1 /**
2 ******************************************************************************
3 * @file stm32l1xx_hal_pwr.c
4 * @author MCD Application Team
5 * @brief PWR HAL module driver.
6 *
7 * This file provides firmware functions to manage the following
8 * functionalities of the Power Controller (PWR) peripheral:
9 * + Initialization/de-initialization functions
10 * + Peripheral Control functions
11 *
12 ******************************************************************************
13 * @attention
14 *
15 * Copyright (c) 2017 STMicroelectronics.
16 * All rights reserved.
17 *
18 * This software is licensed under terms that can be found in the LICENSE file
19 * in the root directory of this software component.
20 * If no LICENSE file comes with this software, it is provided AS-IS.
21 *
22 ******************************************************************************
23 */
24
25 /* Includes ------------------------------------------------------------------*/
26 #include "stm32l1xx_hal.h"
27
28 /** @addtogroup STM32L1xx_HAL_Driver
29 * @{
30 */
31
32 /** @defgroup PWR PWR
33 * @brief PWR HAL module driver
34 * @{
35 */
36
37 #ifdef HAL_PWR_MODULE_ENABLED
38
39 /* Private typedef -----------------------------------------------------------*/
40 /* Private define ------------------------------------------------------------*/
41 #define PVD_MODE_IT (0x00010000U)
42 #define PVD_MODE_EVT (0x00020000U)
43 #define PVD_RISING_EDGE (0x00000001U)
44 #define PVD_FALLING_EDGE (0x00000002U)
45
46 /* Private macro -------------------------------------------------------------*/
47 /* Private variables ---------------------------------------------------------*/
48 /* Private function prototypes -----------------------------------------------*/
49 /* Private functions ---------------------------------------------------------*/
50
51 /** @defgroup PWR_Exported_Functions PWR Exported Functions
52 * @{
53 */
54
55 /** @defgroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
56 * @brief Initialization and de-initialization functions
57 *
58 @verbatim
59 ===============================================================================
60 ##### Initialization and de-initialization functions #####
61 ===============================================================================
62 [..]
63 After reset, the backup domain (RTC registers, RTC backup data
64 registers) is protected against possible unwanted
65 write accesses.
66 To enable access to the RTC Domain and RTC registers, proceed as follows:
67 (+) Enable the Power Controller (PWR) APB1 interface clock using the
68 __HAL_RCC_PWR_CLK_ENABLE() macro.
69 (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
70
71 @endverbatim
72 * @{
73 */
74
75 /**
76 * @brief Deinitializes the PWR peripheral registers to their default reset values.
77 * @note Before calling this function, the VOS[1:0] bits should be configured
78 * to "10" and the system frequency has to be configured accordingly.
79 * To configure the VOS[1:0] bits, use the PWR_VoltageScalingConfig()
80 * function.
81 * @note ULP and FWU bits are not reset by this function.
82 * @retval None
83 */
HAL_PWR_DeInit(void)84 void HAL_PWR_DeInit(void)
85 {
86 __HAL_RCC_PWR_FORCE_RESET();
87 __HAL_RCC_PWR_RELEASE_RESET();
88 }
89
90 /**
91 * @brief Enables access to the backup domain (RTC registers, RTC
92 * backup data registers ).
93 * @note If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
94 * Backup Domain Access should be kept enabled.
95 * @retval None
96 */
HAL_PWR_EnableBkUpAccess(void)97 void HAL_PWR_EnableBkUpAccess(void)
98 {
99 /* Enable access to RTC and backup registers */
100 *(__IO uint32_t *) CR_DBP_BB = (uint32_t)ENABLE;
101 }
102
103 /**
104 * @brief Disables access to the backup domain (RTC registers, RTC
105 * backup data registers).
106 * @note If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, the
107 * Backup Domain Access should be kept enabled.
108 * @retval None
109 */
HAL_PWR_DisableBkUpAccess(void)110 void HAL_PWR_DisableBkUpAccess(void)
111 {
112 /* Disable access to RTC and backup registers */
113 *(__IO uint32_t *) CR_DBP_BB = (uint32_t)DISABLE;
114 }
115
116 /**
117 * @}
118 */
119
120 /** @defgroup PWR_Exported_Functions_Group2 Peripheral Control functions
121 * @brief Low Power modes configuration functions
122 *
123 @verbatim
124
125 ===============================================================================
126 ##### Peripheral Control functions #####
127 ===============================================================================
128
129 *** PVD configuration ***
130 =========================
131 [..]
132 (+) The PVD is used to monitor the VDD power supply by comparing it to a
133 threshold selected by the PVD Level (PLS[2:0] bits in the PWR_CR).
134 (+) The PVD can use an external input analog voltage (PVD_IN) which is compared
135 internally to VREFINT. The PVD_IN (PB7) has to be configured in Analog mode
136 when PWR_PVDLevel_7 is selected (PLS[2:0] = 111).
137
138 (+) A PVDO flag is available to indicate if VDD/VDDA is higher or lower
139 than the PVD threshold. This event is internally connected to the EXTI
140 line16 and can generate an interrupt if enabled. This is done through
141 __HAL_PWR_PVD_EXTI_ENABLE_IT() macro.
142 (+) The PVD is stopped in Standby mode.
143
144 *** WakeUp pin configuration ***
145 ================================
146 [..]
147 (+) WakeUp pin is used to wake up the system from Standby mode. This pin is
148 forced in input pull-down configuration and is active on rising edges.
149 (+) There are two or three WakeUp pins:
150 WakeUp Pin 1 on PA.00.
151 WakeUp Pin 2 on PC.13.
152 WakeUp Pin 3 on PE.06. : Only on product with GPIOE available
153
154 [..]
155 *** Main and Backup Regulators configuration ***
156 ================================================
157
158 (+) The main internal regulator can be configured to have a tradeoff between
159 performance and power consumption when the device does not operate at
160 the maximum frequency. This is done through __HAL_PWR_VOLTAGESCALING_CONFIG()
161 macro which configure VOS bit in PWR_CR register:
162 (++) When this bit is set (Regulator voltage output Scale 1 mode selected)
163 the System frequency can go up to 32 MHz.
164 (++) When this bit is reset (Regulator voltage output Scale 2 mode selected)
165 the System frequency can go up to 16 MHz.
166 (++) When this bit is reset (Regulator voltage output Scale 3 mode selected)
167 the System frequency can go up to 4.2 MHz.
168
169 Refer to the datasheets for more details.
170
171 *** Low Power modes configuration ***
172 =====================================
173 [..]
174 The device features 5 low-power modes:
175 (+) Low power run mode: regulator in low power mode, limited clock frequency,
176 limited number of peripherals running.
177 (+) Sleep mode: Cortex-M3 core stopped, peripherals kept running.
178 (+) Low power sleep mode: Cortex-M3 core stopped, limited clock frequency,
179 limited number of peripherals running, regulator in low power mode.
180 (+) Stop mode: All clocks are stopped, regulator running, regulator in low power mode.
181 (+) Standby mode: VCORE domain powered off
182
183 *** Low power run mode ***
184 =========================
185 [..]
186 To further reduce the consumption when the system is in Run mode, the regulator can be
187 configured in low power mode. In this mode, the system frequency should not exceed
188 MSI frequency range1.
189 In Low power run mode, all I/O pins keep the same state as in Run mode.
190
191 (+) Entry:
192 (++) VCORE in range2
193 (++) Decrease the system frequency tonot exceed the frequency of MSI frequency range1.
194 (++) The regulator is forced in low power mode using the HAL_PWREx_EnableLowPowerRunMode()
195 function.
196 (+) Exit:
197 (++) The regulator is forced in Main regulator mode using the HAL_PWREx_DisableLowPowerRunMode()
198 function.
199 (++) Increase the system frequency if needed.
200
201 *** Sleep mode ***
202 ==================
203 [..]
204 (+) Entry:
205 The Sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFx)
206 functions with
207 (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
208 (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
209
210 (+) Exit:
211 (++) Any peripheral interrupt acknowledged by the nested vectored interrupt
212 controller (NVIC) can wake up the device from Sleep mode.
213
214 *** Low power sleep mode ***
215 ============================
216 [..]
217 (+) Entry:
218 The Low power sleep mode is entered by using the HAL_PWR_EnterSLEEPMode(PWR_LOWPOWERREGULATOR_ON, PWR_SLEEPENTRY_WFx)
219 functions with
220 (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
221 (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
222 (+) The Flash memory can be switched off by using the control bits (SLEEP_PD in the FLASH_ACR register.
223 This reduces power consumption but increases the wake-up time.
224
225 (+) Exit:
226 (++) If the WFI instruction was used to enter Low power sleep mode, any peripheral interrupt
227 acknowledged by the nested vectored interrupt controller (NVIC) can wake up the device
228 from Low power sleep mode. If the WFE instruction was used to enter Low power sleep mode,
229 the MCU exits Sleep mode as soon as an event occurs.
230
231 *** Stop mode ***
232 =================
233 [..]
234 The Stop mode is based on the Cortex-M3 deepsleep mode combined with peripheral
235 clock gating. The voltage regulator can be configured either in normal or low-power mode.
236 In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI and
237 the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved.
238 To get the lowest consumption in Stop mode, the internal Flash memory also enters low
239 power mode. When the Flash memory is in power-down mode, an additional startup delay is
240 incurred when waking up from Stop mode.
241 To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
242 sensor can be switched off before entering Stop mode. They can be switched on again by
243 software after exiting Stop mode using the ULP bit in the PWR_CR register.
244 In Stop mode, all I/O pins keep the same state as in Run mode.
245
246 (+) Entry:
247 The Stop mode is entered using the HAL_PWR_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_SLEEPENTRY_WFI )
248 function with:
249 (++) Main regulator ON.
250 (++) Low Power regulator ON.
251 (++) PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
252 (++) PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
253 (+) Exit:
254 (++) By issuing an interrupt or a wakeup event, the MSI RC oscillator is selected as system clock.
255
256 *** Standby mode ***
257 ====================
258 [..]
259 The Standby mode allows to achieve the lowest power consumption. It is based on the
260 Cortex-M3 deepsleep mode, with the voltage regulator disabled. The VCORE domain is
261 consequently powered off. The PLL, the MSI, the HSI oscillator and the HSE oscillator are
262 also switched off. SRAM and register contents are lost except for the RTC registers, RTC
263 backup registers and Standby circuitry.
264
265 To minimize the consumption In Standby mode, VREFINT, the BOR, PVD, and temperature
266 sensor can be switched off before entering the Standby mode. They can be switched
267 on again by software after exiting the Standby mode.
268 function.
269
270 (+) Entry:
271 (++) The Standby mode is entered using the HAL_PWR_EnterSTANDBYMode() function.
272 (+) Exit:
273 (++) WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
274 tamper event, time-stamp event, external reset in NRST pin, IWDG reset.
275
276 *** Auto-wakeup (AWU) from low-power mode ***
277 =============================================
278 [..]
279 The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC
280 Wakeup event, a tamper event, a time-stamp event, or a comparator event,
281 without depending on an external interrupt (Auto-wakeup mode).
282
283 (+) RTC auto-wakeup (AWU) from the Stop mode
284 (++) To wake up from the Stop mode with an RTC alarm event, it is necessary to:
285 (+++) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt
286 or Event modes) and Enable the RTC Alarm Interrupt using the HAL_RTC_SetAlarm_IT()
287 function
288 (+++) Configure the RTC to generate the RTC alarm using the HAL_RTC_Init()
289 and HAL_RTC_SetTime() functions.
290 (++) To wake up from the Stop mode with an RTC Tamper or time stamp event, it
291 is necessary to:
292 (+++) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt or Event modes) and
293 Enable the RTC Tamper or time stamp Interrupt using the HAL_RTCEx_SetTamper_IT()
294 or HAL_RTCEx_SetTimeStamp_IT() functions.
295 (++) To wake up from the Stop mode with an RTC WakeUp event, it is necessary to:
296 (+++) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt or Event modes) and
297 Enable the RTC WakeUp Interrupt using the HAL_RTCEx_SetWakeUpTimer_IT() function.
298 (+++) Configure the RTC to generate the RTC WakeUp event using the HAL_RTCEx_SetWakeUpTimer()
299 function.
300
301 (+) RTC auto-wakeup (AWU) from the Standby mode
302 (++) To wake up from the Standby mode with an RTC alarm event, it is necessary to:
303 (+++) Enable the RTC Alarm Interrupt using the HAL_RTC_SetAlarm_IT() function.
304 (+++) Configure the RTC to generate the RTC alarm using the HAL_RTC_Init()
305 and HAL_RTC_SetTime() functions.
306 (++) To wake up from the Standby mode with an RTC Tamper or time stamp event, it
307 is necessary to:
308 (+++) Enable the RTC Tamper or time stamp Interrupt and Configure the RTC to
309 detect the tamper or time stamp event using the HAL_RTCEx_SetTimeStamp_IT()
310 or HAL_RTCEx_SetTamper_IT()functions.
311 (++) To wake up from the Standby mode with an RTC WakeUp event, it is necessary to:
312 (+++) Enable the RTC WakeUp Interrupt and Configure the RTC to generate the RTC WakeUp event
313 using the HAL_RTCEx_SetWakeUpTimer_IT() and HAL_RTCEx_SetWakeUpTimer() functions.
314
315 (+) Comparator auto-wakeup (AWU) from the Stop mode
316 (++) To wake up from the Stop mode with an comparator 1 or comparator 2 wakeup
317 event, it is necessary to:
318 (+++) Configure the EXTI Line 21 or EXTI Line 22 for comparator to be sensitive to to the
319 selected edges (falling, rising or falling and rising) (Interrupt or Event modes) using
320 the COMP functions.
321 (+++) Configure the comparator to generate the event.
322
323
324
325 @endverbatim
326 * @{
327 */
328
329 /**
330 * @brief Configures the voltage threshold detected by the Power Voltage Detector(PVD).
331 * @param sConfigPVD pointer to an PWR_PVDTypeDef structure that contains the configuration
332 * information for the PVD.
333 * @note Refer to the electrical characteristics of your device datasheet for
334 * more details about the voltage threshold corresponding to each
335 * detection level.
336 * @retval None
337 */
HAL_PWR_ConfigPVD(PWR_PVDTypeDef * sConfigPVD)338 void HAL_PWR_ConfigPVD(PWR_PVDTypeDef *sConfigPVD)
339 {
340 /* Check the parameters */
341 assert_param(IS_PWR_PVD_LEVEL(sConfigPVD->PVDLevel));
342 assert_param(IS_PWR_PVD_MODE(sConfigPVD->Mode));
343
344 /* Set PLS[7:5] bits according to PVDLevel value */
345 MODIFY_REG(PWR->CR, PWR_CR_PLS, sConfigPVD->PVDLevel);
346
347 /* Clear any previous config. Keep it clear if no event or IT mode is selected */
348 __HAL_PWR_PVD_EXTI_DISABLE_EVENT();
349 __HAL_PWR_PVD_EXTI_DISABLE_IT();
350 __HAL_PWR_PVD_EXTI_DISABLE_RISING_FALLING_EDGE();
351
352 /* Configure interrupt mode */
353 if((sConfigPVD->Mode & PVD_MODE_IT) == PVD_MODE_IT)
354 {
355 __HAL_PWR_PVD_EXTI_ENABLE_IT();
356 }
357
358 /* Configure event mode */
359 if((sConfigPVD->Mode & PVD_MODE_EVT) == PVD_MODE_EVT)
360 {
361 __HAL_PWR_PVD_EXTI_ENABLE_EVENT();
362 }
363
364 /* Configure the edge */
365 if((sConfigPVD->Mode & PVD_RISING_EDGE) == PVD_RISING_EDGE)
366 {
367 __HAL_PWR_PVD_EXTI_ENABLE_RISING_EDGE();
368 }
369
370 if((sConfigPVD->Mode & PVD_FALLING_EDGE) == PVD_FALLING_EDGE)
371 {
372 __HAL_PWR_PVD_EXTI_ENABLE_FALLING_EDGE();
373 }
374 }
375
376 /**
377 * @brief Enables the Power Voltage Detector(PVD).
378 * @retval None
379 */
HAL_PWR_EnablePVD(void)380 void HAL_PWR_EnablePVD(void)
381 {
382 /* Enable the power voltage detector */
383 *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)ENABLE;
384 }
385
386 /**
387 * @brief Disables the Power Voltage Detector(PVD).
388 * @retval None
389 */
HAL_PWR_DisablePVD(void)390 void HAL_PWR_DisablePVD(void)
391 {
392 /* Disable the power voltage detector */
393 *(__IO uint32_t *) CR_PVDE_BB = (uint32_t)DISABLE;
394 }
395
396 /**
397 * @brief Enables the WakeUp PINx functionality.
398 * @param WakeUpPinx: Specifies the Power Wake-Up pin to enable.
399 * This parameter can be one of the following values:
400 * @arg PWR_WAKEUP_PIN1
401 * @arg PWR_WAKEUP_PIN2
402 * @arg PWR_WAKEUP_PIN3: Only on product with GPIOE available
403 * @retval None
404 */
HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)405 void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinx)
406 {
407 /* Check the parameter */
408 assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
409 /* Enable the EWUPx pin */
410 *(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)ENABLE;
411 }
412
413 /**
414 * @brief Disables the WakeUp PINx functionality.
415 * @param WakeUpPinx: Specifies the Power Wake-Up pin to disable.
416 * This parameter can be one of the following values:
417 * @arg PWR_WAKEUP_PIN1
418 * @arg PWR_WAKEUP_PIN2
419 * @arg PWR_WAKEUP_PIN3: Only on product with GPIOE available
420 * @retval None
421 */
HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)422 void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
423 {
424 /* Check the parameter */
425 assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
426 /* Disable the EWUPx pin */
427 *(__IO uint32_t *) CSR_EWUP_BB(WakeUpPinx) = (uint32_t)DISABLE;
428 }
429
430 /**
431 * @brief Enters Sleep mode.
432 * @note In Sleep mode, all I/O pins keep the same state as in Run mode.
433 * @param Regulator: Specifies the regulator state in SLEEP mode.
434 * This parameter can be one of the following values:
435 * @arg PWR_MAINREGULATOR_ON: SLEEP mode with regulator ON
436 * @arg PWR_LOWPOWERREGULATOR_ON: SLEEP mode with low power regulator ON
437 * @param SLEEPEntry: Specifies if SLEEP mode is entered with WFI or WFE instruction.
438 * When WFI entry is used, tick interrupt have to be disabled if not desired as
439 * the interrupt wake up source.
440 * This parameter can be one of the following values:
441 * @arg PWR_SLEEPENTRY_WFI: enter SLEEP mode with WFI instruction
442 * @arg PWR_SLEEPENTRY_WFE: enter SLEEP mode with WFE instruction
443 * @retval None
444 */
HAL_PWR_EnterSLEEPMode(uint32_t Regulator,uint8_t SLEEPEntry)445 void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
446 {
447 /* Check the parameters */
448 assert_param(IS_PWR_REGULATOR(Regulator));
449 assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
450
451 /* Select the regulator state in Sleep mode: Set PDDS and LPSDSR bit according to PWR_Regulator value */
452 MODIFY_REG(PWR->CR, (PWR_CR_PDDS | PWR_CR_LPSDSR), Regulator);
453
454 /* Clear SLEEPDEEP bit of Cortex System Control Register */
455 CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
456
457 /* Select SLEEP mode entry -------------------------------------------------*/
458 if(SLEEPEntry == PWR_SLEEPENTRY_WFI)
459 {
460 /* Request Wait For Interrupt */
461 __WFI();
462 }
463 else
464 {
465 /* Request Wait For Event */
466 __SEV();
467 __WFE();
468 __WFE();
469 }
470 }
471
472 /**
473 * @brief Enters Stop mode.
474 * @note In Stop mode, all I/O pins keep the same state as in Run mode.
475 * @note When exiting Stop mode by using an interrupt or a wakeup event,
476 * MSI RC oscillator is selected as system clock.
477 * @note When the voltage regulator operates in low power mode, an additional
478 * startup delay is incurred when waking up from Stop mode.
479 * By keeping the internal regulator ON during Stop mode, the consumption
480 * is higher although the startup time is reduced.
481 * @param Regulator: Specifies the regulator state in Stop mode.
482 * This parameter can be one of the following values:
483 * @arg PWR_MAINREGULATOR_ON: Stop mode with regulator ON
484 * @arg PWR_LOWPOWERREGULATOR_ON: Stop mode with low power regulator ON
485 * @param STOPEntry: Specifies if Stop mode in entered with WFI or WFE instruction.
486 * This parameter can be one of the following values:
487 * @arg PWR_STOPENTRY_WFI: Enter Stop mode with WFI instruction
488 * @arg PWR_STOPENTRY_WFE: Enter Stop mode with WFE instruction
489 * @retval None
490 */
HAL_PWR_EnterSTOPMode(uint32_t Regulator,uint8_t STOPEntry)491 void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
492 {
493 /* Check the parameters */
494 assert_param(IS_PWR_REGULATOR(Regulator));
495 assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
496
497 /* Select the regulator state in Stop mode: Set PDDS and LPSDSR bit according to PWR_Regulator value */
498 MODIFY_REG(PWR->CR, (PWR_CR_PDDS | PWR_CR_LPSDSR), Regulator);
499
500 /* Set SLEEPDEEP bit of Cortex System Control Register */
501 SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
502
503 /* Select Stop mode entry --------------------------------------------------*/
504 if(STOPEntry == PWR_STOPENTRY_WFI)
505 {
506 /* Request Wait For Interrupt */
507 __WFI();
508 }
509 else
510 {
511 /* Request Wait For Event */
512 __SEV();
513 __WFE();
514 __WFE();
515 }
516 /* Reset SLEEPDEEP bit of Cortex System Control Register */
517 CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
518 }
519
520 /**
521 * @brief Enters Standby mode.
522 * @note In Standby mode, all I/O pins are high impedance except for:
523 * - Reset pad (still available)
524 * - RTC_AF1 pin (PC13) if configured for tamper, time-stamp, RTC
525 * Alarm out, or RTC clock calibration out.
526 * - WKUP pin 1 (PA0) if enabled.
527 * - WKUP pin 2 (PC13) if enabled.
528 * - WKUP pin 3 (PE6) if enabled.
529 * @retval None
530 */
HAL_PWR_EnterSTANDBYMode(void)531 void HAL_PWR_EnterSTANDBYMode(void)
532 {
533 /* Select Standby mode */
534 SET_BIT(PWR->CR, PWR_CR_PDDS);
535
536 /* Set SLEEPDEEP bit of Cortex System Control Register */
537 SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
538
539 /* This option is used to ensure that store operations are completed */
540 #if defined ( __CC_ARM)
541 __force_stores();
542 #endif
543 /* Request Wait For Interrupt */
544 __WFI();
545 }
546
547
548 /**
549 * @brief Indicates Sleep-On-Exit when returning from Handler mode to Thread mode.
550 * @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the processor
551 * re-enters SLEEP mode when an interruption handling is over.
552 * Setting this bit is useful when the processor is expected to run only on
553 * interruptions handling.
554 * @retval None
555 */
HAL_PWR_EnableSleepOnExit(void)556 void HAL_PWR_EnableSleepOnExit(void)
557 {
558 /* Set SLEEPONEXIT bit of Cortex System Control Register */
559 SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
560 }
561
562
563 /**
564 * @brief Disables Sleep-On-Exit feature when returning from Handler mode to Thread mode.
565 * @note Clears SLEEPONEXIT bit of SCR register. When this bit is set, the processor
566 * re-enters SLEEP mode when an interruption handling is over.
567 * @retval None
568 */
HAL_PWR_DisableSleepOnExit(void)569 void HAL_PWR_DisableSleepOnExit(void)
570 {
571 /* Clear SLEEPONEXIT bit of Cortex System Control Register */
572 CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
573 }
574
575
576 /**
577 * @brief Enables CORTEX M3 SEVONPEND bit.
578 * @note Sets SEVONPEND bit of SCR register. When this bit is set, this causes
579 * WFE to wake up when an interrupt moves from inactive to pended.
580 * @retval None
581 */
HAL_PWR_EnableSEVOnPend(void)582 void HAL_PWR_EnableSEVOnPend(void)
583 {
584 /* Set SEVONPEND bit of Cortex System Control Register */
585 SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
586 }
587
588
589 /**
590 * @brief Disables CORTEX M3 SEVONPEND bit.
591 * @note Clears SEVONPEND bit of SCR register. When this bit is set, this causes
592 * WFE to wake up when an interrupt moves from inactive to pended.
593 * @retval None
594 */
HAL_PWR_DisableSEVOnPend(void)595 void HAL_PWR_DisableSEVOnPend(void)
596 {
597 /* Clear SEVONPEND bit of Cortex System Control Register */
598 CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
599 }
600
601
602
603 /**
604 * @brief This function handles the PWR PVD interrupt request.
605 * @note This API should be called under the PVD_IRQHandler().
606 * @retval None
607 */
HAL_PWR_PVD_IRQHandler(void)608 void HAL_PWR_PVD_IRQHandler(void)
609 {
610 /* Check PWR exti flag */
611 if(__HAL_PWR_PVD_EXTI_GET_FLAG() != RESET)
612 {
613 /* PWR PVD interrupt user callback */
614 HAL_PWR_PVDCallback();
615
616 /* Clear PWR Exti pending bit */
617 __HAL_PWR_PVD_EXTI_CLEAR_FLAG();
618 }
619 }
620
621 /**
622 * @brief PWR PVD interrupt callback
623 * @retval None
624 */
HAL_PWR_PVDCallback(void)625 __weak void HAL_PWR_PVDCallback(void)
626 {
627 /* NOTE : This function Should not be modified, when the callback is needed,
628 the HAL_PWR_PVDCallback could be implemented in the user file
629 */
630 }
631
632 /**
633 * @}
634 */
635
636 /**
637 * @}
638 */
639
640 #endif /* HAL_PWR_MODULE_ENABLED */
641 /**
642 * @}
643 */
644
645 /**
646 * @}
647 */
648