1 /**
2 ******************************************************************************
3 * @file stm32l4xx_hal_uart_ex.c
4 * @author MCD Application Team
5 * @brief Extended UART HAL module driver.
6 * This file provides firmware functions to manage the following extended
7 * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8 * + Initialization and de-initialization functions
9 * + Peripheral Control functions
10 *
11 *
12 ******************************************************************************
13 * @attention
14 *
15 * Copyright (c) 2017 STMicroelectronics.
16 * All rights reserved.
17 *
18 * This software is licensed under terms that can be found in the LICENSE file
19 * in the root directory of this software component.
20 * If no LICENSE file comes with this software, it is provided AS-IS.
21 *
22 ******************************************************************************
23 @verbatim
24 ==============================================================================
25 ##### UART peripheral extended features #####
26 ==============================================================================
27
28 (#) Declare a UART_HandleTypeDef handle structure.
29
30 (#) For the UART RS485 Driver Enable mode, initialize the UART registers
31 by calling the HAL_RS485Ex_Init() API.
32
33 (#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming.
34
35 -@- When UART operates in FIFO mode, FIFO mode must be enabled prior
36 starting RX/TX transfers. Also RX/TX FIFO thresholds must be
37 configured prior starting RX/TX transfers.
38
39 @endverbatim
40 ******************************************************************************
41 */
42
43 /* Includes ------------------------------------------------------------------*/
44 #include "stm32l4xx_hal.h"
45
46 /** @addtogroup STM32L4xx_HAL_Driver
47 * @{
48 */
49
50 /** @defgroup UARTEx UARTEx
51 * @brief UART Extended HAL module driver
52 * @{
53 */
54
55 #ifdef HAL_UART_MODULE_ENABLED
56
57 /* Private typedef -----------------------------------------------------------*/
58 /* Private define ------------------------------------------------------------*/
59 #if defined(USART_CR1_FIFOEN)
60 /** @defgroup UARTEX_Private_Constants UARTEx Private Constants
61 * @{
62 */
63 /* UART RX FIFO depth */
64 #define RX_FIFO_DEPTH 8U
65
66 /* UART TX FIFO depth */
67 #define TX_FIFO_DEPTH 8U
68 /**
69 * @}
70 */
71 #endif /* USART_CR1_FIFOEN */
72
73 /* Private macros ------------------------------------------------------------*/
74 /* Private variables ---------------------------------------------------------*/
75 /* Private function prototypes -----------------------------------------------*/
76 /** @defgroup UARTEx_Private_Functions UARTEx Private Functions
77 * @{
78 */
79 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
80 #if defined(USART_CR1_FIFOEN)
81 static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart);
82 #endif /* USART_CR1_FIFOEN */
83 /**
84 * @}
85 */
86
87 /* Exported functions --------------------------------------------------------*/
88
89 /** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
90 * @{
91 */
92
93 /** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
94 * @brief Extended Initialization and Configuration Functions
95 *
96 @verbatim
97 ===============================================================================
98 ##### Initialization and Configuration functions #####
99 ===============================================================================
100 [..]
101 This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
102 in asynchronous mode.
103 (+) For the asynchronous mode the parameters below can be configured:
104 (++) Baud Rate
105 (++) Word Length
106 (++) Stop Bit
107 (++) Parity: If the parity is enabled, then the MSB bit of the data written
108 in the data register is transmitted but is changed by the parity bit.
109 (++) Hardware flow control
110 (++) Receiver/transmitter modes
111 (++) Over Sampling Method
112 (++) One-Bit Sampling Method
113 (+) For the asynchronous mode, the following advanced features can be configured as well:
114 (++) TX and/or RX pin level inversion
115 (++) data logical level inversion
116 (++) RX and TX pins swap
117 (++) RX overrun detection disabling
118 (++) DMA disabling on RX error
119 (++) MSB first on communication line
120 (++) auto Baud rate detection
121 [..]
122 The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
123 procedures (details for the procedures are available in reference manual).
124
125 @endverbatim
126
127 Depending on the frame length defined by the M1 and M0 bits (7-bit,
128 8-bit or 9-bit), the possible UART formats are listed in the
129 following table.
130
131 Table 1. UART frame format.
132 +-----------------------------------------------------------------------+
133 | M1 bit | M0 bit | PCE bit | UART frame |
134 |---------|---------|-----------|---------------------------------------|
135 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
136 |---------|---------|-----------|---------------------------------------|
137 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
138 |---------|---------|-----------|---------------------------------------|
139 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
140 |---------|---------|-----------|---------------------------------------|
141 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
142 |---------|---------|-----------|---------------------------------------|
143 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
144 |---------|---------|-----------|---------------------------------------|
145 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
146 +-----------------------------------------------------------------------+
147
148 * @{
149 */
150
151 /**
152 * @brief Initialize the RS485 Driver enable feature according to the specified
153 * parameters in the UART_InitTypeDef and creates the associated handle.
154 * @param huart UART handle.
155 * @param Polarity Select the driver enable polarity.
156 * This parameter can be one of the following values:
157 * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
158 * @arg @ref UART_DE_POLARITY_LOW DE signal is active low
159 * @param AssertionTime Driver Enable assertion time:
160 * 5-bit value defining the time between the activation of the DE (Driver Enable)
161 * signal and the beginning of the start bit. It is expressed in sample time
162 * units (1/8 or 1/16 bit time, depending on the oversampling rate)
163 * @param DeassertionTime Driver Enable deassertion time:
164 * 5-bit value defining the time between the end of the last stop bit, in a
165 * transmitted message, and the de-activation of the DE (Driver Enable) signal.
166 * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
167 * oversampling rate).
168 * @retval HAL status
169 */
HAL_RS485Ex_Init(UART_HandleTypeDef * huart,uint32_t Polarity,uint32_t AssertionTime,uint32_t DeassertionTime)170 HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
171 uint32_t DeassertionTime)
172 {
173 uint32_t temp;
174
175 /* Check the UART handle allocation */
176 if (huart == NULL)
177 {
178 return HAL_ERROR;
179 }
180 /* Check the Driver Enable UART instance */
181 assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
182
183 /* Check the Driver Enable polarity */
184 assert_param(IS_UART_DE_POLARITY(Polarity));
185
186 /* Check the Driver Enable assertion time */
187 assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
188
189 /* Check the Driver Enable deassertion time */
190 assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
191
192 if (huart->gState == HAL_UART_STATE_RESET)
193 {
194 /* Allocate lock resource and initialize it */
195 huart->Lock = HAL_UNLOCKED;
196
197 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
198 UART_InitCallbacksToDefault(huart);
199
200 if (huart->MspInitCallback == NULL)
201 {
202 huart->MspInitCallback = HAL_UART_MspInit;
203 }
204
205 /* Init the low level hardware */
206 huart->MspInitCallback(huart);
207 #else
208 /* Init the low level hardware : GPIO, CLOCK, CORTEX */
209 HAL_UART_MspInit(huart);
210 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
211 }
212
213 huart->gState = HAL_UART_STATE_BUSY;
214
215 /* Disable the Peripheral */
216 __HAL_UART_DISABLE(huart);
217
218 /* Perform advanced settings configuration */
219 /* For some items, configuration requires to be done prior TE and RE bits are set */
220 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
221 {
222 UART_AdvFeatureConfig(huart);
223 }
224
225 /* Set the UART Communication parameters */
226 if (UART_SetConfig(huart) == HAL_ERROR)
227 {
228 return HAL_ERROR;
229 }
230
231 /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
232 SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
233
234 /* Set the Driver Enable polarity */
235 MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
236
237 /* Set the Driver Enable assertion and deassertion times */
238 temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
239 temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
240 MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
241
242 /* Enable the Peripheral */
243 __HAL_UART_ENABLE(huart);
244
245 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
246 return (UART_CheckIdleState(huart));
247 }
248
249 /**
250 * @}
251 */
252
253 /** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
254 * @brief Extended functions
255 *
256 @verbatim
257 ===============================================================================
258 ##### IO operation functions #####
259 ===============================================================================
260 This subsection provides a set of Wakeup and FIFO mode related callback functions.
261
262 (#) Wakeup from Stop mode Callback:
263 (+) HAL_UARTEx_WakeupCallback()
264
265 (#) TX/RX Fifos Callbacks:
266 (+) HAL_UARTEx_RxFifoFullCallback()
267 (+) HAL_UARTEx_TxFifoEmptyCallback()
268
269 @endverbatim
270 * @{
271 */
272
273 /**
274 * @brief UART wakeup from Stop mode callback.
275 * @param huart UART handle.
276 * @retval None
277 */
HAL_UARTEx_WakeupCallback(UART_HandleTypeDef * huart)278 __weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
279 {
280 /* Prevent unused argument(s) compilation warning */
281 UNUSED(huart);
282
283 /* NOTE : This function should not be modified, when the callback is needed,
284 the HAL_UARTEx_WakeupCallback can be implemented in the user file.
285 */
286 }
287
288 #if defined(USART_CR1_FIFOEN)
289 /**
290 * @brief UART RX Fifo full callback.
291 * @param huart UART handle.
292 * @retval None
293 */
HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef * huart)294 __weak void HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef *huart)
295 {
296 /* Prevent unused argument(s) compilation warning */
297 UNUSED(huart);
298
299 /* NOTE : This function should not be modified, when the callback is needed,
300 the HAL_UARTEx_RxFifoFullCallback can be implemented in the user file.
301 */
302 }
303
304 /**
305 * @brief UART TX Fifo empty callback.
306 * @param huart UART handle.
307 * @retval None
308 */
HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef * huart)309 __weak void HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef *huart)
310 {
311 /* Prevent unused argument(s) compilation warning */
312 UNUSED(huart);
313
314 /* NOTE : This function should not be modified, when the callback is needed,
315 the HAL_UARTEx_TxFifoEmptyCallback can be implemented in the user file.
316 */
317 }
318 #endif /* USART_CR1_FIFOEN */
319
320 /**
321 * @}
322 */
323
324 /** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
325 * @brief Extended Peripheral Control functions
326 *
327 @verbatim
328 ===============================================================================
329 ##### Peripheral Control functions #####
330 ===============================================================================
331 [..] This section provides the following functions:
332 (+) HAL_UARTEx_EnableClockStopMode() API enables the UART clock (HSI or LSE only) during stop mode
333 (+) HAL_UARTEx_DisableClockStopMode() API disables the above functionality
334 (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
335 detection length to more than 4 bits for multiprocessor address mark wake up.
336 (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
337 trigger: address match, Start Bit detection or RXNE bit status.
338 (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
339 (+) HAL_UARTEx_DisableStopMode() API disables the above functionality
340 (+) HAL_UARTEx_EnableFifoMode() API enables the FIFO mode
341 (+) HAL_UARTEx_DisableFifoMode() API disables the FIFO mode
342 (+) HAL_UARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold
343 (+) HAL_UARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold
344
345 [..] This subsection also provides a set of additional functions providing enhanced reception
346 services to user. (For example, these functions allow application to handle use cases
347 where number of data to be received is unknown).
348
349 (#) Compared to standard reception services which only consider number of received
350 data elements as reception completion criteria, these functions also consider additional events
351 as triggers for updating reception status to caller :
352 (+) Detection of inactivity period (RX line has not been active for a given period).
353 (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
354 for 1 frame time, after last received byte.
355 (++) RX inactivity detected by RTO, i.e. line has been in idle state
356 for a programmable time, after last received byte.
357 (+) Detection that a specific character has been received.
358
359 (#) There are two mode of transfer:
360 (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
361 or till IDLE event occurs. Reception is handled only during function execution.
362 When function exits, no data reception could occur. HAL status and number of actually received data elements,
363 are returned by function after finishing transfer.
364 (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
365 These API's return the HAL status.
366 The end of the data processing will be indicated through the
367 dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
368 The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
369 The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
370
371 (#) Blocking mode API:
372 (+) HAL_UARTEx_ReceiveToIdle()
373
374 (#) Non-Blocking mode API with Interrupt:
375 (+) HAL_UARTEx_ReceiveToIdle_IT()
376
377 (#) Non-Blocking mode API with DMA:
378 (+) HAL_UARTEx_ReceiveToIdle_DMA()
379
380 @endverbatim
381 * @{
382 */
383
384 #if defined(USART_CR3_UCESM)
385 /**
386 * @brief Keep UART Clock enabled when in Stop Mode.
387 * @note When the USART clock source is configured to be LSE or HSI, it is possible to keep enabled
388 * this clock during STOP mode by setting the UCESM bit in USART_CR3 control register.
389 * @note When LPUART is used to wakeup from stop with LSE is selected as LPUART clock source,
390 * and desired baud rate is 9600 baud, the bit UCESM bit in LPUART_CR3 control register must be set.
391 * @param huart UART handle.
392 * @retval HAL status
393 */
HAL_UARTEx_EnableClockStopMode(UART_HandleTypeDef * huart)394 HAL_StatusTypeDef HAL_UARTEx_EnableClockStopMode(UART_HandleTypeDef *huart)
395 {
396 /* Process Locked */
397 __HAL_LOCK(huart);
398
399 /* Set UCESM bit */
400 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_UCESM);
401
402 /* Process Unlocked */
403 __HAL_UNLOCK(huart);
404
405 return HAL_OK;
406 }
407
408 /**
409 * @brief Disable UART Clock when in Stop Mode.
410 * @param huart UART handle.
411 * @retval HAL status
412 */
HAL_UARTEx_DisableClockStopMode(UART_HandleTypeDef * huart)413 HAL_StatusTypeDef HAL_UARTEx_DisableClockStopMode(UART_HandleTypeDef *huart)
414 {
415 /* Process Locked */
416 __HAL_LOCK(huart);
417
418 /* Clear UCESM bit */
419 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_UCESM);
420
421 /* Process Unlocked */
422 __HAL_UNLOCK(huart);
423
424 return HAL_OK;
425 }
426
427 #endif /* USART_CR3_UCESM */
428 /**
429 * @brief By default in multiprocessor mode, when the wake up method is set
430 * to address mark, the UART handles only 4-bit long addresses detection;
431 * this API allows to enable longer addresses detection (6-, 7- or 8-bit
432 * long).
433 * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
434 * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
435 * @param huart UART handle.
436 * @param AddressLength This parameter can be one of the following values:
437 * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
438 * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
439 * @retval HAL status
440 */
HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef * huart,uint32_t AddressLength)441 HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
442 {
443 /* Check the UART handle allocation */
444 if (huart == NULL)
445 {
446 return HAL_ERROR;
447 }
448
449 /* Check the address length parameter */
450 assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
451
452 huart->gState = HAL_UART_STATE_BUSY;
453
454 /* Disable the Peripheral */
455 __HAL_UART_DISABLE(huart);
456
457 /* Set the address length */
458 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
459
460 /* Enable the Peripheral */
461 __HAL_UART_ENABLE(huart);
462
463 /* TEACK and/or REACK to check before moving huart->gState to Ready */
464 return (UART_CheckIdleState(huart));
465 }
466
467 /**
468 * @brief Set Wakeup from Stop mode interrupt flag selection.
469 * @note It is the application responsibility to enable the interrupt used as
470 * usart_wkup interrupt source before entering low-power mode.
471 * @param huart UART handle.
472 * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
473 * This parameter can be one of the following values:
474 * @arg @ref UART_WAKEUP_ON_ADDRESS
475 * @arg @ref UART_WAKEUP_ON_STARTBIT
476 * @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
477 * @retval HAL status
478 */
HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)479 HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
480 {
481 HAL_StatusTypeDef status = HAL_OK;
482 uint32_t tickstart;
483
484 /* check the wake-up from stop mode UART instance */
485 assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
486 /* check the wake-up selection parameter */
487 assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
488
489 /* Process Locked */
490 __HAL_LOCK(huart);
491
492 huart->gState = HAL_UART_STATE_BUSY;
493
494 /* Disable the Peripheral */
495 __HAL_UART_DISABLE(huart);
496
497 /* Set the wake-up selection scheme */
498 MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
499
500 if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
501 {
502 UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
503 }
504
505 /* Enable the Peripheral */
506 __HAL_UART_ENABLE(huart);
507
508 /* Init tickstart for timeout management */
509 tickstart = HAL_GetTick();
510
511 /* Wait until REACK flag is set */
512 if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
513 {
514 status = HAL_TIMEOUT;
515 }
516 else
517 {
518 /* Initialize the UART State */
519 huart->gState = HAL_UART_STATE_READY;
520 }
521
522 /* Process Unlocked */
523 __HAL_UNLOCK(huart);
524
525 return status;
526 }
527
528 /**
529 * @brief Enable UART Stop Mode.
530 * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
531 * @param huart UART handle.
532 * @retval HAL status
533 */
HAL_UARTEx_EnableStopMode(UART_HandleTypeDef * huart)534 HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
535 {
536 /* Process Locked */
537 __HAL_LOCK(huart);
538
539 /* Set UESM bit */
540 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
541
542 /* Process Unlocked */
543 __HAL_UNLOCK(huart);
544
545 return HAL_OK;
546 }
547
548 /**
549 * @brief Disable UART Stop Mode.
550 * @param huart UART handle.
551 * @retval HAL status
552 */
HAL_UARTEx_DisableStopMode(UART_HandleTypeDef * huart)553 HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
554 {
555 /* Process Locked */
556 __HAL_LOCK(huart);
557
558 /* Clear UESM bit */
559 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
560
561 /* Process Unlocked */
562 __HAL_UNLOCK(huart);
563
564 return HAL_OK;
565 }
566
567 #if defined(USART_CR1_FIFOEN)
568 /**
569 * @brief Enable the FIFO mode.
570 * @param huart UART handle.
571 * @retval HAL status
572 */
HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef * huart)573 HAL_StatusTypeDef HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef *huart)
574 {
575 uint32_t tmpcr1;
576
577 /* Check parameters */
578 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
579
580 /* Process Locked */
581 __HAL_LOCK(huart);
582
583 huart->gState = HAL_UART_STATE_BUSY;
584
585 /* Save actual UART configuration */
586 tmpcr1 = READ_REG(huart->Instance->CR1);
587
588 /* Disable UART */
589 __HAL_UART_DISABLE(huart);
590
591 /* Enable FIFO mode */
592 SET_BIT(tmpcr1, USART_CR1_FIFOEN);
593 huart->FifoMode = UART_FIFOMODE_ENABLE;
594
595 /* Restore UART configuration */
596 WRITE_REG(huart->Instance->CR1, tmpcr1);
597
598 /* Determine the number of data to process during RX/TX ISR execution */
599 UARTEx_SetNbDataToProcess(huart);
600
601 huart->gState = HAL_UART_STATE_READY;
602
603 /* Process Unlocked */
604 __HAL_UNLOCK(huart);
605
606 return HAL_OK;
607 }
608
609 /**
610 * @brief Disable the FIFO mode.
611 * @param huart UART handle.
612 * @retval HAL status
613 */
HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef * huart)614 HAL_StatusTypeDef HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef *huart)
615 {
616 uint32_t tmpcr1;
617
618 /* Check parameters */
619 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
620
621 /* Process Locked */
622 __HAL_LOCK(huart);
623
624 huart->gState = HAL_UART_STATE_BUSY;
625
626 /* Save actual UART configuration */
627 tmpcr1 = READ_REG(huart->Instance->CR1);
628
629 /* Disable UART */
630 __HAL_UART_DISABLE(huart);
631
632 /* Disable FIFO mode */
633 CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN);
634 huart->FifoMode = UART_FIFOMODE_DISABLE;
635
636 /* Restore UART configuration */
637 WRITE_REG(huart->Instance->CR1, tmpcr1);
638
639 huart->gState = HAL_UART_STATE_READY;
640
641 /* Process Unlocked */
642 __HAL_UNLOCK(huart);
643
644 return HAL_OK;
645 }
646
647 /**
648 * @brief Set the TXFIFO threshold.
649 * @param huart UART handle.
650 * @param Threshold TX FIFO threshold value
651 * This parameter can be one of the following values:
652 * @arg @ref UART_TXFIFO_THRESHOLD_1_8
653 * @arg @ref UART_TXFIFO_THRESHOLD_1_4
654 * @arg @ref UART_TXFIFO_THRESHOLD_1_2
655 * @arg @ref UART_TXFIFO_THRESHOLD_3_4
656 * @arg @ref UART_TXFIFO_THRESHOLD_7_8
657 * @arg @ref UART_TXFIFO_THRESHOLD_8_8
658 * @retval HAL status
659 */
HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef * huart,uint32_t Threshold)660 HAL_StatusTypeDef HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
661 {
662 uint32_t tmpcr1;
663
664 /* Check parameters */
665 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
666 assert_param(IS_UART_TXFIFO_THRESHOLD(Threshold));
667
668 /* Process Locked */
669 __HAL_LOCK(huart);
670
671 huart->gState = HAL_UART_STATE_BUSY;
672
673 /* Save actual UART configuration */
674 tmpcr1 = READ_REG(huart->Instance->CR1);
675
676 /* Disable UART */
677 __HAL_UART_DISABLE(huart);
678
679 /* Update TX threshold configuration */
680 MODIFY_REG(huart->Instance->CR3, USART_CR3_TXFTCFG, Threshold);
681
682 /* Determine the number of data to process during RX/TX ISR execution */
683 UARTEx_SetNbDataToProcess(huart);
684
685 /* Restore UART configuration */
686 WRITE_REG(huart->Instance->CR1, tmpcr1);
687
688 huart->gState = HAL_UART_STATE_READY;
689
690 /* Process Unlocked */
691 __HAL_UNLOCK(huart);
692
693 return HAL_OK;
694 }
695
696 /**
697 * @brief Set the RXFIFO threshold.
698 * @param huart UART handle.
699 * @param Threshold RX FIFO threshold value
700 * This parameter can be one of the following values:
701 * @arg @ref UART_RXFIFO_THRESHOLD_1_8
702 * @arg @ref UART_RXFIFO_THRESHOLD_1_4
703 * @arg @ref UART_RXFIFO_THRESHOLD_1_2
704 * @arg @ref UART_RXFIFO_THRESHOLD_3_4
705 * @arg @ref UART_RXFIFO_THRESHOLD_7_8
706 * @arg @ref UART_RXFIFO_THRESHOLD_8_8
707 * @retval HAL status
708 */
HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef * huart,uint32_t Threshold)709 HAL_StatusTypeDef HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold)
710 {
711 uint32_t tmpcr1;
712
713 /* Check the parameters */
714 assert_param(IS_UART_FIFO_INSTANCE(huart->Instance));
715 assert_param(IS_UART_RXFIFO_THRESHOLD(Threshold));
716
717 /* Process Locked */
718 __HAL_LOCK(huart);
719
720 huart->gState = HAL_UART_STATE_BUSY;
721
722 /* Save actual UART configuration */
723 tmpcr1 = READ_REG(huart->Instance->CR1);
724
725 /* Disable UART */
726 __HAL_UART_DISABLE(huart);
727
728 /* Update RX threshold configuration */
729 MODIFY_REG(huart->Instance->CR3, USART_CR3_RXFTCFG, Threshold);
730
731 /* Determine the number of data to process during RX/TX ISR execution */
732 UARTEx_SetNbDataToProcess(huart);
733
734 /* Restore UART configuration */
735 WRITE_REG(huart->Instance->CR1, tmpcr1);
736
737 huart->gState = HAL_UART_STATE_READY;
738
739 /* Process Unlocked */
740 __HAL_UNLOCK(huart);
741
742 return HAL_OK;
743 }
744
745 #endif /* USART_CR1_FIFOEN */
746 /**
747 * @brief Receive an amount of data in blocking mode till either the expected number of data
748 * is received or an IDLE event occurs.
749 * @note HAL_OK is returned if reception is completed (expected number of data has been received)
750 * or if reception is stopped after IDLE event (less than the expected number of data has been received)
751 * In this case, RxLen output parameter indicates number of data available in reception buffer.
752 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
753 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
754 * of uint16_t available through pData.
755 * @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO
756 * is not empty. Read operations from the RDR register are performed when
757 * RXFNE flag is set. From hardware perspective, RXFNE flag and
758 * RXNE are mapped on the same bit-field.
759 * @param huart UART handle.
760 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
761 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
762 * @param RxLen Number of data elements finally received
763 * (could be lower than Size, in case reception ends on IDLE event)
764 * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
765 * @retval HAL status
766 */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)767 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
768 uint32_t Timeout)
769 {
770 uint8_t *pdata8bits;
771 uint16_t *pdata16bits;
772 uint16_t uhMask;
773 uint32_t tickstart;
774
775 /* Check that a Rx process is not already ongoing */
776 if (huart->RxState == HAL_UART_STATE_READY)
777 {
778 if ((pData == NULL) || (Size == 0U))
779 {
780 return HAL_ERROR;
781 }
782
783 huart->ErrorCode = HAL_UART_ERROR_NONE;
784 huart->RxState = HAL_UART_STATE_BUSY_RX;
785 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
786 huart->RxEventType = HAL_UART_RXEVENT_TC;
787
788 /* Init tickstart for timeout management */
789 tickstart = HAL_GetTick();
790
791 huart->RxXferSize = Size;
792 huart->RxXferCount = Size;
793
794 /* Computation of UART mask to apply to RDR register */
795 UART_MASK_COMPUTATION(huart);
796 uhMask = huart->Mask;
797
798 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
799 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
800 {
801 pdata8bits = NULL;
802 pdata16bits = (uint16_t *) pData;
803 }
804 else
805 {
806 pdata8bits = pData;
807 pdata16bits = NULL;
808 }
809
810 /* Initialize output number of received elements */
811 *RxLen = 0U;
812
813 /* as long as data have to be received */
814 while (huart->RxXferCount > 0U)
815 {
816 /* Check if IDLE flag is set */
817 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
818 {
819 /* Clear IDLE flag in ISR */
820 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
821
822 /* If Set, but no data ever received, clear flag without exiting loop */
823 /* If Set, and data has already been received, this means Idle Event is valid : End reception */
824 if (*RxLen > 0U)
825 {
826 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
827 huart->RxState = HAL_UART_STATE_READY;
828
829 return HAL_OK;
830 }
831 }
832
833 /* Check if RXNE flag is set */
834 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
835 {
836 if (pdata8bits == NULL)
837 {
838 *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
839 pdata16bits++;
840 }
841 else
842 {
843 *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
844 pdata8bits++;
845 }
846 /* Increment number of received elements */
847 *RxLen += 1U;
848 huart->RxXferCount--;
849 }
850
851 /* Check for the Timeout */
852 if (Timeout != HAL_MAX_DELAY)
853 {
854 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
855 {
856 huart->RxState = HAL_UART_STATE_READY;
857
858 return HAL_TIMEOUT;
859 }
860 }
861 }
862
863 /* Set number of received elements in output parameter : RxLen */
864 *RxLen = huart->RxXferSize - huart->RxXferCount;
865 /* At end of Rx process, restore huart->RxState to Ready */
866 huart->RxState = HAL_UART_STATE_READY;
867
868 return HAL_OK;
869 }
870 else
871 {
872 return HAL_BUSY;
873 }
874 }
875
876 /**
877 * @brief Receive an amount of data in interrupt mode till either the expected number of data
878 * is received or an IDLE event occurs.
879 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
880 * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
881 * number of received data elements.
882 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
883 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
884 * of uint16_t available through pData.
885 * @param huart UART handle.
886 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
887 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
888 * @retval HAL status
889 */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)890 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
891 {
892 HAL_StatusTypeDef status = HAL_OK;
893
894 /* Check that a Rx process is not already ongoing */
895 if (huart->RxState == HAL_UART_STATE_READY)
896 {
897 if ((pData == NULL) || (Size == 0U))
898 {
899 return HAL_ERROR;
900 }
901
902 /* Set Reception type to reception till IDLE Event*/
903 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
904 huart->RxEventType = HAL_UART_RXEVENT_TC;
905
906 (void)UART_Start_Receive_IT(huart, pData, Size);
907
908 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
909 {
910 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
911 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
912 }
913 else
914 {
915 /* In case of errors already pending when reception is started,
916 Interrupts may have already been raised and lead to reception abortion.
917 (Overrun error for instance).
918 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
919 status = HAL_ERROR;
920 }
921
922 return status;
923 }
924 else
925 {
926 return HAL_BUSY;
927 }
928 }
929
930 /**
931 * @brief Receive an amount of data in DMA mode till either the expected number
932 * of data is received or an IDLE event occurs.
933 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
934 * to DMA services, transferring automatically received data elements in user reception buffer and
935 * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
936 * reception phase as ended. In all cases, callback execution will indicate number of received data elements.
937 * @note When the UART parity is enabled (PCE = 1), the received data contain
938 * the parity bit (MSB position).
939 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
940 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
941 * of uint16_t available through pData.
942 * @param huart UART handle.
943 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
944 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
945 * @retval HAL status
946 */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)947 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
948 {
949 HAL_StatusTypeDef status;
950
951 /* Check that a Rx process is not already ongoing */
952 if (huart->RxState == HAL_UART_STATE_READY)
953 {
954 if ((pData == NULL) || (Size == 0U))
955 {
956 return HAL_ERROR;
957 }
958
959 /* Set Reception type to reception till IDLE Event*/
960 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
961 huart->RxEventType = HAL_UART_RXEVENT_TC;
962
963 status = UART_Start_Receive_DMA(huart, pData, Size);
964
965 /* Check Rx process has been successfully started */
966 if (status == HAL_OK)
967 {
968 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
969 {
970 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
971 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
972 }
973 else
974 {
975 /* In case of errors already pending when reception is started,
976 Interrupts may have already been raised and lead to reception abortion.
977 (Overrun error for instance).
978 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
979 status = HAL_ERROR;
980 }
981 }
982
983 return status;
984 }
985 else
986 {
987 return HAL_BUSY;
988 }
989 }
990
991 /**
992 * @brief Provide Rx Event type that has lead to RxEvent callback execution.
993 * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
994 * of reception process is provided to application through calls of Rx Event callback (either default one
995 * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
996 * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
997 * to Rx Event callback execution.
998 * @note This function is expected to be called within the user implementation of Rx Event Callback,
999 * in order to provide the accurate value :
1000 * In Interrupt Mode :
1001 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1002 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1003 * received data is lower than expected one)
1004 * In DMA Mode :
1005 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
1006 * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
1007 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
1008 * received data is lower than expected one).
1009 * In DMA mode, RxEvent callback could be called several times;
1010 * When DMA is configured in Normal Mode, HT event does not stop Reception process;
1011 * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
1012 * @param huart UART handle.
1013 * @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
1014 */
HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef * huart)1015 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(const UART_HandleTypeDef *huart)
1016 {
1017 /* Return Rx Event type value, as stored in UART handle */
1018 return (huart->RxEventType);
1019 }
1020
1021 /**
1022 * @}
1023 */
1024
1025 /**
1026 * @}
1027 */
1028
1029 /** @addtogroup UARTEx_Private_Functions
1030 * @{
1031 */
1032
1033 /**
1034 * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
1035 * @param huart UART handle.
1036 * @param WakeUpSelection UART wake up from stop mode parameters.
1037 * @retval None
1038 */
UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)1039 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
1040 {
1041 assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
1042
1043 /* Set the USART address length */
1044 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
1045
1046 /* Set the USART address node */
1047 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
1048 }
1049
1050 #if defined(USART_CR1_FIFOEN)
1051 /**
1052 * @brief Calculate the number of data to process in RX/TX ISR.
1053 * @note The RX FIFO depth and the TX FIFO depth is extracted from
1054 * the UART configuration registers.
1055 * @param huart UART handle.
1056 * @retval None
1057 */
UARTEx_SetNbDataToProcess(UART_HandleTypeDef * huart)1058 static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart)
1059 {
1060 uint8_t rx_fifo_depth;
1061 uint8_t tx_fifo_depth;
1062 uint8_t rx_fifo_threshold;
1063 uint8_t tx_fifo_threshold;
1064 static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U};
1065 static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U};
1066
1067 if (huart->FifoMode == UART_FIFOMODE_DISABLE)
1068 {
1069 huart->NbTxDataToProcess = 1U;
1070 huart->NbRxDataToProcess = 1U;
1071 }
1072 else
1073 {
1074 rx_fifo_depth = RX_FIFO_DEPTH;
1075 tx_fifo_depth = TX_FIFO_DEPTH;
1076 rx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos);
1077 tx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos);
1078 huart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) /
1079 (uint16_t)denominator[tx_fifo_threshold];
1080 huart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) /
1081 (uint16_t)denominator[rx_fifo_threshold];
1082 }
1083 }
1084 #endif /* USART_CR1_FIFOEN */
1085 /**
1086 * @}
1087 */
1088
1089 #endif /* HAL_UART_MODULE_ENABLED */
1090
1091 /**
1092 * @}
1093 */
1094
1095 /**
1096 * @}
1097 */
1098
1099