = 26 */
216 1.00000000e+00, 1.09968890e+00, 1.20931568e+00, 1.32987103e+00,
217 1.46244440e+00, 1.60823388e+00, 1.76855694e+00, 1.94486244e+00,
218 2.13874364e+00, 2.35195264e+00, 2.58641621e+00, 2.84425319e+00,
219 3.12779366e+00, 3.43959997e+00, 3.78248991e+00, 4.15956216e+00,
220 4.57422434e+00, 5.03022373e+00, 5.53168120e+00, 6.08312841e+00,
221 6.68954879e+00, 7.35642254e+00, 8.08977621e+00, 8.89623710e+00,
222 9.78309319e+00, 1.07583590e+01, 1.18308480e+01, 1.30102522e+01,
223 1.43072299e+01, 1.57335019e+01, 1.73019574e+01, 1.90267705e+01,
224 2.09235283e+01, 2.30093718e+01, 2.53031508e+01, 2.78255940e+01,
225 3.05994969e+01, 3.36499270e+01, 3.70044512e+01, 4.06933843e+01,
226 4.47500630e+01, 4.92111475e+01, 5.41169527e+01, 5.95118121e+01,
227 6.54444792e+01, 7.19685673e+01, 7.91430346e+01, 8.70327166e+01,
228 9.57089124e+01, 1.05250029e+02, 1.15742288e+02, 1.27280509e+02,
229 1.39968963e+02, 1.53922315e+02, 1.69266662e+02, 1.86140669e+02,
230 2.04696827e+02, 2.25102829e+02, 2.47543082e+02, 2.72220379e+02,
231 2.99357729e+02, 3.29200372e+02, 3.62017995e+02, 3.98107171e+02 };
232
233 static const float ge_30[LC3_MAX_BANDS] = { /* g_tilt = 30 */
234 1.00000000e+00, 1.11588399e+00, 1.24519708e+00, 1.38949549e+00,
235 1.55051578e+00, 1.73019574e+00, 1.93069773e+00, 2.15443469e+00,
236 2.40409918e+00, 2.68269580e+00, 2.99357729e+00, 3.34048498e+00,
237 3.72759372e+00, 4.15956216e+00, 4.64158883e+00, 5.17947468e+00,
238 5.77969288e+00, 6.44946677e+00, 7.19685673e+00, 8.03085722e+00,
239 8.96150502e+00, 1.00000000e+01, 1.11588399e+01, 1.24519708e+01,
240 1.38949549e+01, 1.55051578e+01, 1.73019574e+01, 1.93069773e+01,
241 2.15443469e+01, 2.40409918e+01, 2.68269580e+01, 2.99357729e+01,
242 3.34048498e+01, 3.72759372e+01, 4.15956216e+01, 4.64158883e+01,
243 5.17947468e+01, 5.77969288e+01, 6.44946677e+01, 7.19685673e+01,
244 8.03085722e+01, 8.96150502e+01, 1.00000000e+02, 1.11588399e+02,
245 1.24519708e+02, 1.38949549e+02, 1.55051578e+02, 1.73019574e+02,
246 1.93069773e+02, 2.15443469e+02, 2.40409918e+02, 2.68269580e+02,
247 2.99357729e+02, 3.34048498e+02, 3.72759372e+02, 4.15956216e+02,
248 4.64158883e+02, 5.17947468e+02, 5.77969288e+02, 6.44946677e+02,
249 7.19685673e+02, 8.03085722e+02, 8.96150502e+02, 1.00000000e+03 };
250
251 #if LC3_PLUS_HR
252
253 static const float ge_34[LC3_MAX_BANDS] = { /* g_tilt = 34 */
254 1.00000000e+00, 1.13231759e+00, 1.28214312e+00, 1.45179321e+00,
255 1.64389099e+00, 1.86140669e+00, 2.10770353e+00, 2.38658979e+00,
256 2.70237760e+00, 3.05994969e+00, 3.46483486e+00, 3.92329345e+00,
257 4.44241419e+00, 5.03022373e+00, 5.69581081e+00, 6.44946677e+00,
258 7.30284467e+00, 8.26913948e+00, 9.36329209e+00, 1.06022203e+01,
259 1.20050806e+01, 1.35935639e+01, 1.53922315e+01, 1.74288945e+01,
260 1.97350438e+01, 2.23463373e+01, 2.53031508e+01, 2.86512027e+01,
261 3.24422608e+01, 3.67349426e+01, 4.15956216e+01, 4.70994540e+01,
262 5.33315403e+01, 6.03882412e+01, 6.83786677e+01, 7.74263683e+01,
263 8.76712387e+01, 9.92716858e+01, 1.12407076e+02, 1.27280509e+02,
264 1.44121960e+02, 1.63191830e+02, 1.84784980e+02, 2.09235283e+02,
265 2.36920791e+02, 2.68269580e+02, 3.03766364e+02, 3.43959997e+02,
266 3.89471955e+02, 4.41005945e+02, 4.99358789e+02, 5.65432741e+02,
267 6.40249439e+02, 7.24965701e+02, 8.20891416e+02, 9.29509790e+02,
268 1.05250029e+03, 1.19176459e+03, 1.34945600e+03, 1.52801277e+03,
269 1.73019574e+03, 1.95913107e+03, 2.21835857e+03, 2.51188643e+03 };
270
271 #endif /* LC3_PLUS_HR */
272
273 static const float *ge_table[LC3_NUM_SRATE] = {
274 [LC3_SRATE_8K ] = ge_14, [LC3_SRATE_16K ] = ge_18,
275 [LC3_SRATE_24K ] = ge_22, [LC3_SRATE_32K ] = ge_26,
276 [LC3_SRATE_48K ] = ge_30,
277
278 #if LC3_PLUS_HR
279 [LC3_SRATE_48K_HR] = ge_30, [LC3_SRATE_96K_HR] = ge_34,
280 #endif /* LC3_PLUS_HR */
281
282 };
283
284 float e[LC3_MAX_BANDS];
285
286 /* --- Copy and padding --- */
287
288 int nb = lc3_num_bands[dt][sr];
289 int n4 = nb < 32 ? 32 % nb : 0;
290 int n2 = nb < 32 ? nb - n4 : LC3_MAX_BANDS - nb;
291
292 for (int i4 = 0; i4 < n4; i4++)
293 e[4*i4 + 0] = e[4*i4 + 1] =
294 e[4*i4 + 2] = e[4*i4 + 3] = eb[i4];
295
296 for (int i2 = n4; i2 < n4+n2; i2++)
297 e[2*(n4+i2) + 0] = e[2*(n4+i2) + 1] = eb[i2];
298
299 memcpy(e + 4*n4 + 2*n2, eb + n4 + n2, (nb - n4 - n2) * sizeof(float));
300
301 /* --- Smoothing, pre-emphasis and logarithm --- */
302
303 const float *ge = ge_table[sr];
304
305 float e0 = e[0], e1 = e[0], e2;
306 float e_sum = 0;
307
308 for (int i = 0; i < LC3_MAX_BANDS-1; ) {
309 e[i] = (e0 * 0.25f + e1 * 0.5f + (e2 = e[i+1]) * 0.25f) * ge[i];
310 e_sum += e[i++];
311
312 e[i] = (e1 * 0.25f + e2 * 0.5f + (e0 = e[i+1]) * 0.25f) * ge[i];
313 e_sum += e[i++];
314
315 e[i] = (e2 * 0.25f + e0 * 0.5f + (e1 = e[i+1]) * 0.25f) * ge[i];
316 e_sum += e[i++];
317 }
318
319 e[LC3_MAX_BANDS-1] = (e0 * 0.25f + e1 * 0.75f) * ge[LC3_MAX_BANDS-1];
320 e_sum += e[LC3_MAX_BANDS-1];
321
322 float noise_floor = fmaxf(e_sum * (1e-4f / 64), 0x1p-32f);
323
324 for (int i = 0; i < LC3_MAX_BANDS; i++)
325 e[i] = lc3_log2f(fmaxf(e[i], noise_floor)) * 0.5f;
326
327 /* --- Grouping & scaling --- */
328
329 float scf_sum;
330
331 scf[0] = (e[0] + e[4]) * 1.f/12 +
332 (e[0] + e[3]) * 2.f/12 +
333 (e[1] + e[2]) * 3.f/12 ;
334 scf_sum = scf[0];
335
336 for (int i = 1; i < 15; i++) {
337 scf[i] = (e[4*i-1] + e[4*i+4]) * 1.f/12 +
338 (e[4*i ] + e[4*i+3]) * 2.f/12 +
339 (e[4*i+1] + e[4*i+2]) * 3.f/12 ;
340 scf_sum += scf[i];
341 }
342
343 scf[15] = (e[59] + e[63]) * 1.f/12 +
344 (e[60] + e[63]) * 2.f/12 +
345 (e[61] + e[62]) * 3.f/12 ;
346 scf_sum += scf[15];
347
348 float cf = lc3_hr(sr) ? 0.6f : 0.85f;
349 if (lc3_hr(sr) && 8 * nbytes >
350 (dt < LC3_DT_10M ? 1150 * (int)(1 + dt) : 4400))
351 cf *= dt < LC3_DT_10M ? 0.25f : 0.35f;
352
353 for (int i = 0; i < 16; i++)
354 scf[i] = cf * (scf[i] - scf_sum * 1.f/16);
355
356 /* --- Attack handling --- */
357
358 if (!att)
359 return;
360
361 float s0, s1 = scf[0], s2 = scf[1], s3 = scf[2], s4 = scf[3];
362 float sn = s1 + s2;
363
364 scf[0] = (sn += s3) * 1.f/3;
365 scf[1] = (sn += s4) * 1.f/4;
366 scf_sum = scf[0] + scf[1];
367
368 for (int i = 2; i < 14; i++, sn -= s0) {
369 s0 = s1, s1 = s2, s2 = s3, s3 = s4, s4 = scf[i+2];
370 scf[i] = (sn += s4) * 1.f/5;
371 scf_sum += scf[i];
372 }
373
374 scf[14] = (sn ) * 1.f/4;
375 scf[15] = (sn -= s1) * 1.f/3;
376 scf_sum += scf[14] + scf[15];
377
378 for (int i = 0; i < 16; i++)
379 scf[i] = (dt == LC3_DT_7M5 ? 0.3f : 0.5f) *
380 (scf[i] - scf_sum * 1.f/16);
381 }
382
383 /**
384 * Codebooks
385 * scf Input 16 scale factors
386 * lf/hfcb_idx Output the low and high frequency codebooks index
387 */
resolve_codebooks(const float * scf,int * lfcb_idx,int * hfcb_idx)388 LC3_HOT static void resolve_codebooks(
389 const float *scf, int *lfcb_idx, int *hfcb_idx)
390 {
391 float dlfcb_max = 0, dhfcb_max = 0;
392 *lfcb_idx = *hfcb_idx = 0;
393
394 for (int icb = 0; icb < 32; icb++) {
395 const float *lfcb = lc3_sns_lfcb[icb];
396 const float *hfcb = lc3_sns_hfcb[icb];
397 float dlfcb = 0, dhfcb = 0;
398
399 for (int i = 0; i < 8; i++) {
400 dlfcb += (scf[ i] - lfcb[i]) * (scf[ i] - lfcb[i]);
401 dhfcb += (scf[8+i] - hfcb[i]) * (scf[8+i] - hfcb[i]);
402 }
403
404 if (icb == 0 || dlfcb < dlfcb_max)
405 *lfcb_idx = icb, dlfcb_max = dlfcb;
406
407 if (icb == 0 || dhfcb < dhfcb_max)
408 *hfcb_idx = icb, dhfcb_max = dhfcb;
409 }
410 }
411
412 /**
413 * Unit energy normalize pulse configuration
414 * c Pulse configuration
415 * cn Normalized pulse configuration
416 */
normalize(const int * c,float * cn)417 LC3_HOT static void normalize(const int *c, float *cn)
418 {
419 int c2_sum = 0;
420 for (int i = 0; i < 16; i++)
421 c2_sum += c[i] * c[i];
422
423 float c_norm = 1.f / sqrtf(c2_sum);
424
425 for (int i = 0; i < 16; i++)
426 cn[i] = c[i] * c_norm;
427 }
428
429 /**
430 * Sub-procedure of `quantize()`, add unit pulse
431 * x, y, n Transformed residual, and vector of pulses with length
432 * start, end Current number of pulses, limit to reach
433 * corr, energy Correlation (x,y) and y energy, updated at output
434 */
add_pulse(const float * x,int * y,int n,int start,int end,float * corr,float * energy)435 LC3_HOT static void add_pulse(const float *x, int *y, int n,
436 int start, int end, float *corr, float *energy)
437 {
438 for (int k = start; k < end; k++) {
439 float best_c2 = (*corr + x[0]) * (*corr + x[0]);
440 float best_e = *energy + 2*y[0] + 1;
441 int nbest = 0;
442
443 for (int i = 1; i < n; i++) {
444 float c2 = (*corr + x[i]) * (*corr + x[i]);
445 float e = *energy + 2*y[i] + 1;
446
447 if (c2 * best_e > e * best_c2)
448 best_c2 = c2, best_e = e, nbest = i;
449 }
450
451 *corr += x[nbest];
452 *energy += 2*y[nbest] + 1;
453 y[nbest]++;
454 }
455 }
456
457 /**
458 * Quantization of codebooks residual
459 * scf Input 16 scale factors, output quantized version
460 * lf/hfcb_idx Codebooks index
461 * c, cn Output 4 pulse configurations candidates, normalized
462 * shape/gain_idx Output selected shape/gain indexes
463 */
quantize(const float * scf,int lfcb_idx,int hfcb_idx,int (* c)[16],float (* cn)[16],int * shape_idx,int * gain_idx)464 LC3_HOT static void quantize(const float *scf, int lfcb_idx, int hfcb_idx,
465 int (*c)[16], float (*cn)[16], int *shape_idx, int *gain_idx)
466 {
467 /* --- Residual --- */
468
469 const float *lfcb = lc3_sns_lfcb[lfcb_idx];
470 const float *hfcb = lc3_sns_hfcb[hfcb_idx];
471 float r[16], x[16];
472
473 for (int i = 0; i < 8; i++) {
474 r[ i] = scf[ i] - lfcb[i];
475 r[8+i] = scf[8+i] - hfcb[i];
476 }
477
478 dct16_forward(r, x);
479
480 /* --- Shape 3 candidate ---
481 * Project to or below pyramid N = 16, K = 6,
482 * then add unit pulses until you reach K = 6, over N = 16 */
483
484 float xm[16];
485 float xm_sum = 0;
486
487 for (int i = 0; i < 16; i++) {
488 xm[i] = fabsf(x[i]);
489 xm_sum += xm[i];
490 }
491
492 float proj_factor = (6 - 1) / fmaxf(xm_sum, 1e-31f);
493 float corr = 0, energy = 0;
494 int npulses = 0;
495
496 for (int i = 0; i < 16; i++) {
497 c[3][i] = floorf(xm[i] * proj_factor);
498 npulses += c[3][i];
499 corr += c[3][i] * xm[i];
500 energy += c[3][i] * c[3][i];
501 }
502
503 add_pulse(xm, c[3], 16, npulses, 6, &corr, &energy);
504 npulses = 6;
505
506 /* --- Shape 2 candidate ---
507 * Add unit pulses until you reach K = 8 on shape 3 */
508
509 memcpy(c[2], c[3], sizeof(c[2]));
510
511 add_pulse(xm, c[2], 16, npulses, 8, &corr, &energy);
512 npulses = 8;
513
514 /* --- Shape 1 candidate ---
515 * Remove any unit pulses from shape 2 that are not part of 0 to 9
516 * Update energy and correlation terms accordingly
517 * Add unit pulses until you reach K = 10, over N = 10 */
518
519 memcpy(c[1], c[2], sizeof(c[1]));
520
521 for (int i = 10; i < 16; i++) {
522 c[1][i] = 0;
523 npulses -= c[2][i];
524 corr -= c[2][i] * xm[i];
525 energy -= c[2][i] * c[2][i];
526 }
527
528 add_pulse(xm, c[1], 10, npulses, 10, &corr, &energy);
529 npulses = 10;
530
531 /* --- Shape 0 candidate ---
532 * Add unit pulses until you reach K = 1, on shape 1 */
533
534 memcpy(c[0], c[1], sizeof(c[0]));
535
536 add_pulse(xm + 10, c[0] + 10, 6, 0, 1, &corr, &energy);
537
538 /* --- Add sign and unit energy normalize --- */
539
540 for (int j = 0; j < 16; j++)
541 for (int i = 0; i < 4; i++)
542 c[i][j] = x[j] < 0 ? -c[i][j] : c[i][j];
543
544 for (int i = 0; i < 4; i++)
545 normalize(c[i], cn[i]);
546
547 /* --- Determe shape & gain index ---
548 * Search the Mean Square Error, within (shape, gain) combinations */
549
550 float mse_min = FLT_MAX;
551 *shape_idx = *gain_idx = 0;
552
553 for (int ic = 0; ic < 4; ic++) {
554 const struct lc3_sns_vq_gains *cgains = lc3_sns_vq_gains + ic;
555 float cmse_min = FLT_MAX;
556 int cgain_idx = 0;
557
558 for (int ig = 0; ig < cgains->count; ig++) {
559 float g = cgains->v[ig];
560
561 float mse = 0;
562 for (int i = 0; i < 16; i++)
563 mse += (x[i] - g * cn[ic][i]) * (x[i] - g * cn[ic][i]);
564
565 if (mse < cmse_min) {
566 cgain_idx = ig,
567 cmse_min = mse;
568 }
569 }
570
571 if (cmse_min < mse_min) {
572 *shape_idx = ic, *gain_idx = cgain_idx;
573 mse_min = cmse_min;
574 }
575 }
576 }
577
578 /**
579 * Unquantization of codebooks residual
580 * lf/hfcb_idx Low and high frequency codebooks index
581 * c Table of normalized pulse configuration
582 * shape/gain Selected shape/gain indexes
583 * scf Return unquantized scale factors
584 */
unquantize(int lfcb_idx,int hfcb_idx,const float * c,int shape,int gain,float * scf)585 LC3_HOT static void unquantize(int lfcb_idx, int hfcb_idx,
586 const float *c, int shape, int gain, float *scf)
587 {
588 const float *lfcb = lc3_sns_lfcb[lfcb_idx];
589 const float *hfcb = lc3_sns_hfcb[hfcb_idx];
590 float g = lc3_sns_vq_gains[shape].v[gain];
591
592 dct16_inverse(c, scf);
593
594 for (int i = 0; i < 8; i++)
595 scf[i] = lfcb[i] + g * scf[i];
596
597 for (int i = 8; i < 16; i++)
598 scf[i] = hfcb[i-8] + g * scf[i];
599 }
600
601 /**
602 * Sub-procedure of `sns_enumerate()`, enumeration of a vector
603 * c, n Table of pulse configuration, and length
604 * idx, ls Return enumeration set
605 */
enum_mvpq(const int * c,int n,int * idx,bool * ls)606 static void enum_mvpq(const int *c, int n, int *idx, bool *ls)
607 {
608 int ci, i;
609
610 /* --- Scan for 1st significant coeff --- */
611
612 for (i = 0, c += n; (ci = *(--c)) == 0 && i < 15; i++);
613
614 *idx = 0;
615 *ls = ci < 0;
616
617 /* --- Scan remaining coefficients --- */
618
619 unsigned j = LC3_ABS(ci);
620
621 for (i++; i < n; i++, j += LC3_ABS(ci)) {
622
623 if ((ci = *(--c)) != 0) {
624 *idx = (*idx << 1) | *ls;
625 *ls = ci < 0;
626 }
627
628 *idx += lc3_sns_mpvq_offsets[i][LC3_MIN(j, 10)];
629 }
630 }
631
632 /**
633 * Sub-procedure of `sns_deenumerate()`, deenumeration of a vector
634 * idx, ls Enumeration set
635 * npulses Number of pulses in the set
636 * c, n Table of pulses configuration, and length
637 */
deenum_mvpq(int idx,bool ls,int npulses,int * c,int n)638 static void deenum_mvpq(int idx, bool ls, int npulses, int *c, int n)
639 {
640 int i;
641
642 /* --- Scan for coefficients --- */
643
644 for (i = n-1; i >= 0 && idx; i--) {
645
646 int ci = 0;
647
648 for (ci = 0; idx < lc3_sns_mpvq_offsets[i][npulses - ci]; ci++);
649 idx -= lc3_sns_mpvq_offsets[i][npulses - ci];
650
651 *(c++) = ls ? -ci : ci;
652 npulses -= ci;
653 if (ci > 0) {
654 ls = idx & 1;
655 idx >>= 1;
656 }
657 }
658
659 /* --- Set last significant --- */
660
661 int ci = npulses;
662
663 if (i-- >= 0)
664 *(c++) = ls ? -ci : ci;
665
666 while (i-- >= 0)
667 *(c++) = 0;
668 }
669
670 /**
671 * SNS Enumeration of PVQ configuration
672 * shape Selected shape index
673 * c Selected pulse configuration
674 * idx_a, ls_a Return enumeration set A
675 * idx_b, ls_b Return enumeration set B (shape = 0)
676 */
enumerate(int shape,const int * c,int * idx_a,bool * ls_a,int * idx_b,bool * ls_b)677 static void enumerate(int shape, const int *c,
678 int *idx_a, bool *ls_a, int *idx_b, bool *ls_b)
679 {
680 enum_mvpq(c, shape < 2 ? 10 : 16, idx_a, ls_a);
681
682 if (shape == 0)
683 enum_mvpq(c + 10, 6, idx_b, ls_b);
684 }
685
686 /**
687 * SNS Deenumeration of PVQ configuration
688 * shape Selected shape index
689 * idx_a, ls_a enumeration set A
690 * idx_b, ls_b enumeration set B (shape = 0)
691 * c Return pulse configuration
692 */
deenumerate(int shape,int idx_a,bool ls_a,int idx_b,bool ls_b,int * c)693 static void deenumerate(int shape,
694 int idx_a, bool ls_a, int idx_b, bool ls_b, int *c)
695 {
696 int npulses_a = (const int []){ 10, 10, 8, 6 }[shape];
697
698 deenum_mvpq(idx_a, ls_a, npulses_a, c, shape < 2 ? 10 : 16);
699
700 if (shape == 0)
701 deenum_mvpq(idx_b, ls_b, 1, c + 10, 6);
702 else if (shape == 1)
703 memset(c + 10, 0, 6 * sizeof(*c));
704 }
705
706
707 /* ----------------------------------------------------------------------------
708 * Filtering
709 * -------------------------------------------------------------------------- */
710
711 /**
712 * Spectral shaping
713 * dt, sr Duration and samplerate of the frame
714 * scf_q Quantized scale factors
715 * inv True on inverse shaping, False otherwise
716 * x Spectral coefficients
717 * y Return shapped coefficients
718 *
719 * `x` and `y` can be the same buffer
720 */
spectral_shaping(enum lc3_dt dt,enum lc3_srate sr,const float * scf_q,bool inv,const float * x,float * y)721 LC3_HOT static void spectral_shaping(enum lc3_dt dt, enum lc3_srate sr,
722 const float *scf_q, bool inv, const float *x, float *y)
723 {
724 /* --- Interpolate scale factors --- */
725
726 float scf[LC3_MAX_BANDS];
727 float s0, s1 = inv ? -scf_q[0] : scf_q[0];
728
729 scf[0] = scf[1] = s1;
730 for (int i = 0; i < 15; i++) {
731 s0 = s1, s1 = inv ? -scf_q[i+1] : scf_q[i+1];
732 scf[4*i+2] = s0 + 0.125f * (s1 - s0);
733 scf[4*i+3] = s0 + 0.375f * (s1 - s0);
734 scf[4*i+4] = s0 + 0.625f * (s1 - s0);
735 scf[4*i+5] = s0 + 0.875f * (s1 - s0);
736 }
737 scf[62] = s1 + 0.125f * (s1 - s0);
738 scf[63] = s1 + 0.375f * (s1 - s0);
739
740 int nb = lc3_num_bands[dt][sr];
741 int n4 = nb < 32 ? 32 % nb : 0;
742 int n2 = nb < 32 ? nb - n4 : LC3_MAX_BANDS - nb;
743
744 for (int i4 = 0; i4 < n4; i4++)
745 scf[i4] = 0.25f * (scf[4*i4+0] + scf[4*i4+1] +
746 scf[4*i4+2] + scf[4*i4+3]);
747
748 for (int i2 = n4; i2 < n4+n2; i2++)
749 scf[i2] = 0.5f * (scf[2*(n4+i2)] + scf[2*(n4+i2)+1]);
750
751 memmove(scf + n4 + n2, scf + 4*n4 + 2*n2, (nb - n4 - n2) * sizeof(float));
752
753 /* --- Spectral shaping --- */
754
755 const int *lim = lc3_band_lim[dt][sr];
756
757 for (int i = 0, ib = 0; ib < nb; ib++) {
758 float g_sns = lc3_exp2f(-scf[ib]);
759
760 for ( ; i < lim[ib+1]; i++)
761 y[i] = x[i] * g_sns;
762 }
763 }
764
765
766 /* ----------------------------------------------------------------------------
767 * Interface
768 * -------------------------------------------------------------------------- */
769
770 /**
771 * SNS analysis
772 */
lc3_sns_analyze(enum lc3_dt dt,enum lc3_srate sr,int nbytes,const float * eb,bool att,struct lc3_sns_data * data,const float * x,float * y)773 void lc3_sns_analyze(
774 enum lc3_dt dt, enum lc3_srate sr, int nbytes,
775 const float *eb, bool att, struct lc3_sns_data *data,
776 const float *x, float *y)
777 {
778 /* Processing steps :
779 * - Determine 16 scale factors from bands energy estimation
780 * - Get codebooks indexes that match thoses scale factors
781 * - Quantize the residual with the selected codebook
782 * - The pulse configuration `c[]` is enumerated
783 * - Finally shape the spectrum coefficients accordingly */
784
785 float scf[16], cn[4][16];
786 int c[4][16];
787
788 compute_scale_factors(dt, sr, nbytes, eb, att, scf);
789
790 resolve_codebooks(scf, &data->lfcb, &data->hfcb);
791
792 quantize(scf, data->lfcb, data->hfcb,
793 c, cn, &data->shape, &data->gain);
794
795 unquantize(data->lfcb, data->hfcb,
796 cn[data->shape], data->shape, data->gain, scf);
797
798 enumerate(data->shape, c[data->shape],
799 &data->idx_a, &data->ls_a, &data->idx_b, &data->ls_b);
800
801 spectral_shaping(dt, sr, scf, false, x, y);
802 }
803
804 /**
805 * SNS synthesis
806 */
lc3_sns_synthesize(enum lc3_dt dt,enum lc3_srate sr,const lc3_sns_data_t * data,const float * x,float * y)807 void lc3_sns_synthesize(
808 enum lc3_dt dt, enum lc3_srate sr,
809 const lc3_sns_data_t *data, const float *x, float *y)
810 {
811 float scf[16], cn[16];
812 int c[16];
813
814 deenumerate(data->shape,
815 data->idx_a, data->ls_a, data->idx_b, data->ls_b, c);
816
817 normalize(c, cn);
818
819 unquantize(data->lfcb, data->hfcb, cn, data->shape, data->gain, scf);
820
821 spectral_shaping(dt, sr, scf, true, x, y);
822 }
823
824 /**
825 * Return number of bits coding the bitstream data
826 */
lc3_sns_get_nbits(void)827 int lc3_sns_get_nbits(void)
828 {
829 return 38;
830 }
831
832 /**
833 * Put bitstream data
834 */
lc3_sns_put_data(lc3_bits_t * bits,const struct lc3_sns_data * data)835 void lc3_sns_put_data(lc3_bits_t *bits, const struct lc3_sns_data *data)
836 {
837 /* --- Codebooks --- */
838
839 lc3_put_bits(bits, data->lfcb, 5);
840 lc3_put_bits(bits, data->hfcb, 5);
841
842 /* --- Shape, gain and vectors --- *
843 * Write MSB bit of shape index, next LSB bits of shape and gain,
844 * and MVPQ vectors indexes are muxed */
845
846 int shape_msb = data->shape >> 1;
847 lc3_put_bit(bits, shape_msb);
848
849 if (shape_msb == 0) {
850 const int size_a = 2390004;
851 int submode = data->shape & 1;
852
853 int mux_high = submode == 0 ?
854 2 * (data->idx_b + 1) + data->ls_b : data->gain & 1;
855 int mux_code = mux_high * size_a + data->idx_a;
856
857 lc3_put_bits(bits, data->gain >> submode, 1);
858 lc3_put_bits(bits, data->ls_a, 1);
859 lc3_put_bits(bits, mux_code, 25);
860
861 } else {
862 const int size_a = 15158272;
863 int submode = data->shape & 1;
864
865 int mux_code = submode == 0 ?
866 data->idx_a : size_a + 2 * data->idx_a + (data->gain & 1);
867
868 lc3_put_bits(bits, data->gain >> submode, 2);
869 lc3_put_bits(bits, data->ls_a, 1);
870 lc3_put_bits(bits, mux_code, 24);
871 }
872 }
873
874 /**
875 * Get bitstream data
876 */
lc3_sns_get_data(lc3_bits_t * bits,struct lc3_sns_data * data)877 int lc3_sns_get_data(lc3_bits_t *bits, struct lc3_sns_data *data)
878 {
879 /* --- Codebooks --- */
880
881 *data = (struct lc3_sns_data){
882 .lfcb = lc3_get_bits(bits, 5),
883 .hfcb = lc3_get_bits(bits, 5)
884 };
885
886 /* --- Shape, gain and vectors --- */
887
888 int shape_msb = lc3_get_bit(bits);
889 data->gain = lc3_get_bits(bits, 1 + shape_msb);
890 data->ls_a = lc3_get_bit(bits);
891
892 int mux_code = lc3_get_bits(bits, 25 - shape_msb);
893
894 if (shape_msb == 0) {
895 const int size_a = 2390004;
896
897 if (mux_code >= size_a * 14)
898 return -1;
899
900 data->idx_a = mux_code % size_a;
901 mux_code = mux_code / size_a;
902
903 data->shape = (mux_code < 2);
904
905 if (data->shape == 0) {
906 data->idx_b = (mux_code - 2) / 2;
907 data->ls_b = (mux_code - 2) % 2;
908 } else {
909 data->gain = (data->gain << 1) + (mux_code % 2);
910 }
911
912 } else {
913 const int size_a = 15158272;
914
915 if (mux_code >= size_a + 1549824)
916 return -1;
917
918 data->shape = 2 + (mux_code >= size_a);
919 if (data->shape == 2) {
920 data->idx_a = mux_code;
921 } else {
922 mux_code -= size_a;
923 data->idx_a = mux_code / 2;
924 data->gain = (data->gain << 1) + (mux_code % 2);
925 }
926 }
927
928 return 0;
929 }
930