1 /**
2 ******************************************************************************
3 * @file stm32l5xx_hal_uart.c
4 * @author MCD Application Team
5 * @brief UART HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8 * + Initialization and de-initialization functions
9 * + IO operation functions
10 * + Peripheral Control functions
11 *
12 *
13 ******************************************************************************
14 * @attention
15 *
16 * Copyright (c) 2019 STMicroelectronics.
17 * All rights reserved.
18 *
19 * This software is licensed under terms that can be found in the LICENSE file
20 * in the root directory of this software component.
21 * If no LICENSE file comes with this software, it is provided AS-IS.
22 *
23 ******************************************************************************
24 @verbatim
25 ===============================================================================
26 ##### How to use this driver #####
27 ===============================================================================
28 [..]
29 The UART HAL driver can be used as follows:
30
31 (#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart).
32 (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
33 (++) Enable the USARTx interface clock.
34 (++) UART pins configuration:
35 (+++) Enable the clock for the UART GPIOs.
36 (+++) Configure these UART pins as alternate function pull-up.
37 (++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
38 and HAL_UART_Receive_IT() APIs):
39 (+++) Configure the USARTx interrupt priority.
40 (+++) Enable the NVIC USART IRQ handle.
41 (++) UART interrupts handling:
42 -@@- The specific UART interrupts (Transmission complete interrupt,
43 RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts)
44 are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT()
45 inside the transmit and receive processes.
46 (++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
47 and HAL_UART_Receive_DMA() APIs):
48 (+++) Declare a DMA handle structure for the Tx/Rx channel.
49 (+++) Enable the DMAx interface clock.
50 (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
51 (+++) Configure the DMA Tx/Rx channel.
52 (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
53 (+++) Configure the priority and enable the NVIC for the transfer complete
54 interrupt on the DMA Tx/Rx channel.
55
56 (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Prescaler value , Hardware
57 flow control and Mode (Receiver/Transmitter) in the huart handle Init structure.
58
59 (#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...)
60 in the huart handle AdvancedInit structure.
61
62 (#) For the UART asynchronous mode, initialize the UART registers by calling
63 the HAL_UART_Init() API.
64
65 (#) For the UART Half duplex mode, initialize the UART registers by calling
66 the HAL_HalfDuplex_Init() API.
67
68 (#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers
69 by calling the HAL_LIN_Init() API.
70
71 (#) For the UART Multiprocessor mode, initialize the UART registers
72 by calling the HAL_MultiProcessor_Init() API.
73
74 (#) For the UART RS485 Driver Enabled mode, initialize the UART registers
75 by calling the HAL_RS485Ex_Init() API.
76
77 [..]
78 (@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(),
79 also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by
80 calling the customized HAL_UART_MspInit() API.
81
82 ##### Callback registration #####
83 ==================================
84
85 [..]
86 The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1
87 allows the user to configure dynamically the driver callbacks.
88
89 [..]
90 Use Function HAL_UART_RegisterCallback() to register a user callback.
91 Function HAL_UART_RegisterCallback() allows to register following callbacks:
92 (+) TxHalfCpltCallback : Tx Half Complete Callback.
93 (+) TxCpltCallback : Tx Complete Callback.
94 (+) RxHalfCpltCallback : Rx Half Complete Callback.
95 (+) RxCpltCallback : Rx Complete Callback.
96 (+) ErrorCallback : Error Callback.
97 (+) AbortCpltCallback : Abort Complete Callback.
98 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
99 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
100 (+) WakeupCallback : Wakeup Callback.
101 (+) RxFifoFullCallback : Rx Fifo Full Callback.
102 (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
103 (+) MspInitCallback : UART MspInit.
104 (+) MspDeInitCallback : UART MspDeInit.
105 This function takes as parameters the HAL peripheral handle, the Callback ID
106 and a pointer to the user callback function.
107
108 [..]
109 Use function HAL_UART_UnRegisterCallback() to reset a callback to the default
110 weak function.
111 HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle,
112 and the Callback ID.
113 This function allows to reset following callbacks:
114 (+) TxHalfCpltCallback : Tx Half Complete Callback.
115 (+) TxCpltCallback : Tx Complete Callback.
116 (+) RxHalfCpltCallback : Rx Half Complete Callback.
117 (+) RxCpltCallback : Rx Complete Callback.
118 (+) ErrorCallback : Error Callback.
119 (+) AbortCpltCallback : Abort Complete Callback.
120 (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback.
121 (+) AbortReceiveCpltCallback : Abort Receive Complete Callback.
122 (+) WakeupCallback : Wakeup Callback.
123 (+) RxFifoFullCallback : Rx Fifo Full Callback.
124 (+) TxFifoEmptyCallback : Tx Fifo Empty Callback.
125 (+) MspInitCallback : UART MspInit.
126 (+) MspDeInitCallback : UART MspDeInit.
127
128 [..]
129 For specific callback RxEventCallback, use dedicated registration/reset functions:
130 respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback().
131
132 [..]
133 By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET
134 all callbacks are set to the corresponding weak functions:
135 examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback().
136 Exception done for MspInit and MspDeInit functions that are respectively
137 reset to the legacy weak functions in the HAL_UART_Init()
138 and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand).
139 If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit()
140 keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
141
142 [..]
143 Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only.
144 Exception done MspInit/MspDeInit that can be registered/unregistered
145 in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user)
146 MspInit/DeInit callbacks can be used during the Init/DeInit.
147 In that case first register the MspInit/MspDeInit user callbacks
148 using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit()
149 or HAL_UART_Init() function.
150
151 [..]
152 When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or
153 not defined, the callback registration feature is not available
154 and weak callbacks are used.
155
156
157 @endverbatim
158 ******************************************************************************
159 */
160
161 /* Includes ------------------------------------------------------------------*/
162 #include "stm32l5xx_hal.h"
163
164 /** @addtogroup STM32L5xx_HAL_Driver
165 * @{
166 */
167
168 /** @defgroup UART UART
169 * @brief HAL UART module driver
170 * @{
171 */
172
173 #ifdef HAL_UART_MODULE_ENABLED
174
175 /* Private typedef -----------------------------------------------------------*/
176 /* Private define ------------------------------------------------------------*/
177 /** @defgroup UART_Private_Constants UART Private Constants
178 * @{
179 */
180 #define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \
181 USART_CR1_OVER8 | USART_CR1_FIFOEN)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */
182
183 #define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT | USART_CR3_TXFTCFG | \
184 USART_CR3_RXFTCFG)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */
185
186 #define LPUART_BRR_MIN 0x00000300U /* LPUART BRR minimum authorized value */
187 #define LPUART_BRR_MAX 0x000FFFFFU /* LPUART BRR maximum authorized value */
188
189 #define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */
190 #define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */
191 /**
192 * @}
193 */
194
195 /* Private macros ------------------------------------------------------------*/
196 /* Private function prototypes -----------------------------------------------*/
197 /** @addtogroup UART_Private_Functions
198 * @{
199 */
200 static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
201 static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
202 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
203 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
204 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
205 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
206 static void UART_DMAError(DMA_HandleTypeDef *hdma);
207 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
208 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
209 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
210 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
211 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
212 static void UART_TxISR_8BIT(UART_HandleTypeDef *huart);
213 static void UART_TxISR_16BIT(UART_HandleTypeDef *huart);
214 static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
215 static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
216 static void UART_EndTransmit_IT(UART_HandleTypeDef *huart);
217 static void UART_RxISR_8BIT(UART_HandleTypeDef *huart);
218 static void UART_RxISR_16BIT(UART_HandleTypeDef *huart);
219 static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart);
220 static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart);
221 /**
222 * @}
223 */
224
225 /* Private variables ---------------------------------------------------------*/
226 /** @addtogroup UART_Private_variables
227 * @{
228 */
229 const uint16_t UARTPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U};
230 /**
231 * @}
232 */
233
234 /* Exported Constants --------------------------------------------------------*/
235 /* Exported functions --------------------------------------------------------*/
236
237 /** @defgroup UART_Exported_Functions UART Exported Functions
238 * @{
239 */
240
241 /** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions
242 * @brief Initialization and Configuration functions
243 *
244 @verbatim
245 ===============================================================================
246 ##### Initialization and Configuration functions #####
247 ===============================================================================
248 [..]
249 This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
250 in asynchronous mode.
251 (+) For the asynchronous mode the parameters below can be configured:
252 (++) Baud Rate
253 (++) Word Length
254 (++) Stop Bit
255 (++) Parity: If the parity is enabled, then the MSB bit of the data written
256 in the data register is transmitted but is changed by the parity bit.
257 (++) Hardware flow control
258 (++) Receiver/transmitter modes
259 (++) Over Sampling Method
260 (++) One-Bit Sampling Method
261 (+) For the asynchronous mode, the following advanced features can be configured as well:
262 (++) TX and/or RX pin level inversion
263 (++) data logical level inversion
264 (++) RX and TX pins swap
265 (++) RX overrun detection disabling
266 (++) DMA disabling on RX error
267 (++) MSB first on communication line
268 (++) auto Baud rate detection
269 [..]
270 The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API
271 follow respectively the UART asynchronous, UART Half duplex, UART LIN mode
272 and UART multiprocessor mode configuration procedures (details for the procedures
273 are available in reference manual).
274
275 @endverbatim
276
277 Depending on the frame length defined by the M1 and M0 bits (7-bit,
278 8-bit or 9-bit), the possible UART formats are listed in the
279 following table.
280
281 Table 1. UART frame format.
282 +-----------------------------------------------------------------------+
283 | M1 bit | M0 bit | PCE bit | UART frame |
284 |---------|---------|-----------|---------------------------------------|
285 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
286 |---------|---------|-----------|---------------------------------------|
287 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
288 |---------|---------|-----------|---------------------------------------|
289 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
290 |---------|---------|-----------|---------------------------------------|
291 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
292 |---------|---------|-----------|---------------------------------------|
293 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
294 |---------|---------|-----------|---------------------------------------|
295 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
296 +-----------------------------------------------------------------------+
297
298 * @{
299 */
300
301 /**
302 * @brief Initialize the UART mode according to the specified
303 * parameters in the UART_InitTypeDef and initialize the associated handle.
304 * @param huart UART handle.
305 * @retval HAL status
306 */
HAL_UART_Init(UART_HandleTypeDef * huart)307 HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
308 {
309 /* Check the UART handle allocation */
310 if (huart == NULL)
311 {
312 return HAL_ERROR;
313 }
314
315 if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
316 {
317 /* Check the parameters */
318 assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
319 }
320 else
321 {
322 /* Check the parameters */
323 assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
324 }
325
326 if (huart->gState == HAL_UART_STATE_RESET)
327 {
328 /* Allocate lock resource and initialize it */
329 huart->Lock = HAL_UNLOCKED;
330
331 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
332 UART_InitCallbacksToDefault(huart);
333
334 if (huart->MspInitCallback == NULL)
335 {
336 huart->MspInitCallback = HAL_UART_MspInit;
337 }
338
339 /* Init the low level hardware */
340 huart->MspInitCallback(huart);
341 #else
342 /* Init the low level hardware : GPIO, CLOCK */
343 HAL_UART_MspInit(huart);
344 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
345 }
346
347 huart->gState = HAL_UART_STATE_BUSY;
348
349 __HAL_UART_DISABLE(huart);
350
351 /* Perform advanced settings configuration */
352 /* For some items, configuration requires to be done prior TE and RE bits are set */
353 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
354 {
355 UART_AdvFeatureConfig(huart);
356 }
357
358 /* Set the UART Communication parameters */
359 if (UART_SetConfig(huart) == HAL_ERROR)
360 {
361 return HAL_ERROR;
362 }
363
364 /* In asynchronous mode, the following bits must be kept cleared:
365 - LINEN and CLKEN bits in the USART_CR2 register,
366 - SCEN, HDSEL and IREN bits in the USART_CR3 register.*/
367 CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
368 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
369
370 __HAL_UART_ENABLE(huart);
371
372 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
373 return (UART_CheckIdleState(huart));
374 }
375
376 /**
377 * @brief Initialize the half-duplex mode according to the specified
378 * parameters in the UART_InitTypeDef and creates the associated handle.
379 * @param huart UART handle.
380 * @retval HAL status
381 */
HAL_HalfDuplex_Init(UART_HandleTypeDef * huart)382 HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
383 {
384 /* Check the UART handle allocation */
385 if (huart == NULL)
386 {
387 return HAL_ERROR;
388 }
389
390 /* Check UART instance */
391 assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
392
393 if (huart->gState == HAL_UART_STATE_RESET)
394 {
395 /* Allocate lock resource and initialize it */
396 huart->Lock = HAL_UNLOCKED;
397
398 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
399 UART_InitCallbacksToDefault(huart);
400
401 if (huart->MspInitCallback == NULL)
402 {
403 huart->MspInitCallback = HAL_UART_MspInit;
404 }
405
406 /* Init the low level hardware */
407 huart->MspInitCallback(huart);
408 #else
409 /* Init the low level hardware : GPIO, CLOCK */
410 HAL_UART_MspInit(huart);
411 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
412 }
413
414 huart->gState = HAL_UART_STATE_BUSY;
415
416 __HAL_UART_DISABLE(huart);
417
418 /* Perform advanced settings configuration */
419 /* For some items, configuration requires to be done prior TE and RE bits are set */
420 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
421 {
422 UART_AdvFeatureConfig(huart);
423 }
424
425 /* Set the UART Communication parameters */
426 if (UART_SetConfig(huart) == HAL_ERROR)
427 {
428 return HAL_ERROR;
429 }
430
431 /* In half-duplex mode, the following bits must be kept cleared:
432 - LINEN and CLKEN bits in the USART_CR2 register,
433 - SCEN and IREN bits in the USART_CR3 register.*/
434 CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
435 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
436
437 /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
438 SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
439
440 __HAL_UART_ENABLE(huart);
441
442 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
443 return (UART_CheckIdleState(huart));
444 }
445
446
447 /**
448 * @brief Initialize the LIN mode according to the specified
449 * parameters in the UART_InitTypeDef and creates the associated handle.
450 * @param huart UART handle.
451 * @param BreakDetectLength Specifies the LIN break detection length.
452 * This parameter can be one of the following values:
453 * @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection
454 * @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection
455 * @retval HAL status
456 */
HAL_LIN_Init(UART_HandleTypeDef * huart,uint32_t BreakDetectLength)457 HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
458 {
459 /* Check the UART handle allocation */
460 if (huart == NULL)
461 {
462 return HAL_ERROR;
463 }
464
465 /* Check the LIN UART instance */
466 assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
467 /* Check the Break detection length parameter */
468 assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
469
470 /* LIN mode limited to 16-bit oversampling only */
471 if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
472 {
473 return HAL_ERROR;
474 }
475 /* LIN mode limited to 8-bit data length */
476 if (huart->Init.WordLength != UART_WORDLENGTH_8B)
477 {
478 return HAL_ERROR;
479 }
480
481 if (huart->gState == HAL_UART_STATE_RESET)
482 {
483 /* Allocate lock resource and initialize it */
484 huart->Lock = HAL_UNLOCKED;
485
486 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
487 UART_InitCallbacksToDefault(huart);
488
489 if (huart->MspInitCallback == NULL)
490 {
491 huart->MspInitCallback = HAL_UART_MspInit;
492 }
493
494 /* Init the low level hardware */
495 huart->MspInitCallback(huart);
496 #else
497 /* Init the low level hardware : GPIO, CLOCK */
498 HAL_UART_MspInit(huart);
499 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
500 }
501
502 huart->gState = HAL_UART_STATE_BUSY;
503
504 __HAL_UART_DISABLE(huart);
505
506 /* Perform advanced settings configuration */
507 /* For some items, configuration requires to be done prior TE and RE bits are set */
508 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
509 {
510 UART_AdvFeatureConfig(huart);
511 }
512
513 /* Set the UART Communication parameters */
514 if (UART_SetConfig(huart) == HAL_ERROR)
515 {
516 return HAL_ERROR;
517 }
518
519 /* In LIN mode, the following bits must be kept cleared:
520 - LINEN and CLKEN bits in the USART_CR2 register,
521 - SCEN and IREN bits in the USART_CR3 register.*/
522 CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
523 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
524
525 /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
526 SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
527
528 /* Set the USART LIN Break detection length. */
529 MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
530
531 __HAL_UART_ENABLE(huart);
532
533 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
534 return (UART_CheckIdleState(huart));
535 }
536
537
538 /**
539 * @brief Initialize the multiprocessor mode according to the specified
540 * parameters in the UART_InitTypeDef and initialize the associated handle.
541 * @param huart UART handle.
542 * @param Address UART node address (4-, 6-, 7- or 8-bit long).
543 * @param WakeUpMethod Specifies the UART wakeup method.
544 * This parameter can be one of the following values:
545 * @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection
546 * @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark
547 * @note If the user resorts to idle line detection wake up, the Address parameter
548 * is useless and ignored by the initialization function.
549 * @note If the user resorts to address mark wake up, the address length detection
550 * is configured by default to 4 bits only. For the UART to be able to
551 * manage 6-, 7- or 8-bit long addresses detection, the API
552 * HAL_MultiProcessorEx_AddressLength_Set() must be called after
553 * HAL_MultiProcessor_Init().
554 * @retval HAL status
555 */
HAL_MultiProcessor_Init(UART_HandleTypeDef * huart,uint8_t Address,uint32_t WakeUpMethod)556 HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
557 {
558 /* Check the UART handle allocation */
559 if (huart == NULL)
560 {
561 return HAL_ERROR;
562 }
563
564 /* Check the wake up method parameter */
565 assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
566
567 if (huart->gState == HAL_UART_STATE_RESET)
568 {
569 /* Allocate lock resource and initialize it */
570 huart->Lock = HAL_UNLOCKED;
571
572 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
573 UART_InitCallbacksToDefault(huart);
574
575 if (huart->MspInitCallback == NULL)
576 {
577 huart->MspInitCallback = HAL_UART_MspInit;
578 }
579
580 /* Init the low level hardware */
581 huart->MspInitCallback(huart);
582 #else
583 /* Init the low level hardware : GPIO, CLOCK */
584 HAL_UART_MspInit(huart);
585 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
586 }
587
588 huart->gState = HAL_UART_STATE_BUSY;
589
590 __HAL_UART_DISABLE(huart);
591
592 /* Perform advanced settings configuration */
593 /* For some items, configuration requires to be done prior TE and RE bits are set */
594 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
595 {
596 UART_AdvFeatureConfig(huart);
597 }
598
599 /* Set the UART Communication parameters */
600 if (UART_SetConfig(huart) == HAL_ERROR)
601 {
602 return HAL_ERROR;
603 }
604
605 /* In multiprocessor mode, the following bits must be kept cleared:
606 - LINEN and CLKEN bits in the USART_CR2 register,
607 - SCEN, HDSEL and IREN bits in the USART_CR3 register. */
608 CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
609 CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
610
611 if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK)
612 {
613 /* If address mark wake up method is chosen, set the USART address node */
614 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS));
615 }
616
617 /* Set the wake up method by setting the WAKE bit in the CR1 register */
618 MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
619
620 __HAL_UART_ENABLE(huart);
621
622 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
623 return (UART_CheckIdleState(huart));
624 }
625
626
627 /**
628 * @brief DeInitialize the UART peripheral.
629 * @param huart UART handle.
630 * @retval HAL status
631 */
HAL_UART_DeInit(UART_HandleTypeDef * huart)632 HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
633 {
634 /* Check the UART handle allocation */
635 if (huart == NULL)
636 {
637 return HAL_ERROR;
638 }
639
640 /* Check the parameters */
641 assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance)));
642
643 huart->gState = HAL_UART_STATE_BUSY;
644
645 __HAL_UART_DISABLE(huart);
646
647 huart->Instance->CR1 = 0x0U;
648 huart->Instance->CR2 = 0x0U;
649 huart->Instance->CR3 = 0x0U;
650
651 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
652 if (huart->MspDeInitCallback == NULL)
653 {
654 huart->MspDeInitCallback = HAL_UART_MspDeInit;
655 }
656 /* DeInit the low level hardware */
657 huart->MspDeInitCallback(huart);
658 #else
659 /* DeInit the low level hardware */
660 HAL_UART_MspDeInit(huart);
661 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
662
663 huart->ErrorCode = HAL_UART_ERROR_NONE;
664 huart->gState = HAL_UART_STATE_RESET;
665 huart->RxState = HAL_UART_STATE_RESET;
666 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
667 huart->RxEventType = HAL_UART_RXEVENT_TC;
668
669 __HAL_UNLOCK(huart);
670
671 return HAL_OK;
672 }
673
674 /**
675 * @brief Initialize the UART MSP.
676 * @param huart UART handle.
677 * @retval None
678 */
HAL_UART_MspInit(UART_HandleTypeDef * huart)679 __weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
680 {
681 /* Prevent unused argument(s) compilation warning */
682 UNUSED(huart);
683
684 /* NOTE : This function should not be modified, when the callback is needed,
685 the HAL_UART_MspInit can be implemented in the user file
686 */
687 }
688
689 /**
690 * @brief DeInitialize the UART MSP.
691 * @param huart UART handle.
692 * @retval None
693 */
HAL_UART_MspDeInit(UART_HandleTypeDef * huart)694 __weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
695 {
696 /* Prevent unused argument(s) compilation warning */
697 UNUSED(huart);
698
699 /* NOTE : This function should not be modified, when the callback is needed,
700 the HAL_UART_MspDeInit can be implemented in the user file
701 */
702 }
703
704 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
705 /**
706 * @brief Register a User UART Callback
707 * To be used to override the weak predefined callback
708 * @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
709 * HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to register
710 * callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
711 * @param huart uart handle
712 * @param CallbackID ID of the callback to be registered
713 * This parameter can be one of the following values:
714 * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
715 * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
716 * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
717 * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
718 * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
719 * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
720 * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
721 * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
722 * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
723 * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
724 * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
725 * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
726 * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
727 * @param pCallback pointer to the Callback function
728 * @retval HAL status
729 */
HAL_UART_RegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID,pUART_CallbackTypeDef pCallback)730 HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID,
731 pUART_CallbackTypeDef pCallback)
732 {
733 HAL_StatusTypeDef status = HAL_OK;
734
735 if (pCallback == NULL)
736 {
737 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
738
739 return HAL_ERROR;
740 }
741
742 if (huart->gState == HAL_UART_STATE_READY)
743 {
744 switch (CallbackID)
745 {
746 case HAL_UART_TX_HALFCOMPLETE_CB_ID :
747 huart->TxHalfCpltCallback = pCallback;
748 break;
749
750 case HAL_UART_TX_COMPLETE_CB_ID :
751 huart->TxCpltCallback = pCallback;
752 break;
753
754 case HAL_UART_RX_HALFCOMPLETE_CB_ID :
755 huart->RxHalfCpltCallback = pCallback;
756 break;
757
758 case HAL_UART_RX_COMPLETE_CB_ID :
759 huart->RxCpltCallback = pCallback;
760 break;
761
762 case HAL_UART_ERROR_CB_ID :
763 huart->ErrorCallback = pCallback;
764 break;
765
766 case HAL_UART_ABORT_COMPLETE_CB_ID :
767 huart->AbortCpltCallback = pCallback;
768 break;
769
770 case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
771 huart->AbortTransmitCpltCallback = pCallback;
772 break;
773
774 case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
775 huart->AbortReceiveCpltCallback = pCallback;
776 break;
777
778 case HAL_UART_WAKEUP_CB_ID :
779 huart->WakeupCallback = pCallback;
780 break;
781
782 case HAL_UART_RX_FIFO_FULL_CB_ID :
783 huart->RxFifoFullCallback = pCallback;
784 break;
785
786 case HAL_UART_TX_FIFO_EMPTY_CB_ID :
787 huart->TxFifoEmptyCallback = pCallback;
788 break;
789
790 case HAL_UART_MSPINIT_CB_ID :
791 huart->MspInitCallback = pCallback;
792 break;
793
794 case HAL_UART_MSPDEINIT_CB_ID :
795 huart->MspDeInitCallback = pCallback;
796 break;
797
798 default :
799 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
800
801 status = HAL_ERROR;
802 break;
803 }
804 }
805 else if (huart->gState == HAL_UART_STATE_RESET)
806 {
807 switch (CallbackID)
808 {
809 case HAL_UART_MSPINIT_CB_ID :
810 huart->MspInitCallback = pCallback;
811 break;
812
813 case HAL_UART_MSPDEINIT_CB_ID :
814 huart->MspDeInitCallback = pCallback;
815 break;
816
817 default :
818 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
819
820 status = HAL_ERROR;
821 break;
822 }
823 }
824 else
825 {
826 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
827
828 status = HAL_ERROR;
829 }
830
831 return status;
832 }
833
834 /**
835 * @brief Unregister an UART Callback
836 * UART callaback is redirected to the weak predefined callback
837 * @note The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(),
838 * HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to un-register
839 * callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID
840 * @param huart uart handle
841 * @param CallbackID ID of the callback to be unregistered
842 * This parameter can be one of the following values:
843 * @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID
844 * @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID
845 * @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID
846 * @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID
847 * @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID
848 * @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID
849 * @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID
850 * @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID
851 * @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID
852 * @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID
853 * @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID
854 * @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID
855 * @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID
856 * @retval HAL status
857 */
HAL_UART_UnRegisterCallback(UART_HandleTypeDef * huart,HAL_UART_CallbackIDTypeDef CallbackID)858 HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID)
859 {
860 HAL_StatusTypeDef status = HAL_OK;
861
862 if (HAL_UART_STATE_READY == huart->gState)
863 {
864 switch (CallbackID)
865 {
866 case HAL_UART_TX_HALFCOMPLETE_CB_ID :
867 huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
868 break;
869
870 case HAL_UART_TX_COMPLETE_CB_ID :
871 huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
872 break;
873
874 case HAL_UART_RX_HALFCOMPLETE_CB_ID :
875 huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
876 break;
877
878 case HAL_UART_RX_COMPLETE_CB_ID :
879 huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
880 break;
881
882 case HAL_UART_ERROR_CB_ID :
883 huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
884 break;
885
886 case HAL_UART_ABORT_COMPLETE_CB_ID :
887 huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
888 break;
889
890 case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID :
891 huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak
892 AbortTransmitCpltCallback */
893 break;
894
895 case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID :
896 huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak
897 AbortReceiveCpltCallback */
898 break;
899
900 case HAL_UART_WAKEUP_CB_ID :
901 huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
902 break;
903
904 case HAL_UART_RX_FIFO_FULL_CB_ID :
905 huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
906 break;
907
908 case HAL_UART_TX_FIFO_EMPTY_CB_ID :
909 huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
910 break;
911
912 case HAL_UART_MSPINIT_CB_ID :
913 huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */
914 break;
915
916 case HAL_UART_MSPDEINIT_CB_ID :
917 huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */
918 break;
919
920 default :
921 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
922
923 status = HAL_ERROR;
924 break;
925 }
926 }
927 else if (HAL_UART_STATE_RESET == huart->gState)
928 {
929 switch (CallbackID)
930 {
931 case HAL_UART_MSPINIT_CB_ID :
932 huart->MspInitCallback = HAL_UART_MspInit;
933 break;
934
935 case HAL_UART_MSPDEINIT_CB_ID :
936 huart->MspDeInitCallback = HAL_UART_MspDeInit;
937 break;
938
939 default :
940 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
941
942 status = HAL_ERROR;
943 break;
944 }
945 }
946 else
947 {
948 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
949
950 status = HAL_ERROR;
951 }
952
953 return status;
954 }
955
956 /**
957 * @brief Register a User UART Rx Event Callback
958 * To be used instead of the weak predefined callback
959 * @param huart Uart handle
960 * @param pCallback Pointer to the Rx Event Callback function
961 * @retval HAL status
962 */
HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef * huart,pUART_RxEventCallbackTypeDef pCallback)963 HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback)
964 {
965 HAL_StatusTypeDef status = HAL_OK;
966
967 if (pCallback == NULL)
968 {
969 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
970
971 return HAL_ERROR;
972 }
973
974 if (huart->RxState == HAL_UART_STATE_READY)
975 {
976 huart->RxEventCallback = pCallback;
977 }
978 else
979 {
980 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
981
982 status = HAL_ERROR;
983 }
984
985 return status;
986 }
987
988 /**
989 * @brief UnRegister the UART Rx Event Callback
990 * UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback
991 * @param huart Uart handle
992 * @retval HAL status
993 */
HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef * huart)994 HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart)
995 {
996 HAL_StatusTypeDef status = HAL_OK;
997
998 if (huart->RxState == HAL_UART_STATE_READY)
999 {
1000 huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */
1001 }
1002 else
1003 {
1004 huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK;
1005
1006 status = HAL_ERROR;
1007 }
1008
1009 return status;
1010 }
1011
1012 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
1013
1014 /**
1015 * @}
1016 */
1017
1018 /** @defgroup UART_Exported_Functions_Group2 IO operation functions
1019 * @brief UART Transmit/Receive functions
1020 *
1021 @verbatim
1022 ===============================================================================
1023 ##### IO operation functions #####
1024 ===============================================================================
1025 This subsection provides a set of functions allowing to manage the UART asynchronous
1026 and Half duplex data transfers.
1027
1028 (#) There are two mode of transfer:
1029 (+) Blocking mode: The communication is performed in polling mode.
1030 The HAL status of all data processing is returned by the same function
1031 after finishing transfer.
1032 (+) Non-Blocking mode: The communication is performed using Interrupts
1033 or DMA, These API's return the HAL status.
1034 The end of the data processing will be indicated through the
1035 dedicated UART IRQ when using Interrupt mode or the DMA IRQ when
1036 using DMA mode.
1037 The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks
1038 will be executed respectively at the end of the transmit or Receive process
1039 The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected
1040
1041 (#) Blocking mode API's are :
1042 (+) HAL_UART_Transmit()
1043 (+) HAL_UART_Receive()
1044
1045 (#) Non-Blocking mode API's with Interrupt are :
1046 (+) HAL_UART_Transmit_IT()
1047 (+) HAL_UART_Receive_IT()
1048 (+) HAL_UART_IRQHandler()
1049
1050 (#) Non-Blocking mode API's with DMA are :
1051 (+) HAL_UART_Transmit_DMA()
1052 (+) HAL_UART_Receive_DMA()
1053 (+) HAL_UART_DMAPause()
1054 (+) HAL_UART_DMAResume()
1055 (+) HAL_UART_DMAStop()
1056
1057 (#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode:
1058 (+) HAL_UART_TxHalfCpltCallback()
1059 (+) HAL_UART_TxCpltCallback()
1060 (+) HAL_UART_RxHalfCpltCallback()
1061 (+) HAL_UART_RxCpltCallback()
1062 (+) HAL_UART_ErrorCallback()
1063
1064 (#) Non-Blocking mode transfers could be aborted using Abort API's :
1065 (+) HAL_UART_Abort()
1066 (+) HAL_UART_AbortTransmit()
1067 (+) HAL_UART_AbortReceive()
1068 (+) HAL_UART_Abort_IT()
1069 (+) HAL_UART_AbortTransmit_IT()
1070 (+) HAL_UART_AbortReceive_IT()
1071
1072 (#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided:
1073 (+) HAL_UART_AbortCpltCallback()
1074 (+) HAL_UART_AbortTransmitCpltCallback()
1075 (+) HAL_UART_AbortReceiveCpltCallback()
1076
1077 (#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced
1078 reception services:
1079 (+) HAL_UARTEx_RxEventCallback()
1080
1081 (#) In Non-Blocking mode transfers, possible errors are split into 2 categories.
1082 Errors are handled as follows :
1083 (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is
1084 to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error
1085 in Interrupt mode reception .
1086 Received character is then retrieved and stored in Rx buffer, Error code is set to allow user
1087 to identify error type, and HAL_UART_ErrorCallback() user callback is executed.
1088 Transfer is kept ongoing on UART side.
1089 If user wants to abort it, Abort services should be called by user.
1090 (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted.
1091 This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode.
1092 Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback()
1093 user callback is executed.
1094
1095 -@- In the Half duplex communication, it is forbidden to run the transmit
1096 and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful.
1097
1098 @endverbatim
1099 * @{
1100 */
1101
1102 /**
1103 * @brief Send an amount of data in blocking mode.
1104 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1105 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1106 * of u16 provided through pData.
1107 * @note When FIFO mode is enabled, writing a data in the TDR register adds one
1108 * data to the TXFIFO. Write operations to the TDR register are performed
1109 * when TXFNF flag is set. From hardware perspective, TXFNF flag and
1110 * TXE are mapped on the same bit-field.
1111 * @param huart UART handle.
1112 * @param pData Pointer to data buffer (u8 or u16 data elements).
1113 * @param Size Amount of data elements (u8 or u16) to be sent.
1114 * @param Timeout Timeout duration.
1115 * @retval HAL status
1116 */
HAL_UART_Transmit(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size,uint32_t Timeout)1117 HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
1118 {
1119 const uint8_t *pdata8bits;
1120 const uint16_t *pdata16bits;
1121 uint32_t tickstart;
1122
1123 /* Check that a Tx process is not already ongoing */
1124 if (huart->gState == HAL_UART_STATE_READY)
1125 {
1126 if ((pData == NULL) || (Size == 0U))
1127 {
1128 return HAL_ERROR;
1129 }
1130
1131 huart->ErrorCode = HAL_UART_ERROR_NONE;
1132 huart->gState = HAL_UART_STATE_BUSY_TX;
1133
1134 /* Init tickstart for timeout management */
1135 tickstart = HAL_GetTick();
1136
1137 huart->TxXferSize = Size;
1138 huart->TxXferCount = Size;
1139
1140 /* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */
1141 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1142 {
1143 pdata8bits = NULL;
1144 pdata16bits = (const uint16_t *) pData;
1145 }
1146 else
1147 {
1148 pdata8bits = pData;
1149 pdata16bits = NULL;
1150 }
1151
1152 while (huart->TxXferCount > 0U)
1153 {
1154 if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
1155 {
1156
1157 huart->gState = HAL_UART_STATE_READY;
1158
1159 return HAL_TIMEOUT;
1160 }
1161 if (pdata8bits == NULL)
1162 {
1163 huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU);
1164 pdata16bits++;
1165 }
1166 else
1167 {
1168 huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU);
1169 pdata8bits++;
1170 }
1171 huart->TxXferCount--;
1172 }
1173
1174 if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
1175 {
1176 huart->gState = HAL_UART_STATE_READY;
1177
1178 return HAL_TIMEOUT;
1179 }
1180
1181 /* At end of Tx process, restore huart->gState to Ready */
1182 huart->gState = HAL_UART_STATE_READY;
1183
1184 return HAL_OK;
1185 }
1186 else
1187 {
1188 return HAL_BUSY;
1189 }
1190 }
1191
1192 /**
1193 * @brief Receive an amount of data in blocking mode.
1194 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1195 * the received data is handled as a set of u16. In this case, Size must indicate the number
1196 * of u16 available through pData.
1197 * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
1198 * is not empty. Read operations from the RDR register are performed when
1199 * RXFNE flag is set. From hardware perspective, RXFNE flag and
1200 * RXNE are mapped on the same bit-field.
1201 * @param huart UART handle.
1202 * @param pData Pointer to data buffer (u8 or u16 data elements).
1203 * @param Size Amount of data elements (u8 or u16) to be received.
1204 * @param Timeout Timeout duration.
1205 * @retval HAL status
1206 */
HAL_UART_Receive(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint32_t Timeout)1207 HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
1208 {
1209 uint8_t *pdata8bits;
1210 uint16_t *pdata16bits;
1211 uint16_t uhMask;
1212 uint32_t tickstart;
1213
1214 /* Check that a Rx process is not already ongoing */
1215 if (huart->RxState == HAL_UART_STATE_READY)
1216 {
1217 if ((pData == NULL) || (Size == 0U))
1218 {
1219 return HAL_ERROR;
1220 }
1221
1222 huart->ErrorCode = HAL_UART_ERROR_NONE;
1223 huart->RxState = HAL_UART_STATE_BUSY_RX;
1224 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1225
1226 /* Init tickstart for timeout management */
1227 tickstart = HAL_GetTick();
1228
1229 huart->RxXferSize = Size;
1230 huart->RxXferCount = Size;
1231
1232 /* Computation of UART mask to apply to RDR register */
1233 UART_MASK_COMPUTATION(huart);
1234 uhMask = huart->Mask;
1235
1236 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
1237 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1238 {
1239 pdata8bits = NULL;
1240 pdata16bits = (uint16_t *) pData;
1241 }
1242 else
1243 {
1244 pdata8bits = pData;
1245 pdata16bits = NULL;
1246 }
1247
1248 /* as long as data have to be received */
1249 while (huart->RxXferCount > 0U)
1250 {
1251 if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
1252 {
1253 huart->RxState = HAL_UART_STATE_READY;
1254
1255 return HAL_TIMEOUT;
1256 }
1257 if (pdata8bits == NULL)
1258 {
1259 *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
1260 pdata16bits++;
1261 }
1262 else
1263 {
1264 *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
1265 pdata8bits++;
1266 }
1267 huart->RxXferCount--;
1268 }
1269
1270 /* At end of Rx process, restore huart->RxState to Ready */
1271 huart->RxState = HAL_UART_STATE_READY;
1272
1273 return HAL_OK;
1274 }
1275 else
1276 {
1277 return HAL_BUSY;
1278 }
1279 }
1280
1281 /**
1282 * @brief Send an amount of data in interrupt mode.
1283 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1284 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1285 * of u16 provided through pData.
1286 * @param huart UART handle.
1287 * @param pData Pointer to data buffer (u8 or u16 data elements).
1288 * @param Size Amount of data elements (u8 or u16) to be sent.
1289 * @retval HAL status
1290 */
HAL_UART_Transmit_IT(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1291 HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1292 {
1293 /* Check that a Tx process is not already ongoing */
1294 if (huart->gState == HAL_UART_STATE_READY)
1295 {
1296 if ((pData == NULL) || (Size == 0U))
1297 {
1298 return HAL_ERROR;
1299 }
1300
1301 huart->pTxBuffPtr = pData;
1302 huart->TxXferSize = Size;
1303 huart->TxXferCount = Size;
1304 huart->TxISR = NULL;
1305
1306 huart->ErrorCode = HAL_UART_ERROR_NONE;
1307 huart->gState = HAL_UART_STATE_BUSY_TX;
1308
1309 /* Configure Tx interrupt processing */
1310 if (huart->FifoMode == UART_FIFOMODE_ENABLE)
1311 {
1312 /* Set the Tx ISR function pointer according to the data word length */
1313 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1314 {
1315 huart->TxISR = UART_TxISR_16BIT_FIFOEN;
1316 }
1317 else
1318 {
1319 huart->TxISR = UART_TxISR_8BIT_FIFOEN;
1320 }
1321
1322 /* Enable the TX FIFO threshold interrupt */
1323 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
1324 }
1325 else
1326 {
1327 /* Set the Tx ISR function pointer according to the data word length */
1328 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
1329 {
1330 huart->TxISR = UART_TxISR_16BIT;
1331 }
1332 else
1333 {
1334 huart->TxISR = UART_TxISR_8BIT;
1335 }
1336
1337 /* Enable the Transmit Data Register Empty interrupt */
1338 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
1339 }
1340
1341 return HAL_OK;
1342 }
1343 else
1344 {
1345 return HAL_BUSY;
1346 }
1347 }
1348
1349 /**
1350 * @brief Receive an amount of data in interrupt mode.
1351 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1352 * the received data is handled as a set of u16. In this case, Size must indicate the number
1353 * of u16 available through pData.
1354 * @param huart UART handle.
1355 * @param pData Pointer to data buffer (u8 or u16 data elements).
1356 * @param Size Amount of data elements (u8 or u16) to be received.
1357 * @retval HAL status
1358 */
HAL_UART_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1359 HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1360 {
1361 /* Check that a Rx process is not already ongoing */
1362 if (huart->RxState == HAL_UART_STATE_READY)
1363 {
1364 if ((pData == NULL) || (Size == 0U))
1365 {
1366 return HAL_ERROR;
1367 }
1368
1369 /* Set Reception type to Standard reception */
1370 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1371
1372 if (!(IS_LPUART_INSTANCE(huart->Instance)))
1373 {
1374 /* Check that USART RTOEN bit is set */
1375 if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
1376 {
1377 /* Enable the UART Receiver Timeout Interrupt */
1378 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
1379 }
1380 }
1381
1382 return (UART_Start_Receive_IT(huart, pData, Size));
1383 }
1384 else
1385 {
1386 return HAL_BUSY;
1387 }
1388 }
1389
1390 /**
1391 * @brief Send an amount of data in DMA mode.
1392 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1393 * the sent data is handled as a set of u16. In this case, Size must indicate the number
1394 * of u16 provided through pData.
1395 * @param huart UART handle.
1396 * @param pData Pointer to data buffer (u8 or u16 data elements).
1397 * @param Size Amount of data elements (u8 or u16) to be sent.
1398 * @retval HAL status
1399 */
HAL_UART_Transmit_DMA(UART_HandleTypeDef * huart,const uint8_t * pData,uint16_t Size)1400 HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size)
1401 {
1402 /* Check that a Tx process is not already ongoing */
1403 if (huart->gState == HAL_UART_STATE_READY)
1404 {
1405 if ((pData == NULL) || (Size == 0U))
1406 {
1407 return HAL_ERROR;
1408 }
1409
1410 huart->pTxBuffPtr = pData;
1411 huart->TxXferSize = Size;
1412 huart->TxXferCount = Size;
1413
1414 huart->ErrorCode = HAL_UART_ERROR_NONE;
1415 huart->gState = HAL_UART_STATE_BUSY_TX;
1416
1417 if (huart->hdmatx != NULL)
1418 {
1419 /* Set the UART DMA transfer complete callback */
1420 huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;
1421
1422 /* Set the UART DMA Half transfer complete callback */
1423 huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;
1424
1425 /* Set the DMA error callback */
1426 huart->hdmatx->XferErrorCallback = UART_DMAError;
1427
1428 /* Set the DMA abort callback */
1429 huart->hdmatx->XferAbortCallback = NULL;
1430
1431 /* Enable the UART transmit DMA channel */
1432 if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK)
1433 {
1434 /* Set error code to DMA */
1435 huart->ErrorCode = HAL_UART_ERROR_DMA;
1436
1437 /* Restore huart->gState to ready */
1438 huart->gState = HAL_UART_STATE_READY;
1439
1440 return HAL_ERROR;
1441 }
1442 }
1443 /* Clear the TC flag in the ICR register */
1444 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF);
1445
1446 /* Enable the DMA transfer for transmit request by setting the DMAT bit
1447 in the UART CR3 register */
1448 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1449
1450 return HAL_OK;
1451 }
1452 else
1453 {
1454 return HAL_BUSY;
1455 }
1456 }
1457
1458 /**
1459 * @brief Receive an amount of data in DMA mode.
1460 * @note When the UART parity is enabled (PCE = 1), the received data contain
1461 * the parity bit (MSB position).
1462 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
1463 * the received data is handled as a set of u16. In this case, Size must indicate the number
1464 * of u16 available through pData.
1465 * @param huart UART handle.
1466 * @param pData Pointer to data buffer (u8 or u16 data elements).
1467 * @param Size Amount of data elements (u8 or u16) to be received.
1468 * @retval HAL status
1469 */
HAL_UART_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)1470 HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
1471 {
1472 /* Check that a Rx process is not already ongoing */
1473 if (huart->RxState == HAL_UART_STATE_READY)
1474 {
1475 if ((pData == NULL) || (Size == 0U))
1476 {
1477 return HAL_ERROR;
1478 }
1479
1480 /* Set Reception type to Standard reception */
1481 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1482
1483 if (!(IS_LPUART_INSTANCE(huart->Instance)))
1484 {
1485 /* Check that USART RTOEN bit is set */
1486 if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
1487 {
1488 /* Enable the UART Receiver Timeout Interrupt */
1489 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
1490 }
1491 }
1492
1493 return (UART_Start_Receive_DMA(huart, pData, Size));
1494 }
1495 else
1496 {
1497 return HAL_BUSY;
1498 }
1499 }
1500
1501 /**
1502 * @brief Pause the DMA Transfer.
1503 * @param huart UART handle.
1504 * @retval HAL status
1505 */
HAL_UART_DMAPause(UART_HandleTypeDef * huart)1506 HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
1507 {
1508 const HAL_UART_StateTypeDef gstate = huart->gState;
1509 const HAL_UART_StateTypeDef rxstate = huart->RxState;
1510
1511 if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
1512 (gstate == HAL_UART_STATE_BUSY_TX))
1513 {
1514 /* Disable the UART DMA Tx request */
1515 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1516 }
1517 if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
1518 (rxstate == HAL_UART_STATE_BUSY_RX))
1519 {
1520 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
1521 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1522 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
1523
1524 /* Disable the UART DMA Rx request */
1525 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1526 }
1527
1528 return HAL_OK;
1529 }
1530
1531 /**
1532 * @brief Resume the DMA Transfer.
1533 * @param huart UART handle.
1534 * @retval HAL status
1535 */
HAL_UART_DMAResume(UART_HandleTypeDef * huart)1536 HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
1537 {
1538 if (huart->gState == HAL_UART_STATE_BUSY_TX)
1539 {
1540 /* Enable the UART DMA Tx request */
1541 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1542 }
1543 if (huart->RxState == HAL_UART_STATE_BUSY_RX)
1544 {
1545 /* Clear the Overrun flag before resuming the Rx transfer */
1546 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
1547
1548 /* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */
1549 if (huart->Init.Parity != UART_PARITY_NONE)
1550 {
1551 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
1552 }
1553 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
1554
1555 /* Enable the UART DMA Rx request */
1556 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1557 }
1558
1559 return HAL_OK;
1560 }
1561
1562 /**
1563 * @brief Stop the DMA Transfer.
1564 * @param huart UART handle.
1565 * @retval HAL status
1566 */
HAL_UART_DMAStop(UART_HandleTypeDef * huart)1567 HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
1568 {
1569 /* The Lock is not implemented on this API to allow the user application
1570 to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() /
1571 HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback:
1572 indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete
1573 interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of
1574 the stream and the corresponding call back is executed. */
1575
1576 const HAL_UART_StateTypeDef gstate = huart->gState;
1577 const HAL_UART_StateTypeDef rxstate = huart->RxState;
1578
1579 /* Stop UART DMA Tx request if ongoing */
1580 if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
1581 (gstate == HAL_UART_STATE_BUSY_TX))
1582 {
1583 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1584
1585 /* Abort the UART DMA Tx channel */
1586 if (huart->hdmatx != NULL)
1587 {
1588 if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1589 {
1590 if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1591 {
1592 /* Set error code to DMA */
1593 huart->ErrorCode = HAL_UART_ERROR_DMA;
1594
1595 return HAL_TIMEOUT;
1596 }
1597 }
1598 }
1599
1600 UART_EndTxTransfer(huart);
1601 }
1602
1603 /* Stop UART DMA Rx request if ongoing */
1604 if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
1605 (rxstate == HAL_UART_STATE_BUSY_RX))
1606 {
1607 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1608
1609 /* Abort the UART DMA Rx channel */
1610 if (huart->hdmarx != NULL)
1611 {
1612 if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1613 {
1614 if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1615 {
1616 /* Set error code to DMA */
1617 huart->ErrorCode = HAL_UART_ERROR_DMA;
1618
1619 return HAL_TIMEOUT;
1620 }
1621 }
1622 }
1623
1624 UART_EndRxTransfer(huart);
1625 }
1626
1627 return HAL_OK;
1628 }
1629
1630 /**
1631 * @brief Abort ongoing transfers (blocking mode).
1632 * @param huart UART handle.
1633 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1634 * This procedure performs following operations :
1635 * - Disable UART Interrupts (Tx and Rx)
1636 * - Disable the DMA transfer in the peripheral register (if enabled)
1637 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1638 * - Set handle State to READY
1639 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1640 * @retval HAL status
1641 */
HAL_UART_Abort(UART_HandleTypeDef * huart)1642 HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
1643 {
1644 /* Disable TXE, TC, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */
1645 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE |
1646 USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
1647 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE);
1648
1649 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1650 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1651 {
1652 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1653 }
1654
1655 /* Abort the UART DMA Tx channel if enabled */
1656 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1657 {
1658 /* Disable the UART DMA Tx request if enabled */
1659 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1660
1661 /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
1662 if (huart->hdmatx != NULL)
1663 {
1664 /* Set the UART DMA Abort callback to Null.
1665 No call back execution at end of DMA abort procedure */
1666 huart->hdmatx->XferAbortCallback = NULL;
1667
1668 if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1669 {
1670 if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1671 {
1672 /* Set error code to DMA */
1673 huart->ErrorCode = HAL_UART_ERROR_DMA;
1674
1675 return HAL_TIMEOUT;
1676 }
1677 }
1678 }
1679 }
1680
1681 /* Abort the UART DMA Rx channel if enabled */
1682 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1683 {
1684 /* Disable the UART DMA Rx request if enabled */
1685 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1686
1687 /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
1688 if (huart->hdmarx != NULL)
1689 {
1690 /* Set the UART DMA Abort callback to Null.
1691 No call back execution at end of DMA abort procedure */
1692 huart->hdmarx->XferAbortCallback = NULL;
1693
1694 if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1695 {
1696 if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1697 {
1698 /* Set error code to DMA */
1699 huart->ErrorCode = HAL_UART_ERROR_DMA;
1700
1701 return HAL_TIMEOUT;
1702 }
1703 }
1704 }
1705 }
1706
1707 /* Reset Tx and Rx transfer counters */
1708 huart->TxXferCount = 0U;
1709 huart->RxXferCount = 0U;
1710
1711 /* Clear the Error flags in the ICR register */
1712 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
1713
1714 /* Flush the whole TX FIFO (if needed) */
1715 if (huart->FifoMode == UART_FIFOMODE_ENABLE)
1716 {
1717 __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
1718 }
1719
1720 /* Discard the received data */
1721 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
1722
1723 /* Restore huart->gState and huart->RxState to Ready */
1724 huart->gState = HAL_UART_STATE_READY;
1725 huart->RxState = HAL_UART_STATE_READY;
1726 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1727
1728 huart->ErrorCode = HAL_UART_ERROR_NONE;
1729
1730 return HAL_OK;
1731 }
1732
1733 /**
1734 * @brief Abort ongoing Transmit transfer (blocking mode).
1735 * @param huart UART handle.
1736 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
1737 * This procedure performs following operations :
1738 * - Disable UART Interrupts (Tx)
1739 * - Disable the DMA transfer in the peripheral register (if enabled)
1740 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1741 * - Set handle State to READY
1742 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1743 * @retval HAL status
1744 */
HAL_UART_AbortTransmit(UART_HandleTypeDef * huart)1745 HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
1746 {
1747 /* Disable TCIE, TXEIE and TXFTIE interrupts */
1748 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
1749 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
1750
1751 /* Abort the UART DMA Tx channel if enabled */
1752 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1753 {
1754 /* Disable the UART DMA Tx request if enabled */
1755 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1756
1757 /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
1758 if (huart->hdmatx != NULL)
1759 {
1760 /* Set the UART DMA Abort callback to Null.
1761 No call back execution at end of DMA abort procedure */
1762 huart->hdmatx->XferAbortCallback = NULL;
1763
1764 if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK)
1765 {
1766 if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT)
1767 {
1768 /* Set error code to DMA */
1769 huart->ErrorCode = HAL_UART_ERROR_DMA;
1770
1771 return HAL_TIMEOUT;
1772 }
1773 }
1774 }
1775 }
1776
1777 /* Reset Tx transfer counter */
1778 huart->TxXferCount = 0U;
1779
1780 /* Flush the whole TX FIFO (if needed) */
1781 if (huart->FifoMode == UART_FIFOMODE_ENABLE)
1782 {
1783 __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
1784 }
1785
1786 /* Restore huart->gState to Ready */
1787 huart->gState = HAL_UART_STATE_READY;
1788
1789 return HAL_OK;
1790 }
1791
1792 /**
1793 * @brief Abort ongoing Receive transfer (blocking mode).
1794 * @param huart UART handle.
1795 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
1796 * This procedure performs following operations :
1797 * - Disable UART Interrupts (Rx)
1798 * - Disable the DMA transfer in the peripheral register (if enabled)
1799 * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
1800 * - Set handle State to READY
1801 * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
1802 * @retval HAL status
1803 */
HAL_UART_AbortReceive(UART_HandleTypeDef * huart)1804 HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
1805 {
1806 /* Disable PEIE, EIE, RXNEIE and RXFTIE interrupts */
1807 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
1808 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE);
1809
1810 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1811 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1812 {
1813 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1814 }
1815
1816 /* Abort the UART DMA Rx channel if enabled */
1817 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1818 {
1819 /* Disable the UART DMA Rx request if enabled */
1820 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1821
1822 /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
1823 if (huart->hdmarx != NULL)
1824 {
1825 /* Set the UART DMA Abort callback to Null.
1826 No call back execution at end of DMA abort procedure */
1827 huart->hdmarx->XferAbortCallback = NULL;
1828
1829 if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK)
1830 {
1831 if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT)
1832 {
1833 /* Set error code to DMA */
1834 huart->ErrorCode = HAL_UART_ERROR_DMA;
1835
1836 return HAL_TIMEOUT;
1837 }
1838 }
1839 }
1840 }
1841
1842 /* Reset Rx transfer counter */
1843 huart->RxXferCount = 0U;
1844
1845 /* Clear the Error flags in the ICR register */
1846 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
1847
1848 /* Discard the received data */
1849 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
1850
1851 /* Restore huart->RxState to Ready */
1852 huart->RxState = HAL_UART_STATE_READY;
1853 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1854
1855 return HAL_OK;
1856 }
1857
1858 /**
1859 * @brief Abort ongoing transfers (Interrupt mode).
1860 * @param huart UART handle.
1861 * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode.
1862 * This procedure performs following operations :
1863 * - Disable UART Interrupts (Tx and Rx)
1864 * - Disable the DMA transfer in the peripheral register (if enabled)
1865 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
1866 * - Set handle State to READY
1867 * - At abort completion, call user abort complete callback
1868 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
1869 * considered as completed only when user abort complete callback is executed (not when exiting function).
1870 * @retval HAL status
1871 */
HAL_UART_Abort_IT(UART_HandleTypeDef * huart)1872 HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
1873 {
1874 uint32_t abortcplt = 1U;
1875
1876 /* Disable interrupts */
1877 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE |
1878 USART_CR1_TXEIE_TXFNFIE));
1879 ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE));
1880
1881 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
1882 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
1883 {
1884 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
1885 }
1886
1887 /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
1888 before any call to DMA Abort functions */
1889 /* DMA Tx Handle is valid */
1890 if (huart->hdmatx != NULL)
1891 {
1892 /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
1893 Otherwise, set it to NULL */
1894 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1895 {
1896 huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
1897 }
1898 else
1899 {
1900 huart->hdmatx->XferAbortCallback = NULL;
1901 }
1902 }
1903 /* DMA Rx Handle is valid */
1904 if (huart->hdmarx != NULL)
1905 {
1906 /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
1907 Otherwise, set it to NULL */
1908 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1909 {
1910 huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
1911 }
1912 else
1913 {
1914 huart->hdmarx->XferAbortCallback = NULL;
1915 }
1916 }
1917
1918 /* Abort the UART DMA Tx channel if enabled */
1919 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
1920 {
1921 /* Disable DMA Tx at UART level */
1922 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
1923
1924 /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
1925 if (huart->hdmatx != NULL)
1926 {
1927 /* UART Tx DMA Abort callback has already been initialised :
1928 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
1929
1930 /* Abort DMA TX */
1931 if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
1932 {
1933 huart->hdmatx->XferAbortCallback = NULL;
1934 }
1935 else
1936 {
1937 abortcplt = 0U;
1938 }
1939 }
1940 }
1941
1942 /* Abort the UART DMA Rx channel if enabled */
1943 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
1944 {
1945 /* Disable the UART DMA Rx request if enabled */
1946 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
1947
1948 /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
1949 if (huart->hdmarx != NULL)
1950 {
1951 /* UART Rx DMA Abort callback has already been initialised :
1952 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
1953
1954 /* Abort DMA RX */
1955 if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
1956 {
1957 huart->hdmarx->XferAbortCallback = NULL;
1958 abortcplt = 1U;
1959 }
1960 else
1961 {
1962 abortcplt = 0U;
1963 }
1964 }
1965 }
1966
1967 /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
1968 if (abortcplt == 1U)
1969 {
1970 /* Reset Tx and Rx transfer counters */
1971 huart->TxXferCount = 0U;
1972 huart->RxXferCount = 0U;
1973
1974 /* Clear ISR function pointers */
1975 huart->RxISR = NULL;
1976 huart->TxISR = NULL;
1977
1978 /* Reset errorCode */
1979 huart->ErrorCode = HAL_UART_ERROR_NONE;
1980
1981 /* Clear the Error flags in the ICR register */
1982 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
1983
1984 /* Flush the whole TX FIFO (if needed) */
1985 if (huart->FifoMode == UART_FIFOMODE_ENABLE)
1986 {
1987 __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
1988 }
1989
1990 /* Discard the received data */
1991 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
1992
1993 /* Restore huart->gState and huart->RxState to Ready */
1994 huart->gState = HAL_UART_STATE_READY;
1995 huart->RxState = HAL_UART_STATE_READY;
1996 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
1997
1998 /* As no DMA to be aborted, call directly user Abort complete callback */
1999 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2000 /* Call registered Abort complete callback */
2001 huart->AbortCpltCallback(huart);
2002 #else
2003 /* Call legacy weak Abort complete callback */
2004 HAL_UART_AbortCpltCallback(huart);
2005 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2006 }
2007
2008 return HAL_OK;
2009 }
2010
2011 /**
2012 * @brief Abort ongoing Transmit transfer (Interrupt mode).
2013 * @param huart UART handle.
2014 * @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode.
2015 * This procedure performs following operations :
2016 * - Disable UART Interrupts (Tx)
2017 * - Disable the DMA transfer in the peripheral register (if enabled)
2018 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2019 * - Set handle State to READY
2020 * - At abort completion, call user abort complete callback
2021 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
2022 * considered as completed only when user abort complete callback is executed (not when exiting function).
2023 * @retval HAL status
2024 */
HAL_UART_AbortTransmit_IT(UART_HandleTypeDef * huart)2025 HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
2026 {
2027 /* Disable interrupts */
2028 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE));
2029 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
2030
2031 /* Abort the UART DMA Tx channel if enabled */
2032 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
2033 {
2034 /* Disable the UART DMA Tx request if enabled */
2035 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
2036
2037 /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
2038 if (huart->hdmatx != NULL)
2039 {
2040 /* Set the UART DMA Abort callback :
2041 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2042 huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;
2043
2044 /* Abort DMA TX */
2045 if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
2046 {
2047 /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
2048 huart->hdmatx->XferAbortCallback(huart->hdmatx);
2049 }
2050 }
2051 else
2052 {
2053 /* Reset Tx transfer counter */
2054 huart->TxXferCount = 0U;
2055
2056 /* Clear TxISR function pointers */
2057 huart->TxISR = NULL;
2058
2059 /* Restore huart->gState to Ready */
2060 huart->gState = HAL_UART_STATE_READY;
2061
2062 /* As no DMA to be aborted, call directly user Abort complete callback */
2063 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2064 /* Call registered Abort Transmit Complete Callback */
2065 huart->AbortTransmitCpltCallback(huart);
2066 #else
2067 /* Call legacy weak Abort Transmit Complete Callback */
2068 HAL_UART_AbortTransmitCpltCallback(huart);
2069 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2070 }
2071 }
2072 else
2073 {
2074 /* Reset Tx transfer counter */
2075 huart->TxXferCount = 0U;
2076
2077 /* Clear TxISR function pointers */
2078 huart->TxISR = NULL;
2079
2080 /* Flush the whole TX FIFO (if needed) */
2081 if (huart->FifoMode == UART_FIFOMODE_ENABLE)
2082 {
2083 __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
2084 }
2085
2086 /* Restore huart->gState to Ready */
2087 huart->gState = HAL_UART_STATE_READY;
2088
2089 /* As no DMA to be aborted, call directly user Abort complete callback */
2090 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2091 /* Call registered Abort Transmit Complete Callback */
2092 huart->AbortTransmitCpltCallback(huart);
2093 #else
2094 /* Call legacy weak Abort Transmit Complete Callback */
2095 HAL_UART_AbortTransmitCpltCallback(huart);
2096 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2097 }
2098
2099 return HAL_OK;
2100 }
2101
2102 /**
2103 * @brief Abort ongoing Receive transfer (Interrupt mode).
2104 * @param huart UART handle.
2105 * @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode.
2106 * This procedure performs following operations :
2107 * - Disable UART Interrupts (Rx)
2108 * - Disable the DMA transfer in the peripheral register (if enabled)
2109 * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
2110 * - Set handle State to READY
2111 * - At abort completion, call user abort complete callback
2112 * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
2113 * considered as completed only when user abort complete callback is executed (not when exiting function).
2114 * @retval HAL status
2115 */
HAL_UART_AbortReceive_IT(UART_HandleTypeDef * huart)2116 HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
2117 {
2118 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
2119 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE));
2120 ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
2121
2122 /* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */
2123 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2124 {
2125 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE));
2126 }
2127
2128 /* Abort the UART DMA Rx channel if enabled */
2129 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2130 {
2131 /* Disable the UART DMA Rx request if enabled */
2132 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2133
2134 /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
2135 if (huart->hdmarx != NULL)
2136 {
2137 /* Set the UART DMA Abort callback :
2138 will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
2139 huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;
2140
2141 /* Abort DMA RX */
2142 if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2143 {
2144 /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
2145 huart->hdmarx->XferAbortCallback(huart->hdmarx);
2146 }
2147 }
2148 else
2149 {
2150 /* Reset Rx transfer counter */
2151 huart->RxXferCount = 0U;
2152
2153 /* Clear RxISR function pointer */
2154 huart->pRxBuffPtr = NULL;
2155
2156 /* Clear the Error flags in the ICR register */
2157 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
2158
2159 /* Discard the received data */
2160 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
2161
2162 /* Restore huart->RxState to Ready */
2163 huart->RxState = HAL_UART_STATE_READY;
2164 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2165
2166 /* As no DMA to be aborted, call directly user Abort complete callback */
2167 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2168 /* Call registered Abort Receive Complete Callback */
2169 huart->AbortReceiveCpltCallback(huart);
2170 #else
2171 /* Call legacy weak Abort Receive Complete Callback */
2172 HAL_UART_AbortReceiveCpltCallback(huart);
2173 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2174 }
2175 }
2176 else
2177 {
2178 /* Reset Rx transfer counter */
2179 huart->RxXferCount = 0U;
2180
2181 /* Clear RxISR function pointer */
2182 huart->pRxBuffPtr = NULL;
2183
2184 /* Clear the Error flags in the ICR register */
2185 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
2186
2187 /* Restore huart->RxState to Ready */
2188 huart->RxState = HAL_UART_STATE_READY;
2189 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2190
2191 /* As no DMA to be aborted, call directly user Abort complete callback */
2192 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2193 /* Call registered Abort Receive Complete Callback */
2194 huart->AbortReceiveCpltCallback(huart);
2195 #else
2196 /* Call legacy weak Abort Receive Complete Callback */
2197 HAL_UART_AbortReceiveCpltCallback(huart);
2198 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2199 }
2200
2201 return HAL_OK;
2202 }
2203
2204 /**
2205 * @brief Handle UART interrupt request.
2206 * @param huart UART handle.
2207 * @retval None
2208 */
HAL_UART_IRQHandler(UART_HandleTypeDef * huart)2209 void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
2210 {
2211 uint32_t isrflags = READ_REG(huart->Instance->ISR);
2212 uint32_t cr1its = READ_REG(huart->Instance->CR1);
2213 uint32_t cr3its = READ_REG(huart->Instance->CR3);
2214
2215 uint32_t errorflags;
2216 uint32_t errorcode;
2217
2218 /* If no error occurs */
2219 errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF));
2220 if (errorflags == 0U)
2221 {
2222 /* UART in mode Receiver ---------------------------------------------------*/
2223 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
2224 && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
2225 || ((cr3its & USART_CR3_RXFTIE) != 0U)))
2226 {
2227 if (huart->RxISR != NULL)
2228 {
2229 huart->RxISR(huart);
2230 }
2231 return;
2232 }
2233 }
2234
2235 /* If some errors occur */
2236 if ((errorflags != 0U)
2237 && ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)
2238 || ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U))))
2239 {
2240 /* UART parity error interrupt occurred -------------------------------------*/
2241 if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
2242 {
2243 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
2244
2245 huart->ErrorCode |= HAL_UART_ERROR_PE;
2246 }
2247
2248 /* UART frame error interrupt occurred --------------------------------------*/
2249 if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
2250 {
2251 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
2252
2253 huart->ErrorCode |= HAL_UART_ERROR_FE;
2254 }
2255
2256 /* UART noise error interrupt occurred --------------------------------------*/
2257 if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
2258 {
2259 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
2260
2261 huart->ErrorCode |= HAL_UART_ERROR_NE;
2262 }
2263
2264 /* UART Over-Run interrupt occurred -----------------------------------------*/
2265 if (((isrflags & USART_ISR_ORE) != 0U)
2266 && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) ||
2267 ((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U)))
2268 {
2269 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
2270
2271 huart->ErrorCode |= HAL_UART_ERROR_ORE;
2272 }
2273
2274 /* UART Receiver Timeout interrupt occurred ---------------------------------*/
2275 if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U))
2276 {
2277 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
2278
2279 huart->ErrorCode |= HAL_UART_ERROR_RTO;
2280 }
2281
2282 /* Call UART Error Call back function if need be ----------------------------*/
2283 if (huart->ErrorCode != HAL_UART_ERROR_NONE)
2284 {
2285 /* UART in mode Receiver --------------------------------------------------*/
2286 if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U)
2287 && (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U)
2288 || ((cr3its & USART_CR3_RXFTIE) != 0U)))
2289 {
2290 if (huart->RxISR != NULL)
2291 {
2292 huart->RxISR(huart);
2293 }
2294 }
2295
2296 /* If Error is to be considered as blocking :
2297 - Receiver Timeout error in Reception
2298 - Overrun error in Reception
2299 - any error occurs in DMA mode reception
2300 */
2301 errorcode = huart->ErrorCode;
2302 if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) ||
2303 ((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U))
2304 {
2305 /* Blocking error : transfer is aborted
2306 Set the UART state ready to be able to start again the process,
2307 Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
2308 UART_EndRxTransfer(huart);
2309
2310 /* Abort the UART DMA Rx channel if enabled */
2311 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2312 {
2313 /* Disable the UART DMA Rx request if enabled */
2314 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2315
2316 /* Abort the UART DMA Rx channel */
2317 if (huart->hdmarx != NULL)
2318 {
2319 /* Set the UART DMA Abort callback :
2320 will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
2321 huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
2322
2323 /* Abort DMA RX */
2324 if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
2325 {
2326 /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
2327 huart->hdmarx->XferAbortCallback(huart->hdmarx);
2328 }
2329 }
2330 else
2331 {
2332 /* Call user error callback */
2333 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2334 /*Call registered error callback*/
2335 huart->ErrorCallback(huart);
2336 #else
2337 /*Call legacy weak error callback*/
2338 HAL_UART_ErrorCallback(huart);
2339 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2340
2341 }
2342 }
2343 else
2344 {
2345 /* Call user error callback */
2346 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2347 /*Call registered error callback*/
2348 huart->ErrorCallback(huart);
2349 #else
2350 /*Call legacy weak error callback*/
2351 HAL_UART_ErrorCallback(huart);
2352 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2353 }
2354 }
2355 else
2356 {
2357 /* Non Blocking error : transfer could go on.
2358 Error is notified to user through user error callback */
2359 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2360 /*Call registered error callback*/
2361 huart->ErrorCallback(huart);
2362 #else
2363 /*Call legacy weak error callback*/
2364 HAL_UART_ErrorCallback(huart);
2365 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2366 huart->ErrorCode = HAL_UART_ERROR_NONE;
2367 }
2368 }
2369 return;
2370
2371 } /* End if some error occurs */
2372
2373 /* Check current reception Mode :
2374 If Reception till IDLE event has been selected : */
2375 if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
2376 && ((isrflags & USART_ISR_IDLE) != 0U)
2377 && ((cr1its & USART_ISR_IDLE) != 0U))
2378 {
2379 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
2380
2381 /* Check if DMA mode is enabled in UART */
2382 if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
2383 {
2384 /* DMA mode enabled */
2385 /* Check received length : If all expected data are received, do nothing,
2386 (DMA cplt callback will be called).
2387 Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2388 uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx);
2389 if ((nb_remaining_rx_data > 0U)
2390 && (nb_remaining_rx_data < huart->RxXferSize))
2391 {
2392 /* Reception is not complete */
2393 huart->RxXferCount = nb_remaining_rx_data;
2394
2395 /* In Normal mode, end DMA xfer and HAL UART Rx process*/
2396 if (HAL_IS_BIT_CLR(huart->hdmarx->Instance->CCR, DMA_CCR_CIRC))
2397 {
2398 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
2399 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
2400 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
2401
2402 /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
2403 in the UART CR3 register */
2404 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
2405
2406 /* At end of Rx process, restore huart->RxState to Ready */
2407 huart->RxState = HAL_UART_STATE_READY;
2408 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2409
2410 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2411
2412 /* Last bytes received, so no need as the abort is immediate */
2413 (void)HAL_DMA_Abort(huart->hdmarx);
2414 }
2415
2416 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2417 In this case, Rx Event type is Idle Event */
2418 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2419
2420 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2421 /*Call registered Rx Event callback*/
2422 huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2423 #else
2424 /*Call legacy weak Rx Event callback*/
2425 HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount));
2426 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
2427 }
2428 return;
2429 }
2430 else
2431 {
2432 /* DMA mode not enabled */
2433 /* Check received length : If all expected data are received, do nothing.
2434 Otherwise, if at least one data has already been received, IDLE event is to be notified to user */
2435 uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount;
2436 if ((huart->RxXferCount > 0U)
2437 && (nb_rx_data > 0U))
2438 {
2439 /* Disable the UART Parity Error Interrupt and RXNE interrupts */
2440 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
2441
2442 /* Disable the UART Error Interrupt:(Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */
2443 ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
2444
2445 /* Rx process is completed, restore huart->RxState to Ready */
2446 huart->RxState = HAL_UART_STATE_READY;
2447 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
2448
2449 /* Clear RxISR function pointer */
2450 huart->RxISR = NULL;
2451
2452 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
2453
2454 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
2455 In this case, Rx Event type is Idle Event */
2456 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
2457
2458 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2459 /*Call registered Rx complete callback*/
2460 huart->RxEventCallback(huart, nb_rx_data);
2461 #else
2462 /*Call legacy weak Rx Event callback*/
2463 HAL_UARTEx_RxEventCallback(huart, nb_rx_data);
2464 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
2465 }
2466 return;
2467 }
2468 }
2469
2470 /* UART wakeup from Stop mode interrupt occurred ---------------------------*/
2471 if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U))
2472 {
2473 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF);
2474
2475 /* UART Rx state is not reset as a reception process might be ongoing.
2476 If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */
2477
2478 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2479 /* Call registered Wakeup Callback */
2480 huart->WakeupCallback(huart);
2481 #else
2482 /* Call legacy weak Wakeup Callback */
2483 HAL_UARTEx_WakeupCallback(huart);
2484 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2485 return;
2486 }
2487
2488 /* UART in mode Transmitter ------------------------------------------------*/
2489 if (((isrflags & USART_ISR_TXE_TXFNF) != 0U)
2490 && (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U)
2491 || ((cr3its & USART_CR3_TXFTIE) != 0U)))
2492 {
2493 if (huart->TxISR != NULL)
2494 {
2495 huart->TxISR(huart);
2496 }
2497 return;
2498 }
2499
2500 /* UART in mode Transmitter (transmission end) -----------------------------*/
2501 if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U))
2502 {
2503 UART_EndTransmit_IT(huart);
2504 return;
2505 }
2506
2507 /* UART TX Fifo Empty occurred ----------------------------------------------*/
2508 if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U))
2509 {
2510 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2511 /* Call registered Tx Fifo Empty Callback */
2512 huart->TxFifoEmptyCallback(huart);
2513 #else
2514 /* Call legacy weak Tx Fifo Empty Callback */
2515 HAL_UARTEx_TxFifoEmptyCallback(huart);
2516 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2517 return;
2518 }
2519
2520 /* UART RX Fifo Full occurred ----------------------------------------------*/
2521 if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U))
2522 {
2523 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
2524 /* Call registered Rx Fifo Full Callback */
2525 huart->RxFifoFullCallback(huart);
2526 #else
2527 /* Call legacy weak Rx Fifo Full Callback */
2528 HAL_UARTEx_RxFifoFullCallback(huart);
2529 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2530 return;
2531 }
2532 }
2533
2534 /**
2535 * @brief Tx Transfer completed callback.
2536 * @param huart UART handle.
2537 * @retval None
2538 */
HAL_UART_TxCpltCallback(UART_HandleTypeDef * huart)2539 __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
2540 {
2541 /* Prevent unused argument(s) compilation warning */
2542 UNUSED(huart);
2543
2544 /* NOTE : This function should not be modified, when the callback is needed,
2545 the HAL_UART_TxCpltCallback can be implemented in the user file.
2546 */
2547 }
2548
2549 /**
2550 * @brief Tx Half Transfer completed callback.
2551 * @param huart UART handle.
2552 * @retval None
2553 */
HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef * huart)2554 __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
2555 {
2556 /* Prevent unused argument(s) compilation warning */
2557 UNUSED(huart);
2558
2559 /* NOTE: This function should not be modified, when the callback is needed,
2560 the HAL_UART_TxHalfCpltCallback can be implemented in the user file.
2561 */
2562 }
2563
2564 /**
2565 * @brief Rx Transfer completed callback.
2566 * @param huart UART handle.
2567 * @retval None
2568 */
HAL_UART_RxCpltCallback(UART_HandleTypeDef * huart)2569 __weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
2570 {
2571 /* Prevent unused argument(s) compilation warning */
2572 UNUSED(huart);
2573
2574 /* NOTE : This function should not be modified, when the callback is needed,
2575 the HAL_UART_RxCpltCallback can be implemented in the user file.
2576 */
2577 }
2578
2579 /**
2580 * @brief Rx Half Transfer completed callback.
2581 * @param huart UART handle.
2582 * @retval None
2583 */
HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef * huart)2584 __weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
2585 {
2586 /* Prevent unused argument(s) compilation warning */
2587 UNUSED(huart);
2588
2589 /* NOTE: This function should not be modified, when the callback is needed,
2590 the HAL_UART_RxHalfCpltCallback can be implemented in the user file.
2591 */
2592 }
2593
2594 /**
2595 * @brief UART error callback.
2596 * @param huart UART handle.
2597 * @retval None
2598 */
HAL_UART_ErrorCallback(UART_HandleTypeDef * huart)2599 __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
2600 {
2601 /* Prevent unused argument(s) compilation warning */
2602 UNUSED(huart);
2603
2604 /* NOTE : This function should not be modified, when the callback is needed,
2605 the HAL_UART_ErrorCallback can be implemented in the user file.
2606 */
2607 }
2608
2609 /**
2610 * @brief UART Abort Complete callback.
2611 * @param huart UART handle.
2612 * @retval None
2613 */
HAL_UART_AbortCpltCallback(UART_HandleTypeDef * huart)2614 __weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart)
2615 {
2616 /* Prevent unused argument(s) compilation warning */
2617 UNUSED(huart);
2618
2619 /* NOTE : This function should not be modified, when the callback is needed,
2620 the HAL_UART_AbortCpltCallback can be implemented in the user file.
2621 */
2622 }
2623
2624 /**
2625 * @brief UART Abort Complete callback.
2626 * @param huart UART handle.
2627 * @retval None
2628 */
HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef * huart)2629 __weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart)
2630 {
2631 /* Prevent unused argument(s) compilation warning */
2632 UNUSED(huart);
2633
2634 /* NOTE : This function should not be modified, when the callback is needed,
2635 the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
2636 */
2637 }
2638
2639 /**
2640 * @brief UART Abort Receive Complete callback.
2641 * @param huart UART handle.
2642 * @retval None
2643 */
HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef * huart)2644 __weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart)
2645 {
2646 /* Prevent unused argument(s) compilation warning */
2647 UNUSED(huart);
2648
2649 /* NOTE : This function should not be modified, when the callback is needed,
2650 the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
2651 */
2652 }
2653
2654 /**
2655 * @brief Reception Event Callback (Rx event notification called after use of advanced reception service).
2656 * @param huart UART handle
2657 * @param Size Number of data available in application reception buffer (indicates a position in
2658 * reception buffer until which, data are available)
2659 * @retval None
2660 */
HAL_UARTEx_RxEventCallback(UART_HandleTypeDef * huart,uint16_t Size)2661 __weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size)
2662 {
2663 /* Prevent unused argument(s) compilation warning */
2664 UNUSED(huart);
2665 UNUSED(Size);
2666
2667 /* NOTE : This function should not be modified, when the callback is needed,
2668 the HAL_UARTEx_RxEventCallback can be implemented in the user file.
2669 */
2670 }
2671
2672 /**
2673 * @}
2674 */
2675
2676 /** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions
2677 * @brief UART control functions
2678 *
2679 @verbatim
2680 ===============================================================================
2681 ##### Peripheral Control functions #####
2682 ===============================================================================
2683 [..]
2684 This subsection provides a set of functions allowing to control the UART.
2685 (+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly
2686 (+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature
2687 (+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature
2688 (+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode
2689 (+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode
2690 (+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode
2691 (+) UART_SetConfig() API configures the UART peripheral
2692 (+) UART_AdvFeatureConfig() API optionally configures the UART advanced features
2693 (+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization
2694 (+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter
2695 (+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver
2696 (+) HAL_LIN_SendBreak() API transmits the break characters
2697 @endverbatim
2698 * @{
2699 */
2700
2701 /**
2702 * @brief Update on the fly the receiver timeout value in RTOR register.
2703 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2704 * the configuration information for the specified UART module.
2705 * @param TimeoutValue receiver timeout value in number of baud blocks. The timeout
2706 * value must be less or equal to 0x0FFFFFFFF.
2707 * @retval None
2708 */
HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef * huart,uint32_t TimeoutValue)2709 void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue)
2710 {
2711 if (!(IS_LPUART_INSTANCE(huart->Instance)))
2712 {
2713 assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue));
2714 MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue);
2715 }
2716 }
2717
2718 /**
2719 * @brief Enable the UART receiver timeout feature.
2720 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2721 * the configuration information for the specified UART module.
2722 * @retval HAL status
2723 */
HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef * huart)2724 HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart)
2725 {
2726 if (!(IS_LPUART_INSTANCE(huart->Instance)))
2727 {
2728 if (huart->gState == HAL_UART_STATE_READY)
2729 {
2730 /* Process Locked */
2731 __HAL_LOCK(huart);
2732
2733 huart->gState = HAL_UART_STATE_BUSY;
2734
2735 /* Set the USART RTOEN bit */
2736 SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
2737
2738 huart->gState = HAL_UART_STATE_READY;
2739
2740 /* Process Unlocked */
2741 __HAL_UNLOCK(huart);
2742
2743 return HAL_OK;
2744 }
2745 else
2746 {
2747 return HAL_BUSY;
2748 }
2749 }
2750 else
2751 {
2752 return HAL_ERROR;
2753 }
2754 }
2755
2756 /**
2757 * @brief Disable the UART receiver timeout feature.
2758 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2759 * the configuration information for the specified UART module.
2760 * @retval HAL status
2761 */
HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef * huart)2762 HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart)
2763 {
2764 if (!(IS_LPUART_INSTANCE(huart->Instance)))
2765 {
2766 if (huart->gState == HAL_UART_STATE_READY)
2767 {
2768 /* Process Locked */
2769 __HAL_LOCK(huart);
2770
2771 huart->gState = HAL_UART_STATE_BUSY;
2772
2773 /* Clear the USART RTOEN bit */
2774 CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN);
2775
2776 huart->gState = HAL_UART_STATE_READY;
2777
2778 /* Process Unlocked */
2779 __HAL_UNLOCK(huart);
2780
2781 return HAL_OK;
2782 }
2783 else
2784 {
2785 return HAL_BUSY;
2786 }
2787 }
2788 else
2789 {
2790 return HAL_ERROR;
2791 }
2792 }
2793
2794 /**
2795 * @brief Enable UART in mute mode (does not mean UART enters mute mode;
2796 * to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called).
2797 * @param huart UART handle.
2798 * @retval HAL status
2799 */
HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef * huart)2800 HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart)
2801 {
2802 __HAL_LOCK(huart);
2803
2804 huart->gState = HAL_UART_STATE_BUSY;
2805
2806 /* Enable USART mute mode by setting the MME bit in the CR1 register */
2807 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_MME);
2808
2809 huart->gState = HAL_UART_STATE_READY;
2810
2811 return (UART_CheckIdleState(huart));
2812 }
2813
2814 /**
2815 * @brief Disable UART mute mode (does not mean the UART actually exits mute mode
2816 * as it may not have been in mute mode at this very moment).
2817 * @param huart UART handle.
2818 * @retval HAL status
2819 */
HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef * huart)2820 HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart)
2821 {
2822 __HAL_LOCK(huart);
2823
2824 huart->gState = HAL_UART_STATE_BUSY;
2825
2826 /* Disable USART mute mode by clearing the MME bit in the CR1 register */
2827 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME);
2828
2829 huart->gState = HAL_UART_STATE_READY;
2830
2831 return (UART_CheckIdleState(huart));
2832 }
2833
2834 /**
2835 * @brief Enter UART mute mode (means UART actually enters mute mode).
2836 * @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called.
2837 * @param huart UART handle.
2838 * @retval None
2839 */
HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef * huart)2840 void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
2841 {
2842 __HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST);
2843 }
2844
2845 /**
2846 * @brief Enable the UART transmitter and disable the UART receiver.
2847 * @param huart UART handle.
2848 * @retval HAL status
2849 */
HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef * huart)2850 HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
2851 {
2852 __HAL_LOCK(huart);
2853 huart->gState = HAL_UART_STATE_BUSY;
2854
2855 /* Clear TE and RE bits */
2856 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
2857
2858 /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
2859 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TE);
2860
2861 huart->gState = HAL_UART_STATE_READY;
2862
2863 __HAL_UNLOCK(huart);
2864
2865 return HAL_OK;
2866 }
2867
2868 /**
2869 * @brief Enable the UART receiver and disable the UART transmitter.
2870 * @param huart UART handle.
2871 * @retval HAL status.
2872 */
HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef * huart)2873 HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
2874 {
2875 __HAL_LOCK(huart);
2876 huart->gState = HAL_UART_STATE_BUSY;
2877
2878 /* Clear TE and RE bits */
2879 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE));
2880
2881 /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
2882 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RE);
2883
2884 huart->gState = HAL_UART_STATE_READY;
2885
2886 __HAL_UNLOCK(huart);
2887
2888 return HAL_OK;
2889 }
2890
2891
2892 /**
2893 * @brief Transmit break characters.
2894 * @param huart UART handle.
2895 * @retval HAL status
2896 */
HAL_LIN_SendBreak(UART_HandleTypeDef * huart)2897 HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
2898 {
2899 /* Check the parameters */
2900 assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
2901
2902 __HAL_LOCK(huart);
2903
2904 huart->gState = HAL_UART_STATE_BUSY;
2905
2906 /* Send break characters */
2907 __HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST);
2908
2909 huart->gState = HAL_UART_STATE_READY;
2910
2911 __HAL_UNLOCK(huart);
2912
2913 return HAL_OK;
2914 }
2915
2916 /**
2917 * @}
2918 */
2919
2920 /** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions
2921 * @brief UART Peripheral State functions
2922 *
2923 @verbatim
2924 ==============================================================================
2925 ##### Peripheral State and Error functions #####
2926 ==============================================================================
2927 [..]
2928 This subsection provides functions allowing to :
2929 (+) Return the UART handle state.
2930 (+) Return the UART handle error code
2931
2932 @endverbatim
2933 * @{
2934 */
2935
2936 /**
2937 * @brief Return the UART handle state.
2938 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2939 * the configuration information for the specified UART.
2940 * @retval HAL state
2941 */
HAL_UART_GetState(const UART_HandleTypeDef * huart)2942 HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart)
2943 {
2944 uint32_t temp1;
2945 uint32_t temp2;
2946 temp1 = huart->gState;
2947 temp2 = huart->RxState;
2948
2949 return (HAL_UART_StateTypeDef)(temp1 | temp2);
2950 }
2951
2952 /**
2953 * @brief Return the UART handle error code.
2954 * @param huart Pointer to a UART_HandleTypeDef structure that contains
2955 * the configuration information for the specified UART.
2956 * @retval UART Error Code
2957 */
HAL_UART_GetError(const UART_HandleTypeDef * huart)2958 uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart)
2959 {
2960 return huart->ErrorCode;
2961 }
2962 /**
2963 * @}
2964 */
2965
2966 /**
2967 * @}
2968 */
2969
2970 /** @defgroup UART_Private_Functions UART Private Functions
2971 * @{
2972 */
2973
2974 /**
2975 * @brief Initialize the callbacks to their default values.
2976 * @param huart UART handle.
2977 * @retval none
2978 */
2979 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
UART_InitCallbacksToDefault(UART_HandleTypeDef * huart)2980 void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart)
2981 {
2982 /* Init the UART Callback settings */
2983 huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
2984 huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */
2985 huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
2986 huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */
2987 huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */
2988 huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
2989 huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */
2990 huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */
2991 huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */
2992 huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */
2993 huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */
2994 huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */
2995
2996 }
2997 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
2998
2999 /**
3000 * @brief Configure the UART peripheral.
3001 * @param huart UART handle.
3002 * @retval HAL status
3003 */
UART_SetConfig(UART_HandleTypeDef * huart)3004 HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart)
3005 {
3006 uint32_t tmpreg;
3007 uint16_t brrtemp;
3008 UART_ClockSourceTypeDef clocksource;
3009 uint32_t usartdiv;
3010 HAL_StatusTypeDef ret = HAL_OK;
3011 uint32_t lpuart_ker_ck_pres;
3012 uint32_t pclk;
3013
3014 /* Check the parameters */
3015 assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
3016 assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
3017 if (UART_INSTANCE_LOWPOWER(huart))
3018 {
3019 assert_param(IS_LPUART_STOPBITS(huart->Init.StopBits));
3020 }
3021 else
3022 {
3023 assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
3024 assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling));
3025 }
3026
3027 assert_param(IS_UART_PARITY(huart->Init.Parity));
3028 assert_param(IS_UART_MODE(huart->Init.Mode));
3029 assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
3030 assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
3031 assert_param(IS_UART_PRESCALER(huart->Init.ClockPrescaler));
3032
3033 /*-------------------------- USART CR1 Configuration -----------------------*/
3034 /* Clear M, PCE, PS, TE, RE and OVER8 bits and configure
3035 * the UART Word Length, Parity, Mode and oversampling:
3036 * set the M bits according to huart->Init.WordLength value
3037 * set PCE and PS bits according to huart->Init.Parity value
3038 * set TE and RE bits according to huart->Init.Mode value
3039 * set OVER8 bit according to huart->Init.OverSampling value */
3040 tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ;
3041 MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg);
3042
3043 /*-------------------------- USART CR2 Configuration -----------------------*/
3044 /* Configure the UART Stop Bits: Set STOP[13:12] bits according
3045 * to huart->Init.StopBits value */
3046 MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);
3047
3048 /*-------------------------- USART CR3 Configuration -----------------------*/
3049 /* Configure
3050 * - UART HardWare Flow Control: set CTSE and RTSE bits according
3051 * to huart->Init.HwFlowCtl value
3052 * - one-bit sampling method versus three samples' majority rule according
3053 * to huart->Init.OneBitSampling (not applicable to LPUART) */
3054 tmpreg = (uint32_t)huart->Init.HwFlowCtl;
3055
3056 if (!(UART_INSTANCE_LOWPOWER(huart)))
3057 {
3058 tmpreg |= huart->Init.OneBitSampling;
3059 }
3060 MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg);
3061
3062 /*-------------------------- USART PRESC Configuration -----------------------*/
3063 /* Configure
3064 * - UART Clock Prescaler : set PRESCALER according to huart->Init.ClockPrescaler value */
3065 MODIFY_REG(huart->Instance->PRESC, USART_PRESC_PRESCALER, huart->Init.ClockPrescaler);
3066
3067 /*-------------------------- USART BRR Configuration -----------------------*/
3068 UART_GETCLOCKSOURCE(huart, clocksource);
3069
3070 /* Check LPUART instance */
3071 if (UART_INSTANCE_LOWPOWER(huart))
3072 {
3073 /* Retrieve frequency clock */
3074 switch (clocksource)
3075 {
3076 case UART_CLOCKSOURCE_PCLK1:
3077 pclk = HAL_RCC_GetPCLK1Freq();
3078 break;
3079 case UART_CLOCKSOURCE_PCLK2:
3080 pclk = HAL_RCC_GetPCLK2Freq();
3081 break;
3082 case UART_CLOCKSOURCE_HSI:
3083 pclk = (uint32_t) HSI_VALUE;
3084 break;
3085 case UART_CLOCKSOURCE_SYSCLK:
3086 pclk = HAL_RCC_GetSysClockFreq();
3087 break;
3088 case UART_CLOCKSOURCE_LSE:
3089 pclk = (uint32_t) LSE_VALUE;
3090 break;
3091 default:
3092 pclk = 0U;
3093 ret = HAL_ERROR;
3094 break;
3095 }
3096
3097 /* If proper clock source reported */
3098 if (pclk != 0U)
3099 {
3100 /* Compute clock after Prescaler */
3101 lpuart_ker_ck_pres = (pclk / UARTPrescTable[huart->Init.ClockPrescaler]);
3102
3103 /* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */
3104 if ((lpuart_ker_ck_pres < (3U * huart->Init.BaudRate)) ||
3105 (lpuart_ker_ck_pres > (4096U * huart->Init.BaudRate)))
3106 {
3107 ret = HAL_ERROR;
3108 }
3109 else
3110 {
3111 /* Check computed UsartDiv value is in allocated range
3112 (it is forbidden to write values lower than 0x300 in the LPUART_BRR register) */
3113 usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
3114 if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX))
3115 {
3116 huart->Instance->BRR = usartdiv;
3117 }
3118 else
3119 {
3120 ret = HAL_ERROR;
3121 }
3122 } /* if ( (lpuart_ker_ck_pres < (3 * huart->Init.BaudRate) ) ||
3123 (lpuart_ker_ck_pres > (4096 * huart->Init.BaudRate) )) */
3124 } /* if (pclk != 0) */
3125 }
3126 /* Check UART Over Sampling to set Baud Rate Register */
3127 else if (huart->Init.OverSampling == UART_OVERSAMPLING_8)
3128 {
3129 switch (clocksource)
3130 {
3131 case UART_CLOCKSOURCE_PCLK1:
3132 pclk = HAL_RCC_GetPCLK1Freq();
3133 break;
3134 case UART_CLOCKSOURCE_PCLK2:
3135 pclk = HAL_RCC_GetPCLK2Freq();
3136 break;
3137 case UART_CLOCKSOURCE_HSI:
3138 pclk = (uint32_t) HSI_VALUE;
3139 break;
3140 case UART_CLOCKSOURCE_SYSCLK:
3141 pclk = HAL_RCC_GetSysClockFreq();
3142 break;
3143 case UART_CLOCKSOURCE_LSE:
3144 pclk = (uint32_t) LSE_VALUE;
3145 break;
3146 default:
3147 pclk = 0U;
3148 ret = HAL_ERROR;
3149 break;
3150 }
3151
3152 /* USARTDIV must be greater than or equal to 0d16 */
3153 if (pclk != 0U)
3154 {
3155 usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
3156 if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
3157 {
3158 brrtemp = (uint16_t)(usartdiv & 0xFFF0U);
3159 brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U);
3160 huart->Instance->BRR = brrtemp;
3161 }
3162 else
3163 {
3164 ret = HAL_ERROR;
3165 }
3166 }
3167 }
3168 else
3169 {
3170 switch (clocksource)
3171 {
3172 case UART_CLOCKSOURCE_PCLK1:
3173 pclk = HAL_RCC_GetPCLK1Freq();
3174 break;
3175 case UART_CLOCKSOURCE_PCLK2:
3176 pclk = HAL_RCC_GetPCLK2Freq();
3177 break;
3178 case UART_CLOCKSOURCE_HSI:
3179 pclk = (uint32_t) HSI_VALUE;
3180 break;
3181 case UART_CLOCKSOURCE_SYSCLK:
3182 pclk = HAL_RCC_GetSysClockFreq();
3183 break;
3184 case UART_CLOCKSOURCE_LSE:
3185 pclk = (uint32_t) LSE_VALUE;
3186 break;
3187 default:
3188 pclk = 0U;
3189 ret = HAL_ERROR;
3190 break;
3191 }
3192
3193 if (pclk != 0U)
3194 {
3195 /* USARTDIV must be greater than or equal to 0d16 */
3196 usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler));
3197 if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX))
3198 {
3199 huart->Instance->BRR = (uint16_t)usartdiv;
3200 }
3201 else
3202 {
3203 ret = HAL_ERROR;
3204 }
3205 }
3206 }
3207
3208 /* Initialize the number of data to process during RX/TX ISR execution */
3209 huart->NbTxDataToProcess = 1;
3210 huart->NbRxDataToProcess = 1;
3211
3212 /* Clear ISR function pointers */
3213 huart->RxISR = NULL;
3214 huart->TxISR = NULL;
3215
3216 return ret;
3217 }
3218
3219 /**
3220 * @brief Configure the UART peripheral advanced features.
3221 * @param huart UART handle.
3222 * @retval None
3223 */
UART_AdvFeatureConfig(UART_HandleTypeDef * huart)3224 void UART_AdvFeatureConfig(UART_HandleTypeDef *huart)
3225 {
3226 /* Check whether the set of advanced features to configure is properly set */
3227 assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit));
3228
3229 /* if required, configure RX/TX pins swap */
3230 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT))
3231 {
3232 assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap));
3233 MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap);
3234 }
3235
3236 /* if required, configure TX pin active level inversion */
3237 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT))
3238 {
3239 assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert));
3240 MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert);
3241 }
3242
3243 /* if required, configure RX pin active level inversion */
3244 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT))
3245 {
3246 assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert));
3247 MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert);
3248 }
3249
3250 /* if required, configure data inversion */
3251 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT))
3252 {
3253 assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert));
3254 MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert);
3255 }
3256
3257 /* if required, configure RX overrun detection disabling */
3258 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT))
3259 {
3260 assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable));
3261 MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable);
3262 }
3263
3264 /* if required, configure DMA disabling on reception error */
3265 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT))
3266 {
3267 assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError));
3268 MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError);
3269 }
3270
3271 /* if required, configure auto Baud rate detection scheme */
3272 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT))
3273 {
3274 assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance));
3275 assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable));
3276 MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable);
3277 /* set auto Baudrate detection parameters if detection is enabled */
3278 if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE)
3279 {
3280 assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode));
3281 MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode);
3282 }
3283 }
3284
3285 /* if required, configure MSB first on communication line */
3286 if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT))
3287 {
3288 assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst));
3289 MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst);
3290 }
3291 }
3292
3293 /**
3294 * @brief Check the UART Idle State.
3295 * @param huart UART handle.
3296 * @retval HAL status
3297 */
UART_CheckIdleState(UART_HandleTypeDef * huart)3298 HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart)
3299 {
3300 uint32_t tickstart;
3301
3302 /* Initialize the UART ErrorCode */
3303 huart->ErrorCode = HAL_UART_ERROR_NONE;
3304
3305 /* Init tickstart for timeout management */
3306 tickstart = HAL_GetTick();
3307
3308 /* Check if the Transmitter is enabled */
3309 if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE)
3310 {
3311 /* Wait until TEACK flag is set */
3312 if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
3313 {
3314 /* Disable TXE interrupt for the interrupt process */
3315 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE));
3316
3317 huart->gState = HAL_UART_STATE_READY;
3318
3319 __HAL_UNLOCK(huart);
3320
3321 /* Timeout occurred */
3322 return HAL_TIMEOUT;
3323 }
3324 }
3325
3326 /* Check if the Receiver is enabled */
3327 if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE)
3328 {
3329 /* Wait until REACK flag is set */
3330 if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
3331 {
3332 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error)
3333 interrupts for the interrupt process */
3334 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
3335 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3336
3337 huart->RxState = HAL_UART_STATE_READY;
3338
3339 __HAL_UNLOCK(huart);
3340
3341 /* Timeout occurred */
3342 return HAL_TIMEOUT;
3343 }
3344 }
3345
3346 /* Initialize the UART State */
3347 huart->gState = HAL_UART_STATE_READY;
3348 huart->RxState = HAL_UART_STATE_READY;
3349 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3350 huart->RxEventType = HAL_UART_RXEVENT_TC;
3351
3352 __HAL_UNLOCK(huart);
3353
3354 return HAL_OK;
3355 }
3356
3357 /**
3358 * @brief This function handles UART Communication Timeout. It waits
3359 * until a flag is no longer in the specified status.
3360 * @param huart UART handle.
3361 * @param Flag Specifies the UART flag to check
3362 * @param Status The actual Flag status (SET or RESET)
3363 * @param Tickstart Tick start value
3364 * @param Timeout Timeout duration
3365 * @retval HAL status
3366 */
UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef * huart,uint32_t Flag,FlagStatus Status,uint32_t Tickstart,uint32_t Timeout)3367 HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status,
3368 uint32_t Tickstart, uint32_t Timeout)
3369 {
3370 /* Wait until flag is set */
3371 while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status)
3372 {
3373 /* Check for the Timeout */
3374 if (Timeout != HAL_MAX_DELAY)
3375 {
3376 if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U))
3377 {
3378
3379 return HAL_TIMEOUT;
3380 }
3381
3382 if ((READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U) && (Flag != UART_FLAG_TXE) && (Flag != UART_FLAG_TC))
3383 {
3384 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE) == SET)
3385 {
3386 /* Clear Overrun Error flag*/
3387 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF);
3388
3389 /* Blocking error : transfer is aborted
3390 Set the UART state ready to be able to start again the process,
3391 Disable Rx Interrupts if ongoing */
3392 UART_EndRxTransfer(huart);
3393
3394 huart->ErrorCode = HAL_UART_ERROR_ORE;
3395
3396 /* Process Unlocked */
3397 __HAL_UNLOCK(huart);
3398
3399 return HAL_ERROR;
3400 }
3401 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET)
3402 {
3403 /* Clear Receiver Timeout flag*/
3404 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF);
3405
3406 /* Blocking error : transfer is aborted
3407 Set the UART state ready to be able to start again the process,
3408 Disable Rx Interrupts if ongoing */
3409 UART_EndRxTransfer(huart);
3410
3411 huart->ErrorCode = HAL_UART_ERROR_RTO;
3412
3413 /* Process Unlocked */
3414 __HAL_UNLOCK(huart);
3415
3416 return HAL_TIMEOUT;
3417 }
3418 }
3419 }
3420 }
3421 return HAL_OK;
3422 }
3423
3424 /**
3425 * @brief Start Receive operation in interrupt mode.
3426 * @note This function could be called by all HAL UART API providing reception in Interrupt mode.
3427 * @note When calling this function, parameters validity is considered as already checked,
3428 * i.e. Rx State, buffer address, ...
3429 * UART Handle is assumed as Locked.
3430 * @param huart UART handle.
3431 * @param pData Pointer to data buffer (u8 or u16 data elements).
3432 * @param Size Amount of data elements (u8 or u16) to be received.
3433 * @retval HAL status
3434 */
UART_Start_Receive_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3435 HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3436 {
3437 huart->pRxBuffPtr = pData;
3438 huart->RxXferSize = Size;
3439 huart->RxXferCount = Size;
3440 huart->RxISR = NULL;
3441
3442 /* Computation of UART mask to apply to RDR register */
3443 UART_MASK_COMPUTATION(huart);
3444
3445 huart->ErrorCode = HAL_UART_ERROR_NONE;
3446 huart->RxState = HAL_UART_STATE_BUSY_RX;
3447
3448 /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3449 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
3450
3451 /* Configure Rx interrupt processing */
3452 if ((huart->FifoMode == UART_FIFOMODE_ENABLE) && (Size >= huart->NbRxDataToProcess))
3453 {
3454 /* Set the Rx ISR function pointer according to the data word length */
3455 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3456 {
3457 huart->RxISR = UART_RxISR_16BIT_FIFOEN;
3458 }
3459 else
3460 {
3461 huart->RxISR = UART_RxISR_8BIT_FIFOEN;
3462 }
3463
3464 /* Enable the UART Parity Error interrupt and RX FIFO Threshold interrupt */
3465 if (huart->Init.Parity != UART_PARITY_NONE)
3466 {
3467 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3468 }
3469 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
3470 }
3471 else
3472 {
3473 /* Set the Rx ISR function pointer according to the data word length */
3474 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
3475 {
3476 huart->RxISR = UART_RxISR_16BIT;
3477 }
3478 else
3479 {
3480 huart->RxISR = UART_RxISR_8BIT;
3481 }
3482
3483 /* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */
3484 if (huart->Init.Parity != UART_PARITY_NONE)
3485 {
3486 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE);
3487 }
3488 else
3489 {
3490 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
3491 }
3492 }
3493 return HAL_OK;
3494 }
3495
3496 /**
3497 * @brief Start Receive operation in DMA mode.
3498 * @note This function could be called by all HAL UART API providing reception in DMA mode.
3499 * @note When calling this function, parameters validity is considered as already checked,
3500 * i.e. Rx State, buffer address, ...
3501 * UART Handle is assumed as Locked.
3502 * @param huart UART handle.
3503 * @param pData Pointer to data buffer (u8 or u16 data elements).
3504 * @param Size Amount of data elements (u8 or u16) to be received.
3505 * @retval HAL status
3506 */
UART_Start_Receive_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)3507 HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
3508 {
3509 huart->pRxBuffPtr = pData;
3510 huart->RxXferSize = Size;
3511
3512 huart->ErrorCode = HAL_UART_ERROR_NONE;
3513 huart->RxState = HAL_UART_STATE_BUSY_RX;
3514
3515 if (huart->hdmarx != NULL)
3516 {
3517 /* Set the UART DMA transfer complete callback */
3518 huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;
3519
3520 /* Set the UART DMA Half transfer complete callback */
3521 huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;
3522
3523 /* Set the DMA error callback */
3524 huart->hdmarx->XferErrorCallback = UART_DMAError;
3525
3526 /* Set the DMA abort callback */
3527 huart->hdmarx->XferAbortCallback = NULL;
3528
3529 /* Enable the DMA channel */
3530 if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK)
3531 {
3532 /* Set error code to DMA */
3533 huart->ErrorCode = HAL_UART_ERROR_DMA;
3534
3535 /* Restore huart->RxState to ready */
3536 huart->RxState = HAL_UART_STATE_READY;
3537
3538 return HAL_ERROR;
3539 }
3540 }
3541
3542 /* Enable the UART Parity Error Interrupt */
3543 if (huart->Init.Parity != UART_PARITY_NONE)
3544 {
3545 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3546 }
3547
3548 /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
3549 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
3550
3551 /* Enable the DMA transfer for the receiver request by setting the DMAR bit
3552 in the UART CR3 register */
3553 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3554
3555 return HAL_OK;
3556 }
3557
3558
3559 /**
3560 * @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
3561 * @param huart UART handle.
3562 * @retval None
3563 */
UART_EndTxTransfer(UART_HandleTypeDef * huart)3564 static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
3565 {
3566 /* Disable TXEIE, TCIE, TXFT interrupts */
3567 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE));
3568 ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_TXFTIE));
3569
3570 /* At end of Tx process, restore huart->gState to Ready */
3571 huart->gState = HAL_UART_STATE_READY;
3572 }
3573
3574
3575 /**
3576 * @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
3577 * @param huart UART handle.
3578 * @retval None
3579 */
UART_EndRxTransfer(UART_HandleTypeDef * huart)3580 static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
3581 {
3582 /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
3583 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
3584 ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
3585
3586 /* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */
3587 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3588 {
3589 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3590 }
3591
3592 /* At end of Rx process, restore huart->RxState to Ready */
3593 huart->RxState = HAL_UART_STATE_READY;
3594 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3595
3596 /* Reset RxIsr function pointer */
3597 huart->RxISR = NULL;
3598 }
3599
3600
3601 /**
3602 * @brief DMA UART transmit process complete callback.
3603 * @param hdma DMA handle.
3604 * @retval None
3605 */
UART_DMATransmitCplt(DMA_HandleTypeDef * hdma)3606 static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
3607 {
3608 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3609
3610 /* DMA Normal mode */
3611 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
3612 {
3613 huart->TxXferCount = 0U;
3614
3615 /* Disable the DMA transfer for transmit request by resetting the DMAT bit
3616 in the UART CR3 register */
3617 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
3618
3619 /* Enable the UART Transmit Complete Interrupt */
3620 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
3621 }
3622 /* DMA Circular mode */
3623 else
3624 {
3625 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3626 /*Call registered Tx complete callback*/
3627 huart->TxCpltCallback(huart);
3628 #else
3629 /*Call legacy weak Tx complete callback*/
3630 HAL_UART_TxCpltCallback(huart);
3631 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3632 }
3633 }
3634
3635 /**
3636 * @brief DMA UART transmit process half complete callback.
3637 * @param hdma DMA handle.
3638 * @retval None
3639 */
UART_DMATxHalfCplt(DMA_HandleTypeDef * hdma)3640 static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
3641 {
3642 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3643
3644 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3645 /*Call registered Tx Half complete callback*/
3646 huart->TxHalfCpltCallback(huart);
3647 #else
3648 /*Call legacy weak Tx Half complete callback*/
3649 HAL_UART_TxHalfCpltCallback(huart);
3650 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3651 }
3652
3653 /**
3654 * @brief DMA UART receive process complete callback.
3655 * @param hdma DMA handle.
3656 * @retval None
3657 */
UART_DMAReceiveCplt(DMA_HandleTypeDef * hdma)3658 static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
3659 {
3660 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3661
3662 /* DMA Normal mode */
3663 if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC))
3664 {
3665 huart->RxXferCount = 0U;
3666
3667 /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
3668 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
3669 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
3670
3671 /* Disable the DMA transfer for the receiver request by resetting the DMAR bit
3672 in the UART CR3 register */
3673 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
3674
3675 /* At end of Rx process, restore huart->RxState to Ready */
3676 huart->RxState = HAL_UART_STATE_READY;
3677
3678 /* If Reception till IDLE event has been selected, Disable IDLE Interrupt */
3679 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3680 {
3681 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
3682 }
3683 }
3684
3685 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3686 In this case, Rx Event type is Transfer Complete */
3687 huart->RxEventType = HAL_UART_RXEVENT_TC;
3688
3689 /* Check current reception Mode :
3690 If Reception till IDLE event has been selected : use Rx Event callback */
3691 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3692 {
3693 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3694 /*Call registered Rx Event callback*/
3695 huart->RxEventCallback(huart, huart->RxXferSize);
3696 #else
3697 /*Call legacy weak Rx Event callback*/
3698 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
3699 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3700 }
3701 else
3702 {
3703 /* In other cases : use Rx Complete callback */
3704 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3705 /*Call registered Rx complete callback*/
3706 huart->RxCpltCallback(huart);
3707 #else
3708 /*Call legacy weak Rx complete callback*/
3709 HAL_UART_RxCpltCallback(huart);
3710 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3711 }
3712 }
3713
3714 /**
3715 * @brief DMA UART receive process half complete callback.
3716 * @param hdma DMA handle.
3717 * @retval None
3718 */
UART_DMARxHalfCplt(DMA_HandleTypeDef * hdma)3719 static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
3720 {
3721 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3722
3723 /* Initialize type of RxEvent that correspond to RxEvent callback execution;
3724 In this case, Rx Event type is Half Transfer */
3725 huart->RxEventType = HAL_UART_RXEVENT_HT;
3726
3727 /* Check current reception Mode :
3728 If Reception till IDLE event has been selected : use Rx Event callback */
3729 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
3730 {
3731 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3732 /*Call registered Rx Event callback*/
3733 huart->RxEventCallback(huart, huart->RxXferSize / 2U);
3734 #else
3735 /*Call legacy weak Rx Event callback*/
3736 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U);
3737 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3738 }
3739 else
3740 {
3741 /* In other cases : use Rx Half Complete callback */
3742 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3743 /*Call registered Rx Half complete callback*/
3744 huart->RxHalfCpltCallback(huart);
3745 #else
3746 /*Call legacy weak Rx Half complete callback*/
3747 HAL_UART_RxHalfCpltCallback(huart);
3748 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3749 }
3750 }
3751
3752 /**
3753 * @brief DMA UART communication error callback.
3754 * @param hdma DMA handle.
3755 * @retval None
3756 */
UART_DMAError(DMA_HandleTypeDef * hdma)3757 static void UART_DMAError(DMA_HandleTypeDef *hdma)
3758 {
3759 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3760
3761 const HAL_UART_StateTypeDef gstate = huart->gState;
3762 const HAL_UART_StateTypeDef rxstate = huart->RxState;
3763
3764 /* Stop UART DMA Tx request if ongoing */
3765 if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) &&
3766 (gstate == HAL_UART_STATE_BUSY_TX))
3767 {
3768 huart->TxXferCount = 0U;
3769 UART_EndTxTransfer(huart);
3770 }
3771
3772 /* Stop UART DMA Rx request if ongoing */
3773 if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) &&
3774 (rxstate == HAL_UART_STATE_BUSY_RX))
3775 {
3776 huart->RxXferCount = 0U;
3777 UART_EndRxTransfer(huart);
3778 }
3779
3780 huart->ErrorCode |= HAL_UART_ERROR_DMA;
3781
3782 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3783 /*Call registered error callback*/
3784 huart->ErrorCallback(huart);
3785 #else
3786 /*Call legacy weak error callback*/
3787 HAL_UART_ErrorCallback(huart);
3788 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3789 }
3790
3791 /**
3792 * @brief DMA UART communication abort callback, when initiated by HAL services on Error
3793 * (To be called at end of DMA Abort procedure following error occurrence).
3794 * @param hdma DMA handle.
3795 * @retval None
3796 */
UART_DMAAbortOnError(DMA_HandleTypeDef * hdma)3797 static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
3798 {
3799 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3800 huart->RxXferCount = 0U;
3801 huart->TxXferCount = 0U;
3802
3803 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3804 /*Call registered error callback*/
3805 huart->ErrorCallback(huart);
3806 #else
3807 /*Call legacy weak error callback*/
3808 HAL_UART_ErrorCallback(huart);
3809 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3810 }
3811
3812 /**
3813 * @brief DMA UART Tx communication abort callback, when initiated by user
3814 * (To be called at end of DMA Tx Abort procedure following user abort request).
3815 * @note When this callback is executed, User Abort complete call back is called only if no
3816 * Abort still ongoing for Rx DMA Handle.
3817 * @param hdma DMA handle.
3818 * @retval None
3819 */
UART_DMATxAbortCallback(DMA_HandleTypeDef * hdma)3820 static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
3821 {
3822 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3823
3824 huart->hdmatx->XferAbortCallback = NULL;
3825
3826 /* Check if an Abort process is still ongoing */
3827 if (huart->hdmarx != NULL)
3828 {
3829 if (huart->hdmarx->XferAbortCallback != NULL)
3830 {
3831 return;
3832 }
3833 }
3834
3835 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3836 huart->TxXferCount = 0U;
3837 huart->RxXferCount = 0U;
3838
3839 /* Reset errorCode */
3840 huart->ErrorCode = HAL_UART_ERROR_NONE;
3841
3842 /* Clear the Error flags in the ICR register */
3843 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
3844
3845 /* Flush the whole TX FIFO (if needed) */
3846 if (huart->FifoMode == UART_FIFOMODE_ENABLE)
3847 {
3848 __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
3849 }
3850
3851 /* Restore huart->gState and huart->RxState to Ready */
3852 huart->gState = HAL_UART_STATE_READY;
3853 huart->RxState = HAL_UART_STATE_READY;
3854 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3855
3856 /* Call user Abort complete callback */
3857 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3858 /* Call registered Abort complete callback */
3859 huart->AbortCpltCallback(huart);
3860 #else
3861 /* Call legacy weak Abort complete callback */
3862 HAL_UART_AbortCpltCallback(huart);
3863 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3864 }
3865
3866
3867 /**
3868 * @brief DMA UART Rx communication abort callback, when initiated by user
3869 * (To be called at end of DMA Rx Abort procedure following user abort request).
3870 * @note When this callback is executed, User Abort complete call back is called only if no
3871 * Abort still ongoing for Tx DMA Handle.
3872 * @param hdma DMA handle.
3873 * @retval None
3874 */
UART_DMARxAbortCallback(DMA_HandleTypeDef * hdma)3875 static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
3876 {
3877 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3878
3879 huart->hdmarx->XferAbortCallback = NULL;
3880
3881 /* Check if an Abort process is still ongoing */
3882 if (huart->hdmatx != NULL)
3883 {
3884 if (huart->hdmatx->XferAbortCallback != NULL)
3885 {
3886 return;
3887 }
3888 }
3889
3890 /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
3891 huart->TxXferCount = 0U;
3892 huart->RxXferCount = 0U;
3893
3894 /* Reset errorCode */
3895 huart->ErrorCode = HAL_UART_ERROR_NONE;
3896
3897 /* Clear the Error flags in the ICR register */
3898 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
3899
3900 /* Discard the received data */
3901 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
3902
3903 /* Restore huart->gState and huart->RxState to Ready */
3904 huart->gState = HAL_UART_STATE_READY;
3905 huart->RxState = HAL_UART_STATE_READY;
3906 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3907
3908 /* Call user Abort complete callback */
3909 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3910 /* Call registered Abort complete callback */
3911 huart->AbortCpltCallback(huart);
3912 #else
3913 /* Call legacy weak Abort complete callback */
3914 HAL_UART_AbortCpltCallback(huart);
3915 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3916 }
3917
3918
3919 /**
3920 * @brief DMA UART Tx communication abort callback, when initiated by user by a call to
3921 * HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
3922 * (This callback is executed at end of DMA Tx Abort procedure following user abort request,
3923 * and leads to user Tx Abort Complete callback execution).
3924 * @param hdma DMA handle.
3925 * @retval None
3926 */
UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3927 static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3928 {
3929 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent);
3930
3931 huart->TxXferCount = 0U;
3932
3933 /* Flush the whole TX FIFO (if needed) */
3934 if (huart->FifoMode == UART_FIFOMODE_ENABLE)
3935 {
3936 __HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST);
3937 }
3938
3939 /* Restore huart->gState to Ready */
3940 huart->gState = HAL_UART_STATE_READY;
3941
3942 /* Call user Abort complete callback */
3943 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3944 /* Call registered Abort Transmit Complete Callback */
3945 huart->AbortTransmitCpltCallback(huart);
3946 #else
3947 /* Call legacy weak Abort Transmit Complete Callback */
3948 HAL_UART_AbortTransmitCpltCallback(huart);
3949 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3950 }
3951
3952 /**
3953 * @brief DMA UART Rx communication abort callback, when initiated by user by a call to
3954 * HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
3955 * (This callback is executed at end of DMA Rx Abort procedure following user abort request,
3956 * and leads to user Rx Abort Complete callback execution).
3957 * @param hdma DMA handle.
3958 * @retval None
3959 */
UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef * hdma)3960 static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
3961 {
3962 UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
3963
3964 huart->RxXferCount = 0U;
3965
3966 /* Clear the Error flags in the ICR register */
3967 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF);
3968
3969 /* Discard the received data */
3970 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
3971
3972 /* Restore huart->RxState to Ready */
3973 huart->RxState = HAL_UART_STATE_READY;
3974 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
3975
3976 /* Call user Abort complete callback */
3977 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
3978 /* Call registered Abort Receive Complete Callback */
3979 huart->AbortReceiveCpltCallback(huart);
3980 #else
3981 /* Call legacy weak Abort Receive Complete Callback */
3982 HAL_UART_AbortReceiveCpltCallback(huart);
3983 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
3984 }
3985
3986 /**
3987 * @brief TX interrupt handler for 7 or 8 bits data word length .
3988 * @note Function is called under interruption only, once
3989 * interruptions have been enabled by HAL_UART_Transmit_IT().
3990 * @param huart UART handle.
3991 * @retval None
3992 */
UART_TxISR_8BIT(UART_HandleTypeDef * huart)3993 static void UART_TxISR_8BIT(UART_HandleTypeDef *huart)
3994 {
3995 /* Check that a Tx process is ongoing */
3996 if (huart->gState == HAL_UART_STATE_BUSY_TX)
3997 {
3998 if (huart->TxXferCount == 0U)
3999 {
4000 /* Disable the UART Transmit Data Register Empty Interrupt */
4001 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
4002
4003 /* Enable the UART Transmit Complete Interrupt */
4004 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
4005 }
4006 else
4007 {
4008 huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
4009 huart->pTxBuffPtr++;
4010 huart->TxXferCount--;
4011 }
4012 }
4013 }
4014
4015 /**
4016 * @brief TX interrupt handler for 9 bits data word length.
4017 * @note Function is called under interruption only, once
4018 * interruptions have been enabled by HAL_UART_Transmit_IT().
4019 * @param huart UART handle.
4020 * @retval None
4021 */
UART_TxISR_16BIT(UART_HandleTypeDef * huart)4022 static void UART_TxISR_16BIT(UART_HandleTypeDef *huart)
4023 {
4024 const uint16_t *tmp;
4025
4026 /* Check that a Tx process is ongoing */
4027 if (huart->gState == HAL_UART_STATE_BUSY_TX)
4028 {
4029 if (huart->TxXferCount == 0U)
4030 {
4031 /* Disable the UART Transmit Data Register Empty Interrupt */
4032 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE);
4033
4034 /* Enable the UART Transmit Complete Interrupt */
4035 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
4036 }
4037 else
4038 {
4039 tmp = (const uint16_t *) huart->pTxBuffPtr;
4040 huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
4041 huart->pTxBuffPtr += 2U;
4042 huart->TxXferCount--;
4043 }
4044 }
4045 }
4046
4047 /**
4048 * @brief TX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
4049 * @note Function is called under interruption only, once
4050 * interruptions have been enabled by HAL_UART_Transmit_IT().
4051 * @param huart UART handle.
4052 * @retval None
4053 */
UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef * huart)4054 static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
4055 {
4056 uint16_t nb_tx_data;
4057
4058 /* Check that a Tx process is ongoing */
4059 if (huart->gState == HAL_UART_STATE_BUSY_TX)
4060 {
4061 for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
4062 {
4063 if (huart->TxXferCount == 0U)
4064 {
4065 /* Disable the TX FIFO threshold interrupt */
4066 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
4067
4068 /* Enable the UART Transmit Complete Interrupt */
4069 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
4070
4071 break; /* force exit loop */
4072 }
4073 else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
4074 {
4075 huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF);
4076 huart->pTxBuffPtr++;
4077 huart->TxXferCount--;
4078 }
4079 else
4080 {
4081 /* Nothing to do */
4082 }
4083 }
4084 }
4085 }
4086
4087 /**
4088 * @brief TX interrupt handler for 9 bits data word length and FIFO mode is enabled.
4089 * @note Function is called under interruption only, once
4090 * interruptions have been enabled by HAL_UART_Transmit_IT().
4091 * @param huart UART handle.
4092 * @retval None
4093 */
UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef * huart)4094 static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
4095 {
4096 const uint16_t *tmp;
4097 uint16_t nb_tx_data;
4098
4099 /* Check that a Tx process is ongoing */
4100 if (huart->gState == HAL_UART_STATE_BUSY_TX)
4101 {
4102 for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--)
4103 {
4104 if (huart->TxXferCount == 0U)
4105 {
4106 /* Disable the TX FIFO threshold interrupt */
4107 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE);
4108
4109 /* Enable the UART Transmit Complete Interrupt */
4110 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);
4111
4112 break; /* force exit loop */
4113 }
4114 else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U)
4115 {
4116 tmp = (const uint16_t *) huart->pTxBuffPtr;
4117 huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL);
4118 huart->pTxBuffPtr += 2U;
4119 huart->TxXferCount--;
4120 }
4121 else
4122 {
4123 /* Nothing to do */
4124 }
4125 }
4126 }
4127 }
4128
4129 /**
4130 * @brief Wrap up transmission in non-blocking mode.
4131 * @param huart pointer to a UART_HandleTypeDef structure that contains
4132 * the configuration information for the specified UART module.
4133 * @retval None
4134 */
UART_EndTransmit_IT(UART_HandleTypeDef * huart)4135 static void UART_EndTransmit_IT(UART_HandleTypeDef *huart)
4136 {
4137 /* Disable the UART Transmit Complete Interrupt */
4138 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE);
4139
4140 /* Tx process is ended, restore huart->gState to Ready */
4141 huart->gState = HAL_UART_STATE_READY;
4142
4143 /* Cleat TxISR function pointer */
4144 huart->TxISR = NULL;
4145
4146 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4147 /*Call registered Tx complete callback*/
4148 huart->TxCpltCallback(huart);
4149 #else
4150 /*Call legacy weak Tx complete callback*/
4151 HAL_UART_TxCpltCallback(huart);
4152 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
4153 }
4154
4155 /**
4156 * @brief RX interrupt handler for 7 or 8 bits data word length .
4157 * @param huart UART handle.
4158 * @retval None
4159 */
UART_RxISR_8BIT(UART_HandleTypeDef * huart)4160 static void UART_RxISR_8BIT(UART_HandleTypeDef *huart)
4161 {
4162 uint16_t uhMask = huart->Mask;
4163 uint16_t uhdata;
4164
4165 /* Check that a Rx process is ongoing */
4166 if (huart->RxState == HAL_UART_STATE_BUSY_RX)
4167 {
4168 uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
4169 *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
4170 huart->pRxBuffPtr++;
4171 huart->RxXferCount--;
4172
4173 if (huart->RxXferCount == 0U)
4174 {
4175 /* Disable the UART Parity Error Interrupt and RXNE interrupts */
4176 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
4177
4178 /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
4179 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
4180
4181 /* Rx process is completed, restore huart->RxState to Ready */
4182 huart->RxState = HAL_UART_STATE_READY;
4183
4184 /* Clear RxISR function pointer */
4185 huart->RxISR = NULL;
4186
4187 /* Initialize type of RxEvent to Transfer Complete */
4188 huart->RxEventType = HAL_UART_RXEVENT_TC;
4189
4190 if (!(IS_LPUART_INSTANCE(huart->Instance)))
4191 {
4192 /* Check that USART RTOEN bit is set */
4193 if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
4194 {
4195 /* Enable the UART Receiver Timeout Interrupt */
4196 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
4197 }
4198 }
4199
4200 /* Check current reception Mode :
4201 If Reception till IDLE event has been selected : */
4202 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
4203 {
4204 /* Set reception type to Standard */
4205 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
4206
4207 /* Disable IDLE interrupt */
4208 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
4209
4210 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
4211 {
4212 /* Clear IDLE Flag */
4213 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
4214 }
4215
4216 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4217 /*Call registered Rx Event callback*/
4218 huart->RxEventCallback(huart, huart->RxXferSize);
4219 #else
4220 /*Call legacy weak Rx Event callback*/
4221 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
4222 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
4223 }
4224 else
4225 {
4226 /* Standard reception API called */
4227 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4228 /*Call registered Rx complete callback*/
4229 huart->RxCpltCallback(huart);
4230 #else
4231 /*Call legacy weak Rx complete callback*/
4232 HAL_UART_RxCpltCallback(huart);
4233 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
4234 }
4235 }
4236 }
4237 else
4238 {
4239 /* Clear RXNE interrupt flag */
4240 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
4241 }
4242 }
4243
4244 /**
4245 * @brief RX interrupt handler for 9 bits data word length .
4246 * @note Function is called under interruption only, once
4247 * interruptions have been enabled by HAL_UART_Receive_IT()
4248 * @param huart UART handle.
4249 * @retval None
4250 */
UART_RxISR_16BIT(UART_HandleTypeDef * huart)4251 static void UART_RxISR_16BIT(UART_HandleTypeDef *huart)
4252 {
4253 uint16_t *tmp;
4254 uint16_t uhMask = huart->Mask;
4255 uint16_t uhdata;
4256
4257 /* Check that a Rx process is ongoing */
4258 if (huart->RxState == HAL_UART_STATE_BUSY_RX)
4259 {
4260 uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
4261 tmp = (uint16_t *) huart->pRxBuffPtr ;
4262 *tmp = (uint16_t)(uhdata & uhMask);
4263 huart->pRxBuffPtr += 2U;
4264 huart->RxXferCount--;
4265
4266 if (huart->RxXferCount == 0U)
4267 {
4268 /* Disable the UART Parity Error Interrupt and RXNE interrupt*/
4269 ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE));
4270
4271 /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
4272 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
4273
4274 /* Rx process is completed, restore huart->RxState to Ready */
4275 huart->RxState = HAL_UART_STATE_READY;
4276
4277 /* Clear RxISR function pointer */
4278 huart->RxISR = NULL;
4279
4280 /* Initialize type of RxEvent to Transfer Complete */
4281 huart->RxEventType = HAL_UART_RXEVENT_TC;
4282
4283 if (!(IS_LPUART_INSTANCE(huart->Instance)))
4284 {
4285 /* Check that USART RTOEN bit is set */
4286 if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
4287 {
4288 /* Enable the UART Receiver Timeout Interrupt */
4289 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
4290 }
4291 }
4292
4293 /* Check current reception Mode :
4294 If Reception till IDLE event has been selected : */
4295 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
4296 {
4297 /* Set reception type to Standard */
4298 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
4299
4300 /* Disable IDLE interrupt */
4301 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
4302
4303 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
4304 {
4305 /* Clear IDLE Flag */
4306 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
4307 }
4308
4309 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4310 /*Call registered Rx Event callback*/
4311 huart->RxEventCallback(huart, huart->RxXferSize);
4312 #else
4313 /*Call legacy weak Rx Event callback*/
4314 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
4315 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
4316 }
4317 else
4318 {
4319 /* Standard reception API called */
4320 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4321 /*Call registered Rx complete callback*/
4322 huart->RxCpltCallback(huart);
4323 #else
4324 /*Call legacy weak Rx complete callback*/
4325 HAL_UART_RxCpltCallback(huart);
4326 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
4327 }
4328 }
4329 }
4330 else
4331 {
4332 /* Clear RXNE interrupt flag */
4333 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
4334 }
4335 }
4336
4337 /**
4338 * @brief RX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled.
4339 * @note Function is called under interruption only, once
4340 * interruptions have been enabled by HAL_UART_Receive_IT()
4341 * @param huart UART handle.
4342 * @retval None
4343 */
UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef * huart)4344 static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart)
4345 {
4346 uint16_t uhMask = huart->Mask;
4347 uint16_t uhdata;
4348 uint16_t nb_rx_data;
4349 uint16_t rxdatacount;
4350 uint32_t isrflags = READ_REG(huart->Instance->ISR);
4351 uint32_t cr1its = READ_REG(huart->Instance->CR1);
4352 uint32_t cr3its = READ_REG(huart->Instance->CR3);
4353
4354 /* Check that a Rx process is ongoing */
4355 if (huart->RxState == HAL_UART_STATE_BUSY_RX)
4356 {
4357 nb_rx_data = huart->NbRxDataToProcess;
4358 while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
4359 {
4360 uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
4361 *huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask);
4362 huart->pRxBuffPtr++;
4363 huart->RxXferCount--;
4364 isrflags = READ_REG(huart->Instance->ISR);
4365
4366 /* If some non blocking errors occurred */
4367 if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
4368 {
4369 /* UART parity error interrupt occurred -------------------------------------*/
4370 if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
4371 {
4372 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
4373
4374 huart->ErrorCode |= HAL_UART_ERROR_PE;
4375 }
4376
4377 /* UART frame error interrupt occurred --------------------------------------*/
4378 if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
4379 {
4380 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
4381
4382 huart->ErrorCode |= HAL_UART_ERROR_FE;
4383 }
4384
4385 /* UART noise error interrupt occurred --------------------------------------*/
4386 if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
4387 {
4388 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
4389
4390 huart->ErrorCode |= HAL_UART_ERROR_NE;
4391 }
4392
4393 /* Call UART Error Call back function if need be ----------------------------*/
4394 if (huart->ErrorCode != HAL_UART_ERROR_NONE)
4395 {
4396 /* Non Blocking error : transfer could go on.
4397 Error is notified to user through user error callback */
4398 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4399 /*Call registered error callback*/
4400 huart->ErrorCallback(huart);
4401 #else
4402 /*Call legacy weak error callback*/
4403 HAL_UART_ErrorCallback(huart);
4404 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
4405 huart->ErrorCode = HAL_UART_ERROR_NONE;
4406 }
4407 }
4408
4409 if (huart->RxXferCount == 0U)
4410 {
4411 /* Disable the UART Parity Error Interrupt and RXFT interrupt*/
4412 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
4413
4414 /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
4415 and RX FIFO Threshold interrupt */
4416 ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
4417
4418 /* Rx process is completed, restore huart->RxState to Ready */
4419 huart->RxState = HAL_UART_STATE_READY;
4420
4421 /* Clear RxISR function pointer */
4422 huart->RxISR = NULL;
4423
4424 /* Initialize type of RxEvent to Transfer Complete */
4425 huart->RxEventType = HAL_UART_RXEVENT_TC;
4426
4427 if (!(IS_LPUART_INSTANCE(huart->Instance)))
4428 {
4429 /* Check that USART RTOEN bit is set */
4430 if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
4431 {
4432 /* Enable the UART Receiver Timeout Interrupt */
4433 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
4434 }
4435 }
4436
4437 /* Check current reception Mode :
4438 If Reception till IDLE event has been selected : */
4439 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
4440 {
4441 /* Set reception type to Standard */
4442 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
4443
4444 /* Disable IDLE interrupt */
4445 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
4446
4447 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
4448 {
4449 /* Clear IDLE Flag */
4450 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
4451 }
4452
4453 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4454 /*Call registered Rx Event callback*/
4455 huart->RxEventCallback(huart, huart->RxXferSize);
4456 #else
4457 /*Call legacy weak Rx Event callback*/
4458 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
4459 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
4460 }
4461 else
4462 {
4463 /* Standard reception API called */
4464 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4465 /*Call registered Rx complete callback*/
4466 huart->RxCpltCallback(huart);
4467 #else
4468 /*Call legacy weak Rx complete callback*/
4469 HAL_UART_RxCpltCallback(huart);
4470 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
4471 }
4472 }
4473 }
4474
4475 /* When remaining number of bytes to receive is less than the RX FIFO
4476 threshold, next incoming frames are processed as if FIFO mode was
4477 disabled (i.e. one interrupt per received frame).
4478 */
4479 rxdatacount = huart->RxXferCount;
4480 if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
4481 {
4482 /* Disable the UART RXFT interrupt*/
4483 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
4484
4485 /* Update the RxISR function pointer */
4486 huart->RxISR = UART_RxISR_8BIT;
4487
4488 /* Enable the UART Data Register Not Empty interrupt */
4489 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
4490 }
4491 }
4492 else
4493 {
4494 /* Clear RXNE interrupt flag */
4495 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
4496 }
4497 }
4498
4499 /**
4500 * @brief RX interrupt handler for 9 bits data word length and FIFO mode is enabled.
4501 * @note Function is called under interruption only, once
4502 * interruptions have been enabled by HAL_UART_Receive_IT()
4503 * @param huart UART handle.
4504 * @retval None
4505 */
UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef * huart)4506 static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart)
4507 {
4508 uint16_t *tmp;
4509 uint16_t uhMask = huart->Mask;
4510 uint16_t uhdata;
4511 uint16_t nb_rx_data;
4512 uint16_t rxdatacount;
4513 uint32_t isrflags = READ_REG(huart->Instance->ISR);
4514 uint32_t cr1its = READ_REG(huart->Instance->CR1);
4515 uint32_t cr3its = READ_REG(huart->Instance->CR3);
4516
4517 /* Check that a Rx process is ongoing */
4518 if (huart->RxState == HAL_UART_STATE_BUSY_RX)
4519 {
4520 nb_rx_data = huart->NbRxDataToProcess;
4521 while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U))
4522 {
4523 uhdata = (uint16_t) READ_REG(huart->Instance->RDR);
4524 tmp = (uint16_t *) huart->pRxBuffPtr ;
4525 *tmp = (uint16_t)(uhdata & uhMask);
4526 huart->pRxBuffPtr += 2U;
4527 huart->RxXferCount--;
4528 isrflags = READ_REG(huart->Instance->ISR);
4529
4530 /* If some non blocking errors occurred */
4531 if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U)
4532 {
4533 /* UART parity error interrupt occurred -------------------------------------*/
4534 if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U))
4535 {
4536 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF);
4537
4538 huart->ErrorCode |= HAL_UART_ERROR_PE;
4539 }
4540
4541 /* UART frame error interrupt occurred --------------------------------------*/
4542 if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
4543 {
4544 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF);
4545
4546 huart->ErrorCode |= HAL_UART_ERROR_FE;
4547 }
4548
4549 /* UART noise error interrupt occurred --------------------------------------*/
4550 if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U))
4551 {
4552 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF);
4553
4554 huart->ErrorCode |= HAL_UART_ERROR_NE;
4555 }
4556
4557 /* Call UART Error Call back function if need be ----------------------------*/
4558 if (huart->ErrorCode != HAL_UART_ERROR_NONE)
4559 {
4560 /* Non Blocking error : transfer could go on.
4561 Error is notified to user through user error callback */
4562 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4563 /*Call registered error callback*/
4564 huart->ErrorCallback(huart);
4565 #else
4566 /*Call legacy weak error callback*/
4567 HAL_UART_ErrorCallback(huart);
4568 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
4569 huart->ErrorCode = HAL_UART_ERROR_NONE;
4570 }
4571 }
4572
4573 if (huart->RxXferCount == 0U)
4574 {
4575 /* Disable the UART Parity Error Interrupt and RXFT interrupt*/
4576 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
4577
4578 /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error)
4579 and RX FIFO Threshold interrupt */
4580 ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE));
4581
4582 /* Rx process is completed, restore huart->RxState to Ready */
4583 huart->RxState = HAL_UART_STATE_READY;
4584
4585 /* Clear RxISR function pointer */
4586 huart->RxISR = NULL;
4587
4588 /* Initialize type of RxEvent to Transfer Complete */
4589 huart->RxEventType = HAL_UART_RXEVENT_TC;
4590
4591 if (!(IS_LPUART_INSTANCE(huart->Instance)))
4592 {
4593 /* Check that USART RTOEN bit is set */
4594 if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U)
4595 {
4596 /* Enable the UART Receiver Timeout Interrupt */
4597 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE);
4598 }
4599 }
4600
4601 /* Check current reception Mode :
4602 If Reception till IDLE event has been selected : */
4603 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
4604 {
4605 /* Set reception type to Standard */
4606 huart->ReceptionType = HAL_UART_RECEPTION_STANDARD;
4607
4608 /* Disable IDLE interrupt */
4609 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
4610
4611 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET)
4612 {
4613 /* Clear IDLE Flag */
4614 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
4615 }
4616
4617 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4618 /*Call registered Rx Event callback*/
4619 huart->RxEventCallback(huart, huart->RxXferSize);
4620 #else
4621 /*Call legacy weak Rx Event callback*/
4622 HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize);
4623 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
4624 }
4625 else
4626 {
4627 /* Standard reception API called */
4628 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
4629 /*Call registered Rx complete callback*/
4630 huart->RxCpltCallback(huart);
4631 #else
4632 /*Call legacy weak Rx complete callback*/
4633 HAL_UART_RxCpltCallback(huart);
4634 #endif /* USE_HAL_UART_REGISTER_CALLBACKS */
4635 }
4636 }
4637 }
4638
4639 /* When remaining number of bytes to receive is less than the RX FIFO
4640 threshold, next incoming frames are processed as if FIFO mode was
4641 disabled (i.e. one interrupt per received frame).
4642 */
4643 rxdatacount = huart->RxXferCount;
4644 if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess))
4645 {
4646 /* Disable the UART RXFT interrupt*/
4647 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE);
4648
4649 /* Update the RxISR function pointer */
4650 huart->RxISR = UART_RxISR_16BIT;
4651
4652 /* Enable the UART Data Register Not Empty interrupt */
4653 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE);
4654 }
4655 }
4656 else
4657 {
4658 /* Clear RXNE interrupt flag */
4659 __HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST);
4660 }
4661 }
4662
4663 /**
4664 * @}
4665 */
4666
4667 #endif /* HAL_UART_MODULE_ENABLED */
4668 /**
4669 * @}
4670 */
4671
4672 /**
4673 * @}
4674 */
4675
4676