1 /**
2   ******************************************************************************
3   * @file    stm32l4xx_ll_tim.h
4   * @author  MCD Application Team
5   * @brief   Header file of TIM LL module.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2017 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 
19 /* Define to prevent recursive inclusion -------------------------------------*/
20 #ifndef __STM32L4xx_LL_TIM_H
21 #define __STM32L4xx_LL_TIM_H
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /* Includes ------------------------------------------------------------------*/
28 #include "stm32l4xx.h"
29 
30 /** @addtogroup STM32L4xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM8) || defined (TIM2) || defined (TIM3) ||  defined (TIM4) || defined (TIM5) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM6) || defined (TIM7)
35 
36 /** @defgroup TIM_LL TIM
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /** @defgroup TIM_LL_Private_Variables TIM Private Variables
43   * @{
44   */
45 static const uint8_t OFFSET_TAB_CCMRx[] =
46 {
47   0x00U,   /* 0: TIMx_CH1  */
48   0x00U,   /* 1: TIMx_CH1N */
49   0x00U,   /* 2: TIMx_CH2  */
50   0x00U,   /* 3: TIMx_CH2N */
51   0x04U,   /* 4: TIMx_CH3  */
52   0x04U,   /* 5: TIMx_CH3N */
53   0x04U,   /* 6: TIMx_CH4  */
54   0x3CU,   /* 7: TIMx_CH5  */
55   0x3CU    /* 8: TIMx_CH6  */
56 };
57 
58 static const uint8_t SHIFT_TAB_OCxx[] =
59 {
60   0U,            /* 0: OC1M, OC1FE, OC1PE */
61   0U,            /* 1: - NA */
62   8U,            /* 2: OC2M, OC2FE, OC2PE */
63   0U,            /* 3: - NA */
64   0U,            /* 4: OC3M, OC3FE, OC3PE */
65   0U,            /* 5: - NA */
66   8U,            /* 6: OC4M, OC4FE, OC4PE */
67   0U,            /* 7: OC5M, OC5FE, OC5PE */
68   8U             /* 8: OC6M, OC6FE, OC6PE */
69 };
70 
71 static const uint8_t SHIFT_TAB_ICxx[] =
72 {
73   0U,            /* 0: CC1S, IC1PSC, IC1F */
74   0U,            /* 1: - NA */
75   8U,            /* 2: CC2S, IC2PSC, IC2F */
76   0U,            /* 3: - NA */
77   0U,            /* 4: CC3S, IC3PSC, IC3F */
78   0U,            /* 5: - NA */
79   8U,            /* 6: CC4S, IC4PSC, IC4F */
80   0U,            /* 7: - NA */
81   0U             /* 8: - NA */
82 };
83 
84 static const uint8_t SHIFT_TAB_CCxP[] =
85 {
86   0U,            /* 0: CC1P */
87   2U,            /* 1: CC1NP */
88   4U,            /* 2: CC2P */
89   6U,            /* 3: CC2NP */
90   8U,            /* 4: CC3P */
91   10U,           /* 5: CC3NP */
92   12U,           /* 6: CC4P */
93   16U,           /* 7: CC5P */
94   20U            /* 8: CC6P */
95 };
96 
97 static const uint8_t SHIFT_TAB_OISx[] =
98 {
99   0U,            /* 0: OIS1 */
100   1U,            /* 1: OIS1N */
101   2U,            /* 2: OIS2 */
102   3U,            /* 3: OIS2N */
103   4U,            /* 4: OIS3 */
104   5U,            /* 5: OIS3N */
105   6U,            /* 6: OIS4 */
106   8U,            /* 7: OIS5 */
107   10U            /* 8: OIS6 */
108 };
109 /**
110   * @}
111   */
112 
113 /* Private constants ---------------------------------------------------------*/
114 /** @defgroup TIM_LL_Private_Constants TIM Private Constants
115   * @{
116   */
117 
118 /* Defines used for the bit position in the register and perform offsets */
119 #define TIM_POSITION_BRK_SOURCE            (POSITION_VAL(Source) & 0x1FUL)
120 
121 /* Generic bit definitions for TIMx_OR2 register */
122 #define TIMx_OR2_BKINP     TIM1_OR2_BKINP     /*!< BRK BKIN input polarity */
123 #define TIMx_OR2_ETRSEL    TIM1_OR2_ETRSEL    /*!< TIMx ETR source selection */
124 
125 /* Remap mask definitions */
126 #define TIMx_OR1_RMP_SHIFT 16U
127 #define TIMx_OR1_RMP_MASK  0x0000FFFFU
128 #if defined(ADC3)
129 #define TIM1_OR1_RMP_MASK  ((TIM1_OR1_ETR_ADC1_RMP | TIM1_OR1_ETR_ADC3_RMP | TIM1_OR1_TI1_RMP) << TIMx_OR1_RMP_SHIFT)
130 #else
131 #define TIM1_OR1_RMP_MASK  ((TIM1_OR1_ETR_ADC1_RMP | TIM1_OR1_TI1_RMP) << TIMx_OR1_RMP_SHIFT)
132 #endif /* ADC3 */
133 #define TIM2_OR1_RMP_MASK  ((TIM2_OR1_TI4_RMP | TIM2_OR1_ETR1_RMP | TIM2_OR1_ITR1_RMP) << TIMx_OR1_RMP_SHIFT)
134 #define TIM3_OR1_RMP_MASK  (TIM3_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
135 #if defined(ADC2) && defined(ADC3)
136 #define TIM8_OR1_RMP_MASK  ((TIM8_OR1_ETR_ADC2_RMP | TIM8_OR1_ETR_ADC3_RMP | TIM8_OR1_TI1_RMP) << TIMx_OR1_RMP_SHIFT)
137 #else
138 #define TIM8_OR1_RMP_MASK  (TIM8_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
139 #endif /* ADC2 & ADC3 */
140 #define TIM15_OR1_RMP_MASK (TIM15_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
141 #define TIM16_OR1_RMP_MASK (TIM16_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
142 #define TIM17_OR1_RMP_MASK (TIM17_OR1_TI1_RMP << TIMx_OR1_RMP_SHIFT)
143 
144 /* Mask used to set the TDG[x:0] of the DTG bits of the TIMx_BDTR register */
145 #define DT_DELAY_1 ((uint8_t)0x7F)
146 #define DT_DELAY_2 ((uint8_t)0x3F)
147 #define DT_DELAY_3 ((uint8_t)0x1F)
148 #define DT_DELAY_4 ((uint8_t)0x1F)
149 
150 /* Mask used to set the DTG[7:5] bits of the DTG bits of the TIMx_BDTR register */
151 #define DT_RANGE_1 ((uint8_t)0x00)
152 #define DT_RANGE_2 ((uint8_t)0x80)
153 #define DT_RANGE_3 ((uint8_t)0xC0)
154 #define DT_RANGE_4 ((uint8_t)0xE0)
155 
156 /** Legacy definitions for compatibility purpose
157 @cond 0
158   */
159 #if defined(DFSDM1_Channel0)
160 #define TIMx_OR2_BKDFBK0E   TIMx_OR2_BKDF1BK0E
161 #define TIMx_OR3_BK2DFBK1E  TIMx_OR3_BK2DF1BK1E
162 #endif /* DFSDM1_Channel0 */
163 /**
164 @endcond
165   */
166 
167 /**
168   * @}
169   */
170 
171 /* Private macros ------------------------------------------------------------*/
172 /** @defgroup TIM_LL_Private_Macros TIM Private Macros
173   * @{
174   */
175 /** @brief  Convert channel id into channel index.
176   * @param  __CHANNEL__ This parameter can be one of the following values:
177   *         @arg @ref LL_TIM_CHANNEL_CH1
178   *         @arg @ref LL_TIM_CHANNEL_CH1N
179   *         @arg @ref LL_TIM_CHANNEL_CH2
180   *         @arg @ref LL_TIM_CHANNEL_CH2N
181   *         @arg @ref LL_TIM_CHANNEL_CH3
182   *         @arg @ref LL_TIM_CHANNEL_CH3N
183   *         @arg @ref LL_TIM_CHANNEL_CH4
184   *         @arg @ref LL_TIM_CHANNEL_CH5
185   *         @arg @ref LL_TIM_CHANNEL_CH6
186   * @retval none
187   */
188 #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \
189   (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\
190    ((__CHANNEL__) == LL_TIM_CHANNEL_CH1N) ? 1U :\
191    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\
192    ((__CHANNEL__) == LL_TIM_CHANNEL_CH2N) ? 3U :\
193    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U :\
194    ((__CHANNEL__) == LL_TIM_CHANNEL_CH3N) ? 5U :\
195    ((__CHANNEL__) == LL_TIM_CHANNEL_CH4) ? 6U :\
196    ((__CHANNEL__) == LL_TIM_CHANNEL_CH5) ? 7U : 8U)
197 
198 /** @brief  Calculate the deadtime sampling period(in ps).
199   * @param  __TIMCLK__ timer input clock frequency (in Hz).
200   * @param  __CKD__ This parameter can be one of the following values:
201   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
202   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
203   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
204   * @retval none
205   */
206 #define TIM_CALC_DTS(__TIMCLK__, __CKD__)                                                        \
207   (((__CKD__) == LL_TIM_CLOCKDIVISION_DIV1) ? ((uint64_t)1000000000000U/(__TIMCLK__))         : \
208    ((__CKD__) == LL_TIM_CLOCKDIVISION_DIV2) ? ((uint64_t)1000000000000U/((__TIMCLK__) >> 1U)) : \
209    ((uint64_t)1000000000000U/((__TIMCLK__) >> 2U)))
210 /**
211   * @}
212   */
213 
214 
215 /* Exported types ------------------------------------------------------------*/
216 #if defined(USE_FULL_LL_DRIVER)
217 /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure
218   * @{
219   */
220 
221 /**
222   * @brief  TIM Time Base configuration structure definition.
223   */
224 typedef struct
225 {
226   uint16_t Prescaler;         /*!< Specifies the prescaler value used to divide the TIM clock.
227                                    This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
228 
229                                    This feature can be modified afterwards using unitary function
230                                    @ref LL_TIM_SetPrescaler().*/
231 
232   uint32_t CounterMode;       /*!< Specifies the counter mode.
233                                    This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE.
234 
235                                    This feature can be modified afterwards using unitary function
236                                    @ref LL_TIM_SetCounterMode().*/
237 
238   uint32_t Autoreload;        /*!< Specifies the auto reload value to be loaded into the active
239                                    Auto-Reload Register at the next update event.
240                                    This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
241                                    Some timer instances may support 32 bits counters. In that case this parameter must
242                                    be a number between 0x0000 and 0xFFFFFFFF.
243 
244                                    This feature can be modified afterwards using unitary function
245                                    @ref LL_TIM_SetAutoReload().*/
246 
247   uint32_t ClockDivision;     /*!< Specifies the clock division.
248                                    This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION.
249 
250                                    This feature can be modified afterwards using unitary function
251                                    @ref LL_TIM_SetClockDivision().*/
252 
253   uint32_t RepetitionCounter;  /*!< Specifies the repetition counter value. Each time the RCR downcounter
254                                    reaches zero, an update event is generated and counting restarts
255                                    from the RCR value (N).
256                                    This means in PWM mode that (N+1) corresponds to:
257                                       - the number of PWM periods in edge-aligned mode
258                                       - the number of half PWM period in center-aligned mode
259                                    GP timers: this parameter must be a number between Min_Data = 0x00 and
260                                    Max_Data = 0xFF.
261                                    Advanced timers: this parameter must be a number between Min_Data = 0x0000 and
262                                    Max_Data = 0xFFFF.
263 
264                                    This feature can be modified afterwards using unitary function
265                                    @ref LL_TIM_SetRepetitionCounter().*/
266 } LL_TIM_InitTypeDef;
267 
268 /**
269   * @brief  TIM Output Compare configuration structure definition.
270   */
271 typedef struct
272 {
273   uint32_t OCMode;        /*!< Specifies the output mode.
274                                This parameter can be a value of @ref TIM_LL_EC_OCMODE.
275 
276                                This feature can be modified afterwards using unitary function
277                                @ref LL_TIM_OC_SetMode().*/
278 
279   uint32_t OCState;       /*!< Specifies the TIM Output Compare state.
280                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
281 
282                                This feature can be modified afterwards using unitary functions
283                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
284 
285   uint32_t OCNState;      /*!< Specifies the TIM complementary Output Compare state.
286                                This parameter can be a value of @ref TIM_LL_EC_OCSTATE.
287 
288                                This feature can be modified afterwards using unitary functions
289                                @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/
290 
291   uint32_t CompareValue;  /*!< Specifies the Compare value to be loaded into the Capture Compare Register.
292                                This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF.
293 
294                                This feature can be modified afterwards using unitary function
295                                LL_TIM_OC_SetCompareCHx (x=1..6).*/
296 
297   uint32_t OCPolarity;    /*!< Specifies the output polarity.
298                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
299 
300                                This feature can be modified afterwards using unitary function
301                                @ref LL_TIM_OC_SetPolarity().*/
302 
303   uint32_t OCNPolarity;   /*!< Specifies the complementary output polarity.
304                                This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY.
305 
306                                This feature can be modified afterwards using unitary function
307                                @ref LL_TIM_OC_SetPolarity().*/
308 
309 
310   uint32_t OCIdleState;   /*!< Specifies the TIM Output Compare pin state during Idle state.
311                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
312 
313                                This feature can be modified afterwards using unitary function
314                                @ref LL_TIM_OC_SetIdleState().*/
315 
316   uint32_t OCNIdleState;  /*!< Specifies the TIM Output Compare pin state during Idle state.
317                                This parameter can be a value of @ref TIM_LL_EC_OCIDLESTATE.
318 
319                                This feature can be modified afterwards using unitary function
320                                @ref LL_TIM_OC_SetIdleState().*/
321 } LL_TIM_OC_InitTypeDef;
322 
323 /**
324   * @brief  TIM Input Capture configuration structure definition.
325   */
326 
327 typedef struct
328 {
329 
330   uint32_t ICPolarity;    /*!< Specifies the active edge of the input signal.
331                                This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
332 
333                                This feature can be modified afterwards using unitary function
334                                @ref LL_TIM_IC_SetPolarity().*/
335 
336   uint32_t ICActiveInput; /*!< Specifies the input.
337                                This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
338 
339                                This feature can be modified afterwards using unitary function
340                                @ref LL_TIM_IC_SetActiveInput().*/
341 
342   uint32_t ICPrescaler;   /*!< Specifies the Input Capture Prescaler.
343                                This parameter can be a value of @ref TIM_LL_EC_ICPSC.
344 
345                                This feature can be modified afterwards using unitary function
346                                @ref LL_TIM_IC_SetPrescaler().*/
347 
348   uint32_t ICFilter;      /*!< Specifies the input capture filter.
349                                This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
350 
351                                This feature can be modified afterwards using unitary function
352                                @ref LL_TIM_IC_SetFilter().*/
353 } LL_TIM_IC_InitTypeDef;
354 
355 
356 /**
357   * @brief  TIM Encoder interface configuration structure definition.
358   */
359 typedef struct
360 {
361   uint32_t EncoderMode;     /*!< Specifies the encoder resolution (x2 or x4).
362                                  This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE.
363 
364                                  This feature can be modified afterwards using unitary function
365                                  @ref LL_TIM_SetEncoderMode().*/
366 
367   uint32_t IC1Polarity;     /*!< Specifies the active edge of TI1 input.
368                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
369 
370                                  This feature can be modified afterwards using unitary function
371                                  @ref LL_TIM_IC_SetPolarity().*/
372 
373   uint32_t IC1ActiveInput;  /*!< Specifies the TI1 input source
374                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
375 
376                                  This feature can be modified afterwards using unitary function
377                                  @ref LL_TIM_IC_SetActiveInput().*/
378 
379   uint32_t IC1Prescaler;    /*!< Specifies the TI1 input prescaler value.
380                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
381 
382                                  This feature can be modified afterwards using unitary function
383                                  @ref LL_TIM_IC_SetPrescaler().*/
384 
385   uint32_t IC1Filter;       /*!< Specifies the TI1 input filter.
386                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
387 
388                                  This feature can be modified afterwards using unitary function
389                                  @ref LL_TIM_IC_SetFilter().*/
390 
391   uint32_t IC2Polarity;      /*!< Specifies the active edge of TI2 input.
392                                  This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
393 
394                                  This feature can be modified afterwards using unitary function
395                                  @ref LL_TIM_IC_SetPolarity().*/
396 
397   uint32_t IC2ActiveInput;  /*!< Specifies the TI2 input source
398                                  This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT.
399 
400                                  This feature can be modified afterwards using unitary function
401                                  @ref LL_TIM_IC_SetActiveInput().*/
402 
403   uint32_t IC2Prescaler;    /*!< Specifies the TI2 input prescaler value.
404                                  This parameter can be a value of @ref TIM_LL_EC_ICPSC.
405 
406                                  This feature can be modified afterwards using unitary function
407                                  @ref LL_TIM_IC_SetPrescaler().*/
408 
409   uint32_t IC2Filter;       /*!< Specifies the TI2 input filter.
410                                  This parameter can be a value of @ref TIM_LL_EC_IC_FILTER.
411 
412                                  This feature can be modified afterwards using unitary function
413                                  @ref LL_TIM_IC_SetFilter().*/
414 
415 } LL_TIM_ENCODER_InitTypeDef;
416 
417 /**
418   * @brief  TIM Hall sensor interface configuration structure definition.
419   */
420 typedef struct
421 {
422 
423   uint32_t IC1Polarity;        /*!< Specifies the active edge of TI1 input.
424                                     This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY.
425 
426                                     This feature can be modified afterwards using unitary function
427                                     @ref LL_TIM_IC_SetPolarity().*/
428 
429   uint32_t IC1Prescaler;       /*!< Specifies the TI1 input prescaler value.
430                                     Prescaler must be set to get a maximum counter period longer than the
431                                     time interval between 2 consecutive changes on the Hall inputs.
432                                     This parameter can be a value of @ref TIM_LL_EC_ICPSC.
433 
434                                     This feature can be modified afterwards using unitary function
435                                     @ref LL_TIM_IC_SetPrescaler().*/
436 
437   uint32_t IC1Filter;          /*!< Specifies the TI1 input filter.
438                                     This parameter can be a value of
439                                     @ref TIM_LL_EC_IC_FILTER.
440 
441                                     This feature can be modified afterwards using unitary function
442                                     @ref LL_TIM_IC_SetFilter().*/
443 
444   uint32_t CommutationDelay;   /*!< Specifies the compare value to be loaded into the Capture Compare Register.
445                                     A positive pulse (TRGO event) is generated with a programmable delay every time
446                                     a change occurs on the Hall inputs.
447                                     This parameter can be a number between Min_Data = 0x0000 and Max_Data = 0xFFFF.
448 
449                                     This feature can be modified afterwards using unitary function
450                                     @ref LL_TIM_OC_SetCompareCH2().*/
451 } LL_TIM_HALLSENSOR_InitTypeDef;
452 
453 /**
454   * @brief  BDTR (Break and Dead Time) structure definition
455   */
456 typedef struct
457 {
458   uint32_t OSSRState;            /*!< Specifies the Off-State selection used in Run mode.
459                                       This parameter can be a value of @ref TIM_LL_EC_OSSR
460 
461                                       This feature can be modified afterwards using unitary function
462                                       @ref LL_TIM_SetOffStates()
463 
464                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
465                                        programmed. */
466 
467   uint32_t OSSIState;            /*!< Specifies the Off-State used in Idle state.
468                                       This parameter can be a value of @ref TIM_LL_EC_OSSI
469 
470                                       This feature can be modified afterwards using unitary function
471                                       @ref LL_TIM_SetOffStates()
472 
473                                       @note This bit-field cannot be modified as long as LOCK level 2 has been
474                                       programmed. */
475 
476   uint32_t LockLevel;            /*!< Specifies the LOCK level parameters.
477                                       This parameter can be a value of @ref TIM_LL_EC_LOCKLEVEL
478 
479                                       @note The LOCK bits can be written only once after the reset. Once the TIMx_BDTR
480                                       register has been written, their content is frozen until the next reset.*/
481 
482   uint8_t DeadTime;              /*!< Specifies the delay time between the switching-off and the
483                                       switching-on of the outputs.
484                                       This parameter can be a number between Min_Data = 0x00 and Max_Data = 0xFF.
485 
486                                       This feature can be modified afterwards using unitary function
487                                       @ref LL_TIM_OC_SetDeadTime()
488 
489                                       @note This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been
490                                        programmed. */
491 
492   uint16_t BreakState;           /*!< Specifies whether the TIM Break input is enabled or not.
493                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_ENABLE
494 
495                                       This feature can be modified afterwards using unitary functions
496                                       @ref LL_TIM_EnableBRK() or @ref LL_TIM_DisableBRK()
497 
498                                       @note This bit-field can not be modified as long as LOCK level 1 has been
499                                       programmed. */
500 
501   uint32_t BreakPolarity;        /*!< Specifies the TIM Break Input pin polarity.
502                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_POLARITY
503 
504                                       This feature can be modified afterwards using unitary function
505                                       @ref LL_TIM_ConfigBRK()
506 
507                                       @note This bit-field can not be modified as long as LOCK level 1 has been
508                                       programmed. */
509 
510   uint32_t BreakFilter;          /*!< Specifies the TIM Break Filter.
511                                       This parameter can be a value of @ref TIM_LL_EC_BREAK_FILTER
512 
513                                       This feature can be modified afterwards using unitary function
514                                       @ref LL_TIM_ConfigBRK()
515 
516                                       @note This bit-field can not be modified as long as LOCK level 1 has been
517                                       programmed. */
518 
519   uint32_t Break2State;          /*!< Specifies whether the TIM Break2 input is enabled or not.
520                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_ENABLE
521 
522                                       This feature can be modified afterwards using unitary functions
523                                       @ref LL_TIM_EnableBRK2() or @ref LL_TIM_DisableBRK2()
524 
525                                       @note This bit-field can not be modified as long as LOCK level 1 has been
526                                       programmed. */
527 
528   uint32_t Break2Polarity;        /*!< Specifies the TIM Break2 Input pin polarity.
529                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_POLARITY
530 
531                                       This feature can be modified afterwards using unitary function
532                                       @ref LL_TIM_ConfigBRK2()
533 
534                                       @note This bit-field can not be modified as long as LOCK level 1 has been
535                                       programmed. */
536 
537   uint32_t Break2Filter;          /*!< Specifies the TIM Break2 Filter.
538                                       This parameter can be a value of @ref TIM_LL_EC_BREAK2_FILTER
539 
540                                       This feature can be modified afterwards using unitary function
541                                       @ref LL_TIM_ConfigBRK2()
542 
543                                       @note This bit-field can not be modified as long as LOCK level 1 has been
544                                       programmed. */
545 
546   uint32_t AutomaticOutput;      /*!< Specifies whether the TIM Automatic Output feature is enabled or not.
547                                       This parameter can be a value of @ref TIM_LL_EC_AUTOMATICOUTPUT_ENABLE
548 
549                                       This feature can be modified afterwards using unitary functions
550                                       @ref LL_TIM_EnableAutomaticOutput() or @ref LL_TIM_DisableAutomaticOutput()
551 
552                                       @note This bit-field can not be modified as long as LOCK level 1 has been
553                                       programmed. */
554 } LL_TIM_BDTR_InitTypeDef;
555 
556 /**
557   * @}
558   */
559 #endif /* USE_FULL_LL_DRIVER */
560 
561 /* Exported constants --------------------------------------------------------*/
562 /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants
563   * @{
564   */
565 
566 /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines
567   * @brief    Flags defines which can be used with LL_TIM_ReadReg function.
568   * @{
569   */
570 #define LL_TIM_SR_UIF                          TIM_SR_UIF           /*!< Update interrupt flag */
571 #define LL_TIM_SR_CC1IF                        TIM_SR_CC1IF         /*!< Capture/compare 1 interrupt flag */
572 #define LL_TIM_SR_CC2IF                        TIM_SR_CC2IF         /*!< Capture/compare 2 interrupt flag */
573 #define LL_TIM_SR_CC3IF                        TIM_SR_CC3IF         /*!< Capture/compare 3 interrupt flag */
574 #define LL_TIM_SR_CC4IF                        TIM_SR_CC4IF         /*!< Capture/compare 4 interrupt flag */
575 #define LL_TIM_SR_CC5IF                        TIM_SR_CC5IF         /*!< Capture/compare 5 interrupt flag */
576 #define LL_TIM_SR_CC6IF                        TIM_SR_CC6IF         /*!< Capture/compare 6 interrupt flag */
577 #define LL_TIM_SR_COMIF                        TIM_SR_COMIF         /*!< COM interrupt flag */
578 #define LL_TIM_SR_TIF                          TIM_SR_TIF           /*!< Trigger interrupt flag */
579 #define LL_TIM_SR_BIF                          TIM_SR_BIF           /*!< Break interrupt flag */
580 #define LL_TIM_SR_B2IF                         TIM_SR_B2IF          /*!< Second break interrupt flag */
581 #define LL_TIM_SR_CC1OF                        TIM_SR_CC1OF         /*!< Capture/Compare 1 overcapture flag */
582 #define LL_TIM_SR_CC2OF                        TIM_SR_CC2OF         /*!< Capture/Compare 2 overcapture flag */
583 #define LL_TIM_SR_CC3OF                        TIM_SR_CC3OF         /*!< Capture/Compare 3 overcapture flag */
584 #define LL_TIM_SR_CC4OF                        TIM_SR_CC4OF         /*!< Capture/Compare 4 overcapture flag */
585 #define LL_TIM_SR_SBIF                         TIM_SR_SBIF          /*!< System Break interrupt flag  */
586 /**
587   * @}
588   */
589 
590 #if defined(USE_FULL_LL_DRIVER)
591 /** @defgroup TIM_LL_EC_BREAK_ENABLE Break Enable
592   * @{
593   */
594 #define LL_TIM_BREAK_DISABLE            0x00000000U             /*!< Break function disabled */
595 #define LL_TIM_BREAK_ENABLE             TIM_BDTR_BKE            /*!< Break function enabled */
596 /**
597   * @}
598   */
599 
600 /** @defgroup TIM_LL_EC_BREAK2_ENABLE Break2 Enable
601   * @{
602   */
603 #define LL_TIM_BREAK2_DISABLE            0x00000000U              /*!< Break2 function disabled */
604 #define LL_TIM_BREAK2_ENABLE             TIM_BDTR_BK2E            /*!< Break2 function enabled */
605 /**
606   * @}
607   */
608 
609 /** @defgroup TIM_LL_EC_AUTOMATICOUTPUT_ENABLE Automatic output enable
610   * @{
611   */
612 #define LL_TIM_AUTOMATICOUTPUT_DISABLE         0x00000000U             /*!< MOE can be set only by software */
613 #define LL_TIM_AUTOMATICOUTPUT_ENABLE          TIM_BDTR_AOE            /*!< MOE can be set by software or automatically at the next update event */
614 /**
615   * @}
616   */
617 #endif /* USE_FULL_LL_DRIVER */
618 
619 /** @defgroup TIM_LL_EC_IT IT Defines
620   * @brief    IT defines which can be used with LL_TIM_ReadReg and  LL_TIM_WriteReg functions.
621   * @{
622   */
623 #define LL_TIM_DIER_UIE                        TIM_DIER_UIE         /*!< Update interrupt enable */
624 #define LL_TIM_DIER_CC1IE                      TIM_DIER_CC1IE       /*!< Capture/compare 1 interrupt enable */
625 #define LL_TIM_DIER_CC2IE                      TIM_DIER_CC2IE       /*!< Capture/compare 2 interrupt enable */
626 #define LL_TIM_DIER_CC3IE                      TIM_DIER_CC3IE       /*!< Capture/compare 3 interrupt enable */
627 #define LL_TIM_DIER_CC4IE                      TIM_DIER_CC4IE       /*!< Capture/compare 4 interrupt enable */
628 #define LL_TIM_DIER_COMIE                      TIM_DIER_COMIE       /*!< COM interrupt enable */
629 #define LL_TIM_DIER_TIE                        TIM_DIER_TIE         /*!< Trigger interrupt enable */
630 #define LL_TIM_DIER_BIE                        TIM_DIER_BIE         /*!< Break interrupt enable */
631 /**
632   * @}
633   */
634 
635 /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source
636   * @{
637   */
638 #define LL_TIM_UPDATESOURCE_REGULAR            0x00000000U          /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */
639 #define LL_TIM_UPDATESOURCE_COUNTER            TIM_CR1_URS          /*!< Only counter overflow/underflow generates an update request */
640 /**
641   * @}
642   */
643 
644 /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode
645   * @{
646   */
647 #define LL_TIM_ONEPULSEMODE_SINGLE             TIM_CR1_OPM          /*!< Counter stops counting at the next update event */
648 #define LL_TIM_ONEPULSEMODE_REPETITIVE         0x00000000U          /*!< Counter is not stopped at update event */
649 /**
650   * @}
651   */
652 
653 /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode
654   * @{
655   */
656 #define LL_TIM_COUNTERMODE_UP                  0x00000000U          /*!< Counter used as upcounter */
657 #define LL_TIM_COUNTERMODE_DOWN                TIM_CR1_DIR          /*!< Counter used as downcounter */
658 #define LL_TIM_COUNTERMODE_CENTER_DOWN         TIM_CR1_CMS_0        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting down. */
659 #define LL_TIM_COUNTERMODE_CENTER_UP           TIM_CR1_CMS_1        /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up */
660 #define LL_TIM_COUNTERMODE_CENTER_UP_DOWN      TIM_CR1_CMS          /*!< The counter counts up and down alternatively. Output compare interrupt flags of output channels  are set only when the counter is counting up or down. */
661 /**
662   * @}
663   */
664 
665 /** @defgroup TIM_LL_EC_CLOCKDIVISION Clock Division
666   * @{
667   */
668 #define LL_TIM_CLOCKDIVISION_DIV1              0x00000000U          /*!< tDTS=tCK_INT */
669 #define LL_TIM_CLOCKDIVISION_DIV2              TIM_CR1_CKD_0        /*!< tDTS=2*tCK_INT */
670 #define LL_TIM_CLOCKDIVISION_DIV4              TIM_CR1_CKD_1        /*!< tDTS=4*tCK_INT */
671 /**
672   * @}
673   */
674 
675 /** @defgroup TIM_LL_EC_COUNTERDIRECTION Counter Direction
676   * @{
677   */
678 #define LL_TIM_COUNTERDIRECTION_UP             0x00000000U          /*!< Timer counter counts up */
679 #define LL_TIM_COUNTERDIRECTION_DOWN           TIM_CR1_DIR          /*!< Timer counter counts down */
680 /**
681   * @}
682   */
683 
684 /** @defgroup TIM_LL_EC_CCUPDATESOURCE Capture Compare  Update Source
685   * @{
686   */
687 #define LL_TIM_CCUPDATESOURCE_COMG_ONLY        0x00000000U          /*!< Capture/compare control bits are updated by setting the COMG bit only */
688 #define LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI    TIM_CR2_CCUS         /*!< Capture/compare control bits are updated by setting the COMG bit or when a rising edge occurs on trigger input (TRGI) */
689 /**
690   * @}
691   */
692 
693 /** @defgroup TIM_LL_EC_CCDMAREQUEST Capture Compare DMA Request
694   * @{
695   */
696 #define LL_TIM_CCDMAREQUEST_CC                 0x00000000U          /*!< CCx DMA request sent when CCx event occurs */
697 #define LL_TIM_CCDMAREQUEST_UPDATE             TIM_CR2_CCDS         /*!< CCx DMA requests sent when update event occurs */
698 /**
699   * @}
700   */
701 
702 /** @defgroup TIM_LL_EC_LOCKLEVEL Lock Level
703   * @{
704   */
705 #define LL_TIM_LOCKLEVEL_OFF                   0x00000000U          /*!< LOCK OFF - No bit is write protected */
706 #define LL_TIM_LOCKLEVEL_1                     TIM_BDTR_LOCK_0      /*!< LOCK Level 1 */
707 #define LL_TIM_LOCKLEVEL_2                     TIM_BDTR_LOCK_1      /*!< LOCK Level 2 */
708 #define LL_TIM_LOCKLEVEL_3                     TIM_BDTR_LOCK        /*!< LOCK Level 3 */
709 /**
710   * @}
711   */
712 
713 /** @defgroup TIM_LL_EC_CHANNEL Channel
714   * @{
715   */
716 #define LL_TIM_CHANNEL_CH1                     TIM_CCER_CC1E     /*!< Timer input/output channel 1 */
717 #define LL_TIM_CHANNEL_CH1N                    TIM_CCER_CC1NE    /*!< Timer complementary output channel 1 */
718 #define LL_TIM_CHANNEL_CH2                     TIM_CCER_CC2E     /*!< Timer input/output channel 2 */
719 #define LL_TIM_CHANNEL_CH2N                    TIM_CCER_CC2NE    /*!< Timer complementary output channel 2 */
720 #define LL_TIM_CHANNEL_CH3                     TIM_CCER_CC3E     /*!< Timer input/output channel 3 */
721 #define LL_TIM_CHANNEL_CH3N                    TIM_CCER_CC3NE    /*!< Timer complementary output channel 3 */
722 #define LL_TIM_CHANNEL_CH4                     TIM_CCER_CC4E     /*!< Timer input/output channel 4 */
723 #define LL_TIM_CHANNEL_CH5                     TIM_CCER_CC5E     /*!< Timer output channel 5 */
724 #define LL_TIM_CHANNEL_CH6                     TIM_CCER_CC6E     /*!< Timer output channel 6 */
725 /**
726   * @}
727   */
728 
729 #if defined(USE_FULL_LL_DRIVER)
730 /** @defgroup TIM_LL_EC_OCSTATE Output Configuration State
731   * @{
732   */
733 #define LL_TIM_OCSTATE_DISABLE                 0x00000000U             /*!< OCx is not active */
734 #define LL_TIM_OCSTATE_ENABLE                  TIM_CCER_CC1E           /*!< OCx signal is output on the corresponding output pin */
735 /**
736   * @}
737   */
738 #endif /* USE_FULL_LL_DRIVER */
739 
740 /** Legacy definitions for compatibility purpose
741 @cond 0
742   */
743 #define LL_TIM_OCMODE_ASSYMETRIC_PWM1 LL_TIM_OCMODE_ASYMMETRIC_PWM1
744 #define LL_TIM_OCMODE_ASSYMETRIC_PWM2 LL_TIM_OCMODE_ASYMMETRIC_PWM2
745 /**
746 @endcond
747   */
748 
749 /** @defgroup TIM_LL_EC_OCMODE Output Configuration Mode
750   * @{
751   */
752 #define LL_TIM_OCMODE_FROZEN                   0x00000000U                                              /*!<The comparison between the output compare register TIMx_CCRy and the counter TIMx_CNT has no effect on the output channel level */
753 #define LL_TIM_OCMODE_ACTIVE                   TIM_CCMR1_OC1M_0                                         /*!<OCyREF is forced high on compare match*/
754 #define LL_TIM_OCMODE_INACTIVE                 TIM_CCMR1_OC1M_1                                         /*!<OCyREF is forced low on compare match*/
755 #define LL_TIM_OCMODE_TOGGLE                   (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF toggles on compare match*/
756 #define LL_TIM_OCMODE_FORCED_INACTIVE          TIM_CCMR1_OC1M_2                                         /*!<OCyREF is forced low*/
757 #define LL_TIM_OCMODE_FORCED_ACTIVE            (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_0)                    /*!<OCyREF is forced high*/
758 #define LL_TIM_OCMODE_PWM1                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1)                    /*!<In upcounting, channel y is active as long as TIMx_CNT<TIMx_CCRy else inactive.  In downcounting, channel y is inactive as long as TIMx_CNT>TIMx_CCRy else active.*/
759 #define LL_TIM_OCMODE_PWM2                     (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!<In upcounting, channel y is inactive as long as TIMx_CNT<TIMx_CCRy else active.  In downcounting, channel y is active as long as TIMx_CNT>TIMx_CCRy else inactive*/
760 #define LL_TIM_OCMODE_RETRIG_OPM1              TIM_CCMR1_OC1M_3                                         /*!<Retrigerrable OPM mode 1*/
761 #define LL_TIM_OCMODE_RETRIG_OPM2              (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0)                    /*!<Retrigerrable OPM mode 2*/
762 #define LL_TIM_OCMODE_COMBINED_PWM1            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_2)                    /*!<Combined PWM mode 1*/
763 #define LL_TIM_OCMODE_COMBINED_PWM2            (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_2) /*!<Combined PWM mode 2*/
764 #define LL_TIM_OCMODE_ASYMMETRIC_PWM1          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2) /*!<Asymmetric PWM mode 1*/
765 #define LL_TIM_OCMODE_ASYMMETRIC_PWM2          (TIM_CCMR1_OC1M_3 | TIM_CCMR1_OC1M)                      /*!<Asymmetric PWM mode 2*/
766 /**
767   * @}
768   */
769 
770 /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity
771   * @{
772   */
773 #define LL_TIM_OCPOLARITY_HIGH                 0x00000000U                 /*!< OCxactive high*/
774 #define LL_TIM_OCPOLARITY_LOW                  TIM_CCER_CC1P               /*!< OCxactive low*/
775 /**
776   * @}
777   */
778 
779 /** @defgroup TIM_LL_EC_OCIDLESTATE Output Configuration Idle State
780   * @{
781   */
782 #define LL_TIM_OCIDLESTATE_LOW                 0x00000000U             /*!<OCx=0 (after a dead-time if OC is implemented) when MOE=0*/
783 #define LL_TIM_OCIDLESTATE_HIGH                TIM_CR2_OIS1            /*!<OCx=1 (after a dead-time if OC is implemented) when MOE=0*/
784 /**
785   * @}
786   */
787 
788 /** @defgroup TIM_LL_EC_GROUPCH5 GROUPCH5
789   * @{
790   */
791 #define LL_TIM_GROUPCH5_NONE                   0x00000000U           /*!< No effect of OC5REF on OC1REFC, OC2REFC and OC3REFC */
792 #define LL_TIM_GROUPCH5_OC1REFC                TIM_CCR5_GC5C1        /*!< OC1REFC is the logical AND of OC1REFC and OC5REF */
793 #define LL_TIM_GROUPCH5_OC2REFC                TIM_CCR5_GC5C2        /*!< OC2REFC is the logical AND of OC2REFC and OC5REF */
794 #define LL_TIM_GROUPCH5_OC3REFC                TIM_CCR5_GC5C3        /*!< OC3REFC is the logical AND of OC3REFC and OC5REF */
795 /**
796   * @}
797   */
798 
799 /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection
800   * @{
801   */
802 #define LL_TIM_ACTIVEINPUT_DIRECTTI            (TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */
803 #define LL_TIM_ACTIVEINPUT_INDIRECTTI          (TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */
804 #define LL_TIM_ACTIVEINPUT_TRC                 (TIM_CCMR1_CC1S << 16U)   /*!< ICx is mapped on TRC */
805 /**
806   * @}
807   */
808 
809 /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler
810   * @{
811   */
812 #define LL_TIM_ICPSC_DIV1                      0x00000000U                    /*!< No prescaler, capture is done each time an edge is detected on the capture input */
813 #define LL_TIM_ICPSC_DIV2                      (TIM_CCMR1_IC1PSC_0 << 16U)    /*!< Capture is done once every 2 events */
814 #define LL_TIM_ICPSC_DIV4                      (TIM_CCMR1_IC1PSC_1 << 16U)    /*!< Capture is done once every 4 events */
815 #define LL_TIM_ICPSC_DIV8                      (TIM_CCMR1_IC1PSC << 16U)      /*!< Capture is done once every 8 events */
816 /**
817   * @}
818   */
819 
820 /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter
821   * @{
822   */
823 #define LL_TIM_IC_FILTER_FDIV1                 0x00000000U                                                        /*!< No filter, sampling is done at fDTS */
824 #define LL_TIM_IC_FILTER_FDIV1_N2              (TIM_CCMR1_IC1F_0 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=2 */
825 #define LL_TIM_IC_FILTER_FDIV1_N4              (TIM_CCMR1_IC1F_1 << 16U)                                          /*!< fSAMPLING=fCK_INT, N=4 */
826 #define LL_TIM_IC_FILTER_FDIV1_N8              ((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fCK_INT, N=8 */
827 #define LL_TIM_IC_FILTER_FDIV2_N6              (TIM_CCMR1_IC1F_2 << 16U)                                          /*!< fSAMPLING=fDTS/2, N=6 */
828 #define LL_TIM_IC_FILTER_FDIV2_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/2, N=8 */
829 #define LL_TIM_IC_FILTER_FDIV4_N6              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/4, N=6 */
830 #define LL_TIM_IC_FILTER_FDIV4_N8              ((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/4, N=8 */
831 #define LL_TIM_IC_FILTER_FDIV8_N6              (TIM_CCMR1_IC1F_3 << 16U)                                          /*!< fSAMPLING=fDTS/8, N=6 */
832 #define LL_TIM_IC_FILTER_FDIV8_N8              ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U)                     /*!< fSAMPLING=fDTS/8, N=8 */
833 #define LL_TIM_IC_FILTER_FDIV16_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U)                     /*!< fSAMPLING=fDTS/16, N=5 */
834 #define LL_TIM_IC_FILTER_FDIV16_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/16, N=6 */
835 #define LL_TIM_IC_FILTER_FDIV16_N8             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U)                     /*!< fSAMPLING=fDTS/16, N=8 */
836 #define LL_TIM_IC_FILTER_FDIV32_N5             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U)  /*!< fSAMPLING=fDTS/32, N=5 */
837 #define LL_TIM_IC_FILTER_FDIV32_N6             ((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U)  /*!< fSAMPLING=fDTS/32, N=6 */
838 #define LL_TIM_IC_FILTER_FDIV32_N8             (TIM_CCMR1_IC1F << 16U)                                            /*!< fSAMPLING=fDTS/32, N=8 */
839 /**
840   * @}
841   */
842 
843 /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity
844   * @{
845   */
846 #define LL_TIM_IC_POLARITY_RISING              0x00000000U                      /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */
847 #define LL_TIM_IC_POLARITY_FALLING             TIM_CCER_CC1P                    /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */
848 #define LL_TIM_IC_POLARITY_BOTHEDGE            (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */
849 /**
850   * @}
851   */
852 
853 /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source
854   * @{
855   */
856 #define LL_TIM_CLOCKSOURCE_INTERNAL            0x00000000U                                          /*!< The timer is clocked by the internal clock provided from the RCC */
857 #define LL_TIM_CLOCKSOURCE_EXT_MODE1           (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)   /*!< Counter counts at each rising or falling edge on a selected input*/
858 #define LL_TIM_CLOCKSOURCE_EXT_MODE2           TIM_SMCR_ECE                                         /*!< Counter counts at each rising or falling edge on the external trigger input ETR */
859 /**
860   * @}
861   */
862 
863 /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode
864   * @{
865   */
866 #define LL_TIM_ENCODERMODE_X2_TI1                     TIM_SMCR_SMS_0                                                     /*!< Quadrature encoder mode 1, x2 mode - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */
867 #define LL_TIM_ENCODERMODE_X2_TI2                     TIM_SMCR_SMS_1                                                     /*!< Quadrature encoder mode 2, x2 mode - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */
868 #define LL_TIM_ENCODERMODE_X4_TI12                   (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0)                                   /*!< Quadrature encoder mode 3, x4 mode - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input */
869 /**
870   * @}
871   */
872 
873 /** @defgroup TIM_LL_EC_TRGO Trigger Output
874   * @{
875   */
876 #define LL_TIM_TRGO_RESET                      0x00000000U                                     /*!< UG bit from the TIMx_EGR register is used as trigger output */
877 #define LL_TIM_TRGO_ENABLE                     TIM_CR2_MMS_0                                   /*!< Counter Enable signal (CNT_EN) is used as trigger output */
878 #define LL_TIM_TRGO_UPDATE                     TIM_CR2_MMS_1                                   /*!< Update event is used as trigger output */
879 #define LL_TIM_TRGO_CC1IF                      (TIM_CR2_MMS_1 | TIM_CR2_MMS_0)                 /*!< CC1 capture or a compare match is used as trigger output */
880 #define LL_TIM_TRGO_OC1REF                     TIM_CR2_MMS_2                                   /*!< OC1REF signal is used as trigger output */
881 #define LL_TIM_TRGO_OC2REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_0)                 /*!< OC2REF signal is used as trigger output */
882 #define LL_TIM_TRGO_OC3REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1)                 /*!< OC3REF signal is used as trigger output */
883 #define LL_TIM_TRGO_OC4REF                     (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */
884 /**
885   * @}
886   */
887 
888 /** @defgroup TIM_LL_EC_TRGO2 Trigger Output 2
889   * @{
890   */
891 #define LL_TIM_TRGO2_RESET                     0x00000000U                                                         /*!< UG bit from the TIMx_EGR register is used as trigger output 2 */
892 #define LL_TIM_TRGO2_ENABLE                    TIM_CR2_MMS2_0                                                      /*!< Counter Enable signal (CNT_EN) is used as trigger output 2 */
893 #define LL_TIM_TRGO2_UPDATE                    TIM_CR2_MMS2_1                                                      /*!< Update event is used as trigger output 2 */
894 #define LL_TIM_TRGO2_CC1F                      (TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                                   /*!< CC1 capture or a compare match is used as trigger output 2 */
895 #define LL_TIM_TRGO2_OC1                       TIM_CR2_MMS2_2                                                      /*!< OC1REF signal is used as trigger output 2 */
896 #define LL_TIM_TRGO2_OC2                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                                   /*!< OC2REF signal is used as trigger output 2 */
897 #define LL_TIM_TRGO2_OC3                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1)                                   /*!< OC3REF signal is used as trigger output 2 */
898 #define LL_TIM_TRGO2_OC4                       (TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC4REF signal is used as trigger output 2 */
899 #define LL_TIM_TRGO2_OC5                       TIM_CR2_MMS2_3                                                      /*!< OC5REF signal is used as trigger output 2 */
900 #define LL_TIM_TRGO2_OC6                       (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_0)                                   /*!< OC6REF signal is used as trigger output 2 */
901 #define LL_TIM_TRGO2_OC4_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1)                                   /*!< OC4REF rising or falling edges are used as trigger output 2 */
902 #define LL_TIM_TRGO2_OC6_RISINGFALLING         (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0)                  /*!< OC6REF rising or falling edges are used as trigger output 2 */
903 #define LL_TIM_TRGO2_OC4_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2)                                   /*!< OC4REF or OC6REF rising edges are used as trigger output 2 */
904 #define LL_TIM_TRGO2_OC4_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_0)                  /*!< OC4REF rising or OC6REF falling edges are used as trigger output 2 */
905 #define LL_TIM_TRGO2_OC5_RISING_OC6_RISING     (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 |TIM_CR2_MMS2_1)                   /*!< OC5REF or OC6REF rising edges are used as trigger output 2 */
906 #define LL_TIM_TRGO2_OC5_RISING_OC6_FALLING    (TIM_CR2_MMS2_3 | TIM_CR2_MMS2_2 | TIM_CR2_MMS2_1 | TIM_CR2_MMS2_0) /*!< OC5REF rising or OC6REF falling edges are used as trigger output 2 */
907 /**
908   * @}
909   */
910 
911 /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode
912   * @{
913   */
914 #define LL_TIM_SLAVEMODE_DISABLED              0x00000000U                         /*!< Slave mode disabled */
915 #define LL_TIM_SLAVEMODE_RESET                 TIM_SMCR_SMS_2                      /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */
916 #define LL_TIM_SLAVEMODE_GATED                 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0)   /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */
917 #define LL_TIM_SLAVEMODE_TRIGGER               (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1)   /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */
918 #define LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER TIM_SMCR_SMS_3                      /*!< Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI)  reinitializes the counter, generates an update of the registers and starts the counter */
919 /**
920   * @}
921   */
922 
923 /** @defgroup TIM_LL_EC_TS Trigger Selection
924   * @{
925   */
926 #define LL_TIM_TS_ITR0                         0x00000000U                                                     /*!< Internal Trigger 0 (ITR0) is used as trigger input */
927 #define LL_TIM_TS_ITR1                         TIM_SMCR_TS_0                                                   /*!< Internal Trigger 1 (ITR1) is used as trigger input */
928 #define LL_TIM_TS_ITR2                         TIM_SMCR_TS_1                                                   /*!< Internal Trigger 2 (ITR2) is used as trigger input */
929 #define LL_TIM_TS_ITR3                         (TIM_SMCR_TS_0 | TIM_SMCR_TS_1)                                 /*!< Internal Trigger 3 (ITR3) is used as trigger input */
930 #define LL_TIM_TS_TI1F_ED                      TIM_SMCR_TS_2                                                   /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */
931 #define LL_TIM_TS_TI1FP1                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_0)                                 /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */
932 #define LL_TIM_TS_TI2FP2                       (TIM_SMCR_TS_2 | TIM_SMCR_TS_1)                                 /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */
933 #define LL_TIM_TS_ETRF                         (TIM_SMCR_TS_2 | TIM_SMCR_TS_1 | TIM_SMCR_TS_0)                 /*!< Filtered external Trigger (ETRF) is used as trigger input */
934 /**
935   * @}
936   */
937 
938 /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity
939   * @{
940   */
941 #define LL_TIM_ETR_POLARITY_NONINVERTED        0x00000000U             /*!< ETR is non-inverted, active at high level or rising edge */
942 #define LL_TIM_ETR_POLARITY_INVERTED           TIM_SMCR_ETP            /*!< ETR is inverted, active at low level or falling edge */
943 /**
944   * @}
945   */
946 
947 /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler
948   * @{
949   */
950 #define LL_TIM_ETR_PRESCALER_DIV1              0x00000000U             /*!< ETR prescaler OFF */
951 #define LL_TIM_ETR_PRESCALER_DIV2              TIM_SMCR_ETPS_0         /*!< ETR frequency is divided by 2 */
952 #define LL_TIM_ETR_PRESCALER_DIV4              TIM_SMCR_ETPS_1         /*!< ETR frequency is divided by 4 */
953 #define LL_TIM_ETR_PRESCALER_DIV8              TIM_SMCR_ETPS           /*!< ETR frequency is divided by 8 */
954 /**
955   * @}
956   */
957 
958 /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter
959   * @{
960   */
961 #define LL_TIM_ETR_FILTER_FDIV1                0x00000000U                                          /*!< No filter, sampling is done at fDTS */
962 #define LL_TIM_ETR_FILTER_FDIV1_N2             TIM_SMCR_ETF_0                                       /*!< fSAMPLING=fCK_INT, N=2 */
963 #define LL_TIM_ETR_FILTER_FDIV1_N4             TIM_SMCR_ETF_1                                       /*!< fSAMPLING=fCK_INT, N=4 */
964 #define LL_TIM_ETR_FILTER_FDIV1_N8             (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fCK_INT, N=8 */
965 #define LL_TIM_ETR_FILTER_FDIV2_N6             TIM_SMCR_ETF_2                                       /*!< fSAMPLING=fDTS/2, N=6 */
966 #define LL_TIM_ETR_FILTER_FDIV2_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/2, N=8 */
967 #define LL_TIM_ETR_FILTER_FDIV4_N6             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/4, N=6 */
968 #define LL_TIM_ETR_FILTER_FDIV4_N8             (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/4, N=8 */
969 #define LL_TIM_ETR_FILTER_FDIV8_N6             TIM_SMCR_ETF_3                                       /*!< fSAMPLING=fDTS/8, N=6 */
970 #define LL_TIM_ETR_FILTER_FDIV8_N8             (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0)                    /*!< fSAMPLING=fDTS/16, N=8 */
971 #define LL_TIM_ETR_FILTER_FDIV16_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1)                    /*!< fSAMPLING=fDTS/16, N=5 */
972 #define LL_TIM_ETR_FILTER_FDIV16_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/16, N=6 */
973 #define LL_TIM_ETR_FILTER_FDIV16_N8            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2)                    /*!< fSAMPLING=fDTS/16, N=8 */
974 #define LL_TIM_ETR_FILTER_FDIV32_N5            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0)   /*!< fSAMPLING=fDTS/32, N=5 */
975 #define LL_TIM_ETR_FILTER_FDIV32_N6            (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1)   /*!< fSAMPLING=fDTS/32, N=6 */
976 #define LL_TIM_ETR_FILTER_FDIV32_N8            TIM_SMCR_ETF                                         /*!< fSAMPLING=fDTS/32, N=8 */
977 /**
978   * @}
979   */
980 
981 /** @defgroup TIM_LL_EC_ETRSOURCE External Trigger Source
982   * @{
983   */
984 #define LL_TIM_ETRSOURCE_LEGACY                0x00000000U                                       /*!< ETR legacy mode */
985 #define LL_TIM_ETRSOURCE_COMP1                 TIM1_OR2_ETRSEL_0                                 /*!< COMP1 output connected to ETR input */
986 #define LL_TIM_ETRSOURCE_COMP2                 TIM1_OR2_ETRSEL_1                                 /*!< COMP2 output connected to ETR input */
987 /**
988   * @}
989   */
990 
991 /** @defgroup TIM_LL_EC_BREAK_POLARITY break polarity
992   * @{
993   */
994 #define LL_TIM_BREAK_POLARITY_LOW              0x00000000U               /*!< Break input BRK is active low */
995 #define LL_TIM_BREAK_POLARITY_HIGH             TIM_BDTR_BKP              /*!< Break input BRK is active high */
996 /**
997   * @}
998   */
999 
1000 /** @defgroup TIM_LL_EC_BREAK_FILTER break filter
1001   * @{
1002   */
1003 #define LL_TIM_BREAK_FILTER_FDIV1              0x00000000U   /*!< No filter, BRK acts asynchronously */
1004 #define LL_TIM_BREAK_FILTER_FDIV1_N2           0x00010000U   /*!< fSAMPLING=fCK_INT, N=2 */
1005 #define LL_TIM_BREAK_FILTER_FDIV1_N4           0x00020000U   /*!< fSAMPLING=fCK_INT, N=4 */
1006 #define LL_TIM_BREAK_FILTER_FDIV1_N8           0x00030000U   /*!< fSAMPLING=fCK_INT, N=8 */
1007 #define LL_TIM_BREAK_FILTER_FDIV2_N6           0x00040000U   /*!< fSAMPLING=fDTS/2, N=6 */
1008 #define LL_TIM_BREAK_FILTER_FDIV2_N8           0x00050000U   /*!< fSAMPLING=fDTS/2, N=8 */
1009 #define LL_TIM_BREAK_FILTER_FDIV4_N6           0x00060000U   /*!< fSAMPLING=fDTS/4, N=6 */
1010 #define LL_TIM_BREAK_FILTER_FDIV4_N8           0x00070000U   /*!< fSAMPLING=fDTS/4, N=8 */
1011 #define LL_TIM_BREAK_FILTER_FDIV8_N6           0x00080000U   /*!< fSAMPLING=fDTS/8, N=6 */
1012 #define LL_TIM_BREAK_FILTER_FDIV8_N8           0x00090000U   /*!< fSAMPLING=fDTS/8, N=8 */
1013 #define LL_TIM_BREAK_FILTER_FDIV16_N5          0x000A0000U   /*!< fSAMPLING=fDTS/16, N=5 */
1014 #define LL_TIM_BREAK_FILTER_FDIV16_N6          0x000B0000U   /*!< fSAMPLING=fDTS/16, N=6 */
1015 #define LL_TIM_BREAK_FILTER_FDIV16_N8          0x000C0000U   /*!< fSAMPLING=fDTS/16, N=8 */
1016 #define LL_TIM_BREAK_FILTER_FDIV32_N5          0x000D0000U   /*!< fSAMPLING=fDTS/32, N=5 */
1017 #define LL_TIM_BREAK_FILTER_FDIV32_N6          0x000E0000U   /*!< fSAMPLING=fDTS/32, N=6 */
1018 #define LL_TIM_BREAK_FILTER_FDIV32_N8          0x000F0000U   /*!< fSAMPLING=fDTS/32, N=8 */
1019 /**
1020   * @}
1021   */
1022 
1023 /** @defgroup TIM_LL_EC_BREAK2_POLARITY BREAK2 POLARITY
1024   * @{
1025   */
1026 #define LL_TIM_BREAK2_POLARITY_LOW             0x00000000U             /*!< Break input BRK2 is active low */
1027 #define LL_TIM_BREAK2_POLARITY_HIGH            TIM_BDTR_BK2P           /*!< Break input BRK2 is active high */
1028 /**
1029   * @}
1030   */
1031 
1032 /** @defgroup TIM_LL_EC_BREAK2_FILTER BREAK2 FILTER
1033   * @{
1034   */
1035 #define LL_TIM_BREAK2_FILTER_FDIV1             0x00000000U   /*!< No filter, BRK acts asynchronously */
1036 #define LL_TIM_BREAK2_FILTER_FDIV1_N2          0x00100000U   /*!< fSAMPLING=fCK_INT, N=2 */
1037 #define LL_TIM_BREAK2_FILTER_FDIV1_N4          0x00200000U   /*!< fSAMPLING=fCK_INT, N=4 */
1038 #define LL_TIM_BREAK2_FILTER_FDIV1_N8          0x00300000U   /*!< fSAMPLING=fCK_INT, N=8 */
1039 #define LL_TIM_BREAK2_FILTER_FDIV2_N6          0x00400000U   /*!< fSAMPLING=fDTS/2, N=6 */
1040 #define LL_TIM_BREAK2_FILTER_FDIV2_N8          0x00500000U   /*!< fSAMPLING=fDTS/2, N=8 */
1041 #define LL_TIM_BREAK2_FILTER_FDIV4_N6          0x00600000U   /*!< fSAMPLING=fDTS/4, N=6 */
1042 #define LL_TIM_BREAK2_FILTER_FDIV4_N8          0x00700000U   /*!< fSAMPLING=fDTS/4, N=8 */
1043 #define LL_TIM_BREAK2_FILTER_FDIV8_N6          0x00800000U   /*!< fSAMPLING=fDTS/8, N=6 */
1044 #define LL_TIM_BREAK2_FILTER_FDIV8_N8          0x00900000U   /*!< fSAMPLING=fDTS/8, N=8 */
1045 #define LL_TIM_BREAK2_FILTER_FDIV16_N5         0x00A00000U   /*!< fSAMPLING=fDTS/16, N=5 */
1046 #define LL_TIM_BREAK2_FILTER_FDIV16_N6         0x00B00000U   /*!< fSAMPLING=fDTS/16, N=6 */
1047 #define LL_TIM_BREAK2_FILTER_FDIV16_N8         0x00C00000U   /*!< fSAMPLING=fDTS/16, N=8 */
1048 #define LL_TIM_BREAK2_FILTER_FDIV32_N5         0x00D00000U   /*!< fSAMPLING=fDTS/32, N=5 */
1049 #define LL_TIM_BREAK2_FILTER_FDIV32_N6         0x00E00000U   /*!< fSAMPLING=fDTS/32, N=6 */
1050 #define LL_TIM_BREAK2_FILTER_FDIV32_N8         0x00F00000U   /*!< fSAMPLING=fDTS/32, N=8 */
1051 /**
1052   * @}
1053   */
1054 
1055 /** @defgroup TIM_LL_EC_OSSI OSSI
1056   * @{
1057   */
1058 #define LL_TIM_OSSI_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1059 #define LL_TIM_OSSI_ENABLE                     TIM_BDTR_OSSI           /*!< When inactive, OxC/OCxN outputs are first forced with their inactive level then forced to their idle level after the deadtime */
1060 /**
1061   * @}
1062   */
1063 
1064 /** @defgroup TIM_LL_EC_OSSR OSSR
1065   * @{
1066   */
1067 #define LL_TIM_OSSR_DISABLE                    0x00000000U             /*!< When inactive, OCx/OCxN outputs are disabled */
1068 #define LL_TIM_OSSR_ENABLE                     TIM_BDTR_OSSR           /*!< When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 */
1069 /**
1070   * @}
1071   */
1072 
1073 /** @defgroup TIM_LL_EC_BREAK_INPUT BREAK INPUT
1074   * @{
1075   */
1076 #define LL_TIM_BREAK_INPUT_BKIN                0x00000000U  /*!< TIMx_BKIN input */
1077 #define LL_TIM_BREAK_INPUT_BKIN2               0x00000004U  /*!< TIMx_BKIN2 input */
1078 /**
1079   * @}
1080   */
1081 
1082 /** @defgroup TIM_LL_EC_BKIN_SOURCE BKIN SOURCE
1083   * @{
1084   */
1085 #define LL_TIM_BKIN_SOURCE_BKIN                TIM1_OR2_BKINE      /*!< BKIN input from AF controller */
1086 #define LL_TIM_BKIN_SOURCE_BKCOMP1             TIM1_OR2_BKCMP1E    /*!< internal signal: COMP1 output */
1087 #define LL_TIM_BKIN_SOURCE_BKCOMP2             TIM1_OR2_BKCMP2E    /*!< internal signal: COMP2 output */
1088 #if defined(DFSDM1_Channel0)
1089 #define LL_TIM_BKIN_SOURCE_DF1BK               TIM1_OR2_BKDF1BK0E  /*!< internal signal: DFSDM1 break output */
1090 #endif /* DFSDM1_Channel0 */
1091 /**
1092   * @}
1093   */
1094 
1095 /** @defgroup TIM_LL_EC_BKIN_POLARITY BKIN POLARITY
1096   * @{
1097   */
1098 #define LL_TIM_BKIN_POLARITY_LOW               TIM1_OR2_BKINP           /*!< BRK BKIN input is active low */
1099 #define LL_TIM_BKIN_POLARITY_HIGH              0x00000000U              /*!< BRK BKIN input is active high */
1100 /**
1101   * @}
1102   */
1103 
1104 /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address
1105   * @{
1106   */
1107 #define LL_TIM_DMABURST_BASEADDR_CR1           0x00000000U                                                      /*!< TIMx_CR1 register is the DMA base address for DMA burst */
1108 #define LL_TIM_DMABURST_BASEADDR_CR2           TIM_DCR_DBA_0                                                    /*!< TIMx_CR2 register is the DMA base address for DMA burst */
1109 #define LL_TIM_DMABURST_BASEADDR_SMCR          TIM_DCR_DBA_1                                                    /*!< TIMx_SMCR register is the DMA base address for DMA burst */
1110 #define LL_TIM_DMABURST_BASEADDR_DIER          (TIM_DCR_DBA_1 |  TIM_DCR_DBA_0)                                 /*!< TIMx_DIER register is the DMA base address for DMA burst */
1111 #define LL_TIM_DMABURST_BASEADDR_SR            TIM_DCR_DBA_2                                                    /*!< TIMx_SR register is the DMA base address for DMA burst */
1112 #define LL_TIM_DMABURST_BASEADDR_EGR           (TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                                  /*!< TIMx_EGR register is the DMA base address for DMA burst */
1113 #define LL_TIM_DMABURST_BASEADDR_CCMR1         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                                  /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */
1114 #define LL_TIM_DMABURST_BASEADDR_CCMR2         (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */
1115 #define LL_TIM_DMABURST_BASEADDR_CCER          TIM_DCR_DBA_3                                                    /*!< TIMx_CCER register is the DMA base address for DMA burst */
1116 #define LL_TIM_DMABURST_BASEADDR_CNT           (TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                                  /*!< TIMx_CNT register is the DMA base address for DMA burst */
1117 #define LL_TIM_DMABURST_BASEADDR_PSC           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1)                                  /*!< TIMx_PSC register is the DMA base address for DMA burst */
1118 #define LL_TIM_DMABURST_BASEADDR_ARR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)                  /*!< TIMx_ARR register is the DMA base address for DMA burst */
1119 #define LL_TIM_DMABURST_BASEADDR_RCR           (TIM_DCR_DBA_3 | TIM_DCR_DBA_2)                                  /*!< TIMx_RCR register is the DMA base address for DMA burst */
1120 #define LL_TIM_DMABURST_BASEADDR_CCR1          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCR1 register is the DMA base address for DMA burst */
1121 #define LL_TIM_DMABURST_BASEADDR_CCR2          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR2 register is the DMA base address for DMA burst */
1122 #define LL_TIM_DMABURST_BASEADDR_CCR3          (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR3 register is the DMA base address for DMA burst */
1123 #define LL_TIM_DMABURST_BASEADDR_CCR4          TIM_DCR_DBA_4                                                    /*!< TIMx_CCR4 register is the DMA base address for DMA burst */
1124 #define LL_TIM_DMABURST_BASEADDR_BDTR          (TIM_DCR_DBA_4 | TIM_DCR_DBA_0)                                  /*!< TIMx_BDTR register is the DMA base address for DMA burst */
1125 #define LL_TIM_DMABURST_BASEADDR_OR1           (TIM_DCR_DBA_4 | TIM_DCR_DBA_2)                                  /*!< TIMx_OR1 register is the DMA base address for DMA burst */
1126 #define LL_TIM_DMABURST_BASEADDR_CCMR3         (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0)                  /*!< TIMx_CCMR3 register is the DMA base address for DMA burst */
1127 #define LL_TIM_DMABURST_BASEADDR_CCR5          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1)                  /*!< TIMx_CCR5 register is the DMA base address for DMA burst */
1128 #define LL_TIM_DMABURST_BASEADDR_CCR6          (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0)  /*!< TIMx_CCR6 register is the DMA base address for DMA burst */
1129 #define LL_TIM_DMABURST_BASEADDR_OR2           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3)                                  /*!< TIMx_OR2 register is the DMA base address for DMA burst */
1130 #define LL_TIM_DMABURST_BASEADDR_OR3           (TIM_DCR_DBA_4 | TIM_DCR_DBA_3 | TIM_DCR_DBA_0)                  /*!< TIMx_OR3 register is the DMA base address for DMA burst */
1131 /**
1132   * @}
1133   */
1134 
1135 /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length
1136   * @{
1137   */
1138 #define LL_TIM_DMABURST_LENGTH_1TRANSFER       0x00000000U                                                     /*!< Transfer is done to 1 register starting from the DMA burst base address */
1139 #define LL_TIM_DMABURST_LENGTH_2TRANSFERS      TIM_DCR_DBL_0                                                   /*!< Transfer is done to 2 registers starting from the DMA burst base address */
1140 #define LL_TIM_DMABURST_LENGTH_3TRANSFERS      TIM_DCR_DBL_1                                                   /*!< Transfer is done to 3 registers starting from the DMA burst base address */
1141 #define LL_TIM_DMABURST_LENGTH_4TRANSFERS      (TIM_DCR_DBL_1 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 4 registers starting from the DMA burst base address */
1142 #define LL_TIM_DMABURST_LENGTH_5TRANSFERS      TIM_DCR_DBL_2                                                   /*!< Transfer is done to 5 registers starting from the DMA burst base address */
1143 #define LL_TIM_DMABURST_LENGTH_6TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 6 registers starting from the DMA burst base address */
1144 #define LL_TIM_DMABURST_LENGTH_7TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 7 registers starting from the DMA burst base address */
1145 #define LL_TIM_DMABURST_LENGTH_8TRANSFERS      (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 1 registers starting from the DMA burst base address */
1146 #define LL_TIM_DMABURST_LENGTH_9TRANSFERS      TIM_DCR_DBL_3                                                   /*!< Transfer is done to 9 registers starting from the DMA burst base address */
1147 #define LL_TIM_DMABURST_LENGTH_10TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_0)                                 /*!< Transfer is done to 10 registers starting from the DMA burst base address */
1148 #define LL_TIM_DMABURST_LENGTH_11TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1)                                 /*!< Transfer is done to 11 registers starting from the DMA burst base address */
1149 #define LL_TIM_DMABURST_LENGTH_12TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 12 registers starting from the DMA burst base address */
1150 #define LL_TIM_DMABURST_LENGTH_13TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2)                                 /*!< Transfer is done to 13 registers starting from the DMA burst base address */
1151 #define LL_TIM_DMABURST_LENGTH_14TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0)                 /*!< Transfer is done to 14 registers starting from the DMA burst base address */
1152 #define LL_TIM_DMABURST_LENGTH_15TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1)                 /*!< Transfer is done to 15 registers starting from the DMA burst base address */
1153 #define LL_TIM_DMABURST_LENGTH_16TRANSFERS     (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */
1154 #define LL_TIM_DMABURST_LENGTH_17TRANSFERS     TIM_DCR_DBL_4                                                   /*!< Transfer is done to 17 registers starting from the DMA burst base address */
1155 #define LL_TIM_DMABURST_LENGTH_18TRANSFERS     (TIM_DCR_DBL_4 |  TIM_DCR_DBL_0)                                /*!< Transfer is done to 18 registers starting from the DMA burst base address */
1156 /**
1157   * @}
1158   */
1159 
1160 /** @defgroup TIM_LL_EC_TIM1_ETR_ADC1_RMP  TIM1 External Trigger ADC1 Remap
1161   * @{
1162   */
1163 #define LL_TIM_TIM1_ETR_ADC1_RMP_NC   TIM1_OR1_RMP_MASK                                                /*!< TIM1_ETR is not connected to ADC1 analog watchdog x */
1164 #define LL_TIM_TIM1_ETR_ADC1_RMP_AWD1 (TIM1_OR1_ETR_ADC1_RMP_0 | TIM1_OR1_RMP_MASK)                    /*!< TIM1_ETR is connected to ADC1 analog watchdog 1 */
1165 #define LL_TIM_TIM1_ETR_ADC1_RMP_AWD2 (TIM1_OR1_ETR_ADC1_RMP_1 | TIM1_OR1_RMP_MASK)                    /*!< TIM1_ETR is connected to ADC1 analog watchdog 2 */
1166 #define LL_TIM_TIM1_ETR_ADC1_RMP_AWD3 (TIM1_OR1_ETR_ADC1_RMP | TIM1_OR1_RMP_MASK)                      /*!< TIM1_ETR is connected to ADC1 analog watchdog 3 */
1167 /**
1168   * @}
1169   */
1170 
1171 #if defined(ADC3)
1172 /** @defgroup TIM_LL_EC_TIM1_ETR_ADC3_RMP  TIM1 External Trigger ADC3 Remap
1173   * @{
1174   */
1175 #define LL_TIM_TIM1_ETR_ADC3_RMP_NC   TIM1_OR1_RMP_MASK                                                /*!< TIM1_ETR is not connected to ADC3 analog watchdog  x*/
1176 #define LL_TIM_TIM1_ETR_ADC3_RMP_AWD1 (TIM1_OR1_ETR_ADC3_RMP_0 | TIM1_OR1_RMP_MASK)                    /*!< TIM1_ETR is connected to ADC3 analog watchdog 1 */
1177 #define LL_TIM_TIM1_ETR_ADC3_RMP_AWD2 (TIM1_OR1_ETR_ADC3_RMP_1 | TIM1_OR1_RMP_MASK)                    /*!< TIM1_ETR is connected to ADC3 analog watchdog 2 */
1178 #define LL_TIM_TIM1_ETR_ADC3_RMP_AWD3 (TIM1_OR1_ETR_ADC3_RMP | TIM1_OR1_RMP_MASK)                      /*!< TIM1_ETR is connected to ADC3 analog watchdog 3 */
1179 /**
1180   * @}
1181   */
1182 #endif /* ADC3 */
1183 
1184 /** @defgroup TIM_LL_EC_TIM1_TI1_RMP  TIM1 External Input Ch1 Remap
1185   * @{
1186   */
1187 #define LL_TIM_TIM1_TI1_RMP_GPIO  TIM1_OR1_RMP_MASK                                                    /*!< TIM1 input capture 1 is connected to GPIO */
1188 #define LL_TIM_TIM1_TI1_RMP_COMP1 (TIM1_OR1_TI1_RMP | TIM1_OR1_RMP_MASK)                               /*!< TIM1 input capture 1 is connected to COMP1 output */
1189 /**
1190   * @}
1191   */
1192 
1193 /** @defgroup TIM_LL_EC_TIM2_ITR1_RMP  TIM2 Internal Trigger1 Remap
1194   * @{
1195   */
1196 #if defined (STM32L471xx) || defined (STM32L475xx) || defined (STM32L476xx) || defined (STM32L485xx) || defined (STM32L486xx) || defined (STM32L496xx) || defined (STM32L4A6xx) || defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined(STM32L4S9xx)
1197 #define LL_TIM_TIM2_ITR1_RMP_TIM8_TRGO  TIM2_OR1_RMP_MASK                                              /*!< TIM2_ITR1 is connected to TIM8_TRGO */
1198 #define LL_TIM_TIM2_ITR1_RMP_OTG_FS_SOF (TIM2_OR1_ITR1_RMP | TIM2_OR1_RMP_MASK)                        /*!< TIM2_ITR1 is connected to OTG_FS SOF */
1199 #endif /* STM32L471xx || STM32L475xx || STM32L476xx || STM32L485xx || STM32L486xx || */
1200 /* STM32L496xx || STM32L4A6xx || */
1201 /* STM32L4R5xx || STM32L4R7xx || STM32L4R9xx || STM32L4S5xx || STM32L4S7xx || STM32L4S9xx */
1202 #if defined (STM32L412xx) || defined (STM32L422xx) ||defined (STM32L431xx) || defined (STM32L432xx) || defined (STM32L433xx) || defined (STM32L442xx) || defined (STM32L443xx) || defined (STM32L451xx) || defined (STM32L452xx) || defined (STM32L462xx)
1203 #define LL_TIM_TIM2_ITR1_RMP_NONE          0x00000000U                                                 /*!< No internal trigger on TIM2_ITR1 */
1204 #define LL_TIM_TIM2_ITR1_RMP_USB_SOF       TIM2_OR1_ITR1_RMP                                           /*!< TIM2_ITR1 is connected to USB SOF */
1205 #endif /* STM32L431xx || STM32L432xx || STM32L442xx || STM32L433xx || STM32L443xx || */
1206 /* STM32L451xx || STM32L452xx || STM32L462xx */
1207 #define LL_TIM_TIM2_ETR_RMP_GPIO TIM2_OR1_RMP_MASK                                                     /*!< TIM2_ETR is connected to GPIO */
1208 #define LL_TIM_TIM2_ETR_RMP_LSE  (TIM2_OR1_ETR1_RMP | TIM2_OR1_RMP_MASK)                               /*!< TIM2_ETR is connected to LSE  */
1209 /**
1210   * @}
1211   */
1212 
1213 /** @defgroup TIM_LL_EC_TIM2_TI4_RMP  TIM2 External Input Ch4 Remap
1214   * @{
1215   */
1216 #define LL_TIM_TIM2_TI4_RMP_GPIO        TIM2_OR1_RMP_MASK                                              /*!< TIM2 input capture 4 is connected to GPIO */
1217 #define LL_TIM_TIM2_TI4_RMP_COMP1       (TIM2_OR1_TI4_RMP_0 | TIM2_OR1_RMP_MASK)                       /*!< TIM2 input capture 4 is connected to COMP1_OUT */
1218 #if defined (STM32L412xx) || defined (STM32L422xx)
1219 #else
1220 #define LL_TIM_TIM2_TI4_RMP_COMP2       (TIM2_OR1_TI4_RMP_1 | TIM2_OR1_RMP_MASK)                       /*!< TIM2 input capture 4 is connected to COMP2_OUT */
1221 #define LL_TIM_TIM2_TI4_RMP_COMP1_COMP2 (TIM2_OR1_TI4_RMP | TIM2_OR1_RMP_MASK)                         /*!< TIM2 input capture 4 is connected to logical OR between COMP1_OUT and COMP2_OUT */
1222 #endif
1223 /**
1224   * @}
1225   */
1226 
1227 #if defined(TIM3)
1228 /** @defgroup TIM_LL_EC_TIM3_TI1_RMP  TIM3 External Input Ch1 Remap
1229   * @{
1230   */
1231 #define LL_TIM_TIM3_TI1_RMP_GPIO         TIM3_OR1_RMP_MASK                                             /*!< TIM3 input capture 1 is connected to GPIO */
1232 #define LL_TIM_TIM3_TI1_RMP_COMP1        (TIM3_OR1_TI1_RMP_0 | TIM3_OR1_RMP_MASK)                      /*!< TIM3 input capture 1 is connected to COMP1_OUT */
1233 #define LL_TIM_TIM3_TI1_RMP_COMP2        (TIM3_OR1_TI1_RMP_1 | TIM3_OR1_RMP_MASK)                      /*!< TIM3 input capture 1 is connected to COMP2_OUT */
1234 #define LL_TIM_TIM3_TI1_RMP_COMP1_COMP2  (TIM3_OR1_TI1_RMP | TIM3_OR1_RMP_MASK)                        /*!< TIM3 input capture 1 is connected to logical OR between COMP1_OUT and COMP2_OUT */
1235 /**
1236   * @}
1237   */
1238 #endif /* TIM3 */
1239 
1240 #if defined(TIM8)
1241 /** @defgroup TIM_LL_EC_TIM8_ETR_ADC2_RMP  TIM8 External Trigger ADC2 Remap
1242   * @{
1243   */
1244 #define LL_TIM_TIM8_ETR_ADC2_RMP_NC   TIM8_OR1_RMP_MASK                                                /*!< TIM8_ETR is not connected to ADC2 analog watchdog x */
1245 #define LL_TIM_TIM8_ETR_ADC2_RMP_AWD1 (TIM8_OR1_ETR_ADC2_RMP_0 | TIM8_OR1_RMP_MASK)                    /*!< TIM8_ETR is connected to ADC2 analog watchdog */
1246 #define LL_TIM_TIM8_ETR_ADC2_RMP_AWD2 (TIM8_OR1_ETR_ADC2_RMP_1 | TIM8_OR1_RMP_MASK)                    /*!< TIM8_ETR is connected to ADC2 analog watchdog 2 */
1247 #define LL_TIM_TIM8_ETR_ADC2_RMP_AWD3 (TIM8_OR1_ETR_ADC2_RMP | TIM8_OR1_RMP_MASK)                      /*!< TIM8_ETR is connected to ADC2 analog watchdog 3 */
1248 /**
1249   * @}
1250   */
1251 
1252 /** @defgroup TIM_LL_EC_TIM8_ETR_ADC3_RMP  TIM8 External Trigger ADC3 Remap
1253   * @{
1254   */
1255 #define LL_TIM_TIM8_ETR_ADC3_RMP_NC   TIM8_OR1_RMP_MASK                                                /*!< TIM8_ETR is not connected to ADC3 analog watchdog x */
1256 #define LL_TIM_TIM8_ETR_ADC3_RMP_AWD1 (TIM8_OR1_ETR_ADC3_RMP_0 | TIM8_OR1_RMP_MASK)                    /*!< TIM8_ETR is connected to ADC3 analog watchdog 1 */
1257 #define LL_TIM_TIM8_ETR_ADC3_RMP_AWD2 (TIM8_OR1_ETR_ADC3_RMP_1 | TIM8_OR1_RMP_MASK)                    /*!< TIM8_ETR is connected to ADC3 analog watchdog 2 */
1258 #define LL_TIM_TIM8_ETR_ADC3_RMP_AWD3 (TIM8_OR1_ETR_ADC3_RMP | TIM8_OR1_RMP_MASK)                      /*!< TIM8_ETR is connected to ADC3 analog watchdog 3 */
1259 /**
1260   * @}
1261   */
1262 
1263 /** @defgroup TIM_LL_EC_TIM8_TI1_RMP  TIM8 External Input Ch1 Remap
1264   * @{
1265   */
1266 #define LL_TIM_TIM8_TI1_RMP_GPIO  TIM8_OR1_RMP_MASK                                                    /*!< TIM8 input capture 1 is connected to GPIO */
1267 #define LL_TIM_TIM8_TI1_RMP_COMP2 (TIM8_OR1_TI1_RMP | TIM8_OR1_RMP_MASK)                               /*!< TIM8 input capture 1 is connected to COMP2 output */
1268 /**
1269   * @}
1270   */
1271 #endif /* TIM8 */
1272 
1273 /** @defgroup TIM_LL_EC_TIM15_TI1_RMP  TIM15 External Input Ch1 Remap
1274   * @{
1275   */
1276 #define LL_TIM_TIM15_TI1_RMP_GPIO TIM15_OR1_RMP_MASK                                                   /*!< TIM15 input capture 1 is connected to GPIO */
1277 #define LL_TIM_TIM15_TI1_RMP_LSE  (TIM15_OR1_TI1_RMP | TIM15_OR1_RMP_MASK)                             /*!< TIM15 input capture 1 is connected to LSE */
1278 /**
1279   * @}
1280   */
1281 
1282 /** @defgroup TIM_LL_EC_TIM15_ENCODERMODE  TIM15 ENCODERMODE
1283   * @{
1284   */
1285 #define LL_TIM_TIM15_ENCODERMODE_NOREDIRECTION TIM15_OR1_RMP_MASK                                      /*!< No redirection*/
1286 #define LL_TIM_TIM15_ENCODERMODE_TIM2          (TIM15_OR1_ENCODER_MODE_0 | TIM15_OR1_RMP_MASK)         /*!< TIM2 IC1 and TIM2 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectively */
1287 #define LL_TIM_TIM15_ENCODERMODE_TIM3          (TIM15_OR1_ENCODER_MODE_1 | TIM15_OR1_RMP_MASK)         /*!< TIM3 IC1 and TIM3 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectivel y*/
1288 #define LL_TIM_TIM15_ENCODERMODE_TIM4          (TIM15_OR1_ENCODER_MODE | TIM15_OR1_RMP_MASK)           /*!< TIM4 IC1 and TIM4 IC2 are connected to TIM15 IC1 and TIM15 IC2 respectively */
1289 /**
1290   * @}
1291   */
1292 
1293 /** @defgroup TIM_LL_EC_TIM16_TI1_RMP  TIM16 External Input Ch1 Remap
1294   * @{
1295   */
1296 #define LL_TIM_TIM16_TI1_RMP_GPIO TIM16_OR1_RMP_MASK                                                   /*!< TIM16 input capture 1 is connected to GPIO */
1297 #define LL_TIM_TIM16_TI1_RMP_LSI  (TIM16_OR1_TI1_RMP_0 | TIM16_OR1_RMP_MASK)                           /*!< TIM16 input capture 1 is connected to LSI */
1298 #define LL_TIM_TIM16_TI1_RMP_LSE  (TIM16_OR1_TI1_RMP_1 | TIM16_OR1_RMP_MASK)                           /*!< TIM16 input capture 1 is connected to LSE */
1299 #define LL_TIM_TIM16_TI1_RMP_RTC  (TIM16_OR1_TI1_RMP_1 | TIM16_OR1_TI1_RMP_0 | TIM16_OR1_RMP_MASK)     /*!< TIM16 input capture 1 is connected to RTC wakeup interrupt */
1300 #if defined TIM16_OR1_TI1_RMP_2
1301 #define LL_TIM_TIM16_TI1_RMP_MSI     (TIM16_OR1_TI1_RMP_2 | TIM16_OR1_RMP_MASK)                           /*!< TIM16 input capture 1 is connected to MSI */
1302 #define LL_TIM_TIM16_TI1_RMP_HSE_32  (TIM16_OR1_TI1_RMP_2 | TIM16_OR1_TI1_RMP_0 | TIM16_OR1_RMP_MASK)     /*!< TIM16 input capture 1 is connected to HSE/32 */
1303 #define LL_TIM_TIM16_TI1_RMP_MCO     (TIM16_OR1_TI1_RMP_2 | TIM16_OR1_TI1_RMP_1 | TIM16_OR1_RMP_MASK)     /*!< TIM16 input capture 1 is connected to MCO */
1304 #endif
1305 /**
1306   * @}
1307   */
1308 
1309 #if defined(TIM17)
1310 /** @defgroup TIM_LL_EC_TIM17_TI1_RMP  TIM17 Timer Input Ch1 Remap
1311   * @{
1312   */
1313 #define LL_TIM_TIM17_TI1_RMP_GPIO   TIM17_OR1_RMP_MASK                                                 /*!< TIM17 input capture 1 is connected to GPIO */
1314 #define LL_TIM_TIM17_TI1_RMP_MSI    (TIM17_OR1_TI1_RMP_0 | TIM17_OR1_RMP_MASK)                         /*!< TIM17 input capture 1 is connected to MSI */
1315 #define LL_TIM_TIM17_TI1_RMP_HSE_32 (TIM17_OR1_TI1_RMP_1 | TIM17_OR1_RMP_MASK)                         /*!< TIM17 input capture 1 is connected to HSE/32 */
1316 #define LL_TIM_TIM17_TI1_RMP_MCO    (TIM17_OR1_TI1_RMP | TIM17_OR1_RMP_MASK)                           /*!< TIM17 input capture 1 is connected to MCO */
1317 /**
1318   * @}
1319   */
1320 #endif /* TIM17 */
1321 
1322 /** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection
1323   * @{
1324   */
1325 #define LL_TIM_OCREF_CLR_INT_NC     0x00000000U         /*!< OCREF_CLR_INT is not connected */
1326 #define LL_TIM_OCREF_CLR_INT_ETR    TIM_SMCR_OCCS       /*!< OCREF_CLR_INT is connected to ETRF */
1327 /**
1328   * @}
1329   */
1330 
1331 /** Legacy definitions for compatibility purpose
1332 @cond 0
1333   */
1334 #define LL_TIM_BKIN_SOURCE_DFBK  LL_TIM_BKIN_SOURCE_DF1BK
1335 /**
1336 @endcond
1337   */
1338 
1339 /**
1340   * @}
1341   */
1342 
1343 /* Exported macro ------------------------------------------------------------*/
1344 /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros
1345   * @{
1346   */
1347 
1348 /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros
1349   * @{
1350   */
1351 /**
1352   * @brief  Write a value in TIM register.
1353   * @param  __INSTANCE__ TIM Instance
1354   * @param  __REG__ Register to be written
1355   * @param  __VALUE__ Value to be written in the register
1356   * @retval None
1357   */
1358 #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG((__INSTANCE__)->__REG__, (__VALUE__))
1359 
1360 /**
1361   * @brief  Read a value in TIM register.
1362   * @param  __INSTANCE__ TIM Instance
1363   * @param  __REG__ Register to be read
1364   * @retval Register value
1365   */
1366 #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG((__INSTANCE__)->__REG__)
1367 /**
1368   * @}
1369   */
1370 
1371 /**
1372   * @brief  HELPER macro retrieving the UIFCPY flag from the counter value.
1373   * @note ex: @ref __LL_TIM_GETFLAG_UIFCPY (@ref LL_TIM_GetCounter ());
1374   * @note  Relevant only if UIF flag remapping has been enabled  (UIF status bit is copied
1375   *        to TIMx_CNT register bit 31)
1376   * @param  __CNT__ Counter value
1377   * @retval UIF status bit
1378   */
1379 #define __LL_TIM_GETFLAG_UIFCPY(__CNT__)  \
1380   (READ_BIT((__CNT__), TIM_CNT_UIFCPY) >> TIM_CNT_UIFCPY_Pos)
1381 
1382 /**
1383   * @brief  HELPER macro calculating DTG[0:7] in the TIMx_BDTR register to achieve the requested dead time duration.
1384   * @note ex: @ref __LL_TIM_CALC_DEADTIME (80000000, @ref LL_TIM_GetClockDivision (), 120);
1385   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1386   * @param  __CKD__ This parameter can be one of the following values:
1387   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1388   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1389   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1390   * @param  __DT__ deadtime duration (in ns)
1391   * @retval DTG[0:7]
1392   */
1393 #define __LL_TIM_CALC_DEADTIME(__TIMCLK__, __CKD__, __DT__)  \
1394   ( (((uint64_t)((__DT__)*1000U)) < ((DT_DELAY_1+1U) * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))    ?  \
1395     (uint8_t)(((uint64_t)((__DT__)*1000U) / TIM_CALC_DTS((__TIMCLK__), (__CKD__)))  & DT_DELAY_1) :      \
1396     (((uint64_t)((__DT__)*1000U)) < ((64U + (DT_DELAY_2+1U)) * 2U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1397     (uint8_t)(DT_RANGE_2 | ((uint8_t)((uint8_t)((((uint64_t)((__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),   \
1398                                                  (__CKD__))) >> 1U) - (uint8_t) 64) & DT_DELAY_2)) :\
1399     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_3+1U)) * 8U * TIM_CALC_DTS((__TIMCLK__), (__CKD__))))  ?  \
1400     (uint8_t)(DT_RANGE_3 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1401                                                  (__CKD__))) >> 3U) - (uint8_t) 32) & DT_DELAY_3)) :\
1402     (((uint64_t)((__DT__)*1000U)) < ((32U + (DT_DELAY_4+1U)) * 16U * TIM_CALC_DTS((__TIMCLK__), (__CKD__)))) ?  \
1403     (uint8_t)(DT_RANGE_4 | ((uint8_t)((uint8_t)(((((uint64_t)(__DT__)*1000U))/ TIM_CALC_DTS((__TIMCLK__),  \
1404                                                  (__CKD__))) >> 4U) - (uint8_t) 32) & DT_DELAY_4)) :\
1405     0U)
1406 
1407 /**
1408   * @brief  HELPER macro calculating the prescaler value to achieve the required counter clock frequency.
1409   * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000);
1410   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1411   * @param  __CNTCLK__ counter clock frequency (in Hz)
1412   * @retval Prescaler value  (between Min_Data=0 and Max_Data=65535)
1413   */
1414 #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__)   \
1415   (((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((((__TIMCLK__) + (__CNTCLK__)/2U)/(__CNTCLK__)) - 1U) : 0U)
1416 
1417 /**
1418   * @brief  HELPER macro calculating the auto-reload value to achieve the required output signal frequency.
1419   * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000);
1420   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1421   * @param  __PSC__ prescaler
1422   * @param  __FREQ__ output signal frequency (in Hz)
1423   * @retval  Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1424   */
1425 #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \
1426   ((((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? (((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U))) - 1U) : 0U)
1427 
1428 /**
1429   * @brief  HELPER macro calculating the compare value required to achieve the required timer output compare
1430   *         active/inactive delay.
1431   * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10);
1432   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1433   * @param  __PSC__ prescaler
1434   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1435   * @retval Compare value  (between Min_Data=0 and Max_Data=65535)
1436   */
1437 #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__)  \
1438   ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \
1439               / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U))))
1440 
1441 /**
1442   * @brief  HELPER macro calculating the auto-reload value to achieve the required pulse duration
1443   *         (when the timer operates in one pulse mode).
1444   * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20);
1445   * @param  __TIMCLK__ timer input clock frequency (in Hz)
1446   * @param  __PSC__ prescaler
1447   * @param  __DELAY__ timer output compare active/inactive delay (in us)
1448   * @param  __PULSE__ pulse duration (in us)
1449   * @retval Auto-reload value  (between Min_Data=0 and Max_Data=65535)
1450   */
1451 #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__)  \
1452   ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \
1453               + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__))))
1454 
1455 /**
1456   * @brief  HELPER macro retrieving the ratio of the input capture prescaler
1457   * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ());
1458   * @param  __ICPSC__ This parameter can be one of the following values:
1459   *         @arg @ref LL_TIM_ICPSC_DIV1
1460   *         @arg @ref LL_TIM_ICPSC_DIV2
1461   *         @arg @ref LL_TIM_ICPSC_DIV4
1462   *         @arg @ref LL_TIM_ICPSC_DIV8
1463   * @retval Input capture prescaler ratio (1, 2, 4 or 8)
1464   */
1465 #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__)  \
1466   ((uint32_t)(0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos)))
1467 
1468 
1469 /**
1470   * @}
1471   */
1472 
1473 /* Exported functions --------------------------------------------------------*/
1474 /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions
1475   * @{
1476   */
1477 
1478 /** @defgroup TIM_LL_EF_Time_Base Time Base configuration
1479   * @{
1480   */
1481 /**
1482   * @brief  Enable timer counter.
1483   * @rmtoll CR1          CEN           LL_TIM_EnableCounter
1484   * @param  TIMx Timer instance
1485   * @retval None
1486   */
LL_TIM_EnableCounter(TIM_TypeDef * TIMx)1487 __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx)
1488 {
1489   SET_BIT(TIMx->CR1, TIM_CR1_CEN);
1490 }
1491 
1492 /**
1493   * @brief  Disable timer counter.
1494   * @rmtoll CR1          CEN           LL_TIM_DisableCounter
1495   * @param  TIMx Timer instance
1496   * @retval None
1497   */
LL_TIM_DisableCounter(TIM_TypeDef * TIMx)1498 __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx)
1499 {
1500   CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN);
1501 }
1502 
1503 /**
1504   * @brief  Indicates whether the timer counter is enabled.
1505   * @rmtoll CR1          CEN           LL_TIM_IsEnabledCounter
1506   * @param  TIMx Timer instance
1507   * @retval State of bit (1 or 0).
1508   */
LL_TIM_IsEnabledCounter(const TIM_TypeDef * TIMx)1509 __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(const TIM_TypeDef *TIMx)
1510 {
1511   return ((READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)) ? 1UL : 0UL);
1512 }
1513 
1514 /**
1515   * @brief  Enable update event generation.
1516   * @rmtoll CR1          UDIS          LL_TIM_EnableUpdateEvent
1517   * @param  TIMx Timer instance
1518   * @retval None
1519   */
LL_TIM_EnableUpdateEvent(TIM_TypeDef * TIMx)1520 __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx)
1521 {
1522   CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS);
1523 }
1524 
1525 /**
1526   * @brief  Disable update event generation.
1527   * @rmtoll CR1          UDIS          LL_TIM_DisableUpdateEvent
1528   * @param  TIMx Timer instance
1529   * @retval None
1530   */
LL_TIM_DisableUpdateEvent(TIM_TypeDef * TIMx)1531 __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx)
1532 {
1533   SET_BIT(TIMx->CR1, TIM_CR1_UDIS);
1534 }
1535 
1536 /**
1537   * @brief  Indicates whether update event generation is enabled.
1538   * @rmtoll CR1          UDIS          LL_TIM_IsEnabledUpdateEvent
1539   * @param  TIMx Timer instance
1540   * @retval Inverted state of bit (0 or 1).
1541   */
LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef * TIMx)1542 __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(const TIM_TypeDef *TIMx)
1543 {
1544   return ((READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (uint32_t)RESET) ? 1UL : 0UL);
1545 }
1546 
1547 /**
1548   * @brief  Set update event source
1549   * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events
1550   *       generate an update interrupt or DMA request if enabled:
1551   *        - Counter overflow/underflow
1552   *        - Setting the UG bit
1553   *        - Update generation through the slave mode controller
1554   * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter
1555   *       overflow/underflow generates an update interrupt or DMA request if enabled.
1556   * @rmtoll CR1          URS           LL_TIM_SetUpdateSource
1557   * @param  TIMx Timer instance
1558   * @param  UpdateSource This parameter can be one of the following values:
1559   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1560   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1561   * @retval None
1562   */
LL_TIM_SetUpdateSource(TIM_TypeDef * TIMx,uint32_t UpdateSource)1563 __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource)
1564 {
1565   MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource);
1566 }
1567 
1568 /**
1569   * @brief  Get actual event update source
1570   * @rmtoll CR1          URS           LL_TIM_GetUpdateSource
1571   * @param  TIMx Timer instance
1572   * @retval Returned value can be one of the following values:
1573   *         @arg @ref LL_TIM_UPDATESOURCE_REGULAR
1574   *         @arg @ref LL_TIM_UPDATESOURCE_COUNTER
1575   */
LL_TIM_GetUpdateSource(const TIM_TypeDef * TIMx)1576 __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(const TIM_TypeDef *TIMx)
1577 {
1578   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS));
1579 }
1580 
1581 /**
1582   * @brief  Set one pulse mode (one shot v.s. repetitive).
1583   * @rmtoll CR1          OPM           LL_TIM_SetOnePulseMode
1584   * @param  TIMx Timer instance
1585   * @param  OnePulseMode This parameter can be one of the following values:
1586   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1587   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1588   * @retval None
1589   */
LL_TIM_SetOnePulseMode(TIM_TypeDef * TIMx,uint32_t OnePulseMode)1590 __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode)
1591 {
1592   MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode);
1593 }
1594 
1595 /**
1596   * @brief  Get actual one pulse mode.
1597   * @rmtoll CR1          OPM           LL_TIM_GetOnePulseMode
1598   * @param  TIMx Timer instance
1599   * @retval Returned value can be one of the following values:
1600   *         @arg @ref LL_TIM_ONEPULSEMODE_SINGLE
1601   *         @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE
1602   */
LL_TIM_GetOnePulseMode(const TIM_TypeDef * TIMx)1603 __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(const TIM_TypeDef *TIMx)
1604 {
1605   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM));
1606 }
1607 
1608 /**
1609   * @brief  Set the timer counter counting mode.
1610   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1611   *       check whether or not the counter mode selection feature is supported
1612   *       by a timer instance.
1613   * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1614   *       requires a timer reset to avoid unexpected direction
1615   *       due to DIR bit readonly in center aligned mode.
1616   * @rmtoll CR1          DIR           LL_TIM_SetCounterMode\n
1617   *         CR1          CMS           LL_TIM_SetCounterMode
1618   * @param  TIMx Timer instance
1619   * @param  CounterMode This parameter can be one of the following values:
1620   *         @arg @ref LL_TIM_COUNTERMODE_UP
1621   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1622   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1623   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1624   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1625   * @retval None
1626   */
LL_TIM_SetCounterMode(TIM_TypeDef * TIMx,uint32_t CounterMode)1627 __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode)
1628 {
1629   MODIFY_REG(TIMx->CR1, (TIM_CR1_DIR | TIM_CR1_CMS), CounterMode);
1630 }
1631 
1632 /**
1633   * @brief  Get actual counter mode.
1634   * @note Macro IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to
1635   *       check whether or not the counter mode selection feature is supported
1636   *       by a timer instance.
1637   * @rmtoll CR1          DIR           LL_TIM_GetCounterMode\n
1638   *         CR1          CMS           LL_TIM_GetCounterMode
1639   * @param  TIMx Timer instance
1640   * @retval Returned value can be one of the following values:
1641   *         @arg @ref LL_TIM_COUNTERMODE_UP
1642   *         @arg @ref LL_TIM_COUNTERMODE_DOWN
1643   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP
1644   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN
1645   *         @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN
1646   */
LL_TIM_GetCounterMode(const TIM_TypeDef * TIMx)1647 __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(const TIM_TypeDef *TIMx)
1648 {
1649   uint32_t counter_mode;
1650 
1651   counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CMS));
1652 
1653   if (counter_mode == 0U)
1654   {
1655     counter_mode = (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1656   }
1657 
1658   return counter_mode;
1659 }
1660 
1661 /**
1662   * @brief  Enable auto-reload (ARR) preload.
1663   * @rmtoll CR1          ARPE          LL_TIM_EnableARRPreload
1664   * @param  TIMx Timer instance
1665   * @retval None
1666   */
LL_TIM_EnableARRPreload(TIM_TypeDef * TIMx)1667 __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx)
1668 {
1669   SET_BIT(TIMx->CR1, TIM_CR1_ARPE);
1670 }
1671 
1672 /**
1673   * @brief  Disable auto-reload (ARR) preload.
1674   * @rmtoll CR1          ARPE          LL_TIM_DisableARRPreload
1675   * @param  TIMx Timer instance
1676   * @retval None
1677   */
LL_TIM_DisableARRPreload(TIM_TypeDef * TIMx)1678 __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx)
1679 {
1680   CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE);
1681 }
1682 
1683 /**
1684   * @brief  Indicates whether auto-reload (ARR) preload is enabled.
1685   * @rmtoll CR1          ARPE          LL_TIM_IsEnabledARRPreload
1686   * @param  TIMx Timer instance
1687   * @retval State of bit (1 or 0).
1688   */
LL_TIM_IsEnabledARRPreload(const TIM_TypeDef * TIMx)1689 __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(const TIM_TypeDef *TIMx)
1690 {
1691   return ((READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)) ? 1UL : 0UL);
1692 }
1693 
1694 /**
1695   * @brief  Set the division ratio between the timer clock  and the sampling clock used by the dead-time generators
1696   *         (when supported) and the digital filters.
1697   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1698   *       whether or not the clock division feature is supported by the timer
1699   *       instance.
1700   * @rmtoll CR1          CKD           LL_TIM_SetClockDivision
1701   * @param  TIMx Timer instance
1702   * @param  ClockDivision This parameter can be one of the following values:
1703   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1704   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1705   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1706   * @retval None
1707   */
LL_TIM_SetClockDivision(TIM_TypeDef * TIMx,uint32_t ClockDivision)1708 __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision)
1709 {
1710   MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision);
1711 }
1712 
1713 /**
1714   * @brief  Get the actual division ratio between the timer clock  and the sampling clock used by the dead-time
1715   *         generators (when supported) and the digital filters.
1716   * @note Macro IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check
1717   *       whether or not the clock division feature is supported by the timer
1718   *       instance.
1719   * @rmtoll CR1          CKD           LL_TIM_GetClockDivision
1720   * @param  TIMx Timer instance
1721   * @retval Returned value can be one of the following values:
1722   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV1
1723   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV2
1724   *         @arg @ref LL_TIM_CLOCKDIVISION_DIV4
1725   */
LL_TIM_GetClockDivision(const TIM_TypeDef * TIMx)1726 __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(const TIM_TypeDef *TIMx)
1727 {
1728   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD));
1729 }
1730 
1731 /**
1732   * @brief  Set the counter value.
1733   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1734   *       whether or not a timer instance supports a 32 bits counter.
1735   * @rmtoll CNT          CNT           LL_TIM_SetCounter
1736   * @param  TIMx Timer instance
1737   * @param  Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1738   * @retval None
1739   */
LL_TIM_SetCounter(TIM_TypeDef * TIMx,uint32_t Counter)1740 __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter)
1741 {
1742   WRITE_REG(TIMx->CNT, Counter);
1743 }
1744 
1745 /**
1746   * @brief  Get the counter value.
1747   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1748   *       whether or not a timer instance supports a 32 bits counter.
1749   * @rmtoll CNT          CNT           LL_TIM_GetCounter
1750   * @param  TIMx Timer instance
1751   * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF)
1752   */
LL_TIM_GetCounter(const TIM_TypeDef * TIMx)1753 __STATIC_INLINE uint32_t LL_TIM_GetCounter(const TIM_TypeDef *TIMx)
1754 {
1755   return (uint32_t)(READ_REG(TIMx->CNT));
1756 }
1757 
1758 /**
1759   * @brief  Get the current direction of the counter
1760   * @rmtoll CR1          DIR           LL_TIM_GetDirection
1761   * @param  TIMx Timer instance
1762   * @retval Returned value can be one of the following values:
1763   *         @arg @ref LL_TIM_COUNTERDIRECTION_UP
1764   *         @arg @ref LL_TIM_COUNTERDIRECTION_DOWN
1765   */
LL_TIM_GetDirection(const TIM_TypeDef * TIMx)1766 __STATIC_INLINE uint32_t LL_TIM_GetDirection(const TIM_TypeDef *TIMx)
1767 {
1768   return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR));
1769 }
1770 
1771 /**
1772   * @brief  Set the prescaler value.
1773   * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
1774   * @note The prescaler can be changed on the fly as this control register is buffered. The new
1775   *       prescaler ratio is taken into account at the next update event.
1776   * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter
1777   * @rmtoll PSC          PSC           LL_TIM_SetPrescaler
1778   * @param  TIMx Timer instance
1779   * @param  Prescaler between Min_Data=0 and Max_Data=65535
1780   * @retval None
1781   */
LL_TIM_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Prescaler)1782 __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler)
1783 {
1784   WRITE_REG(TIMx->PSC, Prescaler);
1785 }
1786 
1787 /**
1788   * @brief  Get the prescaler value.
1789   * @rmtoll PSC          PSC           LL_TIM_GetPrescaler
1790   * @param  TIMx Timer instance
1791   * @retval  Prescaler value between Min_Data=0 and Max_Data=65535
1792   */
LL_TIM_GetPrescaler(const TIM_TypeDef * TIMx)1793 __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(const TIM_TypeDef *TIMx)
1794 {
1795   return (uint32_t)(READ_REG(TIMx->PSC));
1796 }
1797 
1798 /**
1799   * @brief  Set the auto-reload value.
1800   * @note The counter is blocked while the auto-reload value is null.
1801   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1802   *       whether or not a timer instance supports a 32 bits counter.
1803   * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter
1804   * @rmtoll ARR          ARR           LL_TIM_SetAutoReload
1805   * @param  TIMx Timer instance
1806   * @param  AutoReload between Min_Data=0 and Max_Data=65535
1807   * @retval None
1808   */
LL_TIM_SetAutoReload(TIM_TypeDef * TIMx,uint32_t AutoReload)1809 __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload)
1810 {
1811   WRITE_REG(TIMx->ARR, AutoReload);
1812 }
1813 
1814 /**
1815   * @brief  Get the auto-reload value.
1816   * @rmtoll ARR          ARR           LL_TIM_GetAutoReload
1817   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
1818   *       whether or not a timer instance supports a 32 bits counter.
1819   * @param  TIMx Timer instance
1820   * @retval Auto-reload value
1821   */
LL_TIM_GetAutoReload(const TIM_TypeDef * TIMx)1822 __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(const TIM_TypeDef *TIMx)
1823 {
1824   return (uint32_t)(READ_REG(TIMx->ARR));
1825 }
1826 
1827 /**
1828   * @brief  Set the repetition counter value.
1829   * @note For advanced timer instances RepetitionCounter can be up to 65535.
1830   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1831   *       whether or not a timer instance supports a repetition counter.
1832   * @rmtoll RCR          REP           LL_TIM_SetRepetitionCounter
1833   * @param  TIMx Timer instance
1834   * @param  RepetitionCounter between Min_Data=0 and Max_Data=255 or 65535 for advanced timer.
1835   * @retval None
1836   */
LL_TIM_SetRepetitionCounter(TIM_TypeDef * TIMx,uint32_t RepetitionCounter)1837 __STATIC_INLINE void LL_TIM_SetRepetitionCounter(TIM_TypeDef *TIMx, uint32_t RepetitionCounter)
1838 {
1839   WRITE_REG(TIMx->RCR, RepetitionCounter);
1840 }
1841 
1842 /**
1843   * @brief  Get the repetition counter value.
1844   * @note Macro IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx) can be used to check
1845   *       whether or not a timer instance supports a repetition counter.
1846   * @rmtoll RCR          REP           LL_TIM_GetRepetitionCounter
1847   * @param  TIMx Timer instance
1848   * @retval Repetition counter value
1849   */
LL_TIM_GetRepetitionCounter(const TIM_TypeDef * TIMx)1850 __STATIC_INLINE uint32_t LL_TIM_GetRepetitionCounter(const TIM_TypeDef *TIMx)
1851 {
1852   return (uint32_t)(READ_REG(TIMx->RCR));
1853 }
1854 
1855 /**
1856   * @brief  Force a continuous copy of the update interrupt flag (UIF) into the timer counter register (bit 31).
1857   * @note This allows both the counter value and a potential roll-over condition signalled by the UIFCPY flag to be read
1858   *       in an atomic way.
1859   * @rmtoll CR1          UIFREMAP      LL_TIM_EnableUIFRemap
1860   * @param  TIMx Timer instance
1861   * @retval None
1862   */
LL_TIM_EnableUIFRemap(TIM_TypeDef * TIMx)1863 __STATIC_INLINE void LL_TIM_EnableUIFRemap(TIM_TypeDef *TIMx)
1864 {
1865   SET_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1866 }
1867 
1868 /**
1869   * @brief  Disable update interrupt flag (UIF) remapping.
1870   * @rmtoll CR1          UIFREMAP      LL_TIM_DisableUIFRemap
1871   * @param  TIMx Timer instance
1872   * @retval None
1873   */
LL_TIM_DisableUIFRemap(TIM_TypeDef * TIMx)1874 __STATIC_INLINE void LL_TIM_DisableUIFRemap(TIM_TypeDef *TIMx)
1875 {
1876   CLEAR_BIT(TIMx->CR1, TIM_CR1_UIFREMAP);
1877 }
1878 
1879 /**
1880   * @brief  Indicate whether update interrupt flag (UIF) copy is set.
1881   * @param  Counter Counter value
1882   * @retval State of bit (1 or 0).
1883   */
LL_TIM_IsActiveUIFCPY(const uint32_t Counter)1884 __STATIC_INLINE uint32_t LL_TIM_IsActiveUIFCPY(const uint32_t Counter)
1885 {
1886   return (((Counter & TIM_CNT_UIFCPY) == (TIM_CNT_UIFCPY)) ? 1UL : 0UL);
1887 }
1888 
1889 /**
1890   * @}
1891   */
1892 
1893 /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration
1894   * @{
1895   */
1896 /**
1897   * @brief  Enable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1898   * @note CCxE, CCxNE and OCxM bits are preloaded, after having been written,
1899   *       they are updated only when a commutation event (COM) occurs.
1900   * @note Only on channels that have a complementary output.
1901   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1902   *       whether or not a timer instance is able to generate a commutation event.
1903   * @rmtoll CR2          CCPC          LL_TIM_CC_EnablePreload
1904   * @param  TIMx Timer instance
1905   * @retval None
1906   */
LL_TIM_CC_EnablePreload(TIM_TypeDef * TIMx)1907 __STATIC_INLINE void LL_TIM_CC_EnablePreload(TIM_TypeDef *TIMx)
1908 {
1909   SET_BIT(TIMx->CR2, TIM_CR2_CCPC);
1910 }
1911 
1912 /**
1913   * @brief  Disable  the capture/compare control bits (CCxE, CCxNE and OCxM) preload.
1914   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1915   *       whether or not a timer instance is able to generate a commutation event.
1916   * @rmtoll CR2          CCPC          LL_TIM_CC_DisablePreload
1917   * @param  TIMx Timer instance
1918   * @retval None
1919   */
LL_TIM_CC_DisablePreload(TIM_TypeDef * TIMx)1920 __STATIC_INLINE void LL_TIM_CC_DisablePreload(TIM_TypeDef *TIMx)
1921 {
1922   CLEAR_BIT(TIMx->CR2, TIM_CR2_CCPC);
1923 }
1924 
1925 /**
1926   * @brief  Indicates whether the capture/compare control bits (CCxE, CCxNE and OCxM) preload is enabled.
1927   * @rmtoll CR2          CCPC          LL_TIM_CC_IsEnabledPreload
1928   * @param  TIMx Timer instance
1929   * @retval State of bit (1 or 0).
1930   */
LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef * TIMx)1931 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledPreload(const TIM_TypeDef *TIMx)
1932 {
1933   return ((READ_BIT(TIMx->CR2, TIM_CR2_CCPC) == (TIM_CR2_CCPC)) ? 1UL : 0UL);
1934 }
1935 
1936 /**
1937   * @brief  Set the updated source of the capture/compare control bits (CCxE, CCxNE and OCxM).
1938   * @note Macro IS_TIM_COMMUTATION_EVENT_INSTANCE(TIMx) can be used to check
1939   *       whether or not a timer instance is able to generate a commutation event.
1940   * @rmtoll CR2          CCUS          LL_TIM_CC_SetUpdate
1941   * @param  TIMx Timer instance
1942   * @param  CCUpdateSource This parameter can be one of the following values:
1943   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_ONLY
1944   *         @arg @ref LL_TIM_CCUPDATESOURCE_COMG_AND_TRGI
1945   * @retval None
1946   */
LL_TIM_CC_SetUpdate(TIM_TypeDef * TIMx,uint32_t CCUpdateSource)1947 __STATIC_INLINE void LL_TIM_CC_SetUpdate(TIM_TypeDef *TIMx, uint32_t CCUpdateSource)
1948 {
1949   MODIFY_REG(TIMx->CR2, TIM_CR2_CCUS, CCUpdateSource);
1950 }
1951 
1952 /**
1953   * @brief  Set the trigger of the capture/compare DMA request.
1954   * @rmtoll CR2          CCDS          LL_TIM_CC_SetDMAReqTrigger
1955   * @param  TIMx Timer instance
1956   * @param  DMAReqTrigger This parameter can be one of the following values:
1957   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1958   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1959   * @retval None
1960   */
LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef * TIMx,uint32_t DMAReqTrigger)1961 __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger)
1962 {
1963   MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger);
1964 }
1965 
1966 /**
1967   * @brief  Get actual trigger of the capture/compare DMA request.
1968   * @rmtoll CR2          CCDS          LL_TIM_CC_GetDMAReqTrigger
1969   * @param  TIMx Timer instance
1970   * @retval Returned value can be one of the following values:
1971   *         @arg @ref LL_TIM_CCDMAREQUEST_CC
1972   *         @arg @ref LL_TIM_CCDMAREQUEST_UPDATE
1973   */
LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef * TIMx)1974 __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(const TIM_TypeDef *TIMx)
1975 {
1976   return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS));
1977 }
1978 
1979 /**
1980   * @brief  Set the lock level to freeze the
1981   *         configuration of several capture/compare parameters.
1982   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
1983   *       the lock mechanism is supported by a timer instance.
1984   * @rmtoll BDTR         LOCK          LL_TIM_CC_SetLockLevel
1985   * @param  TIMx Timer instance
1986   * @param  LockLevel This parameter can be one of the following values:
1987   *         @arg @ref LL_TIM_LOCKLEVEL_OFF
1988   *         @arg @ref LL_TIM_LOCKLEVEL_1
1989   *         @arg @ref LL_TIM_LOCKLEVEL_2
1990   *         @arg @ref LL_TIM_LOCKLEVEL_3
1991   * @retval None
1992   */
LL_TIM_CC_SetLockLevel(TIM_TypeDef * TIMx,uint32_t LockLevel)1993 __STATIC_INLINE void LL_TIM_CC_SetLockLevel(TIM_TypeDef *TIMx, uint32_t LockLevel)
1994 {
1995   MODIFY_REG(TIMx->BDTR, TIM_BDTR_LOCK, LockLevel);
1996 }
1997 
1998 /**
1999   * @brief  Enable capture/compare channels.
2000   * @rmtoll CCER         CC1E          LL_TIM_CC_EnableChannel\n
2001   *         CCER         CC1NE         LL_TIM_CC_EnableChannel\n
2002   *         CCER         CC2E          LL_TIM_CC_EnableChannel\n
2003   *         CCER         CC2NE         LL_TIM_CC_EnableChannel\n
2004   *         CCER         CC3E          LL_TIM_CC_EnableChannel\n
2005   *         CCER         CC3NE         LL_TIM_CC_EnableChannel\n
2006   *         CCER         CC4E          LL_TIM_CC_EnableChannel\n
2007   *         CCER         CC5E          LL_TIM_CC_EnableChannel\n
2008   *         CCER         CC6E          LL_TIM_CC_EnableChannel
2009   * @param  TIMx Timer instance
2010   * @param  Channels This parameter can be a combination of the following values:
2011   *         @arg @ref LL_TIM_CHANNEL_CH1
2012   *         @arg @ref LL_TIM_CHANNEL_CH1N
2013   *         @arg @ref LL_TIM_CHANNEL_CH2
2014   *         @arg @ref LL_TIM_CHANNEL_CH2N
2015   *         @arg @ref LL_TIM_CHANNEL_CH3
2016   *         @arg @ref LL_TIM_CHANNEL_CH3N
2017   *         @arg @ref LL_TIM_CHANNEL_CH4
2018   *         @arg @ref LL_TIM_CHANNEL_CH5
2019   *         @arg @ref LL_TIM_CHANNEL_CH6
2020   * @retval None
2021   */
LL_TIM_CC_EnableChannel(TIM_TypeDef * TIMx,uint32_t Channels)2022 __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2023 {
2024   SET_BIT(TIMx->CCER, Channels);
2025 }
2026 
2027 /**
2028   * @brief  Disable capture/compare channels.
2029   * @rmtoll CCER         CC1E          LL_TIM_CC_DisableChannel\n
2030   *         CCER         CC1NE         LL_TIM_CC_DisableChannel\n
2031   *         CCER         CC2E          LL_TIM_CC_DisableChannel\n
2032   *         CCER         CC2NE         LL_TIM_CC_DisableChannel\n
2033   *         CCER         CC3E          LL_TIM_CC_DisableChannel\n
2034   *         CCER         CC3NE         LL_TIM_CC_DisableChannel\n
2035   *         CCER         CC4E          LL_TIM_CC_DisableChannel\n
2036   *         CCER         CC5E          LL_TIM_CC_DisableChannel\n
2037   *         CCER         CC6E          LL_TIM_CC_DisableChannel
2038   * @param  TIMx Timer instance
2039   * @param  Channels This parameter can be a combination of the following values:
2040   *         @arg @ref LL_TIM_CHANNEL_CH1
2041   *         @arg @ref LL_TIM_CHANNEL_CH1N
2042   *         @arg @ref LL_TIM_CHANNEL_CH2
2043   *         @arg @ref LL_TIM_CHANNEL_CH2N
2044   *         @arg @ref LL_TIM_CHANNEL_CH3
2045   *         @arg @ref LL_TIM_CHANNEL_CH3N
2046   *         @arg @ref LL_TIM_CHANNEL_CH4
2047   *         @arg @ref LL_TIM_CHANNEL_CH5
2048   *         @arg @ref LL_TIM_CHANNEL_CH6
2049   * @retval None
2050   */
LL_TIM_CC_DisableChannel(TIM_TypeDef * TIMx,uint32_t Channels)2051 __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels)
2052 {
2053   CLEAR_BIT(TIMx->CCER, Channels);
2054 }
2055 
2056 /**
2057   * @brief  Indicate whether channel(s) is(are) enabled.
2058   * @rmtoll CCER         CC1E          LL_TIM_CC_IsEnabledChannel\n
2059   *         CCER         CC1NE         LL_TIM_CC_IsEnabledChannel\n
2060   *         CCER         CC2E          LL_TIM_CC_IsEnabledChannel\n
2061   *         CCER         CC2NE         LL_TIM_CC_IsEnabledChannel\n
2062   *         CCER         CC3E          LL_TIM_CC_IsEnabledChannel\n
2063   *         CCER         CC3NE         LL_TIM_CC_IsEnabledChannel\n
2064   *         CCER         CC4E          LL_TIM_CC_IsEnabledChannel\n
2065   *         CCER         CC5E          LL_TIM_CC_IsEnabledChannel\n
2066   *         CCER         CC6E          LL_TIM_CC_IsEnabledChannel
2067   * @param  TIMx Timer instance
2068   * @param  Channels This parameter can be a combination of the following values:
2069   *         @arg @ref LL_TIM_CHANNEL_CH1
2070   *         @arg @ref LL_TIM_CHANNEL_CH1N
2071   *         @arg @ref LL_TIM_CHANNEL_CH2
2072   *         @arg @ref LL_TIM_CHANNEL_CH2N
2073   *         @arg @ref LL_TIM_CHANNEL_CH3
2074   *         @arg @ref LL_TIM_CHANNEL_CH3N
2075   *         @arg @ref LL_TIM_CHANNEL_CH4
2076   *         @arg @ref LL_TIM_CHANNEL_CH5
2077   *         @arg @ref LL_TIM_CHANNEL_CH6
2078   * @retval State of bit (1 or 0).
2079   */
LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef * TIMx,uint32_t Channels)2080 __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(const TIM_TypeDef *TIMx, uint32_t Channels)
2081 {
2082   return ((READ_BIT(TIMx->CCER, Channels) == (Channels)) ? 1UL : 0UL);
2083 }
2084 
2085 /**
2086   * @}
2087   */
2088 
2089 /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration
2090   * @{
2091   */
2092 /**
2093   * @brief  Configure an output channel.
2094   * @rmtoll CCMR1        CC1S          LL_TIM_OC_ConfigOutput\n
2095   *         CCMR1        CC2S          LL_TIM_OC_ConfigOutput\n
2096   *         CCMR2        CC3S          LL_TIM_OC_ConfigOutput\n
2097   *         CCMR2        CC4S          LL_TIM_OC_ConfigOutput\n
2098   *         CCMR3        CC5S          LL_TIM_OC_ConfigOutput\n
2099   *         CCMR3        CC6S          LL_TIM_OC_ConfigOutput\n
2100   *         CCER         CC1P          LL_TIM_OC_ConfigOutput\n
2101   *         CCER         CC2P          LL_TIM_OC_ConfigOutput\n
2102   *         CCER         CC3P          LL_TIM_OC_ConfigOutput\n
2103   *         CCER         CC4P          LL_TIM_OC_ConfigOutput\n
2104   *         CCER         CC5P          LL_TIM_OC_ConfigOutput\n
2105   *         CCER         CC6P          LL_TIM_OC_ConfigOutput\n
2106   *         CR2          OIS1          LL_TIM_OC_ConfigOutput\n
2107   *         CR2          OIS2          LL_TIM_OC_ConfigOutput\n
2108   *         CR2          OIS3          LL_TIM_OC_ConfigOutput\n
2109   *         CR2          OIS4          LL_TIM_OC_ConfigOutput\n
2110   *         CR2          OIS5          LL_TIM_OC_ConfigOutput\n
2111   *         CR2          OIS6          LL_TIM_OC_ConfigOutput
2112   * @param  TIMx Timer instance
2113   * @param  Channel This parameter can be one of the following values:
2114   *         @arg @ref LL_TIM_CHANNEL_CH1
2115   *         @arg @ref LL_TIM_CHANNEL_CH2
2116   *         @arg @ref LL_TIM_CHANNEL_CH3
2117   *         @arg @ref LL_TIM_CHANNEL_CH4
2118   *         @arg @ref LL_TIM_CHANNEL_CH5
2119   *         @arg @ref LL_TIM_CHANNEL_CH6
2120   * @param  Configuration This parameter must be a combination of all the following values:
2121   *         @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW
2122   *         @arg @ref LL_TIM_OCIDLESTATE_LOW or @ref LL_TIM_OCIDLESTATE_HIGH
2123   * @retval None
2124   */
LL_TIM_OC_ConfigOutput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2125 __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2126 {
2127   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2128   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2129   CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel]));
2130   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),
2131              (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]);
2132   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),
2133              (Configuration & TIM_CR2_OIS1) << SHIFT_TAB_OISx[iChannel]);
2134 }
2135 
2136 /**
2137   * @brief  Define the behavior of the output reference signal OCxREF from which
2138   *         OCx and OCxN (when relevant) are derived.
2139   * @rmtoll CCMR1        OC1M          LL_TIM_OC_SetMode\n
2140   *         CCMR1        OC2M          LL_TIM_OC_SetMode\n
2141   *         CCMR2        OC3M          LL_TIM_OC_SetMode\n
2142   *         CCMR2        OC4M          LL_TIM_OC_SetMode\n
2143   *         CCMR3        OC5M          LL_TIM_OC_SetMode\n
2144   *         CCMR3        OC6M          LL_TIM_OC_SetMode
2145   * @param  TIMx Timer instance
2146   * @param  Channel This parameter can be one of the following values:
2147   *         @arg @ref LL_TIM_CHANNEL_CH1
2148   *         @arg @ref LL_TIM_CHANNEL_CH2
2149   *         @arg @ref LL_TIM_CHANNEL_CH3
2150   *         @arg @ref LL_TIM_CHANNEL_CH4
2151   *         @arg @ref LL_TIM_CHANNEL_CH5
2152   *         @arg @ref LL_TIM_CHANNEL_CH6
2153   * @param  Mode This parameter can be one of the following values:
2154   *         @arg @ref LL_TIM_OCMODE_FROZEN
2155   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2156   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2157   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2158   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2159   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2160   *         @arg @ref LL_TIM_OCMODE_PWM1
2161   *         @arg @ref LL_TIM_OCMODE_PWM2
2162   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2163   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2164   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2165   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2166   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
2167   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
2168   * @retval None
2169   */
LL_TIM_OC_SetMode(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Mode)2170 __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode)
2171 {
2172   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2173   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2174   MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M  | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]);
2175 }
2176 
2177 /**
2178   * @brief  Get the output compare mode of an output channel.
2179   * @rmtoll CCMR1        OC1M          LL_TIM_OC_GetMode\n
2180   *         CCMR1        OC2M          LL_TIM_OC_GetMode\n
2181   *         CCMR2        OC3M          LL_TIM_OC_GetMode\n
2182   *         CCMR2        OC4M          LL_TIM_OC_GetMode\n
2183   *         CCMR3        OC5M          LL_TIM_OC_GetMode\n
2184   *         CCMR3        OC6M          LL_TIM_OC_GetMode
2185   * @param  TIMx Timer instance
2186   * @param  Channel This parameter can be one of the following values:
2187   *         @arg @ref LL_TIM_CHANNEL_CH1
2188   *         @arg @ref LL_TIM_CHANNEL_CH2
2189   *         @arg @ref LL_TIM_CHANNEL_CH3
2190   *         @arg @ref LL_TIM_CHANNEL_CH4
2191   *         @arg @ref LL_TIM_CHANNEL_CH5
2192   *         @arg @ref LL_TIM_CHANNEL_CH6
2193   * @retval Returned value can be one of the following values:
2194   *         @arg @ref LL_TIM_OCMODE_FROZEN
2195   *         @arg @ref LL_TIM_OCMODE_ACTIVE
2196   *         @arg @ref LL_TIM_OCMODE_INACTIVE
2197   *         @arg @ref LL_TIM_OCMODE_TOGGLE
2198   *         @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE
2199   *         @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE
2200   *         @arg @ref LL_TIM_OCMODE_PWM1
2201   *         @arg @ref LL_TIM_OCMODE_PWM2
2202   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM1
2203   *         @arg @ref LL_TIM_OCMODE_RETRIG_OPM2
2204   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM1
2205   *         @arg @ref LL_TIM_OCMODE_COMBINED_PWM2
2206   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM1
2207   *         @arg @ref LL_TIM_OCMODE_ASYMMETRIC_PWM2
2208   */
LL_TIM_OC_GetMode(const TIM_TypeDef * TIMx,uint32_t Channel)2209 __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(const TIM_TypeDef *TIMx, uint32_t Channel)
2210 {
2211   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2212   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2213   return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]);
2214 }
2215 
2216 /**
2217   * @brief  Set the polarity of an output channel.
2218   * @rmtoll CCER         CC1P          LL_TIM_OC_SetPolarity\n
2219   *         CCER         CC1NP         LL_TIM_OC_SetPolarity\n
2220   *         CCER         CC2P          LL_TIM_OC_SetPolarity\n
2221   *         CCER         CC2NP         LL_TIM_OC_SetPolarity\n
2222   *         CCER         CC3P          LL_TIM_OC_SetPolarity\n
2223   *         CCER         CC3NP         LL_TIM_OC_SetPolarity\n
2224   *         CCER         CC4P          LL_TIM_OC_SetPolarity\n
2225   *         CCER         CC5P          LL_TIM_OC_SetPolarity\n
2226   *         CCER         CC6P          LL_TIM_OC_SetPolarity
2227   * @param  TIMx Timer instance
2228   * @param  Channel This parameter can be one of the following values:
2229   *         @arg @ref LL_TIM_CHANNEL_CH1
2230   *         @arg @ref LL_TIM_CHANNEL_CH1N
2231   *         @arg @ref LL_TIM_CHANNEL_CH2
2232   *         @arg @ref LL_TIM_CHANNEL_CH2N
2233   *         @arg @ref LL_TIM_CHANNEL_CH3
2234   *         @arg @ref LL_TIM_CHANNEL_CH3N
2235   *         @arg @ref LL_TIM_CHANNEL_CH4
2236   *         @arg @ref LL_TIM_CHANNEL_CH5
2237   *         @arg @ref LL_TIM_CHANNEL_CH6
2238   * @param  Polarity This parameter can be one of the following values:
2239   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2240   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2241   * @retval None
2242   */
LL_TIM_OC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Polarity)2243 __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity)
2244 {
2245   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2246   MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]),  Polarity << SHIFT_TAB_CCxP[iChannel]);
2247 }
2248 
2249 /**
2250   * @brief  Get the polarity of an output channel.
2251   * @rmtoll CCER         CC1P          LL_TIM_OC_GetPolarity\n
2252   *         CCER         CC1NP         LL_TIM_OC_GetPolarity\n
2253   *         CCER         CC2P          LL_TIM_OC_GetPolarity\n
2254   *         CCER         CC2NP         LL_TIM_OC_GetPolarity\n
2255   *         CCER         CC3P          LL_TIM_OC_GetPolarity\n
2256   *         CCER         CC3NP         LL_TIM_OC_GetPolarity\n
2257   *         CCER         CC4P          LL_TIM_OC_GetPolarity\n
2258   *         CCER         CC5P          LL_TIM_OC_GetPolarity\n
2259   *         CCER         CC6P          LL_TIM_OC_GetPolarity
2260   * @param  TIMx Timer instance
2261   * @param  Channel This parameter can be one of the following values:
2262   *         @arg @ref LL_TIM_CHANNEL_CH1
2263   *         @arg @ref LL_TIM_CHANNEL_CH1N
2264   *         @arg @ref LL_TIM_CHANNEL_CH2
2265   *         @arg @ref LL_TIM_CHANNEL_CH2N
2266   *         @arg @ref LL_TIM_CHANNEL_CH3
2267   *         @arg @ref LL_TIM_CHANNEL_CH3N
2268   *         @arg @ref LL_TIM_CHANNEL_CH4
2269   *         @arg @ref LL_TIM_CHANNEL_CH5
2270   *         @arg @ref LL_TIM_CHANNEL_CH6
2271   * @retval Returned value can be one of the following values:
2272   *         @arg @ref LL_TIM_OCPOLARITY_HIGH
2273   *         @arg @ref LL_TIM_OCPOLARITY_LOW
2274   */
LL_TIM_OC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)2275 __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
2276 {
2277   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2278   return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]);
2279 }
2280 
2281 /**
2282   * @brief  Set the IDLE state of an output channel
2283   * @note This function is significant only for the timer instances
2284   *       supporting the break feature. Macro IS_TIM_BREAK_INSTANCE(TIMx)
2285   *       can be used to check whether or not a timer instance provides
2286   *       a break input.
2287   * @rmtoll CR2         OIS1          LL_TIM_OC_SetIdleState\n
2288   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2289   *         CR2         OIS2          LL_TIM_OC_SetIdleState\n
2290   *         CR2         OIS2N         LL_TIM_OC_SetIdleState\n
2291   *         CR2         OIS3          LL_TIM_OC_SetIdleState\n
2292   *         CR2         OIS3N         LL_TIM_OC_SetIdleState\n
2293   *         CR2         OIS4          LL_TIM_OC_SetIdleState\n
2294   *         CR2         OIS5          LL_TIM_OC_SetIdleState\n
2295   *         CR2         OIS6          LL_TIM_OC_SetIdleState
2296   * @param  TIMx Timer instance
2297   * @param  Channel This parameter can be one of the following values:
2298   *         @arg @ref LL_TIM_CHANNEL_CH1
2299   *         @arg @ref LL_TIM_CHANNEL_CH1N
2300   *         @arg @ref LL_TIM_CHANNEL_CH2
2301   *         @arg @ref LL_TIM_CHANNEL_CH2N
2302   *         @arg @ref LL_TIM_CHANNEL_CH3
2303   *         @arg @ref LL_TIM_CHANNEL_CH3N
2304   *         @arg @ref LL_TIM_CHANNEL_CH4
2305   *         @arg @ref LL_TIM_CHANNEL_CH5
2306   *         @arg @ref LL_TIM_CHANNEL_CH6
2307   * @param  IdleState This parameter can be one of the following values:
2308   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2309   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2310   * @retval None
2311   */
LL_TIM_OC_SetIdleState(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t IdleState)2312 __STATIC_INLINE void LL_TIM_OC_SetIdleState(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t IdleState)
2313 {
2314   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2315   MODIFY_REG(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel]),  IdleState << SHIFT_TAB_OISx[iChannel]);
2316 }
2317 
2318 /**
2319   * @brief  Get the IDLE state of an output channel
2320   * @rmtoll CR2         OIS1          LL_TIM_OC_GetIdleState\n
2321   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2322   *         CR2         OIS2          LL_TIM_OC_GetIdleState\n
2323   *         CR2         OIS2N         LL_TIM_OC_GetIdleState\n
2324   *         CR2         OIS3          LL_TIM_OC_GetIdleState\n
2325   *         CR2         OIS3N         LL_TIM_OC_GetIdleState\n
2326   *         CR2         OIS4          LL_TIM_OC_GetIdleState\n
2327   *         CR2         OIS5          LL_TIM_OC_GetIdleState\n
2328   *         CR2         OIS6          LL_TIM_OC_GetIdleState
2329   * @param  TIMx Timer instance
2330   * @param  Channel This parameter can be one of the following values:
2331   *         @arg @ref LL_TIM_CHANNEL_CH1
2332   *         @arg @ref LL_TIM_CHANNEL_CH1N
2333   *         @arg @ref LL_TIM_CHANNEL_CH2
2334   *         @arg @ref LL_TIM_CHANNEL_CH2N
2335   *         @arg @ref LL_TIM_CHANNEL_CH3
2336   *         @arg @ref LL_TIM_CHANNEL_CH3N
2337   *         @arg @ref LL_TIM_CHANNEL_CH4
2338   *         @arg @ref LL_TIM_CHANNEL_CH5
2339   *         @arg @ref LL_TIM_CHANNEL_CH6
2340   * @retval Returned value can be one of the following values:
2341   *         @arg @ref LL_TIM_OCIDLESTATE_LOW
2342   *         @arg @ref LL_TIM_OCIDLESTATE_HIGH
2343   */
LL_TIM_OC_GetIdleState(const TIM_TypeDef * TIMx,uint32_t Channel)2344 __STATIC_INLINE uint32_t LL_TIM_OC_GetIdleState(const TIM_TypeDef *TIMx, uint32_t Channel)
2345 {
2346   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2347   return (READ_BIT(TIMx->CR2, (TIM_CR2_OIS1 << SHIFT_TAB_OISx[iChannel])) >> SHIFT_TAB_OISx[iChannel]);
2348 }
2349 
2350 /**
2351   * @brief  Enable fast mode for the output channel.
2352   * @note Acts only if the channel is configured in PWM1 or PWM2 mode.
2353   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_EnableFast\n
2354   *         CCMR1        OC2FE          LL_TIM_OC_EnableFast\n
2355   *         CCMR2        OC3FE          LL_TIM_OC_EnableFast\n
2356   *         CCMR2        OC4FE          LL_TIM_OC_EnableFast\n
2357   *         CCMR3        OC5FE          LL_TIM_OC_EnableFast\n
2358   *         CCMR3        OC6FE          LL_TIM_OC_EnableFast
2359   * @param  TIMx Timer instance
2360   * @param  Channel This parameter can be one of the following values:
2361   *         @arg @ref LL_TIM_CHANNEL_CH1
2362   *         @arg @ref LL_TIM_CHANNEL_CH2
2363   *         @arg @ref LL_TIM_CHANNEL_CH3
2364   *         @arg @ref LL_TIM_CHANNEL_CH4
2365   *         @arg @ref LL_TIM_CHANNEL_CH5
2366   *         @arg @ref LL_TIM_CHANNEL_CH6
2367   * @retval None
2368   */
LL_TIM_OC_EnableFast(TIM_TypeDef * TIMx,uint32_t Channel)2369 __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2370 {
2371   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2372   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2373   SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2374 
2375 }
2376 
2377 /**
2378   * @brief  Disable fast mode for the output channel.
2379   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_DisableFast\n
2380   *         CCMR1        OC2FE          LL_TIM_OC_DisableFast\n
2381   *         CCMR2        OC3FE          LL_TIM_OC_DisableFast\n
2382   *         CCMR2        OC4FE          LL_TIM_OC_DisableFast\n
2383   *         CCMR3        OC5FE          LL_TIM_OC_DisableFast\n
2384   *         CCMR3        OC6FE          LL_TIM_OC_DisableFast
2385   * @param  TIMx Timer instance
2386   * @param  Channel This parameter can be one of the following values:
2387   *         @arg @ref LL_TIM_CHANNEL_CH1
2388   *         @arg @ref LL_TIM_CHANNEL_CH2
2389   *         @arg @ref LL_TIM_CHANNEL_CH3
2390   *         @arg @ref LL_TIM_CHANNEL_CH4
2391   *         @arg @ref LL_TIM_CHANNEL_CH5
2392   *         @arg @ref LL_TIM_CHANNEL_CH6
2393   * @retval None
2394   */
LL_TIM_OC_DisableFast(TIM_TypeDef * TIMx,uint32_t Channel)2395 __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel)
2396 {
2397   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2398   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2399   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]));
2400 
2401 }
2402 
2403 /**
2404   * @brief  Indicates whether fast mode is enabled for the output channel.
2405   * @rmtoll CCMR1        OC1FE          LL_TIM_OC_IsEnabledFast\n
2406   *         CCMR1        OC2FE          LL_TIM_OC_IsEnabledFast\n
2407   *         CCMR2        OC3FE          LL_TIM_OC_IsEnabledFast\n
2408   *         CCMR2        OC4FE          LL_TIM_OC_IsEnabledFast\n
2409   *         CCMR3        OC5FE          LL_TIM_OC_IsEnabledFast\n
2410   *         CCMR3        OC6FE          LL_TIM_OC_IsEnabledFast
2411   * @param  TIMx Timer instance
2412   * @param  Channel This parameter can be one of the following values:
2413   *         @arg @ref LL_TIM_CHANNEL_CH1
2414   *         @arg @ref LL_TIM_CHANNEL_CH2
2415   *         @arg @ref LL_TIM_CHANNEL_CH3
2416   *         @arg @ref LL_TIM_CHANNEL_CH4
2417   *         @arg @ref LL_TIM_CHANNEL_CH5
2418   *         @arg @ref LL_TIM_CHANNEL_CH6
2419   * @retval State of bit (1 or 0).
2420   */
LL_TIM_OC_IsEnabledFast(const TIM_TypeDef * TIMx,uint32_t Channel)2421 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(const TIM_TypeDef *TIMx, uint32_t Channel)
2422 {
2423   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2424   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2425   uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel];
2426   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2427 }
2428 
2429 /**
2430   * @brief  Enable compare register (TIMx_CCRx) preload for the output channel.
2431   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_EnablePreload\n
2432   *         CCMR1        OC2PE          LL_TIM_OC_EnablePreload\n
2433   *         CCMR2        OC3PE          LL_TIM_OC_EnablePreload\n
2434   *         CCMR2        OC4PE          LL_TIM_OC_EnablePreload\n
2435   *         CCMR3        OC5PE          LL_TIM_OC_EnablePreload\n
2436   *         CCMR3        OC6PE          LL_TIM_OC_EnablePreload
2437   * @param  TIMx Timer instance
2438   * @param  Channel This parameter can be one of the following values:
2439   *         @arg @ref LL_TIM_CHANNEL_CH1
2440   *         @arg @ref LL_TIM_CHANNEL_CH2
2441   *         @arg @ref LL_TIM_CHANNEL_CH3
2442   *         @arg @ref LL_TIM_CHANNEL_CH4
2443   *         @arg @ref LL_TIM_CHANNEL_CH5
2444   *         @arg @ref LL_TIM_CHANNEL_CH6
2445   * @retval None
2446   */
LL_TIM_OC_EnablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2447 __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2448 {
2449   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2450   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2451   SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2452 }
2453 
2454 /**
2455   * @brief  Disable compare register (TIMx_CCRx) preload for the output channel.
2456   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_DisablePreload\n
2457   *         CCMR1        OC2PE          LL_TIM_OC_DisablePreload\n
2458   *         CCMR2        OC3PE          LL_TIM_OC_DisablePreload\n
2459   *         CCMR2        OC4PE          LL_TIM_OC_DisablePreload\n
2460   *         CCMR3        OC5PE          LL_TIM_OC_DisablePreload\n
2461   *         CCMR3        OC6PE          LL_TIM_OC_DisablePreload
2462   * @param  TIMx Timer instance
2463   * @param  Channel This parameter can be one of the following values:
2464   *         @arg @ref LL_TIM_CHANNEL_CH1
2465   *         @arg @ref LL_TIM_CHANNEL_CH2
2466   *         @arg @ref LL_TIM_CHANNEL_CH3
2467   *         @arg @ref LL_TIM_CHANNEL_CH4
2468   *         @arg @ref LL_TIM_CHANNEL_CH5
2469   *         @arg @ref LL_TIM_CHANNEL_CH6
2470   * @retval None
2471   */
LL_TIM_OC_DisablePreload(TIM_TypeDef * TIMx,uint32_t Channel)2472 __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel)
2473 {
2474   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2475   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2476   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]));
2477 }
2478 
2479 /**
2480   * @brief  Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel.
2481   * @rmtoll CCMR1        OC1PE          LL_TIM_OC_IsEnabledPreload\n
2482   *         CCMR1        OC2PE          LL_TIM_OC_IsEnabledPreload\n
2483   *         CCMR2        OC3PE          LL_TIM_OC_IsEnabledPreload\n
2484   *         CCMR2        OC4PE          LL_TIM_OC_IsEnabledPreload\n
2485   *         CCMR3        OC5PE          LL_TIM_OC_IsEnabledPreload\n
2486   *         CCMR3        OC6PE          LL_TIM_OC_IsEnabledPreload
2487   * @param  TIMx Timer instance
2488   * @param  Channel This parameter can be one of the following values:
2489   *         @arg @ref LL_TIM_CHANNEL_CH1
2490   *         @arg @ref LL_TIM_CHANNEL_CH2
2491   *         @arg @ref LL_TIM_CHANNEL_CH3
2492   *         @arg @ref LL_TIM_CHANNEL_CH4
2493   *         @arg @ref LL_TIM_CHANNEL_CH5
2494   *         @arg @ref LL_TIM_CHANNEL_CH6
2495   * @retval State of bit (1 or 0).
2496   */
LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef * TIMx,uint32_t Channel)2497 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(const TIM_TypeDef *TIMx, uint32_t Channel)
2498 {
2499   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2500   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2501   uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel];
2502   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2503 }
2504 
2505 /**
2506   * @brief  Enable clearing the output channel on an external event.
2507   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2508   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2509   *       or not a timer instance can clear the OCxREF signal on an external event.
2510   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_EnableClear\n
2511   *         CCMR1        OC2CE          LL_TIM_OC_EnableClear\n
2512   *         CCMR2        OC3CE          LL_TIM_OC_EnableClear\n
2513   *         CCMR2        OC4CE          LL_TIM_OC_EnableClear\n
2514   *         CCMR3        OC5CE          LL_TIM_OC_EnableClear\n
2515   *         CCMR3        OC6CE          LL_TIM_OC_EnableClear
2516   * @param  TIMx Timer instance
2517   * @param  Channel This parameter can be one of the following values:
2518   *         @arg @ref LL_TIM_CHANNEL_CH1
2519   *         @arg @ref LL_TIM_CHANNEL_CH2
2520   *         @arg @ref LL_TIM_CHANNEL_CH3
2521   *         @arg @ref LL_TIM_CHANNEL_CH4
2522   *         @arg @ref LL_TIM_CHANNEL_CH5
2523   *         @arg @ref LL_TIM_CHANNEL_CH6
2524   * @retval None
2525   */
LL_TIM_OC_EnableClear(TIM_TypeDef * TIMx,uint32_t Channel)2526 __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2527 {
2528   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2529   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2530   SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2531 }
2532 
2533 /**
2534   * @brief  Disable clearing the output channel on an external event.
2535   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2536   *       or not a timer instance can clear the OCxREF signal on an external event.
2537   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_DisableClear\n
2538   *         CCMR1        OC2CE          LL_TIM_OC_DisableClear\n
2539   *         CCMR2        OC3CE          LL_TIM_OC_DisableClear\n
2540   *         CCMR2        OC4CE          LL_TIM_OC_DisableClear\n
2541   *         CCMR3        OC5CE          LL_TIM_OC_DisableClear\n
2542   *         CCMR3        OC6CE          LL_TIM_OC_DisableClear
2543   * @param  TIMx Timer instance
2544   * @param  Channel This parameter can be one of the following values:
2545   *         @arg @ref LL_TIM_CHANNEL_CH1
2546   *         @arg @ref LL_TIM_CHANNEL_CH2
2547   *         @arg @ref LL_TIM_CHANNEL_CH3
2548   *         @arg @ref LL_TIM_CHANNEL_CH4
2549   *         @arg @ref LL_TIM_CHANNEL_CH5
2550   *         @arg @ref LL_TIM_CHANNEL_CH6
2551   * @retval None
2552   */
LL_TIM_OC_DisableClear(TIM_TypeDef * TIMx,uint32_t Channel)2553 __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel)
2554 {
2555   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2556   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2557   CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]));
2558 }
2559 
2560 /**
2561   * @brief  Indicates clearing the output channel on an external event is enabled for the output channel.
2562   * @note This function enables clearing the output channel on an external event.
2563   * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode.
2564   * @note Macro IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether
2565   *       or not a timer instance can clear the OCxREF signal on an external event.
2566   * @rmtoll CCMR1        OC1CE          LL_TIM_OC_IsEnabledClear\n
2567   *         CCMR1        OC2CE          LL_TIM_OC_IsEnabledClear\n
2568   *         CCMR2        OC3CE          LL_TIM_OC_IsEnabledClear\n
2569   *         CCMR2        OC4CE          LL_TIM_OC_IsEnabledClear\n
2570   *         CCMR3        OC5CE          LL_TIM_OC_IsEnabledClear\n
2571   *         CCMR3        OC6CE          LL_TIM_OC_IsEnabledClear
2572   * @param  TIMx Timer instance
2573   * @param  Channel This parameter can be one of the following values:
2574   *         @arg @ref LL_TIM_CHANNEL_CH1
2575   *         @arg @ref LL_TIM_CHANNEL_CH2
2576   *         @arg @ref LL_TIM_CHANNEL_CH3
2577   *         @arg @ref LL_TIM_CHANNEL_CH4
2578   *         @arg @ref LL_TIM_CHANNEL_CH5
2579   *         @arg @ref LL_TIM_CHANNEL_CH6
2580   * @retval State of bit (1 or 0).
2581   */
LL_TIM_OC_IsEnabledClear(const TIM_TypeDef * TIMx,uint32_t Channel)2582 __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(const TIM_TypeDef *TIMx, uint32_t Channel)
2583 {
2584   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2585   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2586   uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel];
2587   return ((READ_BIT(*pReg, bitfield) == bitfield) ? 1UL : 0UL);
2588 }
2589 
2590 /**
2591   * @brief  Set the dead-time delay (delay inserted between the rising edge of the OCxREF signal and the rising edge of
2592   *         the Ocx and OCxN signals).
2593   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
2594   *       dead-time insertion feature is supported by a timer instance.
2595   * @note Helper macro @ref __LL_TIM_CALC_DEADTIME can be used to calculate the DeadTime parameter
2596   * @rmtoll BDTR         DTG           LL_TIM_OC_SetDeadTime
2597   * @param  TIMx Timer instance
2598   * @param  DeadTime between Min_Data=0 and Max_Data=255
2599   * @retval None
2600   */
LL_TIM_OC_SetDeadTime(TIM_TypeDef * TIMx,uint32_t DeadTime)2601 __STATIC_INLINE void LL_TIM_OC_SetDeadTime(TIM_TypeDef *TIMx, uint32_t DeadTime)
2602 {
2603   MODIFY_REG(TIMx->BDTR, TIM_BDTR_DTG, DeadTime);
2604 }
2605 
2606 /**
2607   * @brief  Set compare value for output channel 1 (TIMx_CCR1).
2608   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2609   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2610   *       whether or not a timer instance supports a 32 bits counter.
2611   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2612   *       output channel 1 is supported by a timer instance.
2613   * @rmtoll CCR1         CCR1          LL_TIM_OC_SetCompareCH1
2614   * @param  TIMx Timer instance
2615   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2616   * @retval None
2617   */
LL_TIM_OC_SetCompareCH1(TIM_TypeDef * TIMx,uint32_t CompareValue)2618 __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue)
2619 {
2620   WRITE_REG(TIMx->CCR1, CompareValue);
2621 }
2622 
2623 /**
2624   * @brief  Set compare value for output channel 2 (TIMx_CCR2).
2625   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2626   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2627   *       whether or not a timer instance supports a 32 bits counter.
2628   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2629   *       output channel 2 is supported by a timer instance.
2630   * @rmtoll CCR2         CCR2          LL_TIM_OC_SetCompareCH2
2631   * @param  TIMx Timer instance
2632   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2633   * @retval None
2634   */
LL_TIM_OC_SetCompareCH2(TIM_TypeDef * TIMx,uint32_t CompareValue)2635 __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue)
2636 {
2637   WRITE_REG(TIMx->CCR2, CompareValue);
2638 }
2639 
2640 /**
2641   * @brief  Set compare value for output channel 3 (TIMx_CCR3).
2642   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2643   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2644   *       whether or not a timer instance supports a 32 bits counter.
2645   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2646   *       output channel is supported by a timer instance.
2647   * @rmtoll CCR3         CCR3          LL_TIM_OC_SetCompareCH3
2648   * @param  TIMx Timer instance
2649   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2650   * @retval None
2651   */
LL_TIM_OC_SetCompareCH3(TIM_TypeDef * TIMx,uint32_t CompareValue)2652 __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue)
2653 {
2654   WRITE_REG(TIMx->CCR3, CompareValue);
2655 }
2656 
2657 /**
2658   * @brief  Set compare value for output channel 4 (TIMx_CCR4).
2659   * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF.
2660   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2661   *       whether or not a timer instance supports a 32 bits counter.
2662   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2663   *       output channel 4 is supported by a timer instance.
2664   * @rmtoll CCR4         CCR4          LL_TIM_OC_SetCompareCH4
2665   * @param  TIMx Timer instance
2666   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2667   * @retval None
2668   */
LL_TIM_OC_SetCompareCH4(TIM_TypeDef * TIMx,uint32_t CompareValue)2669 __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue)
2670 {
2671   WRITE_REG(TIMx->CCR4, CompareValue);
2672 }
2673 
2674 /**
2675   * @brief  Set compare value for output channel 5 (TIMx_CCR5).
2676   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2677   *       output channel 5 is supported by a timer instance.
2678   * @rmtoll CCR5         CCR5          LL_TIM_OC_SetCompareCH5
2679   * @param  TIMx Timer instance
2680   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2681   * @retval None
2682   */
LL_TIM_OC_SetCompareCH5(TIM_TypeDef * TIMx,uint32_t CompareValue)2683 __STATIC_INLINE void LL_TIM_OC_SetCompareCH5(TIM_TypeDef *TIMx, uint32_t CompareValue)
2684 {
2685   MODIFY_REG(TIMx->CCR5, TIM_CCR5_CCR5, CompareValue);
2686 }
2687 
2688 /**
2689   * @brief  Set compare value for output channel 6 (TIMx_CCR6).
2690   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2691   *       output channel 6 is supported by a timer instance.
2692   * @rmtoll CCR6         CCR6          LL_TIM_OC_SetCompareCH6
2693   * @param  TIMx Timer instance
2694   * @param  CompareValue between Min_Data=0 and Max_Data=65535
2695   * @retval None
2696   */
LL_TIM_OC_SetCompareCH6(TIM_TypeDef * TIMx,uint32_t CompareValue)2697 __STATIC_INLINE void LL_TIM_OC_SetCompareCH6(TIM_TypeDef *TIMx, uint32_t CompareValue)
2698 {
2699   WRITE_REG(TIMx->CCR6, CompareValue);
2700 }
2701 
2702 /**
2703   * @brief  Get compare value (TIMx_CCR1) set for  output channel 1.
2704   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2705   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2706   *       whether or not a timer instance supports a 32 bits counter.
2707   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
2708   *       output channel 1 is supported by a timer instance.
2709   * @rmtoll CCR1         CCR1          LL_TIM_OC_GetCompareCH1
2710   * @param  TIMx Timer instance
2711   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2712   */
LL_TIM_OC_GetCompareCH1(const TIM_TypeDef * TIMx)2713 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(const TIM_TypeDef *TIMx)
2714 {
2715   return (uint32_t)(READ_REG(TIMx->CCR1));
2716 }
2717 
2718 /**
2719   * @brief  Get compare value (TIMx_CCR2) set for  output channel 2.
2720   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2721   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2722   *       whether or not a timer instance supports a 32 bits counter.
2723   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
2724   *       output channel 2 is supported by a timer instance.
2725   * @rmtoll CCR2         CCR2          LL_TIM_OC_GetCompareCH2
2726   * @param  TIMx Timer instance
2727   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2728   */
LL_TIM_OC_GetCompareCH2(const TIM_TypeDef * TIMx)2729 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(const TIM_TypeDef *TIMx)
2730 {
2731   return (uint32_t)(READ_REG(TIMx->CCR2));
2732 }
2733 
2734 /**
2735   * @brief  Get compare value (TIMx_CCR3) set for  output channel 3.
2736   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2737   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2738   *       whether or not a timer instance supports a 32 bits counter.
2739   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
2740   *       output channel 3 is supported by a timer instance.
2741   * @rmtoll CCR3         CCR3          LL_TIM_OC_GetCompareCH3
2742   * @param  TIMx Timer instance
2743   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2744   */
LL_TIM_OC_GetCompareCH3(const TIM_TypeDef * TIMx)2745 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(const TIM_TypeDef *TIMx)
2746 {
2747   return (uint32_t)(READ_REG(TIMx->CCR3));
2748 }
2749 
2750 /**
2751   * @brief  Get compare value (TIMx_CCR4) set for  output channel 4.
2752   * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF.
2753   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
2754   *       whether or not a timer instance supports a 32 bits counter.
2755   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
2756   *       output channel 4 is supported by a timer instance.
2757   * @rmtoll CCR4         CCR4          LL_TIM_OC_GetCompareCH4
2758   * @param  TIMx Timer instance
2759   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2760   */
LL_TIM_OC_GetCompareCH4(const TIM_TypeDef * TIMx)2761 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(const TIM_TypeDef *TIMx)
2762 {
2763   return (uint32_t)(READ_REG(TIMx->CCR4));
2764 }
2765 
2766 /**
2767   * @brief  Get compare value (TIMx_CCR5) set for  output channel 5.
2768   * @note Macro IS_TIM_CC5_INSTANCE(TIMx) can be used to check whether or not
2769   *       output channel 5 is supported by a timer instance.
2770   * @rmtoll CCR5         CCR5          LL_TIM_OC_GetCompareCH5
2771   * @param  TIMx Timer instance
2772   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2773   */
LL_TIM_OC_GetCompareCH5(const TIM_TypeDef * TIMx)2774 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH5(const TIM_TypeDef *TIMx)
2775 {
2776   return (uint32_t)(READ_BIT(TIMx->CCR5, TIM_CCR5_CCR5));
2777 }
2778 
2779 /**
2780   * @brief  Get compare value (TIMx_CCR6) set for  output channel 6.
2781   * @note Macro IS_TIM_CC6_INSTANCE(TIMx) can be used to check whether or not
2782   *       output channel 6 is supported by a timer instance.
2783   * @rmtoll CCR6         CCR6          LL_TIM_OC_GetCompareCH6
2784   * @param  TIMx Timer instance
2785   * @retval CompareValue (between Min_Data=0 and Max_Data=65535)
2786   */
LL_TIM_OC_GetCompareCH6(const TIM_TypeDef * TIMx)2787 __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH6(const TIM_TypeDef *TIMx)
2788 {
2789   return (uint32_t)(READ_REG(TIMx->CCR6));
2790 }
2791 
2792 /**
2793   * @brief  Select on which reference signal the OC5REF is combined to.
2794   * @note Macro IS_TIM_COMBINED3PHASEPWM_INSTANCE(TIMx) can be used to check
2795   *       whether or not a timer instance supports the combined 3-phase PWM mode.
2796   * @rmtoll CCR5         GC5C3          LL_TIM_SetCH5CombinedChannels\n
2797   *         CCR5         GC5C2          LL_TIM_SetCH5CombinedChannels\n
2798   *         CCR5         GC5C1          LL_TIM_SetCH5CombinedChannels
2799   * @param  TIMx Timer instance
2800   * @param  GroupCH5 This parameter can be a combination of the following values:
2801   *         @arg @ref LL_TIM_GROUPCH5_NONE
2802   *         @arg @ref LL_TIM_GROUPCH5_OC1REFC
2803   *         @arg @ref LL_TIM_GROUPCH5_OC2REFC
2804   *         @arg @ref LL_TIM_GROUPCH5_OC3REFC
2805   * @retval None
2806   */
LL_TIM_SetCH5CombinedChannels(TIM_TypeDef * TIMx,uint32_t GroupCH5)2807 __STATIC_INLINE void LL_TIM_SetCH5CombinedChannels(TIM_TypeDef *TIMx, uint32_t GroupCH5)
2808 {
2809   MODIFY_REG(TIMx->CCR5, (TIM_CCR5_GC5C3 | TIM_CCR5_GC5C2 | TIM_CCR5_GC5C1), GroupCH5);
2810 }
2811 
2812 /**
2813   * @}
2814   */
2815 
2816 /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration
2817   * @{
2818   */
2819 /**
2820   * @brief  Configure input channel.
2821   * @rmtoll CCMR1        CC1S          LL_TIM_IC_Config\n
2822   *         CCMR1        IC1PSC        LL_TIM_IC_Config\n
2823   *         CCMR1        IC1F          LL_TIM_IC_Config\n
2824   *         CCMR1        CC2S          LL_TIM_IC_Config\n
2825   *         CCMR1        IC2PSC        LL_TIM_IC_Config\n
2826   *         CCMR1        IC2F          LL_TIM_IC_Config\n
2827   *         CCMR2        CC3S          LL_TIM_IC_Config\n
2828   *         CCMR2        IC3PSC        LL_TIM_IC_Config\n
2829   *         CCMR2        IC3F          LL_TIM_IC_Config\n
2830   *         CCMR2        CC4S          LL_TIM_IC_Config\n
2831   *         CCMR2        IC4PSC        LL_TIM_IC_Config\n
2832   *         CCMR2        IC4F          LL_TIM_IC_Config\n
2833   *         CCER         CC1P          LL_TIM_IC_Config\n
2834   *         CCER         CC1NP         LL_TIM_IC_Config\n
2835   *         CCER         CC2P          LL_TIM_IC_Config\n
2836   *         CCER         CC2NP         LL_TIM_IC_Config\n
2837   *         CCER         CC3P          LL_TIM_IC_Config\n
2838   *         CCER         CC3NP         LL_TIM_IC_Config\n
2839   *         CCER         CC4P          LL_TIM_IC_Config\n
2840   *         CCER         CC4NP         LL_TIM_IC_Config
2841   * @param  TIMx Timer instance
2842   * @param  Channel This parameter can be one of the following values:
2843   *         @arg @ref LL_TIM_CHANNEL_CH1
2844   *         @arg @ref LL_TIM_CHANNEL_CH2
2845   *         @arg @ref LL_TIM_CHANNEL_CH3
2846   *         @arg @ref LL_TIM_CHANNEL_CH4
2847   * @param  Configuration This parameter must be a combination of all the following values:
2848   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC
2849   *         @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8
2850   *         @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8
2851   *         @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE
2852   * @retval None
2853   */
LL_TIM_IC_Config(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t Configuration)2854 __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration)
2855 {
2856   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2857   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2858   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]),
2859              ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S))                \
2860              << SHIFT_TAB_ICxx[iChannel]);
2861   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
2862              (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]);
2863 }
2864 
2865 /**
2866   * @brief  Set the active input.
2867   * @rmtoll CCMR1        CC1S          LL_TIM_IC_SetActiveInput\n
2868   *         CCMR1        CC2S          LL_TIM_IC_SetActiveInput\n
2869   *         CCMR2        CC3S          LL_TIM_IC_SetActiveInput\n
2870   *         CCMR2        CC4S          LL_TIM_IC_SetActiveInput
2871   * @param  TIMx Timer instance
2872   * @param  Channel This parameter can be one of the following values:
2873   *         @arg @ref LL_TIM_CHANNEL_CH1
2874   *         @arg @ref LL_TIM_CHANNEL_CH2
2875   *         @arg @ref LL_TIM_CHANNEL_CH3
2876   *         @arg @ref LL_TIM_CHANNEL_CH4
2877   * @param  ICActiveInput This parameter can be one of the following values:
2878   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2879   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2880   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2881   * @retval None
2882   */
LL_TIM_IC_SetActiveInput(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICActiveInput)2883 __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput)
2884 {
2885   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2886   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2887   MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2888 }
2889 
2890 /**
2891   * @brief  Get the current active input.
2892   * @rmtoll CCMR1        CC1S          LL_TIM_IC_GetActiveInput\n
2893   *         CCMR1        CC2S          LL_TIM_IC_GetActiveInput\n
2894   *         CCMR2        CC3S          LL_TIM_IC_GetActiveInput\n
2895   *         CCMR2        CC4S          LL_TIM_IC_GetActiveInput
2896   * @param  TIMx Timer instance
2897   * @param  Channel This parameter can be one of the following values:
2898   *         @arg @ref LL_TIM_CHANNEL_CH1
2899   *         @arg @ref LL_TIM_CHANNEL_CH2
2900   *         @arg @ref LL_TIM_CHANNEL_CH3
2901   *         @arg @ref LL_TIM_CHANNEL_CH4
2902   * @retval Returned value can be one of the following values:
2903   *         @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI
2904   *         @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI
2905   *         @arg @ref LL_TIM_ACTIVEINPUT_TRC
2906   */
LL_TIM_IC_GetActiveInput(const TIM_TypeDef * TIMx,uint32_t Channel)2907 __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(const TIM_TypeDef *TIMx, uint32_t Channel)
2908 {
2909   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2910   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2911   return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2912 }
2913 
2914 /**
2915   * @brief  Set the prescaler of input channel.
2916   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_SetPrescaler\n
2917   *         CCMR1        IC2PSC        LL_TIM_IC_SetPrescaler\n
2918   *         CCMR2        IC3PSC        LL_TIM_IC_SetPrescaler\n
2919   *         CCMR2        IC4PSC        LL_TIM_IC_SetPrescaler
2920   * @param  TIMx Timer instance
2921   * @param  Channel This parameter can be one of the following values:
2922   *         @arg @ref LL_TIM_CHANNEL_CH1
2923   *         @arg @ref LL_TIM_CHANNEL_CH2
2924   *         @arg @ref LL_TIM_CHANNEL_CH3
2925   *         @arg @ref LL_TIM_CHANNEL_CH4
2926   * @param  ICPrescaler This parameter can be one of the following values:
2927   *         @arg @ref LL_TIM_ICPSC_DIV1
2928   *         @arg @ref LL_TIM_ICPSC_DIV2
2929   *         @arg @ref LL_TIM_ICPSC_DIV4
2930   *         @arg @ref LL_TIM_ICPSC_DIV8
2931   * @retval None
2932   */
LL_TIM_IC_SetPrescaler(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPrescaler)2933 __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler)
2934 {
2935   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2936   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2937   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]);
2938 }
2939 
2940 /**
2941   * @brief  Get the current prescaler value acting on an  input channel.
2942   * @rmtoll CCMR1        IC1PSC        LL_TIM_IC_GetPrescaler\n
2943   *         CCMR1        IC2PSC        LL_TIM_IC_GetPrescaler\n
2944   *         CCMR2        IC3PSC        LL_TIM_IC_GetPrescaler\n
2945   *         CCMR2        IC4PSC        LL_TIM_IC_GetPrescaler
2946   * @param  TIMx Timer instance
2947   * @param  Channel This parameter can be one of the following values:
2948   *         @arg @ref LL_TIM_CHANNEL_CH1
2949   *         @arg @ref LL_TIM_CHANNEL_CH2
2950   *         @arg @ref LL_TIM_CHANNEL_CH3
2951   *         @arg @ref LL_TIM_CHANNEL_CH4
2952   * @retval Returned value can be one of the following values:
2953   *         @arg @ref LL_TIM_ICPSC_DIV1
2954   *         @arg @ref LL_TIM_ICPSC_DIV2
2955   *         @arg @ref LL_TIM_ICPSC_DIV4
2956   *         @arg @ref LL_TIM_ICPSC_DIV8
2957   */
LL_TIM_IC_GetPrescaler(const TIM_TypeDef * TIMx,uint32_t Channel)2958 __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(const TIM_TypeDef *TIMx, uint32_t Channel)
2959 {
2960   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2961   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
2962   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
2963 }
2964 
2965 /**
2966   * @brief  Set the input filter duration.
2967   * @rmtoll CCMR1        IC1F          LL_TIM_IC_SetFilter\n
2968   *         CCMR1        IC2F          LL_TIM_IC_SetFilter\n
2969   *         CCMR2        IC3F          LL_TIM_IC_SetFilter\n
2970   *         CCMR2        IC4F          LL_TIM_IC_SetFilter
2971   * @param  TIMx Timer instance
2972   * @param  Channel This parameter can be one of the following values:
2973   *         @arg @ref LL_TIM_CHANNEL_CH1
2974   *         @arg @ref LL_TIM_CHANNEL_CH2
2975   *         @arg @ref LL_TIM_CHANNEL_CH3
2976   *         @arg @ref LL_TIM_CHANNEL_CH4
2977   * @param  ICFilter This parameter can be one of the following values:
2978   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
2979   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
2980   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
2981   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
2982   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
2983   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
2984   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
2985   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
2986   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
2987   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
2988   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
2989   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
2990   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
2991   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
2992   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
2993   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
2994   * @retval None
2995   */
LL_TIM_IC_SetFilter(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICFilter)2996 __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter)
2997 {
2998   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
2999   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3000   MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]);
3001 }
3002 
3003 /**
3004   * @brief  Get the input filter duration.
3005   * @rmtoll CCMR1        IC1F          LL_TIM_IC_GetFilter\n
3006   *         CCMR1        IC2F          LL_TIM_IC_GetFilter\n
3007   *         CCMR2        IC3F          LL_TIM_IC_GetFilter\n
3008   *         CCMR2        IC4F          LL_TIM_IC_GetFilter
3009   * @param  TIMx Timer instance
3010   * @param  Channel This parameter can be one of the following values:
3011   *         @arg @ref LL_TIM_CHANNEL_CH1
3012   *         @arg @ref LL_TIM_CHANNEL_CH2
3013   *         @arg @ref LL_TIM_CHANNEL_CH3
3014   *         @arg @ref LL_TIM_CHANNEL_CH4
3015   * @retval Returned value can be one of the following values:
3016   *         @arg @ref LL_TIM_IC_FILTER_FDIV1
3017   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N2
3018   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N4
3019   *         @arg @ref LL_TIM_IC_FILTER_FDIV1_N8
3020   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N6
3021   *         @arg @ref LL_TIM_IC_FILTER_FDIV2_N8
3022   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N6
3023   *         @arg @ref LL_TIM_IC_FILTER_FDIV4_N8
3024   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N6
3025   *         @arg @ref LL_TIM_IC_FILTER_FDIV8_N8
3026   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N5
3027   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N6
3028   *         @arg @ref LL_TIM_IC_FILTER_FDIV16_N8
3029   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N5
3030   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N6
3031   *         @arg @ref LL_TIM_IC_FILTER_FDIV32_N8
3032   */
LL_TIM_IC_GetFilter(const TIM_TypeDef * TIMx,uint32_t Channel)3033 __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(const TIM_TypeDef *TIMx, uint32_t Channel)
3034 {
3035   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3036   const __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel]));
3037   return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U);
3038 }
3039 
3040 /**
3041   * @brief  Set the input channel polarity.
3042   * @rmtoll CCER         CC1P          LL_TIM_IC_SetPolarity\n
3043   *         CCER         CC1NP         LL_TIM_IC_SetPolarity\n
3044   *         CCER         CC2P          LL_TIM_IC_SetPolarity\n
3045   *         CCER         CC2NP         LL_TIM_IC_SetPolarity\n
3046   *         CCER         CC3P          LL_TIM_IC_SetPolarity\n
3047   *         CCER         CC3NP         LL_TIM_IC_SetPolarity\n
3048   *         CCER         CC4P          LL_TIM_IC_SetPolarity\n
3049   *         CCER         CC4NP         LL_TIM_IC_SetPolarity
3050   * @param  TIMx Timer instance
3051   * @param  Channel This parameter can be one of the following values:
3052   *         @arg @ref LL_TIM_CHANNEL_CH1
3053   *         @arg @ref LL_TIM_CHANNEL_CH2
3054   *         @arg @ref LL_TIM_CHANNEL_CH3
3055   *         @arg @ref LL_TIM_CHANNEL_CH4
3056   * @param  ICPolarity This parameter can be one of the following values:
3057   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3058   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3059   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3060   * @retval None
3061   */
LL_TIM_IC_SetPolarity(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ICPolarity)3062 __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity)
3063 {
3064   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3065   MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]),
3066              ICPolarity << SHIFT_TAB_CCxP[iChannel]);
3067 }
3068 
3069 /**
3070   * @brief  Get the current input channel polarity.
3071   * @rmtoll CCER         CC1P          LL_TIM_IC_GetPolarity\n
3072   *         CCER         CC1NP         LL_TIM_IC_GetPolarity\n
3073   *         CCER         CC2P          LL_TIM_IC_GetPolarity\n
3074   *         CCER         CC2NP         LL_TIM_IC_GetPolarity\n
3075   *         CCER         CC3P          LL_TIM_IC_GetPolarity\n
3076   *         CCER         CC3NP         LL_TIM_IC_GetPolarity\n
3077   *         CCER         CC4P          LL_TIM_IC_GetPolarity\n
3078   *         CCER         CC4NP         LL_TIM_IC_GetPolarity
3079   * @param  TIMx Timer instance
3080   * @param  Channel This parameter can be one of the following values:
3081   *         @arg @ref LL_TIM_CHANNEL_CH1
3082   *         @arg @ref LL_TIM_CHANNEL_CH2
3083   *         @arg @ref LL_TIM_CHANNEL_CH3
3084   *         @arg @ref LL_TIM_CHANNEL_CH4
3085   * @retval Returned value can be one of the following values:
3086   *         @arg @ref LL_TIM_IC_POLARITY_RISING
3087   *         @arg @ref LL_TIM_IC_POLARITY_FALLING
3088   *         @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE
3089   */
LL_TIM_IC_GetPolarity(const TIM_TypeDef * TIMx,uint32_t Channel)3090 __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(const TIM_TypeDef *TIMx, uint32_t Channel)
3091 {
3092   uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel);
3093   return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >>
3094           SHIFT_TAB_CCxP[iChannel]);
3095 }
3096 
3097 /**
3098   * @brief  Connect the TIMx_CH1, CH2 and CH3 pins  to the TI1 input (XOR combination).
3099   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3100   *       a timer instance provides an XOR input.
3101   * @rmtoll CR2          TI1S          LL_TIM_IC_EnableXORCombination
3102   * @param  TIMx Timer instance
3103   * @retval None
3104   */
LL_TIM_IC_EnableXORCombination(TIM_TypeDef * TIMx)3105 __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx)
3106 {
3107   SET_BIT(TIMx->CR2, TIM_CR2_TI1S);
3108 }
3109 
3110 /**
3111   * @brief  Disconnect the TIMx_CH1, CH2 and CH3 pins  from the TI1 input.
3112   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3113   *       a timer instance provides an XOR input.
3114   * @rmtoll CR2          TI1S          LL_TIM_IC_DisableXORCombination
3115   * @param  TIMx Timer instance
3116   * @retval None
3117   */
LL_TIM_IC_DisableXORCombination(TIM_TypeDef * TIMx)3118 __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx)
3119 {
3120   CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S);
3121 }
3122 
3123 /**
3124   * @brief  Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input.
3125   * @note Macro IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not
3126   * a timer instance provides an XOR input.
3127   * @rmtoll CR2          TI1S          LL_TIM_IC_IsEnabledXORCombination
3128   * @param  TIMx Timer instance
3129   * @retval State of bit (1 or 0).
3130   */
LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef * TIMx)3131 __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(const TIM_TypeDef *TIMx)
3132 {
3133   return ((READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)) ? 1UL : 0UL);
3134 }
3135 
3136 /**
3137   * @brief  Get captured value for input channel 1.
3138   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3139   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3140   *       whether or not a timer instance supports a 32 bits counter.
3141   * @note Macro IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not
3142   *       input channel 1 is supported by a timer instance.
3143   * @rmtoll CCR1         CCR1          LL_TIM_IC_GetCaptureCH1
3144   * @param  TIMx Timer instance
3145   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3146   */
LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef * TIMx)3147 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(const TIM_TypeDef *TIMx)
3148 {
3149   return (uint32_t)(READ_REG(TIMx->CCR1));
3150 }
3151 
3152 /**
3153   * @brief  Get captured value for input channel 2.
3154   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3155   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3156   *       whether or not a timer instance supports a 32 bits counter.
3157   * @note Macro IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not
3158   *       input channel 2 is supported by a timer instance.
3159   * @rmtoll CCR2         CCR2          LL_TIM_IC_GetCaptureCH2
3160   * @param  TIMx Timer instance
3161   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3162   */
LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef * TIMx)3163 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(const TIM_TypeDef *TIMx)
3164 {
3165   return (uint32_t)(READ_REG(TIMx->CCR2));
3166 }
3167 
3168 /**
3169   * @brief  Get captured value for input channel 3.
3170   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3171   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3172   *       whether or not a timer instance supports a 32 bits counter.
3173   * @note Macro IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not
3174   *       input channel 3 is supported by a timer instance.
3175   * @rmtoll CCR3         CCR3          LL_TIM_IC_GetCaptureCH3
3176   * @param  TIMx Timer instance
3177   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3178   */
LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef * TIMx)3179 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(const TIM_TypeDef *TIMx)
3180 {
3181   return (uint32_t)(READ_REG(TIMx->CCR3));
3182 }
3183 
3184 /**
3185   * @brief  Get captured value for input channel 4.
3186   * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF.
3187   * @note Macro IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check
3188   *       whether or not a timer instance supports a 32 bits counter.
3189   * @note Macro IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not
3190   *       input channel 4 is supported by a timer instance.
3191   * @rmtoll CCR4         CCR4          LL_TIM_IC_GetCaptureCH4
3192   * @param  TIMx Timer instance
3193   * @retval CapturedValue (between Min_Data=0 and Max_Data=65535)
3194   */
LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef * TIMx)3195 __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(const TIM_TypeDef *TIMx)
3196 {
3197   return (uint32_t)(READ_REG(TIMx->CCR4));
3198 }
3199 
3200 /**
3201   * @}
3202   */
3203 
3204 /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection
3205   * @{
3206   */
3207 /**
3208   * @brief  Enable external clock mode 2.
3209   * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal.
3210   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3211   *       whether or not a timer instance supports external clock mode2.
3212   * @rmtoll SMCR         ECE           LL_TIM_EnableExternalClock
3213   * @param  TIMx Timer instance
3214   * @retval None
3215   */
LL_TIM_EnableExternalClock(TIM_TypeDef * TIMx)3216 __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx)
3217 {
3218   SET_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3219 }
3220 
3221 /**
3222   * @brief  Disable external clock mode 2.
3223   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3224   *       whether or not a timer instance supports external clock mode2.
3225   * @rmtoll SMCR         ECE           LL_TIM_DisableExternalClock
3226   * @param  TIMx Timer instance
3227   * @retval None
3228   */
LL_TIM_DisableExternalClock(TIM_TypeDef * TIMx)3229 __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx)
3230 {
3231   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE);
3232 }
3233 
3234 /**
3235   * @brief  Indicate whether external clock mode 2 is enabled.
3236   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3237   *       whether or not a timer instance supports external clock mode2.
3238   * @rmtoll SMCR         ECE           LL_TIM_IsEnabledExternalClock
3239   * @param  TIMx Timer instance
3240   * @retval State of bit (1 or 0).
3241   */
LL_TIM_IsEnabledExternalClock(const TIM_TypeDef * TIMx)3242 __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(const TIM_TypeDef *TIMx)
3243 {
3244   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)) ? 1UL : 0UL);
3245 }
3246 
3247 /**
3248   * @brief  Set the clock source of the counter clock.
3249   * @note when selected clock source is external clock mode 1, the timer input
3250   *       the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput()
3251   *       function. This timer input must be configured by calling
3252   *       the @ref LL_TIM_IC_Config() function.
3253   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check
3254   *       whether or not a timer instance supports external clock mode1.
3255   * @note Macro IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check
3256   *       whether or not a timer instance supports external clock mode2.
3257   * @rmtoll SMCR         SMS           LL_TIM_SetClockSource\n
3258   *         SMCR         ECE           LL_TIM_SetClockSource
3259   * @param  TIMx Timer instance
3260   * @param  ClockSource This parameter can be one of the following values:
3261   *         @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL
3262   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1
3263   *         @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2
3264   * @retval None
3265   */
LL_TIM_SetClockSource(TIM_TypeDef * TIMx,uint32_t ClockSource)3266 __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource)
3267 {
3268   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource);
3269 }
3270 
3271 /**
3272   * @brief  Set the encoder interface mode.
3273   * @note Macro IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check
3274   *       whether or not a timer instance supports the encoder mode.
3275   * @rmtoll SMCR         SMS           LL_TIM_SetEncoderMode
3276   * @param  TIMx Timer instance
3277   * @param  EncoderMode This parameter can be one of the following values:
3278   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI1
3279   *         @arg @ref LL_TIM_ENCODERMODE_X2_TI2
3280   *         @arg @ref LL_TIM_ENCODERMODE_X4_TI12
3281   * @retval None
3282   */
LL_TIM_SetEncoderMode(TIM_TypeDef * TIMx,uint32_t EncoderMode)3283 __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode)
3284 {
3285   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode);
3286 }
3287 
3288 /**
3289   * @}
3290   */
3291 
3292 /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration
3293   * @{
3294   */
3295 /**
3296   * @brief  Set the trigger output (TRGO) used for timer synchronization .
3297   * @note Macro IS_TIM_MASTER_INSTANCE(TIMx) can be used to check
3298   *       whether or not a timer instance can operate as a master timer.
3299   * @rmtoll CR2          MMS           LL_TIM_SetTriggerOutput
3300   * @param  TIMx Timer instance
3301   * @param  TimerSynchronization This parameter can be one of the following values:
3302   *         @arg @ref LL_TIM_TRGO_RESET
3303   *         @arg @ref LL_TIM_TRGO_ENABLE
3304   *         @arg @ref LL_TIM_TRGO_UPDATE
3305   *         @arg @ref LL_TIM_TRGO_CC1IF
3306   *         @arg @ref LL_TIM_TRGO_OC1REF
3307   *         @arg @ref LL_TIM_TRGO_OC2REF
3308   *         @arg @ref LL_TIM_TRGO_OC3REF
3309   *         @arg @ref LL_TIM_TRGO_OC4REF
3310   * @retval None
3311   */
LL_TIM_SetTriggerOutput(TIM_TypeDef * TIMx,uint32_t TimerSynchronization)3312 __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization)
3313 {
3314   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization);
3315 }
3316 
3317 /**
3318   * @brief  Set the trigger output 2 (TRGO2) used for ADC synchronization .
3319   * @note Macro IS_TIM_TRGO2_INSTANCE(TIMx) can be used to check
3320   *       whether or not a timer instance can be used for ADC synchronization.
3321   * @rmtoll CR2          MMS2          LL_TIM_SetTriggerOutput2
3322   * @param  TIMx Timer Instance
3323   * @param  ADCSynchronization This parameter can be one of the following values:
3324   *         @arg @ref LL_TIM_TRGO2_RESET
3325   *         @arg @ref LL_TIM_TRGO2_ENABLE
3326   *         @arg @ref LL_TIM_TRGO2_UPDATE
3327   *         @arg @ref LL_TIM_TRGO2_CC1F
3328   *         @arg @ref LL_TIM_TRGO2_OC1
3329   *         @arg @ref LL_TIM_TRGO2_OC2
3330   *         @arg @ref LL_TIM_TRGO2_OC3
3331   *         @arg @ref LL_TIM_TRGO2_OC4
3332   *         @arg @ref LL_TIM_TRGO2_OC5
3333   *         @arg @ref LL_TIM_TRGO2_OC6
3334   *         @arg @ref LL_TIM_TRGO2_OC4_RISINGFALLING
3335   *         @arg @ref LL_TIM_TRGO2_OC6_RISINGFALLING
3336   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_RISING
3337   *         @arg @ref LL_TIM_TRGO2_OC4_RISING_OC6_FALLING
3338   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_RISING
3339   *         @arg @ref LL_TIM_TRGO2_OC5_RISING_OC6_FALLING
3340   * @retval None
3341   */
LL_TIM_SetTriggerOutput2(TIM_TypeDef * TIMx,uint32_t ADCSynchronization)3342 __STATIC_INLINE void LL_TIM_SetTriggerOutput2(TIM_TypeDef *TIMx, uint32_t ADCSynchronization)
3343 {
3344   MODIFY_REG(TIMx->CR2, TIM_CR2_MMS2, ADCSynchronization);
3345 }
3346 
3347 /**
3348   * @brief  Set the synchronization mode of a slave timer.
3349   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3350   *       a timer instance can operate as a slave timer.
3351   * @rmtoll SMCR         SMS           LL_TIM_SetSlaveMode
3352   * @param  TIMx Timer instance
3353   * @param  SlaveMode This parameter can be one of the following values:
3354   *         @arg @ref LL_TIM_SLAVEMODE_DISABLED
3355   *         @arg @ref LL_TIM_SLAVEMODE_RESET
3356   *         @arg @ref LL_TIM_SLAVEMODE_GATED
3357   *         @arg @ref LL_TIM_SLAVEMODE_TRIGGER
3358   *         @arg @ref LL_TIM_SLAVEMODE_COMBINED_RESETTRIGGER
3359   * @retval None
3360   */
LL_TIM_SetSlaveMode(TIM_TypeDef * TIMx,uint32_t SlaveMode)3361 __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode)
3362 {
3363   MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode);
3364 }
3365 
3366 /**
3367   * @brief  Set the selects the trigger input to be used to synchronize the counter.
3368   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3369   *       a timer instance can operate as a slave timer.
3370   * @rmtoll SMCR         TS            LL_TIM_SetTriggerInput
3371   * @param  TIMx Timer instance
3372   * @param  TriggerInput This parameter can be one of the following values:
3373   *         @arg @ref LL_TIM_TS_ITR0
3374   *         @arg @ref LL_TIM_TS_ITR1
3375   *         @arg @ref LL_TIM_TS_ITR2
3376   *         @arg @ref LL_TIM_TS_ITR3
3377   *         @arg @ref LL_TIM_TS_TI1F_ED
3378   *         @arg @ref LL_TIM_TS_TI1FP1
3379   *         @arg @ref LL_TIM_TS_TI2FP2
3380   *         @arg @ref LL_TIM_TS_ETRF
3381   * @retval None
3382   */
LL_TIM_SetTriggerInput(TIM_TypeDef * TIMx,uint32_t TriggerInput)3383 __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput)
3384 {
3385   MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput);
3386 }
3387 
3388 /**
3389   * @brief  Enable the Master/Slave mode.
3390   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3391   *       a timer instance can operate as a slave timer.
3392   * @rmtoll SMCR         MSM           LL_TIM_EnableMasterSlaveMode
3393   * @param  TIMx Timer instance
3394   * @retval None
3395   */
LL_TIM_EnableMasterSlaveMode(TIM_TypeDef * TIMx)3396 __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx)
3397 {
3398   SET_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3399 }
3400 
3401 /**
3402   * @brief  Disable the Master/Slave mode.
3403   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3404   *       a timer instance can operate as a slave timer.
3405   * @rmtoll SMCR         MSM           LL_TIM_DisableMasterSlaveMode
3406   * @param  TIMx Timer instance
3407   * @retval None
3408   */
LL_TIM_DisableMasterSlaveMode(TIM_TypeDef * TIMx)3409 __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx)
3410 {
3411   CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM);
3412 }
3413 
3414 /**
3415   * @brief Indicates whether the Master/Slave mode is enabled.
3416   * @note Macro IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not
3417   * a timer instance can operate as a slave timer.
3418   * @rmtoll SMCR         MSM           LL_TIM_IsEnabledMasterSlaveMode
3419   * @param  TIMx Timer instance
3420   * @retval State of bit (1 or 0).
3421   */
LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef * TIMx)3422 __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(const TIM_TypeDef *TIMx)
3423 {
3424   return ((READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)) ? 1UL : 0UL);
3425 }
3426 
3427 /**
3428   * @brief  Configure the external trigger (ETR) input.
3429   * @note Macro IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not
3430   *       a timer instance provides an external trigger input.
3431   * @rmtoll SMCR         ETP           LL_TIM_ConfigETR\n
3432   *         SMCR         ETPS          LL_TIM_ConfigETR\n
3433   *         SMCR         ETF           LL_TIM_ConfigETR
3434   * @param  TIMx Timer instance
3435   * @param  ETRPolarity This parameter can be one of the following values:
3436   *         @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED
3437   *         @arg @ref LL_TIM_ETR_POLARITY_INVERTED
3438   * @param  ETRPrescaler This parameter can be one of the following values:
3439   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV1
3440   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV2
3441   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV4
3442   *         @arg @ref LL_TIM_ETR_PRESCALER_DIV8
3443   * @param  ETRFilter This parameter can be one of the following values:
3444   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1
3445   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2
3446   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4
3447   *         @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8
3448   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6
3449   *         @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8
3450   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6
3451   *         @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8
3452   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6
3453   *         @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8
3454   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5
3455   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6
3456   *         @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8
3457   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5
3458   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6
3459   *         @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8
3460   * @retval None
3461   */
LL_TIM_ConfigETR(TIM_TypeDef * TIMx,uint32_t ETRPolarity,uint32_t ETRPrescaler,uint32_t ETRFilter)3462 __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler,
3463                                       uint32_t ETRFilter)
3464 {
3465   MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter);
3466 }
3467 
3468 /**
3469   * @brief  Select the external trigger (ETR) input source.
3470   * @note Macro IS_TIM_ETRSEL_INSTANCE(TIMx) can be used to check whether or
3471   *       not a timer instance supports ETR source selection.
3472   * @rmtoll OR2          ETRSEL        LL_TIM_SetETRSource
3473   * @param  TIMx Timer instance
3474   * @param  ETRSource This parameter can be one of the following values:
3475   *         @arg @ref LL_TIM_ETRSOURCE_LEGACY
3476   *         @arg @ref LL_TIM_ETRSOURCE_COMP1
3477   *         @arg @ref LL_TIM_ETRSOURCE_COMP2
3478   * @retval None
3479   */
LL_TIM_SetETRSource(TIM_TypeDef * TIMx,uint32_t ETRSource)3480 __STATIC_INLINE void LL_TIM_SetETRSource(TIM_TypeDef *TIMx, uint32_t ETRSource)
3481 {
3482   MODIFY_REG(TIMx->OR2, TIMx_OR2_ETRSEL, ETRSource);
3483 }
3484 
3485 /**
3486   * @}
3487   */
3488 
3489 /** @defgroup TIM_LL_EF_Break_Function Break function configuration
3490   * @{
3491   */
3492 /**
3493   * @brief  Enable the break function.
3494   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3495   *       a timer instance provides a break input.
3496   * @rmtoll BDTR         BKE           LL_TIM_EnableBRK
3497   * @param  TIMx Timer instance
3498   * @retval None
3499   */
LL_TIM_EnableBRK(TIM_TypeDef * TIMx)3500 __STATIC_INLINE void LL_TIM_EnableBRK(TIM_TypeDef *TIMx)
3501 {
3502   SET_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3503 }
3504 
3505 /**
3506   * @brief  Disable the break function.
3507   * @rmtoll BDTR         BKE           LL_TIM_DisableBRK
3508   * @param  TIMx Timer instance
3509   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3510   *       a timer instance provides a break input.
3511   * @retval None
3512   */
LL_TIM_DisableBRK(TIM_TypeDef * TIMx)3513 __STATIC_INLINE void LL_TIM_DisableBRK(TIM_TypeDef *TIMx)
3514 {
3515   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BKE);
3516 }
3517 
3518 /**
3519   * @brief  Configure the break input.
3520   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3521   *       a timer instance provides a break input.
3522   * @rmtoll BDTR         BKP           LL_TIM_ConfigBRK\n
3523   *         BDTR         BKF           LL_TIM_ConfigBRK
3524   * @param  TIMx Timer instance
3525   * @param  BreakPolarity This parameter can be one of the following values:
3526   *         @arg @ref LL_TIM_BREAK_POLARITY_LOW
3527   *         @arg @ref LL_TIM_BREAK_POLARITY_HIGH
3528   * @param  BreakFilter This parameter can be one of the following values:
3529   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1
3530   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N2
3531   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N4
3532   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV1_N8
3533   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N6
3534   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV2_N8
3535   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N6
3536   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV4_N8
3537   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N6
3538   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV8_N8
3539   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N5
3540   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N6
3541   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV16_N8
3542   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N5
3543   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N6
3544   *         @arg @ref LL_TIM_BREAK_FILTER_FDIV32_N8
3545   * @retval None
3546   */
LL_TIM_ConfigBRK(TIM_TypeDef * TIMx,uint32_t BreakPolarity,uint32_t BreakFilter)3547 __STATIC_INLINE void LL_TIM_ConfigBRK(TIM_TypeDef *TIMx, uint32_t BreakPolarity,
3548                                       uint32_t BreakFilter)
3549 {
3550   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BKP | TIM_BDTR_BKF, BreakPolarity | BreakFilter);
3551 }
3552 
3553 /**
3554   * @brief  Enable the break 2 function.
3555   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3556   *       a timer instance provides a second break input.
3557   * @rmtoll BDTR         BK2E          LL_TIM_EnableBRK2
3558   * @param  TIMx Timer instance
3559   * @retval None
3560   */
LL_TIM_EnableBRK2(TIM_TypeDef * TIMx)3561 __STATIC_INLINE void LL_TIM_EnableBRK2(TIM_TypeDef *TIMx)
3562 {
3563   SET_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3564 }
3565 
3566 /**
3567   * @brief  Disable the break  2 function.
3568   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3569   *       a timer instance provides a second break input.
3570   * @rmtoll BDTR         BK2E          LL_TIM_DisableBRK2
3571   * @param  TIMx Timer instance
3572   * @retval None
3573   */
LL_TIM_DisableBRK2(TIM_TypeDef * TIMx)3574 __STATIC_INLINE void LL_TIM_DisableBRK2(TIM_TypeDef *TIMx)
3575 {
3576   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_BK2E);
3577 }
3578 
3579 /**
3580   * @brief  Configure the break 2 input.
3581   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
3582   *       a timer instance provides a second break input.
3583   * @rmtoll BDTR         BK2P          LL_TIM_ConfigBRK2\n
3584   *         BDTR         BK2F          LL_TIM_ConfigBRK2
3585   * @param  TIMx Timer instance
3586   * @param  Break2Polarity This parameter can be one of the following values:
3587   *         @arg @ref LL_TIM_BREAK2_POLARITY_LOW
3588   *         @arg @ref LL_TIM_BREAK2_POLARITY_HIGH
3589   * @param  Break2Filter This parameter can be one of the following values:
3590   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1
3591   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N2
3592   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N4
3593   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV1_N8
3594   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N6
3595   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV2_N8
3596   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N6
3597   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV4_N8
3598   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N6
3599   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV8_N8
3600   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N5
3601   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N6
3602   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV16_N8
3603   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N5
3604   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N6
3605   *         @arg @ref LL_TIM_BREAK2_FILTER_FDIV32_N8
3606   * @retval None
3607   */
LL_TIM_ConfigBRK2(TIM_TypeDef * TIMx,uint32_t Break2Polarity,uint32_t Break2Filter)3608 __STATIC_INLINE void LL_TIM_ConfigBRK2(TIM_TypeDef *TIMx, uint32_t Break2Polarity, uint32_t Break2Filter)
3609 {
3610   MODIFY_REG(TIMx->BDTR, TIM_BDTR_BK2P | TIM_BDTR_BK2F, Break2Polarity | Break2Filter);
3611 }
3612 
3613 /**
3614   * @brief  Select the outputs off state (enabled v.s. disabled) in Idle and Run modes.
3615   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3616   *       a timer instance provides a break input.
3617   * @rmtoll BDTR         OSSI          LL_TIM_SetOffStates\n
3618   *         BDTR         OSSR          LL_TIM_SetOffStates
3619   * @param  TIMx Timer instance
3620   * @param  OffStateIdle This parameter can be one of the following values:
3621   *         @arg @ref LL_TIM_OSSI_DISABLE
3622   *         @arg @ref LL_TIM_OSSI_ENABLE
3623   * @param  OffStateRun This parameter can be one of the following values:
3624   *         @arg @ref LL_TIM_OSSR_DISABLE
3625   *         @arg @ref LL_TIM_OSSR_ENABLE
3626   * @retval None
3627   */
LL_TIM_SetOffStates(TIM_TypeDef * TIMx,uint32_t OffStateIdle,uint32_t OffStateRun)3628 __STATIC_INLINE void LL_TIM_SetOffStates(TIM_TypeDef *TIMx, uint32_t OffStateIdle, uint32_t OffStateRun)
3629 {
3630   MODIFY_REG(TIMx->BDTR, TIM_BDTR_OSSI | TIM_BDTR_OSSR, OffStateIdle | OffStateRun);
3631 }
3632 
3633 /**
3634   * @brief  Enable automatic output (MOE can be set by software or automatically when a break input is active).
3635   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3636   *       a timer instance provides a break input.
3637   * @rmtoll BDTR         AOE           LL_TIM_EnableAutomaticOutput
3638   * @param  TIMx Timer instance
3639   * @retval None
3640   */
LL_TIM_EnableAutomaticOutput(TIM_TypeDef * TIMx)3641 __STATIC_INLINE void LL_TIM_EnableAutomaticOutput(TIM_TypeDef *TIMx)
3642 {
3643   SET_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3644 }
3645 
3646 /**
3647   * @brief  Disable automatic output (MOE can be set only by software).
3648   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3649   *       a timer instance provides a break input.
3650   * @rmtoll BDTR         AOE           LL_TIM_DisableAutomaticOutput
3651   * @param  TIMx Timer instance
3652   * @retval None
3653   */
LL_TIM_DisableAutomaticOutput(TIM_TypeDef * TIMx)3654 __STATIC_INLINE void LL_TIM_DisableAutomaticOutput(TIM_TypeDef *TIMx)
3655 {
3656   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_AOE);
3657 }
3658 
3659 /**
3660   * @brief  Indicate whether automatic output is enabled.
3661   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3662   *       a timer instance provides a break input.
3663   * @rmtoll BDTR         AOE           LL_TIM_IsEnabledAutomaticOutput
3664   * @param  TIMx Timer instance
3665   * @retval State of bit (1 or 0).
3666   */
LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef * TIMx)3667 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAutomaticOutput(const TIM_TypeDef *TIMx)
3668 {
3669   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_AOE) == (TIM_BDTR_AOE)) ? 1UL : 0UL);
3670 }
3671 
3672 /**
3673   * @brief  Enable the outputs (set the MOE bit in TIMx_BDTR register).
3674   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3675   *       software and is reset in case of break or break2 event
3676   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3677   *       a timer instance provides a break input.
3678   * @rmtoll BDTR         MOE           LL_TIM_EnableAllOutputs
3679   * @param  TIMx Timer instance
3680   * @retval None
3681   */
LL_TIM_EnableAllOutputs(TIM_TypeDef * TIMx)3682 __STATIC_INLINE void LL_TIM_EnableAllOutputs(TIM_TypeDef *TIMx)
3683 {
3684   SET_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3685 }
3686 
3687 /**
3688   * @brief  Disable the outputs (reset the MOE bit in TIMx_BDTR register).
3689   * @note The MOE bit in TIMx_BDTR register allows to enable /disable the outputs by
3690   *       software and is reset in case of break or break2 event.
3691   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3692   *       a timer instance provides a break input.
3693   * @rmtoll BDTR         MOE           LL_TIM_DisableAllOutputs
3694   * @param  TIMx Timer instance
3695   * @retval None
3696   */
LL_TIM_DisableAllOutputs(TIM_TypeDef * TIMx)3697 __STATIC_INLINE void LL_TIM_DisableAllOutputs(TIM_TypeDef *TIMx)
3698 {
3699   CLEAR_BIT(TIMx->BDTR, TIM_BDTR_MOE);
3700 }
3701 
3702 /**
3703   * @brief  Indicates whether outputs are enabled.
3704   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
3705   *       a timer instance provides a break input.
3706   * @rmtoll BDTR         MOE           LL_TIM_IsEnabledAllOutputs
3707   * @param  TIMx Timer instance
3708   * @retval State of bit (1 or 0).
3709   */
LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef * TIMx)3710 __STATIC_INLINE uint32_t LL_TIM_IsEnabledAllOutputs(const TIM_TypeDef *TIMx)
3711 {
3712   return ((READ_BIT(TIMx->BDTR, TIM_BDTR_MOE) == (TIM_BDTR_MOE)) ? 1UL : 0UL);
3713 }
3714 
3715 /**
3716   * @brief  Enable the signals connected to the designated timer break input.
3717   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3718   *       or not a timer instance allows for break input selection.
3719   * @rmtoll OR2          BKINE         LL_TIM_EnableBreakInputSource\n
3720   *         OR2          BKCMP1E       LL_TIM_EnableBreakInputSource\n
3721   *         OR2          BKCMP2E       LL_TIM_EnableBreakInputSource\n
3722   *         OR2          BKDF1BK0E     LL_TIM_EnableBreakInputSource\n
3723   *         OR3          BK2INE        LL_TIM_EnableBreakInputSource\n
3724   *         OR3          BK2CMP1E      LL_TIM_EnableBreakInputSource\n
3725   *         OR3          BK2CMP2E      LL_TIM_EnableBreakInputSource\n
3726   *         OR3          BK2DF1BK1E    LL_TIM_EnableBreakInputSource
3727   * @param  TIMx Timer instance
3728   * @param  BreakInput This parameter can be one of the following values:
3729   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3730   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3731   * @param  Source This parameter can be one of the following values:
3732   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3733   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3734   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3735   *         @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
3736   * @retval None
3737   */
LL_TIM_EnableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3738 __STATIC_INLINE void LL_TIM_EnableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3739 {
3740   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->OR2) + BreakInput));
3741   SET_BIT(*pReg, Source);
3742 }
3743 
3744 /**
3745   * @brief  Disable the signals connected to the designated timer break input.
3746   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3747   *       or not a timer instance allows for break input selection.
3748   * @rmtoll OR2          BKINE         LL_TIM_DisableBreakInputSource\n
3749   *         OR2          BKCMP1E       LL_TIM_DisableBreakInputSource\n
3750   *         OR2          BKCMP2E       LL_TIM_DisableBreakInputSource\n
3751   *         OR2          BKDF1BK0E     LL_TIM_DisableBreakInputSource\n
3752   *         OR3          BK2INE        LL_TIM_DisableBreakInputSource\n
3753   *         OR3          BK2CMP1E      LL_TIM_DisableBreakInputSource\n
3754   *         OR3          BK2CMP2E      LL_TIM_DisableBreakInputSource\n
3755   *         OR3          BK2DF1BK1E    LL_TIM_DisableBreakInputSource
3756   * @param  TIMx Timer instance
3757   * @param  BreakInput This parameter can be one of the following values:
3758   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3759   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3760   * @param  Source This parameter can be one of the following values:
3761   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3762   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3763   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3764   *         @arg @ref LL_TIM_BKIN_SOURCE_DF1BK
3765   * @retval None
3766   */
LL_TIM_DisableBreakInputSource(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source)3767 __STATIC_INLINE void LL_TIM_DisableBreakInputSource(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source)
3768 {
3769   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->OR2) + BreakInput));
3770   CLEAR_BIT(*pReg, Source);
3771 }
3772 
3773 /**
3774   * @brief  Set the polarity of the break signal for the timer break input.
3775   * @note Macro IS_TIM_BREAKSOURCE_INSTANCE(TIMx) can be used to check whether
3776   *       or not a timer instance allows for break input selection.
3777   * @rmtoll OR2          BKINP         LL_TIM_SetBreakInputSourcePolarity\n
3778   *         OR2          BKCMP1P       LL_TIM_SetBreakInputSourcePolarity\n
3779   *         OR2          BKCMP2P       LL_TIM_SetBreakInputSourcePolarity\n
3780   *         OR3          BK2INP        LL_TIM_SetBreakInputSourcePolarity\n
3781   *         OR3          BK2CMP1P      LL_TIM_SetBreakInputSourcePolarity\n
3782   *         OR3          BK2CMP2P      LL_TIM_SetBreakInputSourcePolarity
3783   * @param  TIMx Timer instance
3784   * @param  BreakInput This parameter can be one of the following values:
3785   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN
3786   *         @arg @ref LL_TIM_BREAK_INPUT_BKIN2
3787   * @param  Source This parameter can be one of the following values:
3788   *         @arg @ref LL_TIM_BKIN_SOURCE_BKIN
3789   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP1
3790   *         @arg @ref LL_TIM_BKIN_SOURCE_BKCOMP2
3791   * @param  Polarity This parameter can be one of the following values:
3792   *         @arg @ref LL_TIM_BKIN_POLARITY_LOW
3793   *         @arg @ref LL_TIM_BKIN_POLARITY_HIGH
3794   * @retval None
3795   */
LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef * TIMx,uint32_t BreakInput,uint32_t Source,uint32_t Polarity)3796 __STATIC_INLINE void LL_TIM_SetBreakInputSourcePolarity(TIM_TypeDef *TIMx, uint32_t BreakInput, uint32_t Source,
3797                                                         uint32_t Polarity)
3798 {
3799   __IO uint32_t *pReg = (__IO uint32_t *)((uint32_t)((uint32_t)(&TIMx->OR2) + BreakInput));
3800   MODIFY_REG(*pReg, (TIMx_OR2_BKINP << TIM_POSITION_BRK_SOURCE), (Polarity << TIM_POSITION_BRK_SOURCE));
3801 }
3802 /**
3803   * @}
3804   */
3805 
3806 /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration
3807   * @{
3808   */
3809 /**
3810   * @brief  Configures the timer DMA burst feature.
3811   * @note Macro IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or
3812   *       not a timer instance supports the DMA burst mode.
3813   * @rmtoll DCR          DBL           LL_TIM_ConfigDMABurst\n
3814   *         DCR          DBA           LL_TIM_ConfigDMABurst
3815   * @param  TIMx Timer instance
3816   * @param  DMABurstBaseAddress This parameter can be one of the following values:
3817   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR1
3818   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CR2
3819   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR
3820   *         @arg @ref LL_TIM_DMABURST_BASEADDR_DIER
3821   *         @arg @ref LL_TIM_DMABURST_BASEADDR_SR
3822   *         @arg @ref LL_TIM_DMABURST_BASEADDR_EGR
3823   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1
3824   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2
3825   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCER
3826   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CNT
3827   *         @arg @ref LL_TIM_DMABURST_BASEADDR_PSC
3828   *         @arg @ref LL_TIM_DMABURST_BASEADDR_ARR
3829   *         @arg @ref LL_TIM_DMABURST_BASEADDR_RCR
3830   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1
3831   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2
3832   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3
3833   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4
3834   *         @arg @ref LL_TIM_DMABURST_BASEADDR_BDTR
3835   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR1
3836   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR3
3837   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR5
3838   *         @arg @ref LL_TIM_DMABURST_BASEADDR_CCR6
3839   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR2
3840   *         @arg @ref LL_TIM_DMABURST_BASEADDR_OR3
3841   * @param  DMABurstLength This parameter can be one of the following values:
3842   *         @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER
3843   *         @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS
3844   *         @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS
3845   *         @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS
3846   *         @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS
3847   *         @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS
3848   *         @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS
3849   *         @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS
3850   *         @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS
3851   *         @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS
3852   *         @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS
3853   *         @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS
3854   *         @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS
3855   *         @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS
3856   *         @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS
3857   *         @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS
3858   *         @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS
3859   *         @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS
3860   * @retval None
3861   */
LL_TIM_ConfigDMABurst(TIM_TypeDef * TIMx,uint32_t DMABurstBaseAddress,uint32_t DMABurstLength)3862 __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength)
3863 {
3864   MODIFY_REG(TIMx->DCR, (TIM_DCR_DBL | TIM_DCR_DBA), (DMABurstBaseAddress | DMABurstLength));
3865 }
3866 
3867 /**
3868   * @}
3869   */
3870 
3871 /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping
3872   * @{
3873   */
3874 /**
3875   * @brief  Remap TIM inputs (input channel, internal/external triggers).
3876   * @note Macro IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not
3877   *       a some timer inputs can be remapped.
3878   @if STM32L486xx
3879   * @rmtoll TIM1_OR1    ETR_ADC1_RMP      LL_TIM_SetRemap\n
3880   *         TIM1_OR1    ETR_ADC3_RMP      LL_TIM_SetRemap\n
3881   *         TIM1_OR1    TI1_RMP           LL_TIM_SetRemap\n
3882   *         TIM8_OR1    ETR_ADC2_RMP      LL_TIM_SetRemap\n
3883   *         TIM8_OR1    ETR_ADC3_RMP      LL_TIM_SetRemap\n
3884   *         TIM8_OR1    TI1_RMP           LL_TIM_SetRemap\n
3885   *         TIM2_OR1    ITR1_RMP          LL_TIM_SetRemap\n
3886   *         TIM2_OR1    TI4_RMP           LL_TIM_SetRemap\n
3887   *         TIM2_OR1    TI1_RMP           LL_TIM_SetRemap\n
3888   *         TIM3_OR1    TI1_RMP           LL_TIM_SetRemap\n
3889   *         TIM15_OR1   TI1_RMP           LL_TIM_SetRemap\n
3890   *         TIM15_OR1   ENCODER_MODE      LL_TIM_SetRemap\n
3891   *         TIM16_OR1   TI1_RMP           LL_TIM_SetRemap\n
3892   *         TIM17_OR1   TI1_RMP           LL_TIM_SetRemap
3893   @endif
3894   @if STM32L443xx
3895   * @rmtoll TIM1_OR1    ETR_ADC1_RMP      LL_TIM_SetRemap\n
3896   *         TIM1_OR1    ETR_ADC3_RMP      LL_TIM_SetRemap\n
3897   *         TIM1_OR1    TI1_RMP           LL_TIM_SetRemap\n
3898   *         TIM2_OR1    ITR1_RMP          LL_TIM_SetRemap\n
3899   *         TIM2_OR1    TI4_RMP           LL_TIM_SetRemap\n
3900   *         TIM2_OR1    TI1_RMP           LL_TIM_SetRemap\n
3901   *         TIM15_OR1   TI1_RMP           LL_TIM_SetRemap\n
3902   *         TIM15_OR1   ENCODER_MODE      LL_TIM_SetRemap\n
3903   *         TIM16_OR1   TI1_RMP           LL_TIM_SetRemap\n
3904   @endif
3905   * @param  TIMx Timer instance
3906   * @param  Remap Remap param depends on the TIMx. Description available only
3907   *         in CHM version of the User Manual (not in .pdf).
3908   *         Otherwise see Reference Manual description of OR registers.
3909   *
3910   *         Below description summarizes "Timer Instance" and "Remap" param combinations:
3911   *
3912   @if STM32L486xx
3913   *         TIM1: any combination of TI1_RMP, ADC3_RMP, ADC1_RMP where
3914   *
3915   *            . . ADC1_RMP can be one of the following values
3916   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_NC
3917   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD1
3918   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD2
3919   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD3
3920   *
3921   *            . . ADC3_RMP can be one of the following values
3922   *            @arg @ref LL_TIM_TIM1_ETR_ADC3_RMP_NC
3923   *            @arg @ref LL_TIM_TIM1_ETR_ADC3_RMP_AWD1
3924   *            @arg @ref LL_TIM_TIM1_ETR_ADC3_RMP_AWD2
3925   *            @arg @ref LL_TIM_TIM1_ETR_ADC3_RMP_AWD3
3926   *
3927   *            . . TI1_RMP can be one of the following values
3928   *            @arg @ref LL_TIM_TIM1_TI1_RMP_GPIO
3929   *            @arg @ref LL_TIM_TIM1_TI1_RMP_COMP1
3930   *
3931   *         TIM2: any combination of ITR1_RMP, ETR1_RMP, TI4_RMP where
3932   *
3933   *            ITR1_RMP can be one of the following values
3934   *            @arg @ref LL_TIM_TIM2_ITR1_RMP_TIM8_TRGO
3935   *            @arg @ref LL_TIM_TIM2_ITR1_RMP_OTG_FS_SOF
3936   *
3937   *            . . ETR1_RMP can be one of the following values
3938   *            @arg @ref LL_TIM_TIM2_ETR_RMP_GPIO
3939   *            @arg @ref LL_TIM_TIM2_ETR_RMP_LSE
3940   *
3941   *            . . TI4_RMP can be one of the following values
3942   *            @arg @ref LL_TIM_TIM2_TI4_RMP_GPIO
3943   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP1
3944   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP2
3945   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP1_COMP2
3946   *
3947   *         TIM3: one of the following values
3948   *
3949   *            @arg @ref LL_TIM_TIM3_TI1_RMP_GPIO
3950   *            @arg @ref LL_TIM_TIM3_TI1_RMP_COMP1
3951   *            @arg @ref LL_TIM_TIM3_TI1_RMP_COMP2
3952   *            @arg @ref LL_TIM_TIM3_TI1_RMP_COMP1_COMP2
3953   *
3954   *         TIM8: any combination of TI1_RMP, ADC3_RMP, ADC1_RMP where
3955   *
3956   *            . . ADC1_RMP can be one of the following values
3957   *            @arg @ref LL_TIM_TIM8_ETR_ADC2_RMP_NC
3958   *            @arg @ref LL_TIM_TIM8_ETR_ADC2_RMP_AWD1
3959   *            @arg @ref LL_TIM_TIM8_ETR_ADC2_RMP_AWD2
3960   *            @arg @ref LL_TIM_TIM8_ETR_ADC2_RMP_AWD3
3961   *
3962   *            . . ADC3_RMP can be one of the following values
3963   *            @arg @ref LL_TIM_TIM8_ETR_ADC3_RMP_NC
3964   *            @arg @ref LL_TIM_TIM8_ETR_ADC3_RMP_AWD1
3965   *            @arg @ref LL_TIM_TIM8_ETR_ADC3_RMP_AWD2
3966   *            @arg @ref LL_TIM_TIM8_ETR_ADC3_RMP_AWD3
3967   *
3968   *            . . TI1_RMP can be one of the following values
3969   *            @arg @ref LL_TIM_TIM8_TI1_RMP_GPIO
3970   *            @arg @ref LL_TIM_TIM8_TI1_RMP_COMP2
3971   *
3972   *         TIM15: any combination of TI1_RMP, ENCODER_MODE where
3973   *
3974   *            . . TI1_RMP can be one of the following values
3975   *            @arg @ref LL_TIM_TIM15_TI1_RMP_GPIO
3976   *            @arg @ref LL_TIM_TIM15_TI1_RMP_LSE
3977   *
3978   *            . . ENCODER_MODE can be one of the following values
3979   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_NOREDIRECTION
3980   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM2
3981   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM3
3982   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM4
3983   *
3984   *         TIM16: one of the following values
3985   *
3986   *            @arg @ref LL_TIM_TIM16_TI1_RMP_GPIO
3987   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSI
3988   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSE
3989   *            @arg @ref LL_TIM_TIM16_TI1_RMP_RTC
3990   *            @arg @ref LL_TIM_TIM16_TI1_RMP_MSI
3991   *            @arg @ref LL_TIM_TIM16_TI1_RMP_HSE_32
3992   *            @arg @ref LL_TIM_TIM16_TI1_RMP_MCO
3993   *
3994   *         TIM17: one of the following values
3995   *
3996   *            @arg @ref LL_TIM_TIM17_TI1_RMP_GPIO
3997   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MSI
3998   *            @arg @ref LL_TIM_TIM17_TI1_RMP_HSE_32
3999   *            @arg @ref LL_TIM_TIM17_TI1_RMP_MCO
4000    @endif
4001   @if STM32L443xx
4002   *         TIM1: any combination of TI1_RMP, ADC3_RMP, ADC1_RMP where
4003   *
4004   *            . . ADC1_RMP can be one of the following values
4005   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_NC
4006   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD1
4007   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD2
4008   *            @arg @ref LL_TIM_TIM1_ETR_ADC1_RMP_AWD3
4009   *
4010   *            . . TI1_RMP can be one of the following values
4011   *            @arg @ref LL_TIM_TIM1_TI1_RMP_GPIO
4012   *            @arg @ref LL_TIM_TIM1_TI1_RMP_COMP1
4013   *
4014   *         TIM2: any combination of ITR1_RMP, ETR1_RMP, TI4_RMP where
4015   *
4016   *            ITR1_RMP can be one of the following values
4017   *            @arg @ref LL_TIM_TIM2_ITR1_RMP_NONE
4018   *            @arg @ref LL_TIM_TIM2_ITR1_RMP_USB_SOF
4019   *
4020   *            . . ETR1_RMP can be one of the following values
4021   *            @arg @ref LL_TIM_TIM2_ETR_RMP_GPIO
4022   *            @arg @ref LL_TIM_TIM2_ETR_RMP_LSE
4023   *
4024   *            . . TI4_RMP can be one of the following values
4025   *            @arg @ref LL_TIM_TIM2_TI4_RMP_GPIO
4026   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP1
4027   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP2
4028   *            @arg @ref LL_TIM_TIM2_TI4_RMP_COMP1_COMP2
4029   *
4030   *         TIM15: any combination of TI1_RMP, ENCODER_MODE where
4031   *
4032   *            . . TI1_RMP can be one of the following values
4033   *            @arg @ref LL_TIM_TIM15_TI1_RMP_GPIO
4034   *            @arg @ref LL_TIM_TIM15_TI1_RMP_LSE
4035   *
4036   *            . . ENCODER_MODE can be one of the following values
4037   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_NOREDIRECTION
4038   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM2
4039   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM3
4040   *            @arg @ref LL_TIM_TIM15_ENCODERMODE_TIM4
4041   *
4042   *         TIM16: one of the following values
4043   *
4044   *            @arg @ref LL_TIM_TIM16_TI1_RMP_GPIO
4045   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSI
4046   *            @arg @ref LL_TIM_TIM16_TI1_RMP_LSE
4047   *            @arg @ref LL_TIM_TIM16_TI1_RMP_RTC
4048   *            @arg @ref LL_TIM_TIM16_TI1_RMP_MSI
4049   *            @arg @ref LL_TIM_TIM16_TI1_RMP_HSE_32
4050   *            @arg @ref LL_TIM_TIM16_TI1_RMP_MCO
4051   @endif
4052   * @retval None
4053   */
LL_TIM_SetRemap(TIM_TypeDef * TIMx,uint32_t Remap)4054 __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap)
4055 {
4056   MODIFY_REG(TIMx->OR1, (Remap >> TIMx_OR1_RMP_SHIFT), (Remap & TIMx_OR1_RMP_MASK));
4057 }
4058 
4059 /**
4060   * @}
4061   */
4062 
4063 /** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management
4064   * @{
4065   */
4066 /**
4067   * @brief  Set the OCREF clear input source
4068   * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT
4069   * @note This function can only be used in Output compare and PWM modes.
4070   * @rmtoll SMCR          OCCS                LL_TIM_SetOCRefClearInputSource
4071   * @param  TIMx Timer instance
4072   * @param  OCRefClearInputSource This parameter can be one of the following values:
4073   *         @arg @ref LL_TIM_OCREF_CLR_INT_NC
4074   *         @arg @ref LL_TIM_OCREF_CLR_INT_ETR
4075   * @retval None
4076   */
LL_TIM_SetOCRefClearInputSource(TIM_TypeDef * TIMx,uint32_t OCRefClearInputSource)4077 __STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource)
4078 {
4079   MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS, OCRefClearInputSource);
4080 }
4081 /**
4082   * @}
4083   */
4084 
4085 /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management
4086   * @{
4087   */
4088 /**
4089   * @brief  Clear the update interrupt flag (UIF).
4090   * @rmtoll SR           UIF           LL_TIM_ClearFlag_UPDATE
4091   * @param  TIMx Timer instance
4092   * @retval None
4093   */
LL_TIM_ClearFlag_UPDATE(TIM_TypeDef * TIMx)4094 __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx)
4095 {
4096   WRITE_REG(TIMx->SR, ~(TIM_SR_UIF));
4097 }
4098 
4099 /**
4100   * @brief  Indicate whether update interrupt flag (UIF) is set (update interrupt is pending).
4101   * @rmtoll SR           UIF           LL_TIM_IsActiveFlag_UPDATE
4102   * @param  TIMx Timer instance
4103   * @retval State of bit (1 or 0).
4104   */
LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef * TIMx)4105 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(const TIM_TypeDef *TIMx)
4106 {
4107   return ((READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)) ? 1UL : 0UL);
4108 }
4109 
4110 /**
4111   * @brief  Clear the Capture/Compare 1 interrupt flag (CC1F).
4112   * @rmtoll SR           CC1IF         LL_TIM_ClearFlag_CC1
4113   * @param  TIMx Timer instance
4114   * @retval None
4115   */
LL_TIM_ClearFlag_CC1(TIM_TypeDef * TIMx)4116 __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx)
4117 {
4118   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF));
4119 }
4120 
4121 /**
4122   * @brief  Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending).
4123   * @rmtoll SR           CC1IF         LL_TIM_IsActiveFlag_CC1
4124   * @param  TIMx Timer instance
4125   * @retval State of bit (1 or 0).
4126   */
LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef * TIMx)4127 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(const TIM_TypeDef *TIMx)
4128 {
4129   return ((READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)) ? 1UL : 0UL);
4130 }
4131 
4132 /**
4133   * @brief  Clear the Capture/Compare 2 interrupt flag (CC2F).
4134   * @rmtoll SR           CC2IF         LL_TIM_ClearFlag_CC2
4135   * @param  TIMx Timer instance
4136   * @retval None
4137   */
LL_TIM_ClearFlag_CC2(TIM_TypeDef * TIMx)4138 __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx)
4139 {
4140   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF));
4141 }
4142 
4143 /**
4144   * @brief  Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending).
4145   * @rmtoll SR           CC2IF         LL_TIM_IsActiveFlag_CC2
4146   * @param  TIMx Timer instance
4147   * @retval State of bit (1 or 0).
4148   */
LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef * TIMx)4149 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(const TIM_TypeDef *TIMx)
4150 {
4151   return ((READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)) ? 1UL : 0UL);
4152 }
4153 
4154 /**
4155   * @brief  Clear the Capture/Compare 3 interrupt flag (CC3F).
4156   * @rmtoll SR           CC3IF         LL_TIM_ClearFlag_CC3
4157   * @param  TIMx Timer instance
4158   * @retval None
4159   */
LL_TIM_ClearFlag_CC3(TIM_TypeDef * TIMx)4160 __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx)
4161 {
4162   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF));
4163 }
4164 
4165 /**
4166   * @brief  Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending).
4167   * @rmtoll SR           CC3IF         LL_TIM_IsActiveFlag_CC3
4168   * @param  TIMx Timer instance
4169   * @retval State of bit (1 or 0).
4170   */
LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef * TIMx)4171 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(const TIM_TypeDef *TIMx)
4172 {
4173   return ((READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)) ? 1UL : 0UL);
4174 }
4175 
4176 /**
4177   * @brief  Clear the Capture/Compare 4 interrupt flag (CC4F).
4178   * @rmtoll SR           CC4IF         LL_TIM_ClearFlag_CC4
4179   * @param  TIMx Timer instance
4180   * @retval None
4181   */
LL_TIM_ClearFlag_CC4(TIM_TypeDef * TIMx)4182 __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx)
4183 {
4184   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF));
4185 }
4186 
4187 /**
4188   * @brief  Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending).
4189   * @rmtoll SR           CC4IF         LL_TIM_IsActiveFlag_CC4
4190   * @param  TIMx Timer instance
4191   * @retval State of bit (1 or 0).
4192   */
LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef * TIMx)4193 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(const TIM_TypeDef *TIMx)
4194 {
4195   return ((READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)) ? 1UL : 0UL);
4196 }
4197 
4198 /**
4199   * @brief  Clear the Capture/Compare 5 interrupt flag (CC5F).
4200   * @rmtoll SR           CC5IF         LL_TIM_ClearFlag_CC5
4201   * @param  TIMx Timer instance
4202   * @retval None
4203   */
LL_TIM_ClearFlag_CC5(TIM_TypeDef * TIMx)4204 __STATIC_INLINE void LL_TIM_ClearFlag_CC5(TIM_TypeDef *TIMx)
4205 {
4206   WRITE_REG(TIMx->SR, ~(TIM_SR_CC5IF));
4207 }
4208 
4209 /**
4210   * @brief  Indicate whether Capture/Compare 5 interrupt flag (CC5F) is set (Capture/Compare 5 interrupt is pending).
4211   * @rmtoll SR           CC5IF         LL_TIM_IsActiveFlag_CC5
4212   * @param  TIMx Timer instance
4213   * @retval State of bit (1 or 0).
4214   */
LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef * TIMx)4215 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC5(const TIM_TypeDef *TIMx)
4216 {
4217   return ((READ_BIT(TIMx->SR, TIM_SR_CC5IF) == (TIM_SR_CC5IF)) ? 1UL : 0UL);
4218 }
4219 
4220 /**
4221   * @brief  Clear the Capture/Compare 6 interrupt flag (CC6F).
4222   * @rmtoll SR           CC6IF         LL_TIM_ClearFlag_CC6
4223   * @param  TIMx Timer instance
4224   * @retval None
4225   */
LL_TIM_ClearFlag_CC6(TIM_TypeDef * TIMx)4226 __STATIC_INLINE void LL_TIM_ClearFlag_CC6(TIM_TypeDef *TIMx)
4227 {
4228   WRITE_REG(TIMx->SR, ~(TIM_SR_CC6IF));
4229 }
4230 
4231 /**
4232   * @brief  Indicate whether Capture/Compare 6 interrupt flag (CC6F) is set (Capture/Compare 6 interrupt is pending).
4233   * @rmtoll SR           CC6IF         LL_TIM_IsActiveFlag_CC6
4234   * @param  TIMx Timer instance
4235   * @retval State of bit (1 or 0).
4236   */
LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef * TIMx)4237 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC6(const TIM_TypeDef *TIMx)
4238 {
4239   return ((READ_BIT(TIMx->SR, TIM_SR_CC6IF) == (TIM_SR_CC6IF)) ? 1UL : 0UL);
4240 }
4241 
4242 /**
4243   * @brief  Clear the commutation interrupt flag (COMIF).
4244   * @rmtoll SR           COMIF         LL_TIM_ClearFlag_COM
4245   * @param  TIMx Timer instance
4246   * @retval None
4247   */
LL_TIM_ClearFlag_COM(TIM_TypeDef * TIMx)4248 __STATIC_INLINE void LL_TIM_ClearFlag_COM(TIM_TypeDef *TIMx)
4249 {
4250   WRITE_REG(TIMx->SR, ~(TIM_SR_COMIF));
4251 }
4252 
4253 /**
4254   * @brief  Indicate whether commutation interrupt flag (COMIF) is set (commutation interrupt is pending).
4255   * @rmtoll SR           COMIF         LL_TIM_IsActiveFlag_COM
4256   * @param  TIMx Timer instance
4257   * @retval State of bit (1 or 0).
4258   */
LL_TIM_IsActiveFlag_COM(const TIM_TypeDef * TIMx)4259 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_COM(const TIM_TypeDef *TIMx)
4260 {
4261   return ((READ_BIT(TIMx->SR, TIM_SR_COMIF) == (TIM_SR_COMIF)) ? 1UL : 0UL);
4262 }
4263 
4264 /**
4265   * @brief  Clear the trigger interrupt flag (TIF).
4266   * @rmtoll SR           TIF           LL_TIM_ClearFlag_TRIG
4267   * @param  TIMx Timer instance
4268   * @retval None
4269   */
LL_TIM_ClearFlag_TRIG(TIM_TypeDef * TIMx)4270 __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx)
4271 {
4272   WRITE_REG(TIMx->SR, ~(TIM_SR_TIF));
4273 }
4274 
4275 /**
4276   * @brief  Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending).
4277   * @rmtoll SR           TIF           LL_TIM_IsActiveFlag_TRIG
4278   * @param  TIMx Timer instance
4279   * @retval State of bit (1 or 0).
4280   */
LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef * TIMx)4281 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(const TIM_TypeDef *TIMx)
4282 {
4283   return ((READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)) ? 1UL : 0UL);
4284 }
4285 
4286 /**
4287   * @brief  Clear the break interrupt flag (BIF).
4288   * @rmtoll SR           BIF           LL_TIM_ClearFlag_BRK
4289   * @param  TIMx Timer instance
4290   * @retval None
4291   */
LL_TIM_ClearFlag_BRK(TIM_TypeDef * TIMx)4292 __STATIC_INLINE void LL_TIM_ClearFlag_BRK(TIM_TypeDef *TIMx)
4293 {
4294   WRITE_REG(TIMx->SR, ~(TIM_SR_BIF));
4295 }
4296 
4297 /**
4298   * @brief  Indicate whether break interrupt flag (BIF) is set (break interrupt is pending).
4299   * @rmtoll SR           BIF           LL_TIM_IsActiveFlag_BRK
4300   * @param  TIMx Timer instance
4301   * @retval State of bit (1 or 0).
4302   */
LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef * TIMx)4303 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK(const TIM_TypeDef *TIMx)
4304 {
4305   return ((READ_BIT(TIMx->SR, TIM_SR_BIF) == (TIM_SR_BIF)) ? 1UL : 0UL);
4306 }
4307 
4308 /**
4309   * @brief  Clear the break 2 interrupt flag (B2IF).
4310   * @rmtoll SR           B2IF          LL_TIM_ClearFlag_BRK2
4311   * @param  TIMx Timer instance
4312   * @retval None
4313   */
LL_TIM_ClearFlag_BRK2(TIM_TypeDef * TIMx)4314 __STATIC_INLINE void LL_TIM_ClearFlag_BRK2(TIM_TypeDef *TIMx)
4315 {
4316   WRITE_REG(TIMx->SR, ~(TIM_SR_B2IF));
4317 }
4318 
4319 /**
4320   * @brief  Indicate whether break 2 interrupt flag (B2IF) is set (break 2 interrupt is pending).
4321   * @rmtoll SR           B2IF          LL_TIM_IsActiveFlag_BRK2
4322   * @param  TIMx Timer instance
4323   * @retval State of bit (1 or 0).
4324   */
LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef * TIMx)4325 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_BRK2(const TIM_TypeDef *TIMx)
4326 {
4327   return ((READ_BIT(TIMx->SR, TIM_SR_B2IF) == (TIM_SR_B2IF)) ? 1UL : 0UL);
4328 }
4329 
4330 /**
4331   * @brief  Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF).
4332   * @rmtoll SR           CC1OF         LL_TIM_ClearFlag_CC1OVR
4333   * @param  TIMx Timer instance
4334   * @retval None
4335   */
LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef * TIMx)4336 __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx)
4337 {
4338   WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF));
4339 }
4340 
4341 /**
4342   * @brief  Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set
4343   *         (Capture/Compare 1 interrupt is pending).
4344   * @rmtoll SR           CC1OF         LL_TIM_IsActiveFlag_CC1OVR
4345   * @param  TIMx Timer instance
4346   * @retval State of bit (1 or 0).
4347   */
LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef * TIMx)4348 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(const TIM_TypeDef *TIMx)
4349 {
4350   return ((READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)) ? 1UL : 0UL);
4351 }
4352 
4353 /**
4354   * @brief  Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF).
4355   * @rmtoll SR           CC2OF         LL_TIM_ClearFlag_CC2OVR
4356   * @param  TIMx Timer instance
4357   * @retval None
4358   */
LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef * TIMx)4359 __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx)
4360 {
4361   WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF));
4362 }
4363 
4364 /**
4365   * @brief  Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set
4366   *         (Capture/Compare 2 over-capture interrupt is pending).
4367   * @rmtoll SR           CC2OF         LL_TIM_IsActiveFlag_CC2OVR
4368   * @param  TIMx Timer instance
4369   * @retval State of bit (1 or 0).
4370   */
LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef * TIMx)4371 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(const TIM_TypeDef *TIMx)
4372 {
4373   return ((READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)) ? 1UL : 0UL);
4374 }
4375 
4376 /**
4377   * @brief  Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF).
4378   * @rmtoll SR           CC3OF         LL_TIM_ClearFlag_CC3OVR
4379   * @param  TIMx Timer instance
4380   * @retval None
4381   */
LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef * TIMx)4382 __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx)
4383 {
4384   WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF));
4385 }
4386 
4387 /**
4388   * @brief  Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set
4389   *         (Capture/Compare 3 over-capture interrupt is pending).
4390   * @rmtoll SR           CC3OF         LL_TIM_IsActiveFlag_CC3OVR
4391   * @param  TIMx Timer instance
4392   * @retval State of bit (1 or 0).
4393   */
LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef * TIMx)4394 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(const TIM_TypeDef *TIMx)
4395 {
4396   return ((READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)) ? 1UL : 0UL);
4397 }
4398 
4399 /**
4400   * @brief  Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF).
4401   * @rmtoll SR           CC4OF         LL_TIM_ClearFlag_CC4OVR
4402   * @param  TIMx Timer instance
4403   * @retval None
4404   */
LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef * TIMx)4405 __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx)
4406 {
4407   WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF));
4408 }
4409 
4410 /**
4411   * @brief  Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set
4412   *         (Capture/Compare 4 over-capture interrupt is pending).
4413   * @rmtoll SR           CC4OF         LL_TIM_IsActiveFlag_CC4OVR
4414   * @param  TIMx Timer instance
4415   * @retval State of bit (1 or 0).
4416   */
LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef * TIMx)4417 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(const TIM_TypeDef *TIMx)
4418 {
4419   return ((READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)) ? 1UL : 0UL);
4420 }
4421 
4422 /**
4423   * @brief  Clear the system break interrupt flag (SBIF).
4424   * @rmtoll SR           SBIF          LL_TIM_ClearFlag_SYSBRK
4425   * @param  TIMx Timer instance
4426   * @retval None
4427   */
LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef * TIMx)4428 __STATIC_INLINE void LL_TIM_ClearFlag_SYSBRK(TIM_TypeDef *TIMx)
4429 {
4430   WRITE_REG(TIMx->SR, ~(TIM_SR_SBIF));
4431 }
4432 
4433 /**
4434   * @brief  Indicate whether system break interrupt flag (SBIF) is set (system break interrupt is pending).
4435   * @rmtoll SR           SBIF          LL_TIM_IsActiveFlag_SYSBRK
4436   * @param  TIMx Timer instance
4437   * @retval State of bit (1 or 0).
4438   */
LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef * TIMx)4439 __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_SYSBRK(const TIM_TypeDef *TIMx)
4440 {
4441   return ((READ_BIT(TIMx->SR, TIM_SR_SBIF) == (TIM_SR_SBIF)) ? 1UL : 0UL);
4442 }
4443 
4444 /**
4445   * @}
4446   */
4447 
4448 /** @defgroup TIM_LL_EF_IT_Management IT-Management
4449   * @{
4450   */
4451 /**
4452   * @brief  Enable update interrupt (UIE).
4453   * @rmtoll DIER         UIE           LL_TIM_EnableIT_UPDATE
4454   * @param  TIMx Timer instance
4455   * @retval None
4456   */
LL_TIM_EnableIT_UPDATE(TIM_TypeDef * TIMx)4457 __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx)
4458 {
4459   SET_BIT(TIMx->DIER, TIM_DIER_UIE);
4460 }
4461 
4462 /**
4463   * @brief  Disable update interrupt (UIE).
4464   * @rmtoll DIER         UIE           LL_TIM_DisableIT_UPDATE
4465   * @param  TIMx Timer instance
4466   * @retval None
4467   */
LL_TIM_DisableIT_UPDATE(TIM_TypeDef * TIMx)4468 __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx)
4469 {
4470   CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE);
4471 }
4472 
4473 /**
4474   * @brief  Indicates whether the update interrupt (UIE) is enabled.
4475   * @rmtoll DIER         UIE           LL_TIM_IsEnabledIT_UPDATE
4476   * @param  TIMx Timer instance
4477   * @retval State of bit (1 or 0).
4478   */
LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef * TIMx)4479 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(const TIM_TypeDef *TIMx)
4480 {
4481   return ((READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)) ? 1UL : 0UL);
4482 }
4483 
4484 /**
4485   * @brief  Enable capture/compare 1 interrupt (CC1IE).
4486   * @rmtoll DIER         CC1IE         LL_TIM_EnableIT_CC1
4487   * @param  TIMx Timer instance
4488   * @retval None
4489   */
LL_TIM_EnableIT_CC1(TIM_TypeDef * TIMx)4490 __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx)
4491 {
4492   SET_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4493 }
4494 
4495 /**
4496   * @brief  Disable capture/compare 1  interrupt (CC1IE).
4497   * @rmtoll DIER         CC1IE         LL_TIM_DisableIT_CC1
4498   * @param  TIMx Timer instance
4499   * @retval None
4500   */
LL_TIM_DisableIT_CC1(TIM_TypeDef * TIMx)4501 __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx)
4502 {
4503   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE);
4504 }
4505 
4506 /**
4507   * @brief  Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled.
4508   * @rmtoll DIER         CC1IE         LL_TIM_IsEnabledIT_CC1
4509   * @param  TIMx Timer instance
4510   * @retval State of bit (1 or 0).
4511   */
LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef * TIMx)4512 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(const TIM_TypeDef *TIMx)
4513 {
4514   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)) ? 1UL : 0UL);
4515 }
4516 
4517 /**
4518   * @brief  Enable capture/compare 2 interrupt (CC2IE).
4519   * @rmtoll DIER         CC2IE         LL_TIM_EnableIT_CC2
4520   * @param  TIMx Timer instance
4521   * @retval None
4522   */
LL_TIM_EnableIT_CC2(TIM_TypeDef * TIMx)4523 __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx)
4524 {
4525   SET_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4526 }
4527 
4528 /**
4529   * @brief  Disable capture/compare 2  interrupt (CC2IE).
4530   * @rmtoll DIER         CC2IE         LL_TIM_DisableIT_CC2
4531   * @param  TIMx Timer instance
4532   * @retval None
4533   */
LL_TIM_DisableIT_CC2(TIM_TypeDef * TIMx)4534 __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx)
4535 {
4536   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE);
4537 }
4538 
4539 /**
4540   * @brief  Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled.
4541   * @rmtoll DIER         CC2IE         LL_TIM_IsEnabledIT_CC2
4542   * @param  TIMx Timer instance
4543   * @retval State of bit (1 or 0).
4544   */
LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef * TIMx)4545 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(const TIM_TypeDef *TIMx)
4546 {
4547   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)) ? 1UL : 0UL);
4548 }
4549 
4550 /**
4551   * @brief  Enable capture/compare 3 interrupt (CC3IE).
4552   * @rmtoll DIER         CC3IE         LL_TIM_EnableIT_CC3
4553   * @param  TIMx Timer instance
4554   * @retval None
4555   */
LL_TIM_EnableIT_CC3(TIM_TypeDef * TIMx)4556 __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx)
4557 {
4558   SET_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4559 }
4560 
4561 /**
4562   * @brief  Disable capture/compare 3  interrupt (CC3IE).
4563   * @rmtoll DIER         CC3IE         LL_TIM_DisableIT_CC3
4564   * @param  TIMx Timer instance
4565   * @retval None
4566   */
LL_TIM_DisableIT_CC3(TIM_TypeDef * TIMx)4567 __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx)
4568 {
4569   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE);
4570 }
4571 
4572 /**
4573   * @brief  Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled.
4574   * @rmtoll DIER         CC3IE         LL_TIM_IsEnabledIT_CC3
4575   * @param  TIMx Timer instance
4576   * @retval State of bit (1 or 0).
4577   */
LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef * TIMx)4578 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(const TIM_TypeDef *TIMx)
4579 {
4580   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)) ? 1UL : 0UL);
4581 }
4582 
4583 /**
4584   * @brief  Enable capture/compare 4 interrupt (CC4IE).
4585   * @rmtoll DIER         CC4IE         LL_TIM_EnableIT_CC4
4586   * @param  TIMx Timer instance
4587   * @retval None
4588   */
LL_TIM_EnableIT_CC4(TIM_TypeDef * TIMx)4589 __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx)
4590 {
4591   SET_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4592 }
4593 
4594 /**
4595   * @brief  Disable capture/compare 4  interrupt (CC4IE).
4596   * @rmtoll DIER         CC4IE         LL_TIM_DisableIT_CC4
4597   * @param  TIMx Timer instance
4598   * @retval None
4599   */
LL_TIM_DisableIT_CC4(TIM_TypeDef * TIMx)4600 __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx)
4601 {
4602   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE);
4603 }
4604 
4605 /**
4606   * @brief  Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled.
4607   * @rmtoll DIER         CC4IE         LL_TIM_IsEnabledIT_CC4
4608   * @param  TIMx Timer instance
4609   * @retval State of bit (1 or 0).
4610   */
LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef * TIMx)4611 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(const TIM_TypeDef *TIMx)
4612 {
4613   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)) ? 1UL : 0UL);
4614 }
4615 
4616 /**
4617   * @brief  Enable commutation interrupt (COMIE).
4618   * @rmtoll DIER         COMIE         LL_TIM_EnableIT_COM
4619   * @param  TIMx Timer instance
4620   * @retval None
4621   */
LL_TIM_EnableIT_COM(TIM_TypeDef * TIMx)4622 __STATIC_INLINE void LL_TIM_EnableIT_COM(TIM_TypeDef *TIMx)
4623 {
4624   SET_BIT(TIMx->DIER, TIM_DIER_COMIE);
4625 }
4626 
4627 /**
4628   * @brief  Disable commutation interrupt (COMIE).
4629   * @rmtoll DIER         COMIE         LL_TIM_DisableIT_COM
4630   * @param  TIMx Timer instance
4631   * @retval None
4632   */
LL_TIM_DisableIT_COM(TIM_TypeDef * TIMx)4633 __STATIC_INLINE void LL_TIM_DisableIT_COM(TIM_TypeDef *TIMx)
4634 {
4635   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMIE);
4636 }
4637 
4638 /**
4639   * @brief  Indicates whether the commutation interrupt (COMIE) is enabled.
4640   * @rmtoll DIER         COMIE         LL_TIM_IsEnabledIT_COM
4641   * @param  TIMx Timer instance
4642   * @retval State of bit (1 or 0).
4643   */
LL_TIM_IsEnabledIT_COM(const TIM_TypeDef * TIMx)4644 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_COM(const TIM_TypeDef *TIMx)
4645 {
4646   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMIE) == (TIM_DIER_COMIE)) ? 1UL : 0UL);
4647 }
4648 
4649 /**
4650   * @brief  Enable trigger interrupt (TIE).
4651   * @rmtoll DIER         TIE           LL_TIM_EnableIT_TRIG
4652   * @param  TIMx Timer instance
4653   * @retval None
4654   */
LL_TIM_EnableIT_TRIG(TIM_TypeDef * TIMx)4655 __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx)
4656 {
4657   SET_BIT(TIMx->DIER, TIM_DIER_TIE);
4658 }
4659 
4660 /**
4661   * @brief  Disable trigger interrupt (TIE).
4662   * @rmtoll DIER         TIE           LL_TIM_DisableIT_TRIG
4663   * @param  TIMx Timer instance
4664   * @retval None
4665   */
LL_TIM_DisableIT_TRIG(TIM_TypeDef * TIMx)4666 __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx)
4667 {
4668   CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE);
4669 }
4670 
4671 /**
4672   * @brief  Indicates whether the trigger interrupt (TIE) is enabled.
4673   * @rmtoll DIER         TIE           LL_TIM_IsEnabledIT_TRIG
4674   * @param  TIMx Timer instance
4675   * @retval State of bit (1 or 0).
4676   */
LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef * TIMx)4677 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(const TIM_TypeDef *TIMx)
4678 {
4679   return ((READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)) ? 1UL : 0UL);
4680 }
4681 
4682 /**
4683   * @brief  Enable break interrupt (BIE).
4684   * @rmtoll DIER         BIE           LL_TIM_EnableIT_BRK
4685   * @param  TIMx Timer instance
4686   * @retval None
4687   */
LL_TIM_EnableIT_BRK(TIM_TypeDef * TIMx)4688 __STATIC_INLINE void LL_TIM_EnableIT_BRK(TIM_TypeDef *TIMx)
4689 {
4690   SET_BIT(TIMx->DIER, TIM_DIER_BIE);
4691 }
4692 
4693 /**
4694   * @brief  Disable break interrupt (BIE).
4695   * @rmtoll DIER         BIE           LL_TIM_DisableIT_BRK
4696   * @param  TIMx Timer instance
4697   * @retval None
4698   */
LL_TIM_DisableIT_BRK(TIM_TypeDef * TIMx)4699 __STATIC_INLINE void LL_TIM_DisableIT_BRK(TIM_TypeDef *TIMx)
4700 {
4701   CLEAR_BIT(TIMx->DIER, TIM_DIER_BIE);
4702 }
4703 
4704 /**
4705   * @brief  Indicates whether the break interrupt (BIE) is enabled.
4706   * @rmtoll DIER         BIE           LL_TIM_IsEnabledIT_BRK
4707   * @param  TIMx Timer instance
4708   * @retval State of bit (1 or 0).
4709   */
LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef * TIMx)4710 __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_BRK(const TIM_TypeDef *TIMx)
4711 {
4712   return ((READ_BIT(TIMx->DIER, TIM_DIER_BIE) == (TIM_DIER_BIE)) ? 1UL : 0UL);
4713 }
4714 
4715 /**
4716   * @}
4717   */
4718 
4719 /** @defgroup TIM_LL_EF_DMA_Management DMA Management
4720   * @{
4721   */
4722 /**
4723   * @brief  Enable update DMA request (UDE).
4724   * @rmtoll DIER         UDE           LL_TIM_EnableDMAReq_UPDATE
4725   * @param  TIMx Timer instance
4726   * @retval None
4727   */
LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef * TIMx)4728 __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4729 {
4730   SET_BIT(TIMx->DIER, TIM_DIER_UDE);
4731 }
4732 
4733 /**
4734   * @brief  Disable update DMA request (UDE).
4735   * @rmtoll DIER         UDE           LL_TIM_DisableDMAReq_UPDATE
4736   * @param  TIMx Timer instance
4737   * @retval None
4738   */
LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef * TIMx)4739 __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx)
4740 {
4741   CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE);
4742 }
4743 
4744 /**
4745   * @brief  Indicates whether the update DMA request  (UDE) is enabled.
4746   * @rmtoll DIER         UDE           LL_TIM_IsEnabledDMAReq_UPDATE
4747   * @param  TIMx Timer instance
4748   * @retval State of bit (1 or 0).
4749   */
LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef * TIMx)4750 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(const TIM_TypeDef *TIMx)
4751 {
4752   return ((READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)) ? 1UL : 0UL);
4753 }
4754 
4755 /**
4756   * @brief  Enable capture/compare 1 DMA request (CC1DE).
4757   * @rmtoll DIER         CC1DE         LL_TIM_EnableDMAReq_CC1
4758   * @param  TIMx Timer instance
4759   * @retval None
4760   */
LL_TIM_EnableDMAReq_CC1(TIM_TypeDef * TIMx)4761 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx)
4762 {
4763   SET_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4764 }
4765 
4766 /**
4767   * @brief  Disable capture/compare 1  DMA request (CC1DE).
4768   * @rmtoll DIER         CC1DE         LL_TIM_DisableDMAReq_CC1
4769   * @param  TIMx Timer instance
4770   * @retval None
4771   */
LL_TIM_DisableDMAReq_CC1(TIM_TypeDef * TIMx)4772 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx)
4773 {
4774   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE);
4775 }
4776 
4777 /**
4778   * @brief  Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled.
4779   * @rmtoll DIER         CC1DE         LL_TIM_IsEnabledDMAReq_CC1
4780   * @param  TIMx Timer instance
4781   * @retval State of bit (1 or 0).
4782   */
LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef * TIMx)4783 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(const TIM_TypeDef *TIMx)
4784 {
4785   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)) ? 1UL : 0UL);
4786 }
4787 
4788 /**
4789   * @brief  Enable capture/compare 2 DMA request (CC2DE).
4790   * @rmtoll DIER         CC2DE         LL_TIM_EnableDMAReq_CC2
4791   * @param  TIMx Timer instance
4792   * @retval None
4793   */
LL_TIM_EnableDMAReq_CC2(TIM_TypeDef * TIMx)4794 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx)
4795 {
4796   SET_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4797 }
4798 
4799 /**
4800   * @brief  Disable capture/compare 2  DMA request (CC2DE).
4801   * @rmtoll DIER         CC2DE         LL_TIM_DisableDMAReq_CC2
4802   * @param  TIMx Timer instance
4803   * @retval None
4804   */
LL_TIM_DisableDMAReq_CC2(TIM_TypeDef * TIMx)4805 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx)
4806 {
4807   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE);
4808 }
4809 
4810 /**
4811   * @brief  Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled.
4812   * @rmtoll DIER         CC2DE         LL_TIM_IsEnabledDMAReq_CC2
4813   * @param  TIMx Timer instance
4814   * @retval State of bit (1 or 0).
4815   */
LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef * TIMx)4816 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(const TIM_TypeDef *TIMx)
4817 {
4818   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)) ? 1UL : 0UL);
4819 }
4820 
4821 /**
4822   * @brief  Enable capture/compare 3 DMA request (CC3DE).
4823   * @rmtoll DIER         CC3DE         LL_TIM_EnableDMAReq_CC3
4824   * @param  TIMx Timer instance
4825   * @retval None
4826   */
LL_TIM_EnableDMAReq_CC3(TIM_TypeDef * TIMx)4827 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx)
4828 {
4829   SET_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4830 }
4831 
4832 /**
4833   * @brief  Disable capture/compare 3  DMA request (CC3DE).
4834   * @rmtoll DIER         CC3DE         LL_TIM_DisableDMAReq_CC3
4835   * @param  TIMx Timer instance
4836   * @retval None
4837   */
LL_TIM_DisableDMAReq_CC3(TIM_TypeDef * TIMx)4838 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx)
4839 {
4840   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE);
4841 }
4842 
4843 /**
4844   * @brief  Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled.
4845   * @rmtoll DIER         CC3DE         LL_TIM_IsEnabledDMAReq_CC3
4846   * @param  TIMx Timer instance
4847   * @retval State of bit (1 or 0).
4848   */
LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef * TIMx)4849 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(const TIM_TypeDef *TIMx)
4850 {
4851   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)) ? 1UL : 0UL);
4852 }
4853 
4854 /**
4855   * @brief  Enable capture/compare 4 DMA request (CC4DE).
4856   * @rmtoll DIER         CC4DE         LL_TIM_EnableDMAReq_CC4
4857   * @param  TIMx Timer instance
4858   * @retval None
4859   */
LL_TIM_EnableDMAReq_CC4(TIM_TypeDef * TIMx)4860 __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx)
4861 {
4862   SET_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4863 }
4864 
4865 /**
4866   * @brief  Disable capture/compare 4  DMA request (CC4DE).
4867   * @rmtoll DIER         CC4DE         LL_TIM_DisableDMAReq_CC4
4868   * @param  TIMx Timer instance
4869   * @retval None
4870   */
LL_TIM_DisableDMAReq_CC4(TIM_TypeDef * TIMx)4871 __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx)
4872 {
4873   CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE);
4874 }
4875 
4876 /**
4877   * @brief  Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled.
4878   * @rmtoll DIER         CC4DE         LL_TIM_IsEnabledDMAReq_CC4
4879   * @param  TIMx Timer instance
4880   * @retval State of bit (1 or 0).
4881   */
LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef * TIMx)4882 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(const TIM_TypeDef *TIMx)
4883 {
4884   return ((READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)) ? 1UL : 0UL);
4885 }
4886 
4887 /**
4888   * @brief  Enable commutation DMA request (COMDE).
4889   * @rmtoll DIER         COMDE         LL_TIM_EnableDMAReq_COM
4890   * @param  TIMx Timer instance
4891   * @retval None
4892   */
LL_TIM_EnableDMAReq_COM(TIM_TypeDef * TIMx)4893 __STATIC_INLINE void LL_TIM_EnableDMAReq_COM(TIM_TypeDef *TIMx)
4894 {
4895   SET_BIT(TIMx->DIER, TIM_DIER_COMDE);
4896 }
4897 
4898 /**
4899   * @brief  Disable commutation DMA request (COMDE).
4900   * @rmtoll DIER         COMDE         LL_TIM_DisableDMAReq_COM
4901   * @param  TIMx Timer instance
4902   * @retval None
4903   */
LL_TIM_DisableDMAReq_COM(TIM_TypeDef * TIMx)4904 __STATIC_INLINE void LL_TIM_DisableDMAReq_COM(TIM_TypeDef *TIMx)
4905 {
4906   CLEAR_BIT(TIMx->DIER, TIM_DIER_COMDE);
4907 }
4908 
4909 /**
4910   * @brief  Indicates whether the commutation DMA request (COMDE) is enabled.
4911   * @rmtoll DIER         COMDE         LL_TIM_IsEnabledDMAReq_COM
4912   * @param  TIMx Timer instance
4913   * @retval State of bit (1 or 0).
4914   */
LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef * TIMx)4915 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_COM(const TIM_TypeDef *TIMx)
4916 {
4917   return ((READ_BIT(TIMx->DIER, TIM_DIER_COMDE) == (TIM_DIER_COMDE)) ? 1UL : 0UL);
4918 }
4919 
4920 /**
4921   * @brief  Enable trigger interrupt (TDE).
4922   * @rmtoll DIER         TDE           LL_TIM_EnableDMAReq_TRIG
4923   * @param  TIMx Timer instance
4924   * @retval None
4925   */
LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef * TIMx)4926 __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx)
4927 {
4928   SET_BIT(TIMx->DIER, TIM_DIER_TDE);
4929 }
4930 
4931 /**
4932   * @brief  Disable trigger interrupt (TDE).
4933   * @rmtoll DIER         TDE           LL_TIM_DisableDMAReq_TRIG
4934   * @param  TIMx Timer instance
4935   * @retval None
4936   */
LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef * TIMx)4937 __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx)
4938 {
4939   CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE);
4940 }
4941 
4942 /**
4943   * @brief  Indicates whether the trigger interrupt (TDE) is enabled.
4944   * @rmtoll DIER         TDE           LL_TIM_IsEnabledDMAReq_TRIG
4945   * @param  TIMx Timer instance
4946   * @retval State of bit (1 or 0).
4947   */
LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef * TIMx)4948 __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(const TIM_TypeDef *TIMx)
4949 {
4950   return ((READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)) ? 1UL : 0UL);
4951 }
4952 
4953 /**
4954   * @}
4955   */
4956 
4957 /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management
4958   * @{
4959   */
4960 /**
4961   * @brief  Generate an update event.
4962   * @rmtoll EGR          UG            LL_TIM_GenerateEvent_UPDATE
4963   * @param  TIMx Timer instance
4964   * @retval None
4965   */
LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef * TIMx)4966 __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx)
4967 {
4968   SET_BIT(TIMx->EGR, TIM_EGR_UG);
4969 }
4970 
4971 /**
4972   * @brief  Generate Capture/Compare 1 event.
4973   * @rmtoll EGR          CC1G          LL_TIM_GenerateEvent_CC1
4974   * @param  TIMx Timer instance
4975   * @retval None
4976   */
LL_TIM_GenerateEvent_CC1(TIM_TypeDef * TIMx)4977 __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx)
4978 {
4979   SET_BIT(TIMx->EGR, TIM_EGR_CC1G);
4980 }
4981 
4982 /**
4983   * @brief  Generate Capture/Compare 2 event.
4984   * @rmtoll EGR          CC2G          LL_TIM_GenerateEvent_CC2
4985   * @param  TIMx Timer instance
4986   * @retval None
4987   */
LL_TIM_GenerateEvent_CC2(TIM_TypeDef * TIMx)4988 __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx)
4989 {
4990   SET_BIT(TIMx->EGR, TIM_EGR_CC2G);
4991 }
4992 
4993 /**
4994   * @brief  Generate Capture/Compare 3 event.
4995   * @rmtoll EGR          CC3G          LL_TIM_GenerateEvent_CC3
4996   * @param  TIMx Timer instance
4997   * @retval None
4998   */
LL_TIM_GenerateEvent_CC3(TIM_TypeDef * TIMx)4999 __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx)
5000 {
5001   SET_BIT(TIMx->EGR, TIM_EGR_CC3G);
5002 }
5003 
5004 /**
5005   * @brief  Generate Capture/Compare 4 event.
5006   * @rmtoll EGR          CC4G          LL_TIM_GenerateEvent_CC4
5007   * @param  TIMx Timer instance
5008   * @retval None
5009   */
LL_TIM_GenerateEvent_CC4(TIM_TypeDef * TIMx)5010 __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx)
5011 {
5012   SET_BIT(TIMx->EGR, TIM_EGR_CC4G);
5013 }
5014 
5015 /**
5016   * @brief  Generate commutation event.
5017   * @rmtoll EGR          COMG          LL_TIM_GenerateEvent_COM
5018   * @param  TIMx Timer instance
5019   * @retval None
5020   */
LL_TIM_GenerateEvent_COM(TIM_TypeDef * TIMx)5021 __STATIC_INLINE void LL_TIM_GenerateEvent_COM(TIM_TypeDef *TIMx)
5022 {
5023   SET_BIT(TIMx->EGR, TIM_EGR_COMG);
5024 }
5025 
5026 /**
5027   * @brief  Generate trigger event.
5028   * @rmtoll EGR          TG            LL_TIM_GenerateEvent_TRIG
5029   * @param  TIMx Timer instance
5030   * @retval None
5031   */
LL_TIM_GenerateEvent_TRIG(TIM_TypeDef * TIMx)5032 __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx)
5033 {
5034   SET_BIT(TIMx->EGR, TIM_EGR_TG);
5035 }
5036 
5037 /**
5038   * @brief  Generate break event.
5039   * @rmtoll EGR          BG            LL_TIM_GenerateEvent_BRK
5040   * @param  TIMx Timer instance
5041   * @retval None
5042   */
LL_TIM_GenerateEvent_BRK(TIM_TypeDef * TIMx)5043 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK(TIM_TypeDef *TIMx)
5044 {
5045   SET_BIT(TIMx->EGR, TIM_EGR_BG);
5046 }
5047 
5048 /**
5049   * @brief  Generate break 2 event.
5050   * @rmtoll EGR          B2G           LL_TIM_GenerateEvent_BRK2
5051   * @param  TIMx Timer instance
5052   * @retval None
5053   */
LL_TIM_GenerateEvent_BRK2(TIM_TypeDef * TIMx)5054 __STATIC_INLINE void LL_TIM_GenerateEvent_BRK2(TIM_TypeDef *TIMx)
5055 {
5056   SET_BIT(TIMx->EGR, TIM_EGR_B2G);
5057 }
5058 
5059 /**
5060   * @}
5061   */
5062 
5063 #if defined(USE_FULL_LL_DRIVER)
5064 /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions
5065   * @{
5066   */
5067 
5068 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx);
5069 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct);
5070 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct);
5071 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
5072 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct);
5073 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
5074 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct);
5075 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
5076 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct);
5077 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
5078 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct);
5079 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5080 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct);
5081 /**
5082   * @}
5083   */
5084 #endif /* USE_FULL_LL_DRIVER */
5085 
5086 /**
5087   * @}
5088   */
5089 
5090 /**
5091   * @}
5092   */
5093 
5094 #endif /* TIM1 || TIM8 || TIM2 || TIM3 ||  TIM4 || TIM5 || TIM15 || TIM16 || TIM17 || TIM6 || TIM7 */
5095 
5096 /**
5097   * @}
5098   */
5099 
5100 #ifdef __cplusplus
5101 }
5102 #endif
5103 
5104 #endif /* __STM32L4xx_LL_TIM_H */
5105