1 /**
2 ******************************************************************************
3 * @file stm32l5xx_ll_tim.c
4 * @author MCD Application Team
5 * @brief TIM LL module driver.
6 ******************************************************************************
7 * @attention
8 *
9 * Copyright (c) 2019 STMicroelectronics.
10 * All rights reserved.
11 *
12 * This software is licensed under terms that can be found in the LICENSE file
13 * in the root directory of this software component.
14 * If no LICENSE file comes with this software, it is provided AS-IS.
15 *
16 ******************************************************************************
17 */
18 #if defined(USE_FULL_LL_DRIVER)
19
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32l5xx_ll_tim.h"
22 #include "stm32l5xx_ll_bus.h"
23
24 #ifdef USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29
30 /** @addtogroup STM32L5xx_LL_Driver
31 * @{
32 */
33
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM15) || defined (TIM16) || defined (TIM7)
35
36 /** @addtogroup TIM_LL
37 * @{
38 */
39
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45 * @{
46 */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64 || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
65 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
66 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
67 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
68 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
69 || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM1) \
70 || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM2))
71
72 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
73 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
74
75 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
76 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
77
78 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
79 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
80
81 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
82 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
83 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
84
85 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
86 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
87 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
88 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
89
90 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
91 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
92 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
93 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
94 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
95 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
96 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
97 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
98 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
99 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
100 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
101 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
102 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
103 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
104 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
105 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
106
107 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
108 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
109 || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
110
111 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
112 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
113 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
114
115 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
116 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
117
118 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
119 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
120
121 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
122 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
123
124 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
125 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
126 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
127 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
128
129 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
130 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
131
132 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
133 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
134
135 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \
136 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \
137 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \
138 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \
139 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \
140 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \
141 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \
142 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \
143 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \
144 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \
145 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
146 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
147 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
148 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
149 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
150 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
151
152 #define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT) \
153 || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
154
155 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
156 || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
157
158 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
159 || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
160
161 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \
162 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \
163 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \
164 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \
165 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \
166 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \
167 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \
168 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \
169 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \
170 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \
171 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
172 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
173 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
174 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
175 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
176 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
177
178 #define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT) \
179 || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL))
180
181 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
182 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
183 /**
184 * @}
185 */
186
187
188 /* Private function prototypes -----------------------------------------------*/
189 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
190 * @{
191 */
192 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
193 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
194 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
195 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
196 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
197 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
198 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
199 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
200 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
201 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
202 /**
203 * @}
204 */
205
206 /* Exported functions --------------------------------------------------------*/
207 /** @addtogroup TIM_LL_Exported_Functions
208 * @{
209 */
210
211 /** @addtogroup TIM_LL_EF_Init
212 * @{
213 */
214
215 /**
216 * @brief Set TIMx registers to their reset values.
217 * @param TIMx Timer instance
218 * @retval An ErrorStatus enumeration value:
219 * - SUCCESS: TIMx registers are de-initialized
220 * - ERROR: invalid TIMx instance
221 */
LL_TIM_DeInit(const TIM_TypeDef * TIMx)222 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx)
223 {
224 ErrorStatus result = SUCCESS;
225
226 /* Check the parameters */
227 assert_param(IS_TIM_INSTANCE(TIMx));
228
229 if (TIMx == TIM1)
230 {
231 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
232 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
233 }
234 else if (TIMx == TIM2)
235 {
236 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
237 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
238 }
239 else if (TIMx == TIM3)
240 {
241 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
242 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
243 }
244 else if (TIMx == TIM4)
245 {
246 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
247 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
248 }
249 else if (TIMx == TIM5)
250 {
251 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
252 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
253 }
254 else if (TIMx == TIM6)
255 {
256 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
257 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
258 }
259 else if (TIMx == TIM7)
260 {
261 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
262 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
263 }
264 else if (TIMx == TIM8)
265 {
266 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
267 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
268 }
269 else if (TIMx == TIM15)
270 {
271 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
272 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
273 }
274 else if (TIMx == TIM16)
275 {
276 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
277 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
278 }
279 else if (TIMx == TIM17)
280 {
281 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
282 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
283 }
284 else
285 {
286 result = ERROR;
287 }
288
289 return result;
290 }
291
292 /**
293 * @brief Set the fields of the time base unit configuration data structure
294 * to their default values.
295 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
296 * @retval None
297 */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)298 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
299 {
300 /* Set the default configuration */
301 TIM_InitStruct->Prescaler = (uint16_t)0x0000;
302 TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP;
303 TIM_InitStruct->Autoreload = 0xFFFFFFFFU;
304 TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
305 TIM_InitStruct->RepetitionCounter = 0x00000000U;
306 }
307
308 /**
309 * @brief Configure the TIMx time base unit.
310 * @param TIMx Timer Instance
311 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
312 * (TIMx time base unit configuration data structure)
313 * @retval An ErrorStatus enumeration value:
314 * - SUCCESS: TIMx registers are de-initialized
315 * - ERROR: not applicable
316 */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)317 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
318 {
319 uint32_t tmpcr1;
320
321 /* Check the parameters */
322 assert_param(IS_TIM_INSTANCE(TIMx));
323 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
324 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
325
326 tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
327
328 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
329 {
330 /* Select the Counter Mode */
331 MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
332 }
333
334 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
335 {
336 /* Set the clock division */
337 MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
338 }
339
340 /* Write to TIMx CR1 */
341 LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
342
343 /* Set the Autoreload value */
344 LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
345
346 /* Set the Prescaler value */
347 LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
348
349 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
350 {
351 /* Set the Repetition Counter value */
352 LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
353 }
354
355 /* Generate an update event to reload the Prescaler
356 and the repetition counter value (if applicable) immediately */
357 LL_TIM_GenerateEvent_UPDATE(TIMx);
358
359 return SUCCESS;
360 }
361
362 /**
363 * @brief Set the fields of the TIMx output channel configuration data
364 * structure to their default values.
365 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
366 * (the output channel configuration data structure)
367 * @retval None
368 */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)369 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
370 {
371 /* Set the default configuration */
372 TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN;
373 TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE;
374 TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE;
375 TIM_OC_InitStruct->CompareValue = 0x00000000U;
376 TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH;
377 TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
378 TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW;
379 TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
380 }
381
382 /**
383 * @brief Configure the TIMx output channel.
384 * @param TIMx Timer Instance
385 * @param Channel This parameter can be one of the following values:
386 * @arg @ref LL_TIM_CHANNEL_CH1
387 * @arg @ref LL_TIM_CHANNEL_CH2
388 * @arg @ref LL_TIM_CHANNEL_CH3
389 * @arg @ref LL_TIM_CHANNEL_CH4
390 * @arg @ref LL_TIM_CHANNEL_CH5
391 * @arg @ref LL_TIM_CHANNEL_CH6
392 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
393 * data structure)
394 * @retval An ErrorStatus enumeration value:
395 * - SUCCESS: TIMx output channel is initialized
396 * - ERROR: TIMx output channel is not initialized
397 */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)398 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
399 {
400 ErrorStatus result = ERROR;
401
402 switch (Channel)
403 {
404 case LL_TIM_CHANNEL_CH1:
405 result = OC1Config(TIMx, TIM_OC_InitStruct);
406 break;
407 case LL_TIM_CHANNEL_CH2:
408 result = OC2Config(TIMx, TIM_OC_InitStruct);
409 break;
410 case LL_TIM_CHANNEL_CH3:
411 result = OC3Config(TIMx, TIM_OC_InitStruct);
412 break;
413 case LL_TIM_CHANNEL_CH4:
414 result = OC4Config(TIMx, TIM_OC_InitStruct);
415 break;
416 case LL_TIM_CHANNEL_CH5:
417 result = OC5Config(TIMx, TIM_OC_InitStruct);
418 break;
419 case LL_TIM_CHANNEL_CH6:
420 result = OC6Config(TIMx, TIM_OC_InitStruct);
421 break;
422 default:
423 break;
424 }
425
426 return result;
427 }
428
429 /**
430 * @brief Set the fields of the TIMx input channel configuration data
431 * structure to their default values.
432 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
433 * data structure)
434 * @retval None
435 */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)436 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
437 {
438 /* Set the default configuration */
439 TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING;
440 TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
441 TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1;
442 TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1;
443 }
444
445 /**
446 * @brief Configure the TIMx input channel.
447 * @param TIMx Timer Instance
448 * @param Channel This parameter can be one of the following values:
449 * @arg @ref LL_TIM_CHANNEL_CH1
450 * @arg @ref LL_TIM_CHANNEL_CH2
451 * @arg @ref LL_TIM_CHANNEL_CH3
452 * @arg @ref LL_TIM_CHANNEL_CH4
453 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
454 * structure)
455 * @retval An ErrorStatus enumeration value:
456 * - SUCCESS: TIMx output channel is initialized
457 * - ERROR: TIMx output channel is not initialized
458 */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)459 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
460 {
461 ErrorStatus result = ERROR;
462
463 switch (Channel)
464 {
465 case LL_TIM_CHANNEL_CH1:
466 result = IC1Config(TIMx, TIM_IC_InitStruct);
467 break;
468 case LL_TIM_CHANNEL_CH2:
469 result = IC2Config(TIMx, TIM_IC_InitStruct);
470 break;
471 case LL_TIM_CHANNEL_CH3:
472 result = IC3Config(TIMx, TIM_IC_InitStruct);
473 break;
474 case LL_TIM_CHANNEL_CH4:
475 result = IC4Config(TIMx, TIM_IC_InitStruct);
476 break;
477 default:
478 break;
479 }
480
481 return result;
482 }
483
484 /**
485 * @brief Fills each TIM_EncoderInitStruct field with its default value
486 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
487 * configuration data structure)
488 * @retval None
489 */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)490 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
491 {
492 /* Set the default configuration */
493 TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1;
494 TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
495 TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
496 TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
497 TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
498 TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING;
499 TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
500 TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1;
501 TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1;
502 }
503
504 /**
505 * @brief Configure the encoder interface of the timer instance.
506 * @param TIMx Timer Instance
507 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
508 * configuration data structure)
509 * @retval An ErrorStatus enumeration value:
510 * - SUCCESS: TIMx registers are de-initialized
511 * - ERROR: not applicable
512 */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)513 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
514 {
515 uint32_t tmpccmr1;
516 uint32_t tmpccer;
517
518 /* Check the parameters */
519 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
520 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
521 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
522 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
523 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
524 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
525 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
526 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
527 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
528 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
529
530 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
531 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
532
533 /* Get the TIMx CCMR1 register value */
534 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
535
536 /* Get the TIMx CCER register value */
537 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
538
539 /* Configure TI1 */
540 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
541 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
542 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
543 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
544
545 /* Configure TI2 */
546 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC);
547 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
548 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
549 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
550
551 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
552 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
553 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
554 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
555 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
556
557 /* Set encoder mode */
558 LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
559
560 /* Write to TIMx CCMR1 */
561 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
562
563 /* Write to TIMx CCER */
564 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
565
566 return SUCCESS;
567 }
568
569 /**
570 * @brief Set the fields of the TIMx Hall sensor interface configuration data
571 * structure to their default values.
572 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
573 * configuration data structure)
574 * @retval None
575 */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)576 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
577 {
578 /* Set the default configuration */
579 TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
580 TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
581 TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
582 TIM_HallSensorInitStruct->CommutationDelay = 0U;
583 }
584
585 /**
586 * @brief Configure the Hall sensor interface of the timer instance.
587 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
588 * to the TI1 input channel
589 * @note TIMx slave mode controller is configured in reset mode.
590 Selected internal trigger is TI1F_ED.
591 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
592 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
593 * between 2 changes on the inputs. It gives information about motor speed.
594 * @note Channel 2 is configured in output PWM 2 mode.
595 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
596 * @note OC2REF is selected as trigger output on TRGO.
597 * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
598 * when TIMx operates in Hall sensor interface mode.
599 * @param TIMx Timer Instance
600 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
601 * interface configuration data structure)
602 * @retval An ErrorStatus enumeration value:
603 * - SUCCESS: TIMx registers are de-initialized
604 * - ERROR: not applicable
605 */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)606 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
607 {
608 uint32_t tmpcr2;
609 uint32_t tmpccmr1;
610 uint32_t tmpccer;
611 uint32_t tmpsmcr;
612
613 /* Check the parameters */
614 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
615 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
616 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
617 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
618
619 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
620 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
621
622 /* Get the TIMx CR2 register value */
623 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
624
625 /* Get the TIMx CCMR1 register value */
626 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
627
628 /* Get the TIMx CCER register value */
629 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
630
631 /* Get the TIMx SMCR register value */
632 tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
633
634 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
635 tmpcr2 |= TIM_CR2_TI1S;
636
637 /* OC2REF signal is used as trigger output (TRGO) */
638 tmpcr2 |= LL_TIM_TRGO_OC2REF;
639
640 /* Configure the slave mode controller */
641 tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
642 tmpsmcr |= LL_TIM_TS_TI1F_ED;
643 tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
644
645 /* Configure input channel 1 */
646 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
647 tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
648 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
649 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
650
651 /* Configure input channel 2 */
652 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE);
653 tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
654
655 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
656 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
657 tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
658 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
659
660 /* Write to TIMx CR2 */
661 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
662
663 /* Write to TIMx SMCR */
664 LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
665
666 /* Write to TIMx CCMR1 */
667 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
668
669 /* Write to TIMx CCER */
670 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
671
672 /* Write to TIMx CCR2 */
673 LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
674
675 return SUCCESS;
676 }
677
678 /**
679 * @brief Set the fields of the Break and Dead Time configuration data structure
680 * to their default values.
681 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
682 * data structure)
683 * @retval None
684 */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)685 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
686 {
687 /* Set the default configuration */
688 TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE;
689 TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE;
690 TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF;
691 TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00;
692 TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE;
693 TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW;
694 TIM_BDTRInitStruct->BreakFilter = LL_TIM_BREAK_FILTER_FDIV1;
695 TIM_BDTRInitStruct->BreakAFMode = LL_TIM_BREAK_AFMODE_INPUT;
696 TIM_BDTRInitStruct->Break2State = LL_TIM_BREAK2_DISABLE;
697 TIM_BDTRInitStruct->Break2Polarity = LL_TIM_BREAK2_POLARITY_LOW;
698 TIM_BDTRInitStruct->Break2Filter = LL_TIM_BREAK2_FILTER_FDIV1;
699 TIM_BDTRInitStruct->Break2AFMode = LL_TIM_BREAK2_AFMODE_INPUT;
700 TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
701 }
702
703 /**
704 * @brief Configure the Break and Dead Time feature of the timer instance.
705 * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
706 * and DTG[7:0] can be write-locked depending on the LOCK configuration, it
707 * can be necessary to configure all of them during the first write access to
708 * the TIMx_BDTR register.
709 * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
710 * a timer instance provides a break input.
711 * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
712 * a timer instance provides a second break input.
713 * @param TIMx Timer Instance
714 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
715 * data structure)
716 * @retval An ErrorStatus enumeration value:
717 * - SUCCESS: Break and Dead Time is initialized
718 * - ERROR: not applicable
719 */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)720 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
721 {
722 uint32_t tmpbdtr = 0;
723
724 /* Check the parameters */
725 assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
726 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
727 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
728 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
729 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
730 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
731 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
732 assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
733 assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
734
735 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
736 the OSSI State, the dead time value and the Automatic Output Enable Bit */
737
738 /* Set the BDTR bits */
739 MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
740 MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
741 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
742 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
743 MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
744 MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
745 MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
746 MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
747 MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
748
749 if (IS_TIM_BKIN2_INSTANCE(TIMx))
750 {
751 assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
752 assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
753 assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
754 assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode));
755
756 /* Set the BREAK2 input related BDTR bit-fields */
757 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
758 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
759 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
760 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode);
761 }
762
763 /* Set TIMx_BDTR */
764 LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
765
766 return SUCCESS;
767 }
768 /**
769 * @}
770 */
771
772 /**
773 * @}
774 */
775
776 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
777 * @brief Private functions
778 * @{
779 */
780 /**
781 * @brief Configure the TIMx output channel 1.
782 * @param TIMx Timer Instance
783 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
784 * @retval An ErrorStatus enumeration value:
785 * - SUCCESS: TIMx registers are de-initialized
786 * - ERROR: not applicable
787 */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)788 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
789 {
790 uint32_t tmpccmr1;
791 uint32_t tmpccer;
792 uint32_t tmpcr2;
793
794 /* Check the parameters */
795 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
796 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
797 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
798 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
799
800 /* Disable the Channel 1: Reset the CC1E Bit */
801 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
802
803 /* Get the TIMx CCER register value */
804 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
805
806 /* Get the TIMx CR2 register value */
807 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
808
809 /* Get the TIMx CCMR1 register value */
810 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
811
812 /* Reset Capture/Compare selection Bits */
813 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
814
815 /* Set the Output Compare Mode */
816 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
817
818 /* Set the Output Compare Polarity */
819 MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
820
821 /* Set the Output State */
822 MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
823
824 if (IS_TIM_BREAK_INSTANCE(TIMx))
825 {
826 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
827 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
828 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
829 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
830
831 /* Set the complementary output Polarity */
832 MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
833
834 /* Set the complementary output State */
835 MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
836
837 /* Set the Output Idle state */
838 MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
839
840 /* Set the complementary output Idle state */
841 MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
842 }
843
844 /* Write to TIMx CR2 */
845 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
846
847 /* Write to TIMx CCMR1 */
848 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
849
850 /* Set the Capture Compare Register value */
851 LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
852
853 /* Write to TIMx CCER */
854 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
855
856 return SUCCESS;
857 }
858
859 /**
860 * @brief Configure the TIMx output channel 2.
861 * @param TIMx Timer Instance
862 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
863 * @retval An ErrorStatus enumeration value:
864 * - SUCCESS: TIMx registers are de-initialized
865 * - ERROR: not applicable
866 */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)867 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
868 {
869 uint32_t tmpccmr1;
870 uint32_t tmpccer;
871 uint32_t tmpcr2;
872
873 /* Check the parameters */
874 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
875 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
876 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
877 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
878
879 /* Disable the Channel 2: Reset the CC2E Bit */
880 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
881
882 /* Get the TIMx CCER register value */
883 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
884
885 /* Get the TIMx CR2 register value */
886 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
887
888 /* Get the TIMx CCMR1 register value */
889 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
890
891 /* Reset Capture/Compare selection Bits */
892 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
893
894 /* Select the Output Compare Mode */
895 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
896
897 /* Set the Output Compare Polarity */
898 MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
899
900 /* Set the Output State */
901 MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
902
903 if (IS_TIM_BREAK_INSTANCE(TIMx))
904 {
905 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
906 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
907 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
908 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
909
910 /* Set the complementary output Polarity */
911 MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
912
913 /* Set the complementary output State */
914 MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
915
916 /* Set the Output Idle state */
917 MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
918
919 /* Set the complementary output Idle state */
920 MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
921 }
922
923 /* Write to TIMx CR2 */
924 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
925
926 /* Write to TIMx CCMR1 */
927 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
928
929 /* Set the Capture Compare Register value */
930 LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
931
932 /* Write to TIMx CCER */
933 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
934
935 return SUCCESS;
936 }
937
938 /**
939 * @brief Configure the TIMx output channel 3.
940 * @param TIMx Timer Instance
941 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
942 * @retval An ErrorStatus enumeration value:
943 * - SUCCESS: TIMx registers are de-initialized
944 * - ERROR: not applicable
945 */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)946 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
947 {
948 uint32_t tmpccmr2;
949 uint32_t tmpccer;
950 uint32_t tmpcr2;
951
952 /* Check the parameters */
953 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
954 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
955 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
956 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
957
958 /* Disable the Channel 3: Reset the CC3E Bit */
959 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
960
961 /* Get the TIMx CCER register value */
962 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
963
964 /* Get the TIMx CR2 register value */
965 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
966
967 /* Get the TIMx CCMR2 register value */
968 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
969
970 /* Reset Capture/Compare selection Bits */
971 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
972
973 /* Select the Output Compare Mode */
974 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
975
976 /* Set the Output Compare Polarity */
977 MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
978
979 /* Set the Output State */
980 MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
981
982 if (IS_TIM_BREAK_INSTANCE(TIMx))
983 {
984 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
985 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
986 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
987 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
988
989 /* Set the complementary output Polarity */
990 MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
991
992 /* Set the complementary output State */
993 MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
994
995 /* Set the Output Idle state */
996 MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
997
998 /* Set the complementary output Idle state */
999 MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1000 }
1001
1002 /* Write to TIMx CR2 */
1003 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1004
1005 /* Write to TIMx CCMR2 */
1006 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1007
1008 /* Set the Capture Compare Register value */
1009 LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1010
1011 /* Write to TIMx CCER */
1012 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1013
1014 return SUCCESS;
1015 }
1016
1017 /**
1018 * @brief Configure the TIMx output channel 4.
1019 * @param TIMx Timer Instance
1020 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1021 * @retval An ErrorStatus enumeration value:
1022 * - SUCCESS: TIMx registers are de-initialized
1023 * - ERROR: not applicable
1024 */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1025 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1026 {
1027 uint32_t tmpccmr2;
1028 uint32_t tmpccer;
1029 uint32_t tmpcr2;
1030
1031 /* Check the parameters */
1032 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1033 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1034 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1035 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1036
1037 /* Disable the Channel 4: Reset the CC4E Bit */
1038 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1039
1040 /* Get the TIMx CCER register value */
1041 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1042
1043 /* Get the TIMx CR2 register value */
1044 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1045
1046 /* Get the TIMx CCMR2 register value */
1047 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1048
1049 /* Reset Capture/Compare selection Bits */
1050 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1051
1052 /* Select the Output Compare Mode */
1053 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1054
1055 /* Set the Output Compare Polarity */
1056 MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1057
1058 /* Set the Output State */
1059 MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1060
1061 if (IS_TIM_BREAK_INSTANCE(TIMx))
1062 {
1063 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1064
1065 /* Set the Output Idle state */
1066 MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1067 }
1068
1069 /* Write to TIMx CR2 */
1070 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1071
1072 /* Write to TIMx CCMR2 */
1073 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1074
1075 /* Set the Capture Compare Register value */
1076 LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1077
1078 /* Write to TIMx CCER */
1079 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1080
1081 return SUCCESS;
1082 }
1083
1084 /**
1085 * @brief Configure the TIMx output channel 5.
1086 * @param TIMx Timer Instance
1087 * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1088 * @retval An ErrorStatus enumeration value:
1089 * - SUCCESS: TIMx registers are de-initialized
1090 * - ERROR: not applicable
1091 */
OC5Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1092 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1093 {
1094 uint32_t tmpccmr3;
1095 uint32_t tmpccer;
1096
1097 /* Check the parameters */
1098 assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1099 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1100 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1101 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1102 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1103 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1104
1105 /* Disable the Channel 5: Reset the CC5E Bit */
1106 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1107
1108 /* Get the TIMx CCER register value */
1109 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1110
1111 /* Get the TIMx CCMR3 register value */
1112 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1113
1114 /* Select the Output Compare Mode */
1115 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1116
1117 /* Set the Output Compare Polarity */
1118 MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1119
1120 /* Set the Output State */
1121 MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1122
1123 if (IS_TIM_BREAK_INSTANCE(TIMx))
1124 {
1125 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1126 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1127
1128 /* Set the Output Idle state */
1129 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1130
1131 }
1132
1133 /* Write to TIMx CCMR3 */
1134 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1135
1136 /* Set the Capture Compare Register value */
1137 LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1138
1139 /* Write to TIMx CCER */
1140 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1141
1142 return SUCCESS;
1143 }
1144
1145 /**
1146 * @brief Configure the TIMx output channel 6.
1147 * @param TIMx Timer Instance
1148 * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1149 * @retval An ErrorStatus enumeration value:
1150 * - SUCCESS: TIMx registers are de-initialized
1151 * - ERROR: not applicable
1152 */
OC6Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1153 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1154 {
1155 uint32_t tmpccmr3;
1156 uint32_t tmpccer;
1157
1158 /* Check the parameters */
1159 assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1160 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1161 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1162 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1163 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1164 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1165
1166 /* Disable the Channel 5: Reset the CC6E Bit */
1167 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1168
1169 /* Get the TIMx CCER register value */
1170 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1171
1172 /* Get the TIMx CCMR3 register value */
1173 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1174
1175 /* Select the Output Compare Mode */
1176 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1177
1178 /* Set the Output Compare Polarity */
1179 MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1180
1181 /* Set the Output State */
1182 MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1183
1184 if (IS_TIM_BREAK_INSTANCE(TIMx))
1185 {
1186 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1187 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1188
1189 /* Set the Output Idle state */
1190 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1191 }
1192
1193 /* Write to TIMx CCMR3 */
1194 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1195
1196 /* Set the Capture Compare Register value */
1197 LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1198
1199 /* Write to TIMx CCER */
1200 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1201
1202 return SUCCESS;
1203 }
1204
1205 /**
1206 * @brief Configure the TIMx input channel 1.
1207 * @param TIMx Timer Instance
1208 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1209 * @retval An ErrorStatus enumeration value:
1210 * - SUCCESS: TIMx registers are de-initialized
1211 * - ERROR: not applicable
1212 */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1213 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1214 {
1215 /* Check the parameters */
1216 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1217 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1218 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1219 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1220 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1221
1222 /* Disable the Channel 1: Reset the CC1E Bit */
1223 TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1224
1225 /* Select the Input and set the filter and the prescaler value */
1226 MODIFY_REG(TIMx->CCMR1,
1227 (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1228 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1229
1230 /* Select the Polarity and set the CC1E Bit */
1231 MODIFY_REG(TIMx->CCER,
1232 (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1233 (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1234
1235 return SUCCESS;
1236 }
1237
1238 /**
1239 * @brief Configure the TIMx input channel 2.
1240 * @param TIMx Timer Instance
1241 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1242 * @retval An ErrorStatus enumeration value:
1243 * - SUCCESS: TIMx registers are de-initialized
1244 * - ERROR: not applicable
1245 */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1246 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1247 {
1248 /* Check the parameters */
1249 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1250 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1251 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1252 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1253 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1254
1255 /* Disable the Channel 2: Reset the CC2E Bit */
1256 TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1257
1258 /* Select the Input and set the filter and the prescaler value */
1259 MODIFY_REG(TIMx->CCMR1,
1260 (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1261 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1262
1263 /* Select the Polarity and set the CC2E Bit */
1264 MODIFY_REG(TIMx->CCER,
1265 (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1266 ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1267
1268 return SUCCESS;
1269 }
1270
1271 /**
1272 * @brief Configure the TIMx input channel 3.
1273 * @param TIMx Timer Instance
1274 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1275 * @retval An ErrorStatus enumeration value:
1276 * - SUCCESS: TIMx registers are de-initialized
1277 * - ERROR: not applicable
1278 */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1279 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1280 {
1281 /* Check the parameters */
1282 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1283 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1284 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1285 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1286 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1287
1288 /* Disable the Channel 3: Reset the CC3E Bit */
1289 TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1290
1291 /* Select the Input and set the filter and the prescaler value */
1292 MODIFY_REG(TIMx->CCMR2,
1293 (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1294 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1295
1296 /* Select the Polarity and set the CC3E Bit */
1297 MODIFY_REG(TIMx->CCER,
1298 (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1299 ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1300
1301 return SUCCESS;
1302 }
1303
1304 /**
1305 * @brief Configure the TIMx input channel 4.
1306 * @param TIMx Timer Instance
1307 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1308 * @retval An ErrorStatus enumeration value:
1309 * - SUCCESS: TIMx registers are de-initialized
1310 * - ERROR: not applicable
1311 */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1312 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1313 {
1314 /* Check the parameters */
1315 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1316 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1317 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1318 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1319 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1320
1321 /* Disable the Channel 4: Reset the CC4E Bit */
1322 TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1323
1324 /* Select the Input and set the filter and the prescaler value */
1325 MODIFY_REG(TIMx->CCMR2,
1326 (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1327 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1328
1329 /* Select the Polarity and set the CC4E Bit */
1330 MODIFY_REG(TIMx->CCER,
1331 (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1332 ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1333
1334 return SUCCESS;
1335 }
1336
1337
1338 /**
1339 * @}
1340 */
1341
1342 /**
1343 * @}
1344 */
1345
1346 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM15 || TIM16 || TIM17 */
1347
1348 /**
1349 * @}
1350 */
1351
1352 #endif /* USE_FULL_LL_DRIVER */
1353
1354