1 /**
2 ******************************************************************************
3 * @file stm32h7xx_hal_pwr_ex.c
4 * @author MCD Application Team
5 * @brief Extended PWR HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of PWR extension peripheral:
8 * + Peripheral Extended features functions
9 ******************************************************************************
10 * @attention
11 *
12 * Copyright (c) 2017 STMicroelectronics.
13 * All rights reserved.
14 *
15 * This software is licensed under terms that can be found in the LICENSE file
16 * in the root directory of this software component.
17 * If no LICENSE file comes with this software, it is provided AS-IS.
18 *
19 ******************************************************************************
20 @verbatim
21 ==============================================================================
22 ##### How to use this driver #####
23 ==============================================================================
24 [..]
25 (#) Call HAL_PWREx_ConfigSupply() function to configure the regulator supply
26 with the following different setups according to hardware (support SMPS):
27 (+) PWR_DIRECT_SMPS_SUPPLY
28 (+) PWR_SMPS_1V8_SUPPLIES_LDO
29 (+) PWR_SMPS_2V5_SUPPLIES_LDO
30 (+) PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO
31 (+) PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO
32 (+) PWR_SMPS_1V8_SUPPLIES_EXT
33 (+) PWR_SMPS_2V5_SUPPLIES_EXT
34 (+) PWR_LDO_SUPPLY
35 (+) PWR_EXTERNAL_SOURCE_SUPPLY
36
37 (#) Call HAL_PWREx_GetSupplyConfig() function to get the current supply setup.
38
39 (#) Call HAL_PWREx_ControlVoltageScaling() function to configure the main
40 internal regulator output voltage. The voltage scaling could be one of
41 the following scales :
42 (+) PWR_REGULATOR_VOLTAGE_SCALE0
43 (+) PWR_REGULATOR_VOLTAGE_SCALE1
44 (+) PWR_REGULATOR_VOLTAGE_SCALE2
45 (+) PWR_REGULATOR_VOLTAGE_SCALE3
46
47 (#) Call HAL_PWREx_GetVoltageRange() function to get the current output
48 voltage applied to the main regulator.
49
50 (#) Call HAL_PWREx_ControlStopModeVoltageScaling() function to configure the
51 main internal regulator output voltage in STOP mode. The voltage scaling
52 in STOP mode could be one of the following scales :
53 (+) PWR_REGULATOR_SVOS_SCALE3
54 (+) PWR_REGULATOR_SVOS_SCALE4
55 (+) PWR_REGULATOR_SVOS_SCALE5
56
57 (#) Call HAL_PWREx_GetStopModeVoltageRange() function to get the current
58 output voltage applied to the main regulator in STOP mode.
59
60 (#) Call HAL_PWREx_EnterSTOP2Mode() function to enter the system in STOP mode
61 with core domain in D2STOP mode. This API is used only for STM32H7Axxx
62 and STM32H7Bxxx devices.
63 Please ensure to clear all CPU pending events by calling
64 HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx
65 in DEEP-SLEEP mode with __WFE() entry.
66
67 (#) Call HAL_PWREx_EnterSTOPMode() function to enter the selected domain in
68 DSTOP mode. Call this API with all available power domains to enter the
69 system in STOP mode.
70 Please ensure to clear all CPU pending events by calling
71 HAL_PWREx_ClearPendingEvent() function when trying to enter the Cortex-Mx
72 in DEEP-SLEEP mode with __WFE() entry.
73
74 (#) Call HAL_PWREx_ClearPendingEvent() function always before entring the
75 Cortex-Mx in any low power mode (SLEEP/DEEP-SLEEP) using WFE entry.
76
77 (#) Call HAL_PWREx_EnterSTANDBYMode() function to enter the selected domain
78 in DSTANDBY mode. Call this API with all available power domains to enter
79 the system in STANDBY mode.
80
81 (#) Call HAL_PWREx_ConfigD3Domain() function to setup the D3/SRD domain state
82 (RUN/STOP) when the system enter to low power mode.
83
84 (#) Call HAL_PWREx_ClearDomainFlags() function to clear the CPU flags for the
85 selected power domain. This API is used only for dual core devices.
86
87 (#) Call HAL_PWREx_HoldCore() and HAL_PWREx_ReleaseCore() functions to hold
88 and release the selected CPU and and their domain peripherals when
89 exiting STOP mode. These APIs are used only for dual core devices.
90
91 (#) Call HAL_PWREx_EnableFlashPowerDown() and
92 HAL_PWREx_DisableFlashPowerDown() functions to enable and disable the
93 Flash Power Down in STOP mode.
94
95 (#) Call HAL_PWREx_EnableMemoryShutOff() and
96 HAL_PWREx_DisableMemoryShutOff() functions to enable and disable the
97 memory block shut-off in DStop or DStop2. These APIs are used only for
98 STM32H7Axxx and STM32H7Bxxx lines.
99
100 (#) Call HAL_PWREx_EnableWakeUpPin() and HAL_PWREx_DisableWakeUpPin()
101 functions to enable and disable the Wake-up pin functionality for
102 the selected pin.
103
104 (#) Call HAL_PWREx_GetWakeupFlag() and HAL_PWREx_ClearWakeupFlag()
105 functions to manage wake-up flag for the selected pin.
106
107 (#) Call HAL_PWREx_WAKEUP_PIN_IRQHandler() function to handle all wake-up
108 pins interrupts.
109
110 (#) Call HAL_PWREx_EnableBkUpReg() and HAL_PWREx_DisableBkUpReg() functions
111 to enable and disable the backup domain regulator.
112
113 (#) Call HAL_PWREx_EnableUSBReg(), HAL_PWREx_DisableUSBReg(),
114 HAL_PWREx_EnableUSBVoltageDetector() and
115 HAL_PWREx_DisableUSBVoltageDetector() functions to manage USB power
116 regulation functionalities.
117
118 (#) Call HAL_PWREx_EnableBatteryCharging() and
119 HAL_PWREx_DisableBatteryCharging() functions to enable and disable the
120 battery charging feature with the selected resistor.
121
122 (#) Call HAL_PWREx_EnableAnalogBooster() and
123 HAL_PWREx_DisableAnalogBooster() functions to enable and disable the
124 AVD boost feature when the VDD supply voltage is below 2V7.
125
126 (#) Call HAL_PWREx_EnableMonitoring() and HAL_PWREx_DisableMonitoring()
127 functions to enable and disable the VBAT and Temperature monitoring.
128 When VBAT and Temperature monitoring feature is enables, use
129 HAL_PWREx_GetTemperatureLevel() and HAL_PWREx_GetVBATLevel() to get
130 respectively the Temperature level and VBAT level.
131
132 (#) Call HAL_PWREx_GetMMCVoltage() and HAL_PWREx_DisableMonitoring()
133 function to get VDDMMC voltage level. This API is used only for
134 STM32H7Axxx and STM32H7Bxxx lines
135
136 (#) Call HAL_PWREx_ConfigAVD() after setting parameter to be configured
137 (event mode and voltage threshold) in order to set up the Analog Voltage
138 Detector then use HAL_PWREx_EnableAVD() and HAL_PWREx_DisableAVD()
139 functions to start and stop the AVD detection.
140 (+) AVD level could be one of the following values :
141 (++) 1V7
142 (++) 2V1
143 (++) 2V5
144 (++) 2V8
145
146 (#) Call HAL_PWREx_PVD_AVD_IRQHandler() function to handle the PWR PVD and
147 AVD interrupt request.
148
149 @endverbatim
150 */
151
152 /* Includes ------------------------------------------------------------------*/
153 #include "stm32h7xx_hal.h"
154
155 /** @addtogroup STM32H7xx_HAL_Driver
156 * @{
157 */
158
159 /** @defgroup PWREx PWREx
160 * @brief PWR Extended HAL module driver
161 * @{
162 */
163
164 #ifdef HAL_PWR_MODULE_ENABLED
165
166 /* Private typedef -----------------------------------------------------------*/
167 /* Private define ------------------------------------------------------------*/
168
169 /** @addtogroup PWREx_Private_Constants
170 * @{
171 */
172
173 /** @defgroup PWREx_AVD_Mode_Mask PWR Extended AVD Mode Mask
174 * @{
175 */
176 #define AVD_MODE_IT (0x00010000U)
177 #define AVD_MODE_EVT (0x00020000U)
178 #define AVD_RISING_EDGE (0x00000001U)
179 #define AVD_FALLING_EDGE (0x00000002U)
180 #define AVD_RISING_FALLING_EDGE (0x00000003U)
181 /**
182 * @}
183 */
184
185 /** @defgroup PWREx_REG_SET_TIMEOUT PWR Extended Flag Setting Time Out Value
186 * @{
187 */
188 #define PWR_FLAG_SETTING_DELAY (1000U)
189 /**
190 * @}
191 */
192
193 /** @defgroup PWREx_WakeUp_Pins_Offsets PWREx Wake-Up Pins masks and offsets
194 * @{
195 */
196 /* Wake-Up Pins EXTI register mask */
197 #if defined (EXTI_IMR2_IM57)
198 #define PWR_EXTI_WAKEUP_PINS_MASK (EXTI_IMR2_IM55 | EXTI_IMR2_IM56 |\
199 EXTI_IMR2_IM57 | EXTI_IMR2_IM58 |\
200 EXTI_IMR2_IM59 | EXTI_IMR2_IM60)
201 #else
202 #define PWR_EXTI_WAKEUP_PINS_MASK (EXTI_IMR2_IM55 | EXTI_IMR2_IM56 |\
203 EXTI_IMR2_IM58 | EXTI_IMR2_IM60)
204 #endif /* defined (EXTI_IMR2_IM57) */
205
206 /* Wake-Up Pins PWR Pin Pull shift offsets */
207 #define PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET (2U)
208 /**
209 * @}
210 */
211
212 /**
213 * @}
214 */
215
216 /* Private macro -------------------------------------------------------------*/
217 /* Private variables ---------------------------------------------------------*/
218 /* Private function prototypes -----------------------------------------------*/
219 /* Private functions ---------------------------------------------------------*/
220 /* Exported types ------------------------------------------------------------*/
221 /* Exported functions --------------------------------------------------------*/
222
223 /** @defgroup PWREx_Exported_Functions PWREx Exported Functions
224 * @{
225 */
226
227 /** @defgroup PWREx_Exported_Functions_Group1 Power Supply Control Functions
228 * @brief Power supply control functions
229 *
230 @verbatim
231 ===============================================================================
232 ##### Power supply control functions #####
233 ===============================================================================
234 [..]
235 (#) When the system is powered on, the POR monitors VDD supply. Once VDD is
236 above the POR threshold level, the voltage regulator is enabled in the
237 default supply configuration:
238 (+) The Voltage converter output level is set at 1V0 in accordance with
239 the VOS3 level configured in PWR (D3/SRD) domain control register
240 (PWR_D3CR/PWR_SRDCR).
241 (+) The system is kept in reset mode as long as VCORE is not ok.
242 (+) Once VCORE is ok, the system is taken out of reset and the HSI
243 oscillator is enabled.
244 (+) Once the oscillator is stable, the system is initialized: Flash memory
245 and option bytes are loaded and the CPU starts in Run* mode.
246 (+) The software shall then initialize the system including supply
247 configuration programming using the HAL_PWREx_ConfigSupply().
248 (+) Once the supply configuration has been configured, the
249 HAL_PWREx_ConfigSupply() function checks the ACTVOSRDY bit in PWR
250 control status register 1 (PWR_CSR1) to guarantee a valid voltage
251 levels:
252 (++) As long as ACTVOSRDY indicates that voltage levels are invalid, the
253 system is in limited Run* mode, write accesses to the RAMs are not
254 permitted and VOS shall not be changed.
255 (++) Once ACTVOSRDY indicates that voltage levels are valid, the system
256 is in normal Run mode, write accesses to RAMs are allowed and VOS
257 can be changed.
258
259 @endverbatim
260 * @{
261 */
262
263 /**
264 * @brief Configure the system Power Supply.
265 * @param SupplySource : Specifies the Power Supply source to set after a
266 * system startup.
267 * This parameter can be one of the following values :
268 * @arg PWR_DIRECT_SMPS_SUPPLY : The SMPS supplies the Vcore Power
269 * Domains. The LDO is Bypassed.
270 * @arg PWR_SMPS_1V8_SUPPLIES_LDO : The SMPS 1.8V output supplies
271 * the LDO. The Vcore Power Domains
272 * are supplied from the LDO.
273 * @arg PWR_SMPS_2V5_SUPPLIES_LDO : The SMPS 2.5V output supplies
274 * the LDO. The Vcore Power Domains
275 * are supplied from the LDO.
276 * @arg PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO : The SMPS 1.8V output
277 * supplies external
278 * circuits and the LDO.
279 * The Vcore Power Domains
280 * are supplied from the
281 * LDO.
282 * @arg PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO : The SMPS 2.5V output
283 * supplies external
284 * circuits and the LDO.
285 * The Vcore Power Domains
286 * are supplied from the
287 * LDO.
288 * @arg PWR_SMPS_1V8_SUPPLIES_EXT : The SMPS 1.8V output supplies
289 * external circuits. The LDO is
290 * Bypassed. The Vcore Power
291 * Domains are supplied from
292 * external source.
293 * @arg PWR_SMPS_2V5_SUPPLIES_EXT : The SMPS 2.5V output supplies
294 * external circuits. The LDO is
295 * Bypassed. The Vcore Power
296 * Domains are supplied from
297 * external source.
298 * @arg PWR_LDO_SUPPLY : The LDO regulator supplies the Vcore Power
299 * Domains. The SMPS regulator is Bypassed.
300 * @arg PWR_EXTERNAL_SOURCE_SUPPLY : The SMPS and the LDO are
301 * Bypassed. The Vcore Power
302 * Domains are supplied from
303 * external source.
304 * @note The PWR_LDO_SUPPLY and PWR_EXTERNAL_SOURCE_SUPPLY are used by all
305 * H7 lines.
306 * The PWR_DIRECT_SMPS_SUPPLY, PWR_SMPS_1V8_SUPPLIES_LDO,
307 * PWR_SMPS_2V5_SUPPLIES_LDO, PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO,
308 * PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO, PWR_SMPS_1V8_SUPPLIES_EXT and
309 * PWR_SMPS_2V5_SUPPLIES_EXT are used only for lines that supports SMPS
310 * regulator.
311 * @retval HAL status.
312 */
HAL_PWREx_ConfigSupply(uint32_t SupplySource)313 HAL_StatusTypeDef HAL_PWREx_ConfigSupply (uint32_t SupplySource)
314 {
315 uint32_t tickstart;
316
317 /* Check the parameters */
318 assert_param (IS_PWR_SUPPLY (SupplySource));
319
320 /* Check if supply source was configured */
321 #if defined (PWR_FLAG_SCUEN)
322 if (__HAL_PWR_GET_FLAG (PWR_FLAG_SCUEN) == 0U)
323 #else
324 if ((PWR->CR3 & (PWR_CR3_SMPSEN | PWR_CR3_LDOEN | PWR_CR3_BYPASS)) != (PWR_CR3_SMPSEN | PWR_CR3_LDOEN))
325 #endif /* defined (PWR_FLAG_SCUEN) */
326 {
327 /* Check supply configuration */
328 if ((PWR->CR3 & PWR_SUPPLY_CONFIG_MASK) != SupplySource)
329 {
330 /* Supply configuration update locked, can't apply a new supply config */
331 return HAL_ERROR;
332 }
333 else
334 {
335 /* Supply configuration update locked, but new supply configuration
336 matches with old supply configuration : nothing to do
337 */
338 return HAL_OK;
339 }
340 }
341
342 /* Set the power supply configuration */
343 MODIFY_REG (PWR->CR3, PWR_SUPPLY_CONFIG_MASK, SupplySource);
344
345 /* Get tick */
346 tickstart = HAL_GetTick ();
347
348 /* Wait till voltage level flag is set */
349 while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
350 {
351 if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
352 {
353 return HAL_ERROR;
354 }
355 }
356
357 #if defined (SMPS)
358 /* When the SMPS supplies external circuits verify that SDEXTRDY flag is set */
359 if ((SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT_AND_LDO) ||
360 (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT_AND_LDO) ||
361 (SupplySource == PWR_SMPS_1V8_SUPPLIES_EXT) ||
362 (SupplySource == PWR_SMPS_2V5_SUPPLIES_EXT))
363 {
364 /* Get the current tick number */
365 tickstart = HAL_GetTick ();
366
367 /* Wait till SMPS external supply ready flag is set */
368 while (__HAL_PWR_GET_FLAG (PWR_FLAG_SMPSEXTRDY) == 0U)
369 {
370 if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
371 {
372 return HAL_ERROR;
373 }
374 }
375 }
376 #endif /* defined (SMPS) */
377
378 return HAL_OK;
379 }
380
381 /**
382 * @brief Get the power supply configuration.
383 * @retval The supply configuration.
384 */
HAL_PWREx_GetSupplyConfig(void)385 uint32_t HAL_PWREx_GetSupplyConfig (void)
386 {
387 return (PWR->CR3 & PWR_SUPPLY_CONFIG_MASK);
388 }
389
390 /**
391 * @brief Configure the main internal regulator output voltage.
392 * @param VoltageScaling : Specifies the regulator output voltage to achieve
393 * a tradeoff between performance and power
394 * consumption.
395 * This parameter can be one of the following values :
396 * @arg PWR_REGULATOR_VOLTAGE_SCALE0 : Regulator voltage output
397 * Scale 0 mode.
398 * @arg PWR_REGULATOR_VOLTAGE_SCALE1 : Regulator voltage output
399 * range 1 mode.
400 * @arg PWR_REGULATOR_VOLTAGE_SCALE2 : Regulator voltage output
401 * range 2 mode.
402 * @arg PWR_REGULATOR_VOLTAGE_SCALE3 : Regulator voltage output
403 * range 3 mode.
404 * @note For STM32H74x and STM32H75x lines, configuring Voltage Scale 0 is
405 * only possible when Vcore is supplied from LDO (Low DropOut). The
406 * SYSCFG Clock must be enabled through __HAL_RCC_SYSCFG_CLK_ENABLE()
407 * macro before configuring Voltage Scale 0.
408 * To enter low power mode , and if current regulator voltage is
409 * Voltage Scale 0 then first switch to Voltage Scale 1 before entering
410 * low power mode.
411 * @retval HAL Status
412 */
HAL_PWREx_ControlVoltageScaling(uint32_t VoltageScaling)413 HAL_StatusTypeDef HAL_PWREx_ControlVoltageScaling (uint32_t VoltageScaling)
414 {
415 uint32_t tickstart;
416
417 /* Check the parameters */
418 assert_param (IS_PWR_REGULATOR_VOLTAGE (VoltageScaling));
419
420 /* Get the voltage scaling */
421 if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == VoltageScaling)
422 {
423 /* Old and new voltage scaling configuration match : nothing to do */
424 return HAL_OK;
425 }
426
427 #if defined (PWR_SRDCR_VOS)
428 /* Set the voltage range */
429 MODIFY_REG (PWR->SRDCR, PWR_SRDCR_VOS, VoltageScaling);
430 #else
431 #if defined(SYSCFG_PWRCR_ODEN) /* STM32H74xxx and STM32H75xxx lines */
432 if (VoltageScaling == PWR_REGULATOR_VOLTAGE_SCALE0)
433 {
434 if ((PWR->CR3 & PWR_CR3_LDOEN) == PWR_CR3_LDOEN)
435 {
436 /* Set the voltage range */
437 MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, PWR_REGULATOR_VOLTAGE_SCALE1);
438
439 /* Get tick */
440 tickstart = HAL_GetTick ();
441
442 /* Wait till voltage level flag is set */
443 while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
444 {
445 if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
446 {
447 return HAL_ERROR;
448 }
449 }
450
451 /* Enable the PWR overdrive */
452 SET_BIT (SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN);
453 }
454 else
455 {
456 /* The voltage scale 0 is only possible when LDO regulator is enabled */
457 return HAL_ERROR;
458 }
459 }
460 else
461 {
462 if ((PWR->CSR1 & PWR_CSR1_ACTVOS) == PWR_REGULATOR_VOLTAGE_SCALE1)
463 {
464 if ((SYSCFG->PWRCR & SYSCFG_PWRCR_ODEN) != 0U)
465 {
466 /* Disable the PWR overdrive */
467 CLEAR_BIT(SYSCFG->PWRCR, SYSCFG_PWRCR_ODEN);
468
469 /* Get tick */
470 tickstart = HAL_GetTick ();
471
472 /* Wait till voltage level flag is set */
473 while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
474 {
475 if ((HAL_GetTick () - tickstart) > PWR_FLAG_SETTING_DELAY)
476 {
477 return HAL_ERROR;
478 }
479 }
480 }
481 }
482
483 /* Set the voltage range */
484 MODIFY_REG (PWR->D3CR, PWR_D3CR_VOS, VoltageScaling);
485 }
486 #else /* STM32H72xxx and STM32H73xxx lines */
487 /* Set the voltage range */
488 MODIFY_REG(PWR->D3CR, PWR_D3CR_VOS, VoltageScaling);
489 #endif /* defined (SYSCFG_PWRCR_ODEN) */
490 #endif /* defined (PWR_SRDCR_VOS) */
491
492 /* Get tick */
493 tickstart = HAL_GetTick ();
494
495 /* Wait till voltage level flag is set */
496 while (__HAL_PWR_GET_FLAG (PWR_FLAG_ACTVOSRDY) == 0U)
497 {
498 if ((HAL_GetTick() - tickstart) > PWR_FLAG_SETTING_DELAY)
499 {
500 return HAL_ERROR;
501 }
502 }
503
504 return HAL_OK;
505 }
506
507 /**
508 * @brief Get the main internal regulator output voltage. Reflecting the last
509 * VOS value applied to the PMU.
510 * @retval The current applied VOS selection.
511 */
HAL_PWREx_GetVoltageRange(void)512 uint32_t HAL_PWREx_GetVoltageRange (void)
513 {
514 /* Get the active voltage scaling */
515 return (PWR->CSR1 & PWR_CSR1_ACTVOS);
516 }
517
518 /**
519 * @brief Configure the main internal regulator output voltage in STOP mode.
520 * @param VoltageScaling : Specifies the regulator output voltage when the
521 * system enters Stop mode to achieve a tradeoff between performance
522 * and power consumption.
523 * This parameter can be one of the following values:
524 * @arg PWR_REGULATOR_SVOS_SCALE3 : Regulator voltage output range
525 * 3 mode.
526 * @arg PWR_REGULATOR_SVOS_SCALE4 : Regulator voltage output range
527 * 4 mode.
528 * @arg PWR_REGULATOR_SVOS_SCALE5 : Regulator voltage output range
529 * 5 mode.
530 * @note The Stop mode voltage scaling for SVOS4 and SVOS5 sets the voltage
531 * regulator in Low-power (LP) mode to further reduce power consumption.
532 * When preselecting SVOS3, the use of the voltage regulator low-power
533 * mode (LP) can be selected by LPDS register bit.
534 * @note The selected SVOS4 and SVOS5 levels add an additional startup delay
535 * when exiting from system Stop mode.
536 * @retval HAL Status.
537 */
HAL_PWREx_ControlStopModeVoltageScaling(uint32_t VoltageScaling)538 HAL_StatusTypeDef HAL_PWREx_ControlStopModeVoltageScaling (uint32_t VoltageScaling)
539 {
540 /* Check the parameters */
541 assert_param (IS_PWR_STOP_MODE_REGULATOR_VOLTAGE (VoltageScaling));
542
543 /* Return the stop mode voltage range */
544 MODIFY_REG (PWR->CR1, PWR_CR1_SVOS, VoltageScaling);
545
546 return HAL_OK;
547 }
548
549 /**
550 * @brief Get the main internal regulator output voltage in STOP mode.
551 * @retval The actual applied VOS selection.
552 */
HAL_PWREx_GetStopModeVoltageRange(void)553 uint32_t HAL_PWREx_GetStopModeVoltageRange (void)
554 {
555 /* Return the stop voltage scaling */
556 return (PWR->CR1 & PWR_CR1_SVOS);
557 }
558 /**
559 * @}
560 */
561
562 /** @defgroup PWREx_Exported_Functions_Group2 Low Power Control Functions
563 * @brief Low power control functions
564 *
565 @verbatim
566 ===============================================================================
567 ##### Low power control functions #####
568 ===============================================================================
569
570 *** Domains Low Power modes configuration ***
571 =============================================
572 [..]
573 This section provides the extended low power mode control APIs.
574 The system presents 3 principles domains (D1, D2 and D3) that can be
575 operated in low-power modes (DSTOP or DSTANDBY mode):
576
577 (+) DSTOP mode to enters a domain to STOP mode:
578 (++) D1 domain and/or D2 domain enters DSTOP mode only when the CPU
579 subsystem is in CSTOP mode and has allocated peripheral in the
580 domain.
581 In DSTOP mode the domain bus matrix clock is stopped.
582 (++) The system enters STOP mode using one of the following scenarios:
583 (+++) D1 domain enters DSTANDBY mode (powered off) and D2, D3 domains
584 enter DSTOP mode.
585 (+++) D2 domain enters DSTANDBY mode (powered off) and D1, D3 domains
586 enter DSTOP mode.
587 (+++) D3 domain enters DSTANDBY mode (powered off) and D1, D2 domains
588 enter DSTOP mode.
589 (+++) D1 and D2 domains enter DSTANDBY mode (powered off) and D3 domain
590 enters DSTOP mode.
591 (+++) D1 and D3 domains enter DSTANDBY mode (powered off) and D2 domain
592 enters DSTOP mode.
593 (+++) D2 and D3 domains enter DSTANDBY mode (powered off) and D1 domain
594 enters DSTOP mode.
595 (+++) D1, D2 and D3 domains enter DSTOP mode.
596 (++) When the system enters STOP mode, the clocks are stopped and the
597 regulator is running in main or low power mode.
598 (++) D3 domain can be kept in Run mode regardless of the CPU status when
599 enter STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function.
600
601 (+) DSTANDBY mode to enters a domain to STANDBY mode:
602 (++) The DSTANDBY mode is entered when the PDDS_Dn bit in PWR CPU control
603 register (PWR_CPUCR) for the Dn domain selects Standby mode.
604 (++) The system enters STANDBY mode only when D1, D2 and D3 domains enter
605 DSTANDBY mode. Consequently the VCORE supply regulator is powered
606 off.
607
608 *** DSTOP mode ***
609 ==================
610 [..]
611 In DStop mode the domain bus matrix clock is stopped.
612 The Flash memory can enter low-power Stop mode when it is enabled through
613 FLPS in PWR_CR1 register. This allows a trade-off between domain DStop
614 restart time and low power consumption.
615 [..]
616 In DStop mode domain peripherals using the LSI or LSE clock and
617 peripherals having a kernel clock request are still able to operate.
618 [..]
619 Before entering DSTOP mode it is recommended to call SCB_CleanDCache
620 function in order to clean the D-Cache and guarantee the data integrity
621 for the SRAM memories.
622
623 (+) Entry:
624 The DSTOP mode is entered using the HAL_PWREx_EnterSTOPMode(Regulator,
625 STOPEntry, Domain) function with:
626 (++) Regulator:
627 (+++) PWR_MAINREGULATOR_ON : Main regulator ON.
628 (+++) PWR_LOWPOWERREGULATOR_ON : Low Power regulator ON.
629 (++) STOPEntry:
630 (+++) PWR_STOPENTRY_WFI : enter STOP mode with WFI instruction
631 (+++) PWR_STOPENTRY_WFE : enter STOP mode with WFE instruction
632 (++) Domain:
633 (+++) PWR_D1_DOMAIN : Enters D1/CD domain to DSTOP mode.
634 (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTOP mode.
635 (+++) PWR_D3_DOMAIN : Enters D3/SRD domain to DSTOP mode.
636
637 (+) Exit:
638 Any EXTI Line (Internal or External) configured in Interrupt/Event mode.
639
640 *** DSTANDBY mode ***
641 =====================
642 [..]
643 In DStandby mode:
644 (+) The domain bus matrix clock is stopped.
645 (+) The domain is powered down and the domain RAM and register contents
646 are lost.
647 [..]
648 Before entering DSTANDBY mode it is recommended to call SCB_CleanDCache
649 function in order to clean the D-Cache and guarantee the data integrity
650 for the SRAM memories.
651
652 (+) Entry:
653 The DSTANDBY mode is entered using the HAL_PWREx_EnterSTANDBYMode
654 (Domain) function with:
655 (++) Domain:
656 (+++) PWR_D1_DOMAIN : Enters D1/CD domain to DSTANDBY mode.
657 (+++) PWR_D2_DOMAIN : Enters D2 domain to DSTANDBY mode.
658 (+++) PWR_D3_DOMAIN : Enters D3/SRD domain to DSTANDBY mode.
659
660 (+) Exit:
661 WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), RTC
662 wakeup, tamper event, time stamp event, external reset in NRST pin,
663 IWDG reset.
664
665 *** Keep D3/SRD in RUN mode ***
666 ===============================
667 [..]
668 D3/SRD domain can be kept in Run mode regardless of the CPU status when
669 entering STOP mode by using HAL_PWREx_ConfigD3Domain(D3State) function
670 with :
671 (+) D3State:
672 (++) PWR_D3_DOMAIN_STOP : D3/SDR domain follows the CPU sub-system
673 mode.
674 (++) PWR_D3_DOMAIN_RUN : D3/SRD domain remains in Run mode regardless
675 of CPU subsystem mode.
676
677 *** FLASH Power Down configuration ****
678 =======================================
679 [..]
680 By setting the FLPS bit in the PWR_CR1 register using the
681 HAL_PWREx_EnableFlashPowerDown() function, the Flash memory also enters
682 power down mode when the device enters STOP mode. When the Flash memory is
683 in power down mode, an additional startup delay is incurred when waking up
684 from STOP mode.
685
686 *** Wakeup Pins configuration ****
687 ===================================
688 [..]
689 Wakeup pins allow the system to exit from Standby mode. The configuration
690 of wakeup pins is done with the HAL_PWREx_EnableWakeUpPin(sPinParams)
691 function with:
692 (+) sPinParams: structure to enable and configure a wakeup pin:
693 (++) WakeUpPin: Wakeup pin to be enabled.
694 (++) PinPolarity: Wakeup pin polarity (rising or falling edge).
695 (++) PinPull: Wakeup pin pull (no pull, pull-up or pull-down).
696 [..]
697 The wakeup pins are internally connected to the EXTI lines [55-60] to
698 generate an interrupt if enabled. The EXTI lines configuration is done by
699 the HAL_EXTI_Dx_EventInputConfig() functions defined in the stm32h7xxhal.c
700 file.
701 [..]
702 When a wakeup pin event is received the HAL_PWREx_WAKEUP_PIN_IRQHandler is
703 called and the appropriate flag is set in the PWR_WKUPFR register. Then in
704 the HAL_PWREx_WAKEUP_PIN_IRQHandler function the wakeup pin flag will be
705 cleared and the appropriate user callback will be called. The user can add
706 his own code by customization of function pointer HAL_PWREx_WKUPx_Callback.
707
708 @endverbatim
709 * @{
710 */
711
712 #if defined (PWR_CPUCR_RETDS_CD)
713 /**
714 * @brief Enter the system to STOP mode with main domain in DSTOP2.
715 * @note In STOP mode, the domain bus matrix clock is stalled.
716 * @note In STOP mode, memories and registers are maintained and peripherals
717 * in CPU domain are no longer operational.
718 * @note All clocks in the VCORE domain are stopped, the PLL, the HSI and the
719 * HSE oscillators are disabled. Only Peripherals that have wakeup
720 * capability can switch on the HSI to receive a frame, and switch off
721 * the HSI after receiving the frame if it is not a wakeup frame. In
722 * this case the HSI clock is propagated only to the peripheral
723 * requesting it.
724 * @note When exiting STOP mode by issuing an interrupt or a wakeup event,
725 * the HSI RC oscillator is selected as system clock if STOPWUCK bit in
726 * RCC_CFGR register is set.
727 * @param Regulator : Specifies the regulator state in STOP mode.
728 * This parameter can be one of the following values:
729 * @arg PWR_MAINREGULATOR_ON : STOP mode with regulator ON.
730 * @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power
731 * regulator ON.
732 * @param STOPEntry : Specifies if STOP mode in entered with WFI or WFE
733 * intrinsic instruction.
734 * This parameter can be one of the following values:
735 * @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction.
736 * @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction.
737 * @retval None.
738 */
HAL_PWREx_EnterSTOP2Mode(uint32_t Regulator,uint8_t STOPEntry)739 void HAL_PWREx_EnterSTOP2Mode (uint32_t Regulator, uint8_t STOPEntry)
740 {
741 /* Check the parameters */
742 assert_param (IS_PWR_REGULATOR (Regulator));
743 assert_param (IS_PWR_STOP_ENTRY (STOPEntry));
744
745 /* Select the regulator state in Stop mode */
746 MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator);
747
748 /* Go to DStop2 mode (deep retention) when CPU domain enters Deepsleep */
749 SET_BIT (PWR->CPUCR, PWR_CPUCR_RETDS_CD);
750
751 /* Keep DSTOP mode when SmartRun domain enters Deepsleep */
752 CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_SRD);
753
754 /* Set SLEEPDEEP bit of Cortex System Control Register */
755 SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
756
757 /* Ensure that all instructions are done before entering STOP mode */
758 __ISB ();
759 __DSB ();
760
761 /* Select Stop mode entry */
762 if (STOPEntry == PWR_STOPENTRY_WFI)
763 {
764 /* Request Wait For Interrupt */
765 __WFI ();
766 }
767 else
768 {
769 /* Request Wait For Event */
770 __WFE ();
771 }
772
773 /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
774 CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
775 }
776 #endif /* defined (PWR_CPUCR_RETDS_CD) */
777
778 /**
779 * @brief Enter a Domain to DSTOP mode.
780 * @note This API gives flexibility to manage independently each domain STOP
781 * mode. For dual core lines, this API should be executed with the
782 * corresponding Cortex-Mx to enter domain to DSTOP mode. When it is
783 * executed by all available Cortex-Mx, the system enter to STOP mode.
784 * For single core lines, calling this API with domain parameter set to
785 * PWR_D1_DOMAIN (D1/CD), the whole system will enter in STOP mode
786 * independently of PWR_CPUCR_PDDS_Dx bits values if RUN_D3 bit in the
787 * CPUCR_RUN_D3 is cleared.
788 * @note In DStop mode the domain bus matrix clock is stopped.
789 * @note The system D3/SRD domain enter Stop mode only when the CPU subsystem
790 * is in CStop mode, the EXTI wakeup sources are inactive and at least
791 * one PDDS_Dn bit in PWR CPU control register (PWR_CPUCR) for
792 * any domain request Stop.
793 * @note Before entering DSTOP mode it is recommended to call SCB_CleanDCache
794 * function in order to clean the D-Cache and guarantee the data
795 * integrity for the SRAM memories.
796 * @note In System Stop mode, the domain peripherals that use the LSI or LSE
797 * clock, and the peripherals that have a kernel clock request to
798 * select HSI or CSI as source, are still able to operate.
799 * @param Regulator : Specifies the regulator state in STOP mode.
800 * This parameter can be one of the following values:
801 * @arg PWR_MAINREGULATOR_ON : STOP mode with regulator ON.
802 * @arg PWR_LOWPOWERREGULATOR_ON : STOP mode with low power
803 * regulator ON.
804 * @param STOPEntry : Specifies if STOP mode in entered with WFI or WFE
805 * intrinsic instruction.
806 * This parameter can be one of the following values:
807 * @arg PWR_STOPENTRY_WFI : Enter STOP mode with WFI instruction.
808 * @arg PWR_STOPENTRY_WFE : Enter STOP mode with WFE instruction.
809 * @param Domain : Specifies the Domain to enter in DSTOP mode.
810 * This parameter can be one of the following values:
811 * @arg PWR_D1_DOMAIN : Enter D1/CD Domain to DSTOP mode.
812 * @arg PWR_D2_DOMAIN : Enter D2 Domain to DSTOP mode.
813 * @arg PWR_D3_DOMAIN : Enter D3/SRD Domain to DSTOP mode.
814 * @retval None.
815 */
HAL_PWREx_EnterSTOPMode(uint32_t Regulator,uint8_t STOPEntry,uint32_t Domain)816 void HAL_PWREx_EnterSTOPMode (uint32_t Regulator, uint8_t STOPEntry, uint32_t Domain)
817 {
818 /* Check the parameters */
819 assert_param (IS_PWR_REGULATOR (Regulator));
820 assert_param (IS_PWR_STOP_ENTRY (STOPEntry));
821 assert_param (IS_PWR_DOMAIN (Domain));
822
823 /* Select the regulator state in Stop mode */
824 MODIFY_REG (PWR->CR1, PWR_CR1_LPDS, Regulator);
825
826 /* Select the domain Power Down DeepSleep */
827 if (Domain == PWR_D1_DOMAIN)
828 {
829 #if defined (DUAL_CORE)
830 /* Check current core */
831 if (HAL_GetCurrentCPUID () != CM7_CPUID)
832 {
833 /*
834 When the domain selected and the cortex-mx don't match, entering stop
835 mode will not be performed
836 */
837 return;
838 }
839 #endif /* defined (DUAL_CORE) */
840
841 /* Keep DSTOP mode when D1/CD domain enters Deepsleep */
842 CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D1);
843
844 /* Set SLEEPDEEP bit of Cortex System Control Register */
845 SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
846
847 /* Ensure that all instructions are done before entering STOP mode */
848 __DSB ();
849 __ISB ();
850
851 /* Select Stop mode entry */
852 if (STOPEntry == PWR_STOPENTRY_WFI)
853 {
854 /* Request Wait For Interrupt */
855 __WFI ();
856 }
857 else
858 {
859 /* Request Wait For Event */
860 __WFE ();
861 }
862
863 /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
864 CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
865 }
866 #if defined (PWR_CPUCR_PDDS_D2)
867 else if (Domain == PWR_D2_DOMAIN)
868 {
869 #if defined (DUAL_CORE)
870 /* Check current core */
871 if (HAL_GetCurrentCPUID () != CM4_CPUID)
872 {
873 /*
874 When the domain selected and the cortex-mx don't match, entering stop
875 mode will not be performed
876 */
877 return;
878 }
879
880 /* Keep DSTOP mode when D2 domain enters Deepsleep */
881 CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D2);
882
883 /* Set SLEEPDEEP bit of Cortex System Control Register */
884 SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
885
886 /* Ensure that all instructions are done before entering STOP mode */
887 __DSB ();
888 __ISB ();
889
890 /* Select Stop mode entry */
891 if (STOPEntry == PWR_STOPENTRY_WFI)
892 {
893 /* Request Wait For Interrupt */
894 __WFI ();
895 }
896 else
897 {
898 /* Request Wait For Event */
899 __WFE ();
900 }
901
902 /* Clear SLEEPDEEP bit of Cortex-Mx in the System Control Register */
903 CLEAR_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
904 #else
905 /* Keep DSTOP mode when D2 domain enters Deepsleep */
906 CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D2);
907 #endif /* defined (DUAL_CORE) */
908 }
909 #endif /* defined (PWR_CPUCR_PDDS_D2) */
910 else
911 {
912 #if defined (DUAL_CORE)
913 /* Check current core */
914 if (HAL_GetCurrentCPUID () == CM7_CPUID)
915 {
916 /* Keep DSTOP mode when D3 domain enters Deepsleep */
917 CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
918 }
919 else
920 {
921 /* Keep DSTOP mode when D3 domain enters Deepsleep */
922 CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D3);
923 }
924 #else
925 /* Keep DSTOP mode when D3/SRD domain enters Deepsleep */
926 CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
927 #endif /* defined (DUAL_CORE) */
928 }
929 }
930
931 /**
932 * @brief Clear pending event.
933 * @note This API clears the pending event in order to enter a given CPU
934 * to CSLEEP or CSTOP. It should be called just before APIs performing
935 * enter low power mode using Wait For Event request.
936 * @note Cortex-M7 must be in CRUN mode when calling this API by Cortex-M4.
937 * @retval None.
938 */
HAL_PWREx_ClearPendingEvent(void)939 void HAL_PWREx_ClearPendingEvent (void)
940 {
941 #if defined (DUAL_CORE)
942 /* Check the current Core */
943 if (HAL_GetCurrentCPUID () == CM7_CPUID)
944 {
945 __WFE ();
946 }
947 else
948 {
949 __SEV ();
950 __WFE ();
951 }
952 #else
953 __WFE ();
954 #endif /* defined (DUAL_CORE) */
955 }
956
957 /**
958 * @brief Enter a Domain to DSTANDBY mode.
959 * @note This API gives flexibility to manage independently each domain
960 * STANDBY mode. For dual core lines, this API should be executed with
961 * the corresponding Cortex-Mx to enter domain to DSTANDBY mode. When
962 * it is executed by all available Cortex-Mx, the system enter STANDBY
963 * mode.
964 * For single core lines, calling this API with D1/SRD the selected
965 * domain will enter the whole system in STOP if PWR_CPUCR_PDDS_D3 = 0
966 * and enter the whole system in STANDBY if PWR_CPUCR_PDDS_D3 = 1.
967 * @note The DStandby mode is entered when all PDDS_Dn bits in PWR_CPUCR for
968 * the Dn domain select Standby mode. When the system enters Standby
969 * mode, the voltage regulator is disabled.
970 * @note When D2 or D3 domain is in DStandby mode and the CPU sets the
971 * domain PDDS_Dn bit to select Stop mode, the domain remains in
972 * DStandby mode. The domain will only exit DStandby when the CPU
973 * allocates a peripheral in the domain.
974 * @note The system D3/SRD domain enters Standby mode only when the D1 and D2
975 * domain are in DStandby.
976 * @note Before entering DSTANDBY mode it is recommended to call
977 * SCB_CleanDCache function in order to clean the D-Cache and guarantee
978 * the data integrity for the SRAM memories.
979 * @param Domain : Specifies the Domain to enter to STANDBY mode.
980 * This parameter can be one of the following values:
981 * @arg PWR_D1_DOMAIN: Enter D1/CD Domain to DSTANDBY mode.
982 * @arg PWR_D2_DOMAIN: Enter D2 Domain to DSTANDBY mode.
983 * @arg PWR_D3_DOMAIN: Enter D3/SRD Domain to DSTANDBY mode.
984 * @retval None
985 */
HAL_PWREx_EnterSTANDBYMode(uint32_t Domain)986 void HAL_PWREx_EnterSTANDBYMode (uint32_t Domain)
987 {
988 /* Check the parameters */
989 assert_param (IS_PWR_DOMAIN (Domain));
990
991 /* Select the domain Power Down DeepSleep */
992 if (Domain == PWR_D1_DOMAIN)
993 {
994 #if defined (DUAL_CORE)
995 /* Check current core */
996 if (HAL_GetCurrentCPUID () != CM7_CPUID)
997 {
998 /*
999 When the domain selected and the cortex-mx don't match, entering
1000 standby mode will not be performed
1001 */
1002 return;
1003 }
1004 #endif /* defined (DUAL_CORE) */
1005
1006 /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */
1007 SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D1);
1008
1009 #if defined (DUAL_CORE)
1010 /* Allow DSTANDBY mode when D1/CD domain enters Deepsleep */
1011 SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D1);
1012 #endif /*DUAL_CORE*/
1013
1014 /* Set SLEEPDEEP bit of Cortex System Control Register */
1015 SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
1016
1017 /* This option is used to ensure that store operations are completed */
1018 #if defined (__CC_ARM)
1019 __force_stores ();
1020 #endif /* defined (__CC_ARM) */
1021
1022 /* Request Wait For Interrupt */
1023 __WFI ();
1024 }
1025 #if defined (PWR_CPUCR_PDDS_D2)
1026 else if (Domain == PWR_D2_DOMAIN)
1027 {
1028 /* Allow DSTANDBY mode when D2 domain enters Deepsleep */
1029 SET_BIT (PWR-> CPUCR, PWR_CPUCR_PDDS_D2);
1030
1031 #if defined (DUAL_CORE)
1032 /* Check current core */
1033 if (HAL_GetCurrentCPUID () != CM4_CPUID)
1034 {
1035 /*
1036 When the domain selected and the cortex-mx don't match, entering
1037 standby mode will not be performed
1038 */
1039 return;
1040 }
1041
1042 /* Allow DSTANDBY mode when D2 domain enters Deepsleep */
1043 SET_BIT (PWR-> CPU2CR, PWR_CPU2CR_PDDS_D2);
1044
1045 /* Set SLEEPDEEP bit of Cortex System Control Register */
1046 SET_BIT (SCB->SCR, SCB_SCR_SLEEPDEEP_Msk);
1047
1048 /* This option is used to ensure that store operations are completed */
1049 #if defined (__CC_ARM)
1050 __force_stores ();
1051 #endif /* defined (__CC_ARM) */
1052
1053 /* Request Wait For Interrupt */
1054 __WFI ();
1055 #endif /* defined (DUAL_CORE) */
1056 }
1057 #endif /* defined (PWR_CPUCR_PDDS_D2) */
1058 else
1059 {
1060 /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */
1061 SET_BIT (PWR->CPUCR, PWR_CPUCR_PDDS_D3);
1062
1063 #if defined (DUAL_CORE)
1064 /* Allow DSTANDBY mode when D3/SRD domain enters Deepsleep */
1065 SET_BIT (PWR->CPU2CR, PWR_CPU2CR_PDDS_D3);
1066 #endif /* defined (DUAL_CORE) */
1067 }
1068 }
1069
1070 /**
1071 * @brief Configure the D3/SRD Domain state when the System in low power mode.
1072 * @param D3State : Specifies the D3/SRD state.
1073 * This parameter can be one of the following values :
1074 * @arg PWR_D3_DOMAIN_STOP : D3/SRD domain will follow the most deep
1075 * CPU sub-system low power mode.
1076 * @arg PWR_D3_DOMAIN_RUN : D3/SRD domain will stay in RUN mode
1077 * regardless of the CPU sub-system low
1078 * power mode.
1079 * @retval None
1080 */
HAL_PWREx_ConfigD3Domain(uint32_t D3State)1081 void HAL_PWREx_ConfigD3Domain (uint32_t D3State)
1082 {
1083 /* Check the parameter */
1084 assert_param (IS_D3_STATE (D3State));
1085
1086 /* Keep D3/SRD in run mode */
1087 MODIFY_REG (PWR->CPUCR, PWR_CPUCR_RUN_D3, D3State);
1088 }
1089
1090 #if defined (DUAL_CORE)
1091 /**
1092 * @brief Clear HOLD2F, HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2 flags for a
1093 * given domain.
1094 * @param DomainFlags : Specifies the Domain flags to be cleared.
1095 * This parameter can be one of the following values:
1096 * @arg PWR_D1_DOMAIN_FLAGS : Clear D1 Domain flags.
1097 * @arg PWR_D2_DOMAIN_FLAGS : Clear D2 Domain flags.
1098 * @arg PWR_ALL_DOMAIN_FLAGS : Clear D1 and D2 Domain flags.
1099 * @retval None.
1100 */
HAL_PWREx_ClearDomainFlags(uint32_t DomainFlags)1101 void HAL_PWREx_ClearDomainFlags (uint32_t DomainFlags)
1102 {
1103 /* Check the parameter */
1104 assert_param (IS_PWR_DOMAIN_FLAG (DomainFlags));
1105
1106 /* D1 CPU flags */
1107 if (DomainFlags == PWR_D1_DOMAIN_FLAGS)
1108 {
1109 /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */
1110 SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF);
1111 }
1112 /* D2 CPU flags */
1113 else if (DomainFlags == PWR_D2_DOMAIN_FLAGS)
1114 {
1115 /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */
1116 SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF);
1117 }
1118 else
1119 {
1120 /* Clear D1 domain flags (HOLD2F, STOPF, SBF, SBF_D1, and SBF_D2) */
1121 SET_BIT (PWR->CPUCR, PWR_CPUCR_CSSF);
1122 /* Clear D2 domain flags (HOLD1F, STOPF, SBF, SBF_D1, and SBF_D2) */
1123 SET_BIT (PWR->CPU2CR, PWR_CPU2CR_CSSF);
1124 }
1125 }
1126
1127 /**
1128 * @brief Hold the CPU and their domain peripherals when exiting STOP mode.
1129 * @param CPU : Specifies the core to be held.
1130 * This parameter can be one of the following values:
1131 * @arg PWR_CORE_CPU1: Hold CPU1 and set CPU2 as master.
1132 * @arg PWR_CORE_CPU2: Hold CPU2 and set CPU1 as master.
1133 * @retval HAL status
1134 */
HAL_PWREx_HoldCore(uint32_t CPU)1135 HAL_StatusTypeDef HAL_PWREx_HoldCore (uint32_t CPU)
1136 {
1137 HAL_StatusTypeDef status = HAL_OK;
1138
1139 /* Check the parameters */
1140 assert_param (IS_PWR_CORE (CPU));
1141
1142 /* Check CPU index */
1143 if (CPU == PWR_CORE_CPU2)
1144 {
1145 /* If CPU1 is not held */
1146 if ((PWR->CPU2CR & PWR_CPU2CR_HOLD1) != PWR_CPU2CR_HOLD1)
1147 {
1148 /* Set HOLD2 bit */
1149 SET_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2);
1150 }
1151 else
1152 {
1153 status = HAL_ERROR;
1154 }
1155 }
1156 else
1157 {
1158 /* If CPU2 is not held */
1159 if ((PWR->CPUCR & PWR_CPUCR_HOLD2) != PWR_CPUCR_HOLD2)
1160 {
1161 /* Set HOLD1 bit */
1162 SET_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1);
1163 }
1164 else
1165 {
1166 status = HAL_ERROR;
1167 }
1168 }
1169
1170 return status;
1171 }
1172
1173 /**
1174 * @brief Release the CPU and their domain peripherals after a wake-up from
1175 * STOP mode.
1176 * @param CPU: Specifies the core to be released.
1177 * This parameter can be one of the following values:
1178 * @arg PWR_CORE_CPU1: Release the CPU1 and their domain
1179 * peripherals from holding.
1180 * @arg PWR_CORE_CPU2: Release the CPU2 and their domain
1181 * peripherals from holding.
1182 * @retval None
1183 */
HAL_PWREx_ReleaseCore(uint32_t CPU)1184 void HAL_PWREx_ReleaseCore (uint32_t CPU)
1185 {
1186 /* Check the parameters */
1187 assert_param (IS_PWR_CORE (CPU));
1188
1189 /* Check CPU index */
1190 if (CPU == PWR_CORE_CPU2)
1191 {
1192 /* Reset HOLD2 bit */
1193 CLEAR_BIT (PWR->CPUCR, PWR_CPUCR_HOLD2);
1194 }
1195 else
1196 {
1197 /* Reset HOLD1 bit */
1198 CLEAR_BIT (PWR->CPU2CR, PWR_CPU2CR_HOLD1);
1199 }
1200 }
1201 #endif /* defined (DUAL_CORE) */
1202
1203
1204 /**
1205 * @brief Enable the Flash Power Down in Stop mode.
1206 * @note When Flash Power Down is enabled the Flash memory enters low-power
1207 * mode when D1/SRD domain is in DStop mode. This feature allows to
1208 * obtain the best trade-off between low-power consumption and restart
1209 * time when exiting from DStop mode.
1210 * @retval None.
1211 */
HAL_PWREx_EnableFlashPowerDown(void)1212 void HAL_PWREx_EnableFlashPowerDown (void)
1213 {
1214 /* Enable the Flash Power Down */
1215 SET_BIT (PWR->CR1, PWR_CR1_FLPS);
1216 }
1217
1218 /**
1219 * @brief Disable the Flash Power Down in Stop mode.
1220 * @note When Flash Power Down is disabled the Flash memory is kept on
1221 * normal mode when D1/SRD domain is in DStop mode. This feature allows
1222 * to obtain the best trade-off between low-power consumption and
1223 * restart time when exiting from DStop mode.
1224 * @retval None.
1225 */
HAL_PWREx_DisableFlashPowerDown(void)1226 void HAL_PWREx_DisableFlashPowerDown (void)
1227 {
1228 /* Disable the Flash Power Down */
1229 CLEAR_BIT (PWR->CR1, PWR_CR1_FLPS);
1230 }
1231
1232 #if defined (PWR_CR1_SRDRAMSO)
1233 /**
1234 * @brief Enable memory block shut-off in DStop or DStop2 modes
1235 * @note In DStop or DStop2 mode, the content of the memory blocks is
1236 * maintained. Further power optimization can be obtained by switching
1237 * off some memory blocks. This optimization implies loss of the memory
1238 * content. The user can select which memory is discarded during STOP
1239 * mode by means of xxSO bits.
1240 * @param MemoryBlock : Specifies the memory block to shut-off during DStop or
1241 * DStop2 mode.
1242 * This parameter can be one of the following values:
1243 * @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory.
1244 * @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and
1245 * FDCAN memories.
1246 * @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories.
1247 * @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories.
1248 * @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory.
1249 * @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory.
1250 * @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory.
1251 * @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory.
1252 * @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory.
1253 * @retval None.
1254 */
HAL_PWREx_EnableMemoryShutOff(uint32_t MemoryBlock)1255 void HAL_PWREx_EnableMemoryShutOff (uint32_t MemoryBlock)
1256 {
1257 /* Check the parameter */
1258 assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock));
1259
1260 /* Enable memory block shut-off */
1261 SET_BIT (PWR->CR1, MemoryBlock);
1262 }
1263
1264 /**
1265 * @brief Disable memory block shut-off in DStop or DStop2 modes
1266 * @param MemoryBlock : Specifies the memory block to keep content during
1267 * DStop or DStop2 mode.
1268 * This parameter can be one of the following values:
1269 * @arg PWR_SRD_AHB_MEMORY_BLOCK : SmartRun domain AHB memory.
1270 * @arg PWR_USB_FDCAN_MEMORY_BLOCK : High-speed interfaces USB and
1271 * FDCAN memories.
1272 * @arg PWR_GFXMMU_JPEG_MEMORY_BLOCK : GFXMMU and JPEG memories.
1273 * @arg PWR_TCM_ECM_MEMORY_BLOCK : Instruction TCM and ETM memories.
1274 * @arg PWR_RAM1_AHB_MEMORY_BLOCK : AHB RAM1 memory.
1275 * @arg PWR_RAM2_AHB_MEMORY_BLOCK : AHB RAM2 memory.
1276 * @arg PWR_RAM1_AXI_MEMORY_BLOCK : AXI RAM1 memory.
1277 * @arg PWR_RAM2_AXI_MEMORY_BLOCK : AXI RAM2 memory.
1278 * @arg PWR_RAM3_AXI_MEMORY_BLOCK : AXI RAM3 memory.
1279 * @retval None.
1280 */
HAL_PWREx_DisableMemoryShutOff(uint32_t MemoryBlock)1281 void HAL_PWREx_DisableMemoryShutOff (uint32_t MemoryBlock)
1282 {
1283 /* Check the parameter */
1284 assert_param (IS_PWR_MEMORY_BLOCK (MemoryBlock));
1285
1286 /* Disable memory block shut-off */
1287 CLEAR_BIT (PWR->CR1, MemoryBlock);
1288 }
1289 #endif /* defined (PWR_CR1_SRDRAMSO) */
1290
1291 /**
1292 * @brief Enable the Wake-up PINx functionality.
1293 * @param sPinParams : Pointer to a PWREx_WakeupPinTypeDef structure that
1294 * contains the configuration information for the wake-up
1295 * Pin.
1296 * @note For dual core devices, please ensure to configure the EXTI lines for
1297 * the different Cortex-Mx. All combination are allowed: wake up only
1298 * Cortex-M7, wake up only Cortex-M4 and wake up Cortex-M7 and
1299 * Cortex-M4.
1300 * @retval None.
1301 */
HAL_PWREx_EnableWakeUpPin(PWREx_WakeupPinTypeDef * sPinParams)1302 void HAL_PWREx_EnableWakeUpPin (PWREx_WakeupPinTypeDef *sPinParams)
1303 {
1304 uint32_t pinConfig;
1305 uint32_t regMask;
1306 const uint32_t pullMask = PWR_WKUPEPR_WKUPPUPD1;
1307
1308 /* Check the parameters */
1309 assert_param (IS_PWR_WAKEUP_PIN (sPinParams->WakeUpPin));
1310 assert_param (IS_PWR_WAKEUP_PIN_POLARITY (sPinParams->PinPolarity));
1311 assert_param (IS_PWR_WAKEUP_PIN_PULL (sPinParams->PinPull));
1312
1313 pinConfig = sPinParams->WakeUpPin | \
1314 (sPinParams->PinPolarity << ((POSITION_VAL(sPinParams->WakeUpPin) + PWR_WKUPEPR_WKUPP1_Pos) & 0x1FU)) | \
1315 (sPinParams->PinPull << (((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) + PWR_WKUPEPR_WKUPPUPD1_Pos) & 0x1FU));
1316
1317 regMask = sPinParams->WakeUpPin | \
1318 (PWR_WKUPEPR_WKUPP1 << (POSITION_VAL(sPinParams->WakeUpPin) & 0x1FU)) | \
1319 (pullMask << ((POSITION_VAL(sPinParams->WakeUpPin) * PWR_WAKEUP_PINS_PULL_SHIFT_OFFSET) & 0x1FU));
1320
1321 /* Enable and Specify the Wake-Up pin polarity and the pull configuration
1322 for the event detection (rising or falling edge) */
1323 MODIFY_REG (PWR->WKUPEPR, regMask, pinConfig);
1324 #ifndef DUAL_CORE
1325 /* Configure the Wakeup Pin EXTI Line */
1326 MODIFY_REG (EXTI->IMR2, PWR_EXTI_WAKEUP_PINS_MASK, (sPinParams->WakeUpPin << EXTI_IMR2_IM55_Pos));
1327 #endif /* !DUAL_CORE */
1328 }
1329
1330 /**
1331 * @brief Disable the Wake-up PINx functionality.
1332 * @param WakeUpPin : Specifies the Wake-Up pin to be disabled.
1333 * This parameter can be one of the following values:
1334 * @arg PWR_WAKEUP_PIN1 : Disable PA0 wake-up PIN.
1335 * @arg PWR_WAKEUP_PIN2 : Disable PA2 wake-up PIN.
1336 * @arg PWR_WAKEUP_PIN3 : Disable PI8 wake-up PIN.
1337 * @arg PWR_WAKEUP_PIN4 : Disable PC13 wake-up PIN.
1338 * @arg PWR_WAKEUP_PIN5 : Disable PI11 wake-up PIN.
1339 * @arg PWR_WAKEUP_PIN6 : Disable PC1 wake-up PIN.
1340 * @note The PWR_WAKEUP_PIN3 and PWR_WAKEUP_PIN5 are available only for
1341 * devices that support GPIOI port.
1342 * @retval None
1343 */
HAL_PWREx_DisableWakeUpPin(uint32_t WakeUpPin)1344 void HAL_PWREx_DisableWakeUpPin (uint32_t WakeUpPin)
1345 {
1346 /* Check the parameter */
1347 assert_param (IS_PWR_WAKEUP_PIN (WakeUpPin));
1348
1349 /* Disable the WakeUpPin */
1350 CLEAR_BIT (PWR->WKUPEPR, WakeUpPin);
1351 }
1352
1353 /**
1354 * @brief Get the Wake-Up Pin pending flags.
1355 * @param WakeUpFlag : Specifies the Wake-Up PIN flag to be checked.
1356 * This parameter can be one of the following values:
1357 * @arg PWR_WAKEUP_FLAG1 : Get wakeup event received from PA0.
1358 * @arg PWR_WAKEUP_FLAG2 : Get wakeup event received from PA2.
1359 * @arg PWR_WAKEUP_FLAG3 : Get wakeup event received from PI8.
1360 * @arg PWR_WAKEUP_FLAG4 : Get wakeup event received from PC13.
1361 * @arg PWR_WAKEUP_FLAG5 : Get wakeup event received from PI11.
1362 * @arg PWR_WAKEUP_FLAG6 : Get wakeup event received from PC1.
1363 * @arg PWR_WAKEUP_FLAG_ALL : Get Wakeup event received from all
1364 * wake up pins.
1365 * @note The PWR_WAKEUP_FLAG3 and PWR_WAKEUP_FLAG5 are available only for
1366 * devices that support GPIOI port.
1367 * @retval The Wake-Up pin flag.
1368 */
HAL_PWREx_GetWakeupFlag(uint32_t WakeUpFlag)1369 uint32_t HAL_PWREx_GetWakeupFlag (uint32_t WakeUpFlag)
1370 {
1371 /* Check the parameters */
1372 assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag));
1373
1374 /* Return the wake up pin flag */
1375 return (PWR->WKUPFR & WakeUpFlag);
1376 }
1377
1378 /**
1379 * @brief Clear the Wake-Up pin pending flag.
1380 * @param WakeUpFlag: Specifies the Wake-Up PIN flag to clear.
1381 * This parameter can be one of the following values:
1382 * @arg PWR_WAKEUP_FLAG1 : Clear the wakeup event received from PA0.
1383 * @arg PWR_WAKEUP_FLAG2 : Clear the wakeup event received from PA2.
1384 * @arg PWR_WAKEUP_FLAG3 : Clear the wakeup event received from PI8.
1385 * @arg PWR_WAKEUP_FLAG4 : Clear the wakeup event received from PC13.
1386 * @arg PWR_WAKEUP_FLAG5 : Clear the wakeup event received from PI11.
1387 * @arg PWR_WAKEUP_FLAG6 : Clear the wakeup event received from PC1.
1388 * @arg PWR_WAKEUP_FLAG_ALL : Clear the wakeup events received from
1389 * all wake up pins.
1390 * @note The PWR_WAKEUP_FLAG3 and PWR_WAKEUP_FLAG5 are available only for
1391 * devices that support GPIOI port.
1392 * @retval HAL status.
1393 */
HAL_PWREx_ClearWakeupFlag(uint32_t WakeUpFlag)1394 HAL_StatusTypeDef HAL_PWREx_ClearWakeupFlag (uint32_t WakeUpFlag)
1395 {
1396 /* Check the parameter */
1397 assert_param (IS_PWR_WAKEUP_FLAG (WakeUpFlag));
1398
1399 /* Clear the wake up event received from wake up pin x */
1400 SET_BIT (PWR->WKUPCR, WakeUpFlag);
1401
1402 /* Check if the wake up event is well cleared */
1403 if ((PWR->WKUPFR & WakeUpFlag) != 0U)
1404 {
1405 return HAL_ERROR;
1406 }
1407
1408 return HAL_OK;
1409 }
1410
1411 /**
1412 * @brief This function handles the PWR WAKEUP PIN interrupt request.
1413 * @note This API should be called under the WAKEUP_PIN_IRQHandler().
1414 * @retval None.
1415 */
HAL_PWREx_WAKEUP_PIN_IRQHandler(void)1416 void HAL_PWREx_WAKEUP_PIN_IRQHandler (void)
1417 {
1418 /* Wakeup pin EXTI line interrupt detected */
1419 if (READ_BIT(PWR->WKUPFR, PWR_WKUPFR_WKUPF1) != 0U)
1420 {
1421 /* Clear PWR WKUPF1 flag */
1422 __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP1);
1423
1424 /* PWR WKUP1 interrupt user callback */
1425 HAL_PWREx_WKUP1_Callback ();
1426 }
1427 else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF2) != 0U)
1428 {
1429 /* Clear PWR WKUPF2 flag */
1430 __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP2);
1431
1432 /* PWR WKUP2 interrupt user callback */
1433 HAL_PWREx_WKUP2_Callback ();
1434 }
1435 #if defined (PWR_WKUPFR_WKUPF3)
1436 else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF3) != 0U)
1437 {
1438 /* Clear PWR WKUPF3 flag */
1439 __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP3);
1440
1441 /* PWR WKUP3 interrupt user callback */
1442 HAL_PWREx_WKUP3_Callback ();
1443 }
1444 #endif /* defined (PWR_WKUPFR_WKUPF3) */
1445 else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF4) != 0U)
1446 {
1447 /* Clear PWR WKUPF4 flag */
1448 __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP4);
1449
1450 /* PWR WKUP4 interrupt user callback */
1451 HAL_PWREx_WKUP4_Callback ();
1452 }
1453 #if defined (PWR_WKUPFR_WKUPF5)
1454 else if (READ_BIT (PWR->WKUPFR, PWR_WKUPFR_WKUPF5) != 0U)
1455 {
1456 /* Clear PWR WKUPF5 flag */
1457 __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP5);
1458
1459 /* PWR WKUP5 interrupt user callback */
1460 HAL_PWREx_WKUP5_Callback ();
1461 }
1462 #endif /* defined (PWR_WKUPFR_WKUPF5) */
1463 else
1464 {
1465 /* Clear PWR WKUPF6 flag */
1466 __HAL_PWR_CLEAR_WAKEUPFLAG (PWR_FLAG_WKUP6);
1467
1468 /* PWR WKUP6 interrupt user callback */
1469 HAL_PWREx_WKUP6_Callback ();
1470 }
1471 }
1472
1473 /**
1474 * @brief PWR WKUP1 interrupt callback.
1475 * @retval None.
1476 */
HAL_PWREx_WKUP1_Callback(void)1477 __weak void HAL_PWREx_WKUP1_Callback (void)
1478 {
1479 /* NOTE : This function should not be modified, when the callback is needed,
1480 the HAL_PWREx_WKUP1Callback can be implemented in the user file
1481 */
1482 }
1483
1484 /**
1485 * @brief PWR WKUP2 interrupt callback.
1486 * @retval None.
1487 */
HAL_PWREx_WKUP2_Callback(void)1488 __weak void HAL_PWREx_WKUP2_Callback (void)
1489 {
1490 /* NOTE : This function should not be modified, when the callback is needed,
1491 the HAL_PWREx_WKUP2Callback can be implemented in the user file
1492 */
1493 }
1494
1495 #if defined (PWR_WKUPFR_WKUPF3)
1496 /**
1497 * @brief PWR WKUP3 interrupt callback.
1498 * @retval None.
1499 */
HAL_PWREx_WKUP3_Callback(void)1500 __weak void HAL_PWREx_WKUP3_Callback (void)
1501 {
1502 /* NOTE : This function should not be modified, when the callback is needed,
1503 the HAL_PWREx_WKUP3Callback can be implemented in the user file
1504 */
1505 }
1506 #endif /* defined (PWR_WKUPFR_WKUPF3) */
1507
1508 /**
1509 * @brief PWR WKUP4 interrupt callback.
1510 * @retval None.
1511 */
HAL_PWREx_WKUP4_Callback(void)1512 __weak void HAL_PWREx_WKUP4_Callback (void)
1513 {
1514 /* NOTE : This function should not be modified, when the callback is needed,
1515 the HAL_PWREx_WKUP4Callback can be implemented in the user file
1516 */
1517 }
1518
1519 #if defined (PWR_WKUPFR_WKUPF5)
1520 /**
1521 * @brief PWR WKUP5 interrupt callback.
1522 * @retval None.
1523 */
HAL_PWREx_WKUP5_Callback(void)1524 __weak void HAL_PWREx_WKUP5_Callback (void)
1525 {
1526 /* NOTE : This function should not be modified, when the callback is needed,
1527 the HAL_PWREx_WKUP5Callback can be implemented in the user file
1528 */
1529 }
1530 #endif /* defined (PWR_WKUPFR_WKUPF5) */
1531
1532 /**
1533 * @brief PWR WKUP6 interrupt callback.
1534 * @retval None.
1535 */
HAL_PWREx_WKUP6_Callback(void)1536 __weak void HAL_PWREx_WKUP6_Callback (void)
1537 {
1538 /* NOTE : This function should not be modified, when the callback is needed,
1539 the HAL_PWREx_WKUP6Callback can be implemented in the user file
1540 */
1541 }
1542 /**
1543 * @}
1544 */
1545
1546 /** @defgroup PWREx_Exported_Functions_Group3 Peripherals control functions
1547 * @brief Peripherals control functions
1548 *
1549 @verbatim
1550 ===============================================================================
1551 ##### Peripherals control functions #####
1552 ===============================================================================
1553
1554 *** Main and Backup Regulators configuration ***
1555 ================================================
1556 [..]
1557 (+) The backup domain includes 4 Kbytes of backup SRAM accessible only
1558 from the CPU, and addressed in 32-bit, 16-bit or 8-bit mode. Its
1559 content is retained even in Standby or VBAT mode when the low power
1560 backup regulator is enabled. It can be considered as an internal
1561 EEPROM when VBAT is always present. You can use the
1562 HAL_PWREx_EnableBkUpReg() function to enable the low power backup
1563 regulator.
1564 (+) When the backup domain is supplied by VDD (analog switch connected to
1565 VDD) the backup SRAM is powered from VDD which replaces the VBAT power
1566 supply to save battery life.
1567 (+) The backup SRAM is not mass erased by a tamper event. It is read
1568 protected to prevent confidential data, such as cryptographic private
1569 key, from being accessed. The backup SRAM can be erased only through
1570 the Flash interface when a protection level change from level 1 to
1571 level 0 is requested.
1572 -@- Refer to the description of Read protection (RDP) in the Flash
1573 programming manual.
1574 (+) The main internal regulator can be configured to have a tradeoff
1575 between performance and power consumption when the device does not
1576 operate at the maximum frequency. This is done through
1577 HAL_PWREx_ControlVoltageScaling(VOS) function which configure the VOS
1578 bit in PWR_D3CR register.
1579 (+) The main internal regulator can be configured to operate in Low Power
1580 mode when the system enters STOP mode to further reduce power
1581 consumption.
1582 This is done through HAL_PWREx_ControlStopModeVoltageScaling(SVOS)
1583 function which configure the SVOS bit in PWR_CR1 register.
1584 The selected SVOS4 and SVOS5 levels add an additional startup delay
1585 when exiting from system Stop mode.
1586 -@- Refer to the product datasheets for more details.
1587
1588 *** USB Regulator configuration ***
1589 ===================================
1590 [..]
1591 (+) The USB transceivers are supplied from a dedicated VDD33USB supply
1592 that can be provided either by the integrated USB regulator, or by an
1593 external USB supply.
1594 (+) The USB regulator is enabled by HAL_PWREx_EnableUSBReg() function, the
1595 VDD33USB is then provided from the USB regulator.
1596 (+) When the USB regulator is enabled, the VDD33USB supply level detector
1597 shall be enabled through HAL_PWREx_EnableUSBVoltageDetector()
1598 function.
1599 (+) The USB regulator is disabled through HAL_PWREx_DisableUSBReg()
1600 function and VDD33USB can be provided from an external supply. In this
1601 case VDD33USB and VDD50USB shall be connected together.
1602
1603 *** VBAT battery charging ***
1604 =============================
1605 [..]
1606 (+) When VDD is present, the external battery connected to VBAT can be
1607 charged through an internal resistance. VBAT charging can be performed
1608 either through a 5 KOhm resistor or through a 1.5 KOhm resistor.
1609 (+) VBAT charging is enabled by HAL_PWREx_EnableBatteryCharging
1610 (ResistorValue) function with:
1611 (++) ResistorValue:
1612 (+++) PWR_BATTERY_CHARGING_RESISTOR_5: 5 KOhm resistor.
1613 (+++) PWR_BATTERY_CHARGING_RESISTOR_1_5: 1.5 KOhm resistor.
1614 (+) VBAT charging is disabled by HAL_PWREx_DisableBatteryCharging()
1615 function.
1616
1617 @endverbatim
1618 * @{
1619 */
1620
1621 /**
1622 * @brief Enable the Backup Regulator.
1623 * @retval HAL status.
1624 */
HAL_PWREx_EnableBkUpReg(void)1625 HAL_StatusTypeDef HAL_PWREx_EnableBkUpReg (void)
1626 {
1627 uint32_t tickstart;
1628
1629 /* Enable the Backup regulator */
1630 SET_BIT (PWR->CR2, PWR_CR2_BREN);
1631
1632 /* Get tick */
1633 tickstart = HAL_GetTick ();
1634
1635 /* Wait till Backup regulator ready flag is set */
1636 while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) == 0U)
1637 {
1638 if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1639 {
1640 return HAL_ERROR;
1641 }
1642 }
1643
1644 return HAL_OK;
1645 }
1646
1647 /**
1648 * @brief Disable the Backup Regulator.
1649 * @retval HAL status.
1650 */
HAL_PWREx_DisableBkUpReg(void)1651 HAL_StatusTypeDef HAL_PWREx_DisableBkUpReg (void)
1652 {
1653 uint32_t tickstart;
1654
1655 /* Disable the Backup regulator */
1656 CLEAR_BIT (PWR->CR2, PWR_CR2_BREN);
1657
1658 /* Get tick */
1659 tickstart = HAL_GetTick ();
1660
1661 /* Wait till Backup regulator ready flag is reset */
1662 while (__HAL_PWR_GET_FLAG (PWR_FLAG_BRR) != 0U)
1663 {
1664 if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1665 {
1666 return HAL_ERROR;
1667 }
1668 }
1669
1670 return HAL_OK;
1671 }
1672
1673 /**
1674 * @brief Enable the USB Regulator.
1675 * @retval HAL status.
1676 */
HAL_PWREx_EnableUSBReg(void)1677 HAL_StatusTypeDef HAL_PWREx_EnableUSBReg (void)
1678 {
1679 uint32_t tickstart;
1680
1681 /* Enable the USB regulator */
1682 SET_BIT (PWR->CR3, PWR_CR3_USBREGEN);
1683
1684 /* Get tick */
1685 tickstart = HAL_GetTick ();
1686
1687 /* Wait till the USB regulator ready flag is set */
1688 while (__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) == 0U)
1689 {
1690 if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1691 {
1692 return HAL_ERROR;
1693 }
1694 }
1695
1696 return HAL_OK;
1697 }
1698
1699 /**
1700 * @brief Disable the USB Regulator.
1701 * @retval HAL status.
1702 */
HAL_PWREx_DisableUSBReg(void)1703 HAL_StatusTypeDef HAL_PWREx_DisableUSBReg (void)
1704 {
1705 uint32_t tickstart;
1706
1707 /* Disable the USB regulator */
1708 CLEAR_BIT (PWR->CR3, PWR_CR3_USBREGEN);
1709
1710 /* Get tick */
1711 tickstart = HAL_GetTick ();
1712
1713 /* Wait till the USB regulator ready flag is reset */
1714 while(__HAL_PWR_GET_FLAG (PWR_FLAG_USB33RDY) != 0U)
1715 {
1716 if ((HAL_GetTick() - tickstart ) > PWR_FLAG_SETTING_DELAY)
1717 {
1718 return HAL_ERROR;
1719 }
1720 }
1721
1722 return HAL_OK;
1723 }
1724
1725 /**
1726 * @brief Enable the USB voltage level detector.
1727 * @retval None.
1728 */
HAL_PWREx_EnableUSBVoltageDetector(void)1729 void HAL_PWREx_EnableUSBVoltageDetector (void)
1730 {
1731 /* Enable the USB voltage detector */
1732 SET_BIT (PWR->CR3, PWR_CR3_USB33DEN);
1733 }
1734
1735 /**
1736 * @brief Disable the USB voltage level detector.
1737 * @retval None.
1738 */
HAL_PWREx_DisableUSBVoltageDetector(void)1739 void HAL_PWREx_DisableUSBVoltageDetector (void)
1740 {
1741 /* Disable the USB voltage detector */
1742 CLEAR_BIT (PWR->CR3, PWR_CR3_USB33DEN);
1743 }
1744
1745 /**
1746 * @brief Enable the Battery charging.
1747 * @note When VDD is present, charge the external battery through an internal
1748 * resistor.
1749 * @param ResistorValue : Specifies the charging resistor.
1750 * This parameter can be one of the following values :
1751 * @arg PWR_BATTERY_CHARGING_RESISTOR_5 : 5 KOhm resistor.
1752 * @arg PWR_BATTERY_CHARGING_RESISTOR_1_5 : 1.5 KOhm resistor.
1753 * @retval None.
1754 */
HAL_PWREx_EnableBatteryCharging(uint32_t ResistorValue)1755 void HAL_PWREx_EnableBatteryCharging (uint32_t ResistorValue)
1756 {
1757 /* Check the parameter */
1758 assert_param (IS_PWR_BATTERY_RESISTOR_SELECT (ResistorValue));
1759
1760 /* Specify the charging resistor */
1761 MODIFY_REG (PWR->CR3, PWR_CR3_VBRS, ResistorValue);
1762
1763 /* Enable the Battery charging */
1764 SET_BIT (PWR->CR3, PWR_CR3_VBE);
1765 }
1766
1767 /**
1768 * @brief Disable the Battery charging.
1769 * @retval None.
1770 */
HAL_PWREx_DisableBatteryCharging(void)1771 void HAL_PWREx_DisableBatteryCharging (void)
1772 {
1773 /* Disable the Battery charging */
1774 CLEAR_BIT (PWR->CR3, PWR_CR3_VBE);
1775 }
1776
1777 #if defined (PWR_CR1_BOOSTE)
1778 /**
1779 * @brief Enable the booster to guarantee the analog switch AC performance when
1780 * the VDD supply voltage is below 2V7.
1781 * @note The VDD supply voltage can be monitored through the PVD and the PLS
1782 * field bits.
1783 * @retval None.
1784 */
HAL_PWREx_EnableAnalogBooster(void)1785 void HAL_PWREx_EnableAnalogBooster (void)
1786 {
1787 /* Enable the Analog voltage */
1788 SET_BIT (PWR->CR1, PWR_CR1_AVD_READY);
1789
1790 /* Enable VDDA booster */
1791 SET_BIT (PWR->CR1, PWR_CR1_BOOSTE);
1792 }
1793
1794 /**
1795 * @brief Disable the analog booster.
1796 * @retval None.
1797 */
HAL_PWREx_DisableAnalogBooster(void)1798 void HAL_PWREx_DisableAnalogBooster (void)
1799 {
1800 /* Disable VDDA booster */
1801 CLEAR_BIT (PWR->CR1, PWR_CR1_BOOSTE);
1802
1803 /* Disable the Analog voltage */
1804 CLEAR_BIT (PWR->CR1, PWR_CR1_AVD_READY);
1805 }
1806 #endif /* defined (PWR_CR1_BOOSTE) */
1807 /**
1808 * @}
1809 */
1810
1811 /** @defgroup PWREx_Exported_Functions_Group4 Power Monitoring functions
1812 * @brief Power Monitoring functions
1813 *
1814 @verbatim
1815 ===============================================================================
1816 ##### Power Monitoring functions #####
1817 ===============================================================================
1818
1819 *** VBAT and Temperature supervision ***
1820 ========================================
1821 [..]
1822 (+) The VBAT battery voltage supply can be monitored by comparing it with
1823 two threshold levels: VBAThigh and VBATlow. VBATH flag and VBATL flags
1824 in the PWR control register 2 (PWR_CR2), indicate if VBAT is higher or
1825 lower than the threshold.
1826 (+) The temperature can be monitored by comparing it with two threshold
1827 levels, TEMPhigh and TEMPlow. TEMPH and TEMPL flags, in the PWR
1828 control register 2 (PWR_CR2), indicate whether the device temperature
1829 is higher or lower than the threshold.
1830 (+) The VBAT and the temperature monitoring is enabled by
1831 HAL_PWREx_EnableMonitoring() function and disabled by
1832 HAL_PWREx_DisableMonitoring() function.
1833 (+) The HAL_PWREx_GetVBATLevel() function returns the VBAT level which can
1834 be : PWR_VBAT_BELOW_LOW_THRESHOLD or PWR_VBAT_ABOVE_HIGH_THRESHOLD or
1835 PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD.
1836 (+) The HAL_PWREx_GetTemperatureLevel() function returns the Temperature
1837 level which can be :
1838 PWR_TEMP_BELOW_LOW_THRESHOLD or PWR_TEMP_ABOVE_HIGH_THRESHOLD or
1839 PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD.
1840
1841 *** AVD configuration ***
1842 =========================
1843 [..]
1844 (+) The AVD is used to monitor the VDDA power supply by comparing it to a
1845 threshold selected by the AVD Level (ALS[3:0] bits in the PWR_CR1
1846 register).
1847 (+) A AVDO flag is available to indicate if VDDA is higher or lower
1848 than the AVD threshold. This event is internally connected to the EXTI
1849 line 16 to generate an interrupt if enabled.
1850 It is configurable through __HAL_PWR_AVD_EXTI_ENABLE_IT() macro.
1851 (+) The AVD is stopped in System Standby mode.
1852
1853 @endverbatim
1854 * @{
1855 */
1856
1857 /**
1858 * @brief Enable the VBAT and temperature monitoring.
1859 * @retval HAL status.
1860 */
HAL_PWREx_EnableMonitoring(void)1861 void HAL_PWREx_EnableMonitoring (void)
1862 {
1863 /* Enable the VBAT and Temperature monitoring */
1864 SET_BIT (PWR->CR2, PWR_CR2_MONEN);
1865 }
1866
1867 /**
1868 * @brief Disable the VBAT and temperature monitoring.
1869 * @retval HAL status.
1870 */
HAL_PWREx_DisableMonitoring(void)1871 void HAL_PWREx_DisableMonitoring (void)
1872 {
1873 /* Disable the VBAT and Temperature monitoring */
1874 CLEAR_BIT (PWR->CR2, PWR_CR2_MONEN);
1875 }
1876
1877 /**
1878 * @brief Indicate whether the junction temperature is between, above or below
1879 * the thresholds.
1880 * @retval Temperature level.
1881 */
HAL_PWREx_GetTemperatureLevel(void)1882 uint32_t HAL_PWREx_GetTemperatureLevel (void)
1883 {
1884 uint32_t tempLevel, regValue;
1885
1886 /* Read the temperature flags */
1887 regValue = READ_BIT (PWR->CR2, (PWR_CR2_TEMPH | PWR_CR2_TEMPL));
1888
1889 /* Check if the temperature is below the threshold */
1890 if (regValue == PWR_CR2_TEMPL)
1891 {
1892 tempLevel = PWR_TEMP_BELOW_LOW_THRESHOLD;
1893 }
1894 /* Check if the temperature is above the threshold */
1895 else if (regValue == PWR_CR2_TEMPH)
1896 {
1897 tempLevel = PWR_TEMP_ABOVE_HIGH_THRESHOLD;
1898 }
1899 /* The temperature is between the thresholds */
1900 else
1901 {
1902 tempLevel = PWR_TEMP_BETWEEN_HIGH_LOW_THRESHOLD;
1903 }
1904
1905 return tempLevel;
1906 }
1907
1908 /**
1909 * @brief Indicate whether the Battery voltage level is between, above or below
1910 * the thresholds.
1911 * @retval VBAT level.
1912 */
HAL_PWREx_GetVBATLevel(void)1913 uint32_t HAL_PWREx_GetVBATLevel (void)
1914 {
1915 uint32_t VBATLevel, regValue;
1916
1917 /* Read the VBAT flags */
1918 regValue = READ_BIT (PWR->CR2, (PWR_CR2_VBATH | PWR_CR2_VBATL));
1919
1920 /* Check if the VBAT is below the threshold */
1921 if (regValue == PWR_CR2_VBATL)
1922 {
1923 VBATLevel = PWR_VBAT_BELOW_LOW_THRESHOLD;
1924 }
1925 /* Check if the VBAT is above the threshold */
1926 else if (regValue == PWR_CR2_VBATH)
1927 {
1928 VBATLevel = PWR_VBAT_ABOVE_HIGH_THRESHOLD;
1929 }
1930 /* The VBAT is between the thresholds */
1931 else
1932 {
1933 VBATLevel = PWR_VBAT_BETWEEN_HIGH_LOW_THRESHOLD;
1934 }
1935
1936 return VBATLevel;
1937 }
1938
1939 #if defined (PWR_CSR1_MMCVDO)
1940 /**
1941 * @brief Get the VDDMMC voltage level.
1942 * @retval The VDDMMC voltage level.
1943 */
HAL_PWREx_GetMMCVoltage(void)1944 PWREx_MMC_VoltageLevel HAL_PWREx_GetMMCVoltage (void)
1945 {
1946 PWREx_MMC_VoltageLevel mmc_voltage;
1947
1948 /* Check voltage detector output on VDDMMC value */
1949 if ((PWR->CSR1 & PWR_CSR1_MMCVDO_Msk) == 0U)
1950 {
1951 mmc_voltage = PWR_MMC_VOLTAGE_BELOW_1V2;
1952 }
1953 else
1954 {
1955 mmc_voltage = PWR_MMC_VOLTAGE_EQUAL_ABOVE_1V2;
1956 }
1957
1958 return mmc_voltage;
1959 }
1960 #endif /* defined (PWR_CSR1_MMCVDO) */
1961
1962 /**
1963 * @brief Configure the event mode and the voltage threshold detected by the
1964 * Analog Voltage Detector (AVD).
1965 * @param sConfigAVD : Pointer to an PWREx_AVDTypeDef structure that contains
1966 * the configuration information for the AVD.
1967 * @note Refer to the electrical characteristics of your device datasheet for
1968 * more details about the voltage threshold corresponding to each
1969 * detection level.
1970 * @note For dual core devices, please ensure to configure the EXTI lines for
1971 * the different Cortex-Mx through PWR_Exported_Macro provided by this
1972 * driver. All combination are allowed: wake up only Cortex-M7, wake up
1973 * only Cortex-M4 and wake up Cortex-M7 and Cortex-M4.
1974 * @retval None.
1975 */
HAL_PWREx_ConfigAVD(PWREx_AVDTypeDef * sConfigAVD)1976 void HAL_PWREx_ConfigAVD (PWREx_AVDTypeDef *sConfigAVD)
1977 {
1978 /* Check the parameters */
1979 assert_param (IS_PWR_AVD_LEVEL (sConfigAVD->AVDLevel));
1980 assert_param (IS_PWR_AVD_MODE (sConfigAVD->Mode));
1981
1982 /* Set the ALS[18:17] bits according to AVDLevel value */
1983 MODIFY_REG (PWR->CR1, PWR_CR1_ALS, sConfigAVD->AVDLevel);
1984
1985 /* Clear any previous config */
1986 #if !defined (DUAL_CORE)
1987 __HAL_PWR_AVD_EXTI_DISABLE_EVENT ();
1988 __HAL_PWR_AVD_EXTI_DISABLE_IT ();
1989 #endif /* !defined (DUAL_CORE) */
1990
1991 __HAL_PWR_AVD_EXTI_DISABLE_RISING_EDGE ();
1992 __HAL_PWR_AVD_EXTI_DISABLE_FALLING_EDGE ();
1993
1994 #if !defined (DUAL_CORE)
1995 /* Configure the interrupt mode */
1996 if ((sConfigAVD->Mode & AVD_MODE_IT) == AVD_MODE_IT)
1997 {
1998 __HAL_PWR_AVD_EXTI_ENABLE_IT ();
1999 }
2000
2001 /* Configure the event mode */
2002 if ((sConfigAVD->Mode & AVD_MODE_EVT) == AVD_MODE_EVT)
2003 {
2004 __HAL_PWR_AVD_EXTI_ENABLE_EVENT ();
2005 }
2006 #endif /* !defined (DUAL_CORE) */
2007
2008 /* Rising edge configuration */
2009 if ((sConfigAVD->Mode & AVD_RISING_EDGE) == AVD_RISING_EDGE)
2010 {
2011 __HAL_PWR_AVD_EXTI_ENABLE_RISING_EDGE ();
2012 }
2013
2014 /* Falling edge configuration */
2015 if ((sConfigAVD->Mode & AVD_FALLING_EDGE) == AVD_FALLING_EDGE)
2016 {
2017 __HAL_PWR_AVD_EXTI_ENABLE_FALLING_EDGE ();
2018 }
2019 }
2020
2021 /**
2022 * @brief Enable the Analog Voltage Detector (AVD).
2023 * @retval None.
2024 */
HAL_PWREx_EnableAVD(void)2025 void HAL_PWREx_EnableAVD (void)
2026 {
2027 /* Enable the Analog Voltage Detector */
2028 SET_BIT (PWR->CR1, PWR_CR1_AVDEN);
2029 }
2030
2031 /**
2032 * @brief Disable the Analog Voltage Detector(AVD).
2033 * @retval None.
2034 */
HAL_PWREx_DisableAVD(void)2035 void HAL_PWREx_DisableAVD (void)
2036 {
2037 /* Disable the Analog Voltage Detector */
2038 CLEAR_BIT (PWR->CR1, PWR_CR1_AVDEN);
2039 }
2040
2041 /**
2042 * @brief This function handles the PWR PVD/AVD interrupt request.
2043 * @note This API should be called under the PVD_AVD_IRQHandler().
2044 * @retval None
2045 */
HAL_PWREx_PVD_AVD_IRQHandler(void)2046 void HAL_PWREx_PVD_AVD_IRQHandler (void)
2047 {
2048 /* Check if the Programmable Voltage Detector is enabled (PVD) */
2049 if (READ_BIT (PWR->CR1, PWR_CR1_PVDEN) != 0U)
2050 {
2051 #if defined (DUAL_CORE)
2052 if (HAL_GetCurrentCPUID () == CM7_CPUID)
2053 #endif /* defined (DUAL_CORE) */
2054 {
2055 /* Check PWR D1/CD EXTI flag */
2056 if (__HAL_PWR_PVD_EXTI_GET_FLAG () != 0U)
2057 {
2058 /* PWR PVD interrupt user callback */
2059 HAL_PWR_PVDCallback ();
2060
2061 if(__HAL_PWR_GET_FLAG (PWR_FLAG_AVDO) == 0U)
2062 {
2063 /* Clear PWR EXTI D1/CD pending bit */
2064 __HAL_PWR_PVD_EXTI_CLEAR_FLAG ();
2065 }
2066 }
2067 }
2068 #if defined (DUAL_CORE)
2069 else
2070 {
2071 /* Check PWR EXTI D2 flag */
2072 if (__HAL_PWR_PVD_EXTID2_GET_FLAG () != 0U)
2073 {
2074 /* PWR PVD interrupt user callback */
2075 HAL_PWR_PVDCallback ();
2076
2077 if(__HAL_PWR_GET_FLAG (PWR_FLAG_AVDO) == 0U)
2078 {
2079 /* Clear PWR EXTI D2 pending bit */
2080 __HAL_PWR_PVD_EXTID2_CLEAR_FLAG ();
2081 }
2082 }
2083 }
2084 #endif /* defined (DUAL_CORE) */
2085 }
2086
2087 /* Check if the Analog Voltage Detector is enabled (AVD) */
2088 if (READ_BIT (PWR->CR1, PWR_CR1_AVDEN) != 0U)
2089 {
2090 #if defined (DUAL_CORE)
2091 if (HAL_GetCurrentCPUID () == CM7_CPUID)
2092 #endif /* defined (DUAL_CORE) */
2093 {
2094 /* Check PWR EXTI D1/CD flag */
2095 if (__HAL_PWR_AVD_EXTI_GET_FLAG () != 0U)
2096 {
2097 /* PWR AVD interrupt user callback */
2098 HAL_PWREx_AVDCallback ();
2099
2100 if(__HAL_PWR_GET_FLAG (PWR_FLAG_PVDO) == 0U)
2101 {
2102 /* Clear PWR EXTI D1/CD pending bit */
2103 __HAL_PWR_AVD_EXTI_CLEAR_FLAG ();
2104 }
2105 }
2106 }
2107 #if defined (DUAL_CORE)
2108 else
2109 {
2110 /* Check PWR EXTI D2 flag */
2111 if (__HAL_PWR_AVD_EXTID2_GET_FLAG () != 0U)
2112 {
2113 /* PWR AVD interrupt user callback */
2114 HAL_PWREx_AVDCallback ();
2115
2116 if(__HAL_PWR_GET_FLAG (PWR_FLAG_PVDO) == 0U)
2117 {
2118 /* Clear PWR EXTI D2 pending bit */
2119 __HAL_PWR_AVD_EXTID2_CLEAR_FLAG ();
2120 }
2121 }
2122 }
2123 #endif /* defined (DUAL_CORE) */
2124 }
2125 }
2126
2127 /**
2128 * @brief PWR AVD interrupt callback.
2129 * @retval None.
2130 */
HAL_PWREx_AVDCallback(void)2131 __weak void HAL_PWREx_AVDCallback (void)
2132 {
2133 /* NOTE : This function should not be modified, when the callback is needed,
2134 the HAL_PWR_AVDCallback can be implemented in the user file
2135 */
2136 }
2137 /**
2138 * @}
2139 */
2140
2141 /**
2142 * @}
2143 */
2144
2145 #endif /* HAL_PWR_MODULE_ENABLED */
2146
2147 /**
2148 * @}
2149 */
2150
2151 /**
2152 * @}
2153 */
2154
2155