1 /**
2   ******************************************************************************
3   * @file    stm32g4xx_ll_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM LL module driver.
6   ******************************************************************************
7   * @attention
8   *
9   * Copyright (c) 2019 STMicroelectronics.
10   * All rights reserved.
11   *
12   * This software is licensed under terms that can be found in the LICENSE file
13   * in the root directory of this software component.
14   * If no LICENSE file comes with this software, it is provided AS-IS.
15   *
16   ******************************************************************************
17   */
18 #if defined(USE_FULL_LL_DRIVER)
19 
20 /* Includes ------------------------------------------------------------------*/
21 #include "stm32g4xx_ll_tim.h"
22 #include "stm32g4xx_ll_bus.h"
23 
24 #ifdef  USE_FULL_ASSERT
25 #include "stm32_assert.h"
26 #else
27 #define assert_param(expr) ((void)0U)
28 #endif /* USE_FULL_ASSERT */
29 
30 /** @addtogroup STM32G4xx_LL_Driver
31   * @{
32   */
33 
34 #if defined (TIM1) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM6) || defined (TIM7) || defined (TIM8) || defined (TIM15) || defined (TIM16) || defined (TIM17) || defined (TIM20)
35 
36 /** @addtogroup TIM_LL
37   * @{
38   */
39 
40 /* Private types -------------------------------------------------------------*/
41 /* Private variables ---------------------------------------------------------*/
42 /* Private constants ---------------------------------------------------------*/
43 /* Private macros ------------------------------------------------------------*/
44 /** @addtogroup TIM_LL_Private_Macros
45   * @{
46   */
47 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
48                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
49                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
50                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
51                                           || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
52 
53 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
54                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
55                                             || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
56 
57 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
58                                      || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
59                                      || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
60                                      || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
61                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
62                                      || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
63                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
64                                      || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
65                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
66                                      || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
67                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
68                                      || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
69                                      || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM1) \
70                                      || ((__VALUE__) == LL_TIM_OCMODE_ASYMMETRIC_PWM2) \
71                                      || ((__VALUE__) == LL_TIM_OCMODE_PULSE_ON_COMPARE) \
72                                      || ((__VALUE__) == LL_TIM_OCMODE_DIRECTION_OUTPUT))
73 
74 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
75                                       || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
76 
77 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
78                                          || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
79 
80 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
81                                           || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
82 
83 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
84                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
85                                           || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
86 
87 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
88                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
89                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
90                                     || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
91 
92 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
93                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
94                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
95                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
96                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
97                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
98                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
99                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
100                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
101                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
102                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
103                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
104                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
105                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
106                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
107                                         || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
108 
109 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
110                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
111                                           || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
112 
113 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
114                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
115                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12) \
116                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X2) \
117                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_CLOCKPLUSDIRECTION_X1) \
118                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X2) \
119                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_DIRECTIONALCLOCK_X1_TI12) \
120                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X1_TI1) \
121                                           || ((__VALUE__) == LL_TIM_ENCODERMODE_X1_TI2))
122 
123 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
124                                                   || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
125 
126 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
127                                          || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
128 
129 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
130                                          || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
131 
132 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
133                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_1)   \
134                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_2)   \
135                                          || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
136 
137 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
138                                           || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
139 
140 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
141                                              || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
142 
143 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1)     \
144                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2)  \
145                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4)  \
146                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8)  \
147                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6)  \
148                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8)  \
149                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6)  \
150                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8)  \
151                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6)  \
152                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8)  \
153                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
154                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
155                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
156                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
157                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
158                                            || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
159 
160 #define IS_LL_TIM_BREAK_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_AFMODE_INPUT)          \
161                                            || ((__VALUE__) == LL_TIM_BREAK_AFMODE_BIDIRECTIONAL))
162 
163 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
164                                            || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
165 
166 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
167                                               || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
168 
169 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1)    \
170                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2)  \
171                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4)  \
172                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8)  \
173                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6)  \
174                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8)  \
175                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6)  \
176                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8)  \
177                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6)  \
178                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8)  \
179                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
180                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
181                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
182                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
183                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
184                                             || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
185 
186 #define IS_LL_TIM_BREAK2_AFMODE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_AFMODE_INPUT)       \
187                                             || ((__VALUE__) == LL_TIM_BREAK2_AFMODE_BIDIRECTIONAL))
188 
189 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
190                                                      || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
191 /**
192   * @}
193   */
194 
195 
196 /* Private function prototypes -----------------------------------------------*/
197 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
198   * @{
199   */
200 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
201 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
202 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
203 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
204 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
205 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
206 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
207 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
208 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
209 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
210 /**
211   * @}
212   */
213 
214 /* Exported functions --------------------------------------------------------*/
215 /** @addtogroup TIM_LL_Exported_Functions
216   * @{
217   */
218 
219 /** @addtogroup TIM_LL_EF_Init
220   * @{
221   */
222 
223 /**
224   * @brief  Set TIMx registers to their reset values.
225   * @param  TIMx Timer instance
226   * @retval An ErrorStatus enumeration value:
227   *          - SUCCESS: TIMx registers are de-initialized
228   *          - ERROR: invalid TIMx instance
229   */
LL_TIM_DeInit(const TIM_TypeDef * TIMx)230 ErrorStatus LL_TIM_DeInit(const TIM_TypeDef *TIMx)
231 {
232   ErrorStatus result = SUCCESS;
233 
234   /* Check the parameters */
235   assert_param(IS_TIM_INSTANCE(TIMx));
236 
237   if (TIMx == TIM1)
238   {
239     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
240     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
241   }
242   else if (TIMx == TIM2)
243   {
244     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
245     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
246   }
247   else if (TIMx == TIM3)
248   {
249     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
250     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
251   }
252   else if (TIMx == TIM4)
253   {
254     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
255     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
256   }
257 #if defined(TIM5)
258   else if (TIMx == TIM5)
259   {
260     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
261     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
262   }
263 #endif /* TIM5 */
264   else if (TIMx == TIM6)
265   {
266     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
267     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
268   }
269   else if (TIMx == TIM7)
270   {
271     LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
272     LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
273   }
274   else if (TIMx == TIM8)
275   {
276     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
277     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
278   }
279   else if (TIMx == TIM15)
280   {
281     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM15);
282     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM15);
283   }
284   else if (TIMx == TIM16)
285   {
286     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM16);
287     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM16);
288   }
289   else if (TIMx == TIM17)
290   {
291     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM17);
292     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM17);
293   }
294 #if defined(TIM20)
295   else if (TIMx == TIM20)
296   {
297     LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM20);
298     LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM20);
299   }
300 #endif /* TIM20 */
301   else
302   {
303     result = ERROR;
304   }
305 
306   return result;
307 }
308 
309 /**
310   * @brief  Set the fields of the time base unit configuration data structure
311   *         to their default values.
312   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
313   * @retval None
314   */
LL_TIM_StructInit(LL_TIM_InitTypeDef * TIM_InitStruct)315 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
316 {
317   /* Set the default configuration */
318   TIM_InitStruct->Prescaler         = (uint16_t)0x0000;
319   TIM_InitStruct->CounterMode       = LL_TIM_COUNTERMODE_UP;
320   TIM_InitStruct->Autoreload        = 0xFFFFFFFFU;
321   TIM_InitStruct->ClockDivision     = LL_TIM_CLOCKDIVISION_DIV1;
322   TIM_InitStruct->RepetitionCounter = 0x00000000U;
323 }
324 
325 /**
326   * @brief  Configure the TIMx time base unit.
327   * @param  TIMx Timer Instance
328   * @param  TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure
329   *         (TIMx time base unit configuration data structure)
330   * @retval An ErrorStatus enumeration value:
331   *          - SUCCESS: TIMx registers are de-initialized
332   *          - ERROR: not applicable
333   */
LL_TIM_Init(TIM_TypeDef * TIMx,const LL_TIM_InitTypeDef * TIM_InitStruct)334 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, const LL_TIM_InitTypeDef *TIM_InitStruct)
335 {
336   uint32_t tmpcr1;
337 
338   /* Check the parameters */
339   assert_param(IS_TIM_INSTANCE(TIMx));
340   assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
341   assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
342 
343   tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
344 
345   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
346   {
347     /* Select the Counter Mode */
348     MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
349   }
350 
351   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
352   {
353     /* Set the clock division */
354     MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
355   }
356 
357   /* Write to TIMx CR1 */
358   LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
359 
360   /* Set the Autoreload value */
361   LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
362 
363   /* Set the Prescaler value */
364   LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
365 
366   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
367   {
368     /* Set the Repetition Counter value */
369     LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
370   }
371 
372   /* Generate an update event to reload the Prescaler
373      and the repetition counter value (if applicable) immediately */
374   LL_TIM_GenerateEvent_UPDATE(TIMx);
375 
376   return SUCCESS;
377 }
378 
379 /**
380   * @brief  Set the fields of the TIMx output channel configuration data
381   *         structure to their default values.
382   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure
383   *         (the output channel configuration data structure)
384   * @retval None
385   */
LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)386 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
387 {
388   /* Set the default configuration */
389   TIM_OC_InitStruct->OCMode       = LL_TIM_OCMODE_FROZEN;
390   TIM_OC_InitStruct->OCState      = LL_TIM_OCSTATE_DISABLE;
391   TIM_OC_InitStruct->OCNState     = LL_TIM_OCSTATE_DISABLE;
392   TIM_OC_InitStruct->CompareValue = 0x00000000U;
393   TIM_OC_InitStruct->OCPolarity   = LL_TIM_OCPOLARITY_HIGH;
394   TIM_OC_InitStruct->OCNPolarity  = LL_TIM_OCPOLARITY_HIGH;
395   TIM_OC_InitStruct->OCIdleState  = LL_TIM_OCIDLESTATE_LOW;
396   TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
397 }
398 
399 /**
400   * @brief  Configure the TIMx output channel.
401   * @param  TIMx Timer Instance
402   * @param  Channel This parameter can be one of the following values:
403   *         @arg @ref LL_TIM_CHANNEL_CH1
404   *         @arg @ref LL_TIM_CHANNEL_CH2
405   *         @arg @ref LL_TIM_CHANNEL_CH3
406   *         @arg @ref LL_TIM_CHANNEL_CH4
407   *         @arg @ref LL_TIM_CHANNEL_CH5
408   *         @arg @ref LL_TIM_CHANNEL_CH6
409   * @param  TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration
410   *         data structure)
411   * @retval An ErrorStatus enumeration value:
412   *          - SUCCESS: TIMx output channel is initialized
413   *          - ERROR: TIMx output channel is not initialized
414   */
LL_TIM_OC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_OC_InitTypeDef * TIM_OC_InitStruct)415 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
416 {
417   ErrorStatus result = ERROR;
418 
419   switch (Channel)
420   {
421     case LL_TIM_CHANNEL_CH1:
422       result = OC1Config(TIMx, TIM_OC_InitStruct);
423       break;
424     case LL_TIM_CHANNEL_CH2:
425       result = OC2Config(TIMx, TIM_OC_InitStruct);
426       break;
427     case LL_TIM_CHANNEL_CH3:
428       result = OC3Config(TIMx, TIM_OC_InitStruct);
429       break;
430     case LL_TIM_CHANNEL_CH4:
431       result = OC4Config(TIMx, TIM_OC_InitStruct);
432       break;
433     case LL_TIM_CHANNEL_CH5:
434       result = OC5Config(TIMx, TIM_OC_InitStruct);
435       break;
436     case LL_TIM_CHANNEL_CH6:
437       result = OC6Config(TIMx, TIM_OC_InitStruct);
438       break;
439     default:
440       break;
441   }
442 
443   return result;
444 }
445 
446 /**
447   * @brief  Set the fields of the TIMx input channel configuration data
448   *         structure to their default values.
449   * @param  TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration
450   *         data structure)
451   * @retval None
452   */
LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)453 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
454 {
455   /* Set the default configuration */
456   TIM_ICInitStruct->ICPolarity    = LL_TIM_IC_POLARITY_RISING;
457   TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
458   TIM_ICInitStruct->ICPrescaler   = LL_TIM_ICPSC_DIV1;
459   TIM_ICInitStruct->ICFilter      = LL_TIM_IC_FILTER_FDIV1;
460 }
461 
462 /**
463   * @brief  Configure the TIMx input channel.
464   * @param  TIMx Timer Instance
465   * @param  Channel This parameter can be one of the following values:
466   *         @arg @ref LL_TIM_CHANNEL_CH1
467   *         @arg @ref LL_TIM_CHANNEL_CH2
468   *         @arg @ref LL_TIM_CHANNEL_CH3
469   *         @arg @ref LL_TIM_CHANNEL_CH4
470   * @param  TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data
471   *         structure)
472   * @retval An ErrorStatus enumeration value:
473   *          - SUCCESS: TIMx output channel is initialized
474   *          - ERROR: TIMx output channel is not initialized
475   */
LL_TIM_IC_Init(TIM_TypeDef * TIMx,uint32_t Channel,const LL_TIM_IC_InitTypeDef * TIM_IC_InitStruct)476 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, const LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
477 {
478   ErrorStatus result = ERROR;
479 
480   switch (Channel)
481   {
482     case LL_TIM_CHANNEL_CH1:
483       result = IC1Config(TIMx, TIM_IC_InitStruct);
484       break;
485     case LL_TIM_CHANNEL_CH2:
486       result = IC2Config(TIMx, TIM_IC_InitStruct);
487       break;
488     case LL_TIM_CHANNEL_CH3:
489       result = IC3Config(TIMx, TIM_IC_InitStruct);
490       break;
491     case LL_TIM_CHANNEL_CH4:
492       result = IC4Config(TIMx, TIM_IC_InitStruct);
493       break;
494     default:
495       break;
496   }
497 
498   return result;
499 }
500 
501 /**
502   * @brief  Fills each TIM_EncoderInitStruct field with its default value
503   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface
504   *         configuration data structure)
505   * @retval None
506   */
LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)507 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
508 {
509   /* Set the default configuration */
510   TIM_EncoderInitStruct->EncoderMode    = LL_TIM_ENCODERMODE_X2_TI1;
511   TIM_EncoderInitStruct->IC1Polarity    = LL_TIM_IC_POLARITY_RISING;
512   TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
513   TIM_EncoderInitStruct->IC1Prescaler   = LL_TIM_ICPSC_DIV1;
514   TIM_EncoderInitStruct->IC1Filter      = LL_TIM_IC_FILTER_FDIV1;
515   TIM_EncoderInitStruct->IC2Polarity    = LL_TIM_IC_POLARITY_RISING;
516   TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
517   TIM_EncoderInitStruct->IC2Prescaler   = LL_TIM_ICPSC_DIV1;
518   TIM_EncoderInitStruct->IC2Filter      = LL_TIM_IC_FILTER_FDIV1;
519 }
520 
521 /**
522   * @brief  Configure the encoder interface of the timer instance.
523   * @param  TIMx Timer Instance
524   * @param  TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface
525   *         configuration data structure)
526   * @retval An ErrorStatus enumeration value:
527   *          - SUCCESS: TIMx registers are de-initialized
528   *          - ERROR: not applicable
529   */
LL_TIM_ENCODER_Init(TIM_TypeDef * TIMx,const LL_TIM_ENCODER_InitTypeDef * TIM_EncoderInitStruct)530 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, const LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
531 {
532   uint32_t tmpccmr1;
533   uint32_t tmpccer;
534 
535   /* Check the parameters */
536   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
537   assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
538   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
539   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
540   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
541   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
542   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
543   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
544   assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
545   assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
546 
547   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
548   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
549 
550   /* Get the TIMx CCMR1 register value */
551   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
552 
553   /* Get the TIMx CCER register value */
554   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
555 
556   /* Configure TI1 */
557   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
558   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
559   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
560   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
561 
562   /* Configure TI2 */
563   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F  | TIM_CCMR1_IC2PSC);
564   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
565   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
566   tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
567 
568   /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
569   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
570   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
571   tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
572   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
573 
574   /* Set encoder mode */
575   LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
576 
577   /* Write to TIMx CCMR1 */
578   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
579 
580   /* Write to TIMx CCER */
581   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
582 
583   return SUCCESS;
584 }
585 
586 /**
587   * @brief  Set the fields of the TIMx Hall sensor interface configuration data
588   *         structure to their default values.
589   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface
590   *         configuration data structure)
591   * @retval None
592   */
LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)593 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
594 {
595   /* Set the default configuration */
596   TIM_HallSensorInitStruct->IC1Polarity       = LL_TIM_IC_POLARITY_RISING;
597   TIM_HallSensorInitStruct->IC1Prescaler      = LL_TIM_ICPSC_DIV1;
598   TIM_HallSensorInitStruct->IC1Filter         = LL_TIM_IC_FILTER_FDIV1;
599   TIM_HallSensorInitStruct->CommutationDelay  = 0U;
600 }
601 
602 /**
603   * @brief  Configure the Hall sensor interface of the timer instance.
604   * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
605   *       to the TI1 input channel
606   * @note TIMx slave mode controller is configured in reset mode.
607           Selected internal trigger is TI1F_ED.
608   * @note Channel 1 is configured as input, IC1 is mapped on TRC.
609   * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
610   *       between 2 changes on the inputs. It gives information about motor speed.
611   * @note Channel 2 is configured in output PWM 2 mode.
612   * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
613   * @note OC2REF is selected as trigger output on TRGO.
614   * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
615   *       when TIMx operates in Hall sensor interface mode.
616   * @param  TIMx Timer Instance
617   * @param  TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor
618   *         interface configuration data structure)
619   * @retval An ErrorStatus enumeration value:
620   *          - SUCCESS: TIMx registers are de-initialized
621   *          - ERROR: not applicable
622   */
LL_TIM_HALLSENSOR_Init(TIM_TypeDef * TIMx,const LL_TIM_HALLSENSOR_InitTypeDef * TIM_HallSensorInitStruct)623 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, const LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
624 {
625   uint32_t tmpcr2;
626   uint32_t tmpccmr1;
627   uint32_t tmpccer;
628   uint32_t tmpsmcr;
629 
630   /* Check the parameters */
631   assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
632   assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
633   assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
634   assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
635 
636   /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
637   TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
638 
639   /* Get the TIMx CR2 register value */
640   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
641 
642   /* Get the TIMx CCMR1 register value */
643   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
644 
645   /* Get the TIMx CCER register value */
646   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
647 
648   /* Get the TIMx SMCR register value */
649   tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
650 
651   /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
652   tmpcr2 |= TIM_CR2_TI1S;
653 
654   /* OC2REF signal is used as trigger output (TRGO) */
655   tmpcr2 |= LL_TIM_TRGO_OC2REF;
656 
657   /* Configure the slave mode controller */
658   tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
659   tmpsmcr |= LL_TIM_TS_TI1F_ED;
660   tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
661 
662   /* Configure input channel 1 */
663   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F  | TIM_CCMR1_IC1PSC);
664   tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
665   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
666   tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
667 
668   /* Configure input channel 2 */
669   tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE  | TIM_CCMR1_OC2PE  | TIM_CCMR1_OC2CE);
670   tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
671 
672   /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
673   tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
674   tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
675   tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
676 
677   /* Write to TIMx CR2 */
678   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
679 
680   /* Write to TIMx SMCR */
681   LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
682 
683   /* Write to TIMx CCMR1 */
684   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
685 
686   /* Write to TIMx CCER */
687   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
688 
689   /* Write to TIMx CCR2 */
690   LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
691 
692   return SUCCESS;
693 }
694 
695 /**
696   * @brief  Set the fields of the Break and Dead Time configuration data structure
697   *         to their default values.
698   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
699   *         data structure)
700   * @retval None
701   */
LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)702 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
703 {
704   /* Set the default configuration */
705   TIM_BDTRInitStruct->OSSRState       = LL_TIM_OSSR_DISABLE;
706   TIM_BDTRInitStruct->OSSIState       = LL_TIM_OSSI_DISABLE;
707   TIM_BDTRInitStruct->LockLevel       = LL_TIM_LOCKLEVEL_OFF;
708   TIM_BDTRInitStruct->DeadTime        = (uint8_t)0x00;
709   TIM_BDTRInitStruct->BreakState      = LL_TIM_BREAK_DISABLE;
710   TIM_BDTRInitStruct->BreakPolarity   = LL_TIM_BREAK_POLARITY_LOW;
711   TIM_BDTRInitStruct->BreakFilter     = LL_TIM_BREAK_FILTER_FDIV1;
712   TIM_BDTRInitStruct->BreakAFMode     = LL_TIM_BREAK_AFMODE_INPUT;
713   TIM_BDTRInitStruct->Break2State     = LL_TIM_BREAK2_DISABLE;
714   TIM_BDTRInitStruct->Break2Polarity  = LL_TIM_BREAK2_POLARITY_LOW;
715   TIM_BDTRInitStruct->Break2Filter    = LL_TIM_BREAK2_FILTER_FDIV1;
716   TIM_BDTRInitStruct->Break2AFMode    = LL_TIM_BREAK2_AFMODE_INPUT;
717   TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
718 }
719 
720 /**
721   * @brief  Configure the Break and Dead Time feature of the timer instance.
722   * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
723   *  and DTG[7:0] can be write-locked depending on the LOCK configuration, it
724   *  can be necessary to configure all of them during the first write access to
725   *  the TIMx_BDTR register.
726   * @note Macro IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
727   *       a timer instance provides a break input.
728   * @note Macro IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
729   *       a timer instance provides a second break input.
730   * @param  TIMx Timer Instance
731   * @param  TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration
732   *         data structure)
733   * @retval An ErrorStatus enumeration value:
734   *          - SUCCESS: Break and Dead Time is initialized
735   *          - ERROR: not applicable
736   */
LL_TIM_BDTR_Init(TIM_TypeDef * TIMx,const LL_TIM_BDTR_InitTypeDef * TIM_BDTRInitStruct)737 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, const LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
738 {
739   uint32_t tmpbdtr = 0;
740 
741   /* Check the parameters */
742   assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
743   assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
744   assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
745   assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
746   assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
747   assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
748   assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
749   assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
750   assert_param(IS_LL_TIM_BREAK_AFMODE(TIM_BDTRInitStruct->BreakAFMode));
751 
752   /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
753   the OSSI State, the dead time value and the Automatic Output Enable Bit */
754 
755   /* Set the BDTR bits */
756   MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
757   MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
758   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
759   MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
760   MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
761   MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
762   MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
763   MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
764   MODIFY_REG(tmpbdtr, TIM_BDTR_BKBID, TIM_BDTRInitStruct->BreakAFMode);
765 
766   if (IS_TIM_BKIN2_INSTANCE(TIMx))
767   {
768     assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
769     assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
770     assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
771     assert_param(IS_LL_TIM_BREAK2_AFMODE(TIM_BDTRInitStruct->Break2AFMode));
772 
773     /* Set the BREAK2 input related BDTR bit-fields */
774     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
775     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
776     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
777     MODIFY_REG(tmpbdtr, TIM_BDTR_BK2BID, TIM_BDTRInitStruct->Break2AFMode);
778   }
779 
780   /* Set TIMx_BDTR */
781   LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
782 
783   return SUCCESS;
784 }
785 /**
786   * @}
787   */
788 
789 /**
790   * @}
791   */
792 
793 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
794   *  @brief   Private functions
795   * @{
796   */
797 /**
798   * @brief  Configure the TIMx output channel 1.
799   * @param  TIMx Timer Instance
800   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
801   * @retval An ErrorStatus enumeration value:
802   *          - SUCCESS: TIMx registers are de-initialized
803   *          - ERROR: not applicable
804   */
OC1Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)805 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
806 {
807   uint32_t tmpccmr1;
808   uint32_t tmpccer;
809   uint32_t tmpcr2;
810 
811   /* Check the parameters */
812   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
813   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
814   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
815   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
816 
817   /* Disable the Channel 1: Reset the CC1E Bit */
818   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
819 
820   /* Get the TIMx CCER register value */
821   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
822 
823   /* Get the TIMx CR2 register value */
824   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
825 
826   /* Get the TIMx CCMR1 register value */
827   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
828 
829   /* Reset Capture/Compare selection Bits */
830   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
831 
832   /* Set the Output Compare Mode */
833   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
834 
835   /* Set the Output Compare Polarity */
836   MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
837 
838   /* Set the Output State */
839   MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
840 
841   if (IS_TIM_BREAK_INSTANCE(TIMx))
842   {
843     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
844     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
845     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
846     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
847 
848     /* Set the complementary output Polarity */
849     MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
850 
851     /* Set the complementary output State */
852     MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
853 
854     /* Set the Output Idle state */
855     MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
856 
857     /* Set the complementary output Idle state */
858     MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
859   }
860 
861   /* Write to TIMx CR2 */
862   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
863 
864   /* Write to TIMx CCMR1 */
865   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
866 
867   /* Set the Capture Compare Register value */
868   LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
869 
870   /* Write to TIMx CCER */
871   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
872 
873   return SUCCESS;
874 }
875 
876 /**
877   * @brief  Configure the TIMx output channel 2.
878   * @param  TIMx Timer Instance
879   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
880   * @retval An ErrorStatus enumeration value:
881   *          - SUCCESS: TIMx registers are de-initialized
882   *          - ERROR: not applicable
883   */
OC2Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)884 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
885 {
886   uint32_t tmpccmr1;
887   uint32_t tmpccer;
888   uint32_t tmpcr2;
889 
890   /* Check the parameters */
891   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
892   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
893   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
894   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
895 
896   /* Disable the Channel 2: Reset the CC2E Bit */
897   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
898 
899   /* Get the TIMx CCER register value */
900   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
901 
902   /* Get the TIMx CR2 register value */
903   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
904 
905   /* Get the TIMx CCMR1 register value */
906   tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
907 
908   /* Reset Capture/Compare selection Bits */
909   CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
910 
911   /* Select the Output Compare Mode */
912   MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
913 
914   /* Set the Output Compare Polarity */
915   MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
916 
917   /* Set the Output State */
918   MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
919 
920   if (IS_TIM_BREAK_INSTANCE(TIMx))
921   {
922     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
923     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
924     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
925     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
926 
927     /* Set the complementary output Polarity */
928     MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
929 
930     /* Set the complementary output State */
931     MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
932 
933     /* Set the Output Idle state */
934     MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
935 
936     /* Set the complementary output Idle state */
937     MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
938   }
939 
940   /* Write to TIMx CR2 */
941   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
942 
943   /* Write to TIMx CCMR1 */
944   LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
945 
946   /* Set the Capture Compare Register value */
947   LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
948 
949   /* Write to TIMx CCER */
950   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
951 
952   return SUCCESS;
953 }
954 
955 /**
956   * @brief  Configure the TIMx output channel 3.
957   * @param  TIMx Timer Instance
958   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
959   * @retval An ErrorStatus enumeration value:
960   *          - SUCCESS: TIMx registers are de-initialized
961   *          - ERROR: not applicable
962   */
OC3Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)963 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
964 {
965   uint32_t tmpccmr2;
966   uint32_t tmpccer;
967   uint32_t tmpcr2;
968 
969   /* Check the parameters */
970   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
971   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
972   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
973   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
974 
975   /* Disable the Channel 3: Reset the CC3E Bit */
976   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
977 
978   /* Get the TIMx CCER register value */
979   tmpccer =  LL_TIM_ReadReg(TIMx, CCER);
980 
981   /* Get the TIMx CR2 register value */
982   tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
983 
984   /* Get the TIMx CCMR2 register value */
985   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
986 
987   /* Reset Capture/Compare selection Bits */
988   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
989 
990   /* Select the Output Compare Mode */
991   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
992 
993   /* Set the Output Compare Polarity */
994   MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
995 
996   /* Set the Output State */
997   MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
998 
999   if (IS_TIM_BREAK_INSTANCE(TIMx))
1000   {
1001     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1002     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1003     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1004     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1005 
1006     /* Set the complementary output Polarity */
1007     MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
1008 
1009     /* Set the complementary output State */
1010     MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
1011 
1012     /* Set the Output Idle state */
1013     MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
1014 
1015     /* Set the complementary output Idle state */
1016     MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1017   }
1018 
1019   /* Write to TIMx CR2 */
1020   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1021 
1022   /* Write to TIMx CCMR2 */
1023   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1024 
1025   /* Set the Capture Compare Register value */
1026   LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1027 
1028   /* Write to TIMx CCER */
1029   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1030 
1031   return SUCCESS;
1032 }
1033 
1034 /**
1035   * @brief  Configure the TIMx output channel 4.
1036   * @param  TIMx Timer Instance
1037   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1038   * @retval An ErrorStatus enumeration value:
1039   *          - SUCCESS: TIMx registers are de-initialized
1040   *          - ERROR: not applicable
1041   */
OC4Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1042 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1043 {
1044   uint32_t tmpccmr2;
1045   uint32_t tmpccer;
1046   uint32_t tmpcr2;
1047 
1048   /* Check the parameters */
1049   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1050   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1051   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1052   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1053 
1054   /* Disable the Channel 4: Reset the CC4E Bit */
1055   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1056 
1057   /* Get the TIMx CCER register value */
1058   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1059 
1060   /* Get the TIMx CR2 register value */
1061   tmpcr2 =  LL_TIM_ReadReg(TIMx, CR2);
1062 
1063   /* Get the TIMx CCMR2 register value */
1064   tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1065 
1066   /* Reset Capture/Compare selection Bits */
1067   CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1068 
1069   /* Select the Output Compare Mode */
1070   MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1071 
1072   /* Set the Output Compare Polarity */
1073   MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1074 
1075   /* Set the Output State */
1076   MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1077 
1078   if (IS_TIM_BREAK_INSTANCE(TIMx))
1079   {
1080     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1081     assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1082     assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1083     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1084 
1085     /* Set the complementary output Polarity */
1086     MODIFY_REG(tmpccer, TIM_CCER_CC4NP, TIM_OCInitStruct->OCNPolarity << 14U);
1087 
1088     /* Set the complementary output State */
1089     MODIFY_REG(tmpccer, TIM_CCER_CC4NE, TIM_OCInitStruct->OCNState << 14U);
1090 
1091     /* Set the Output Idle state */
1092     MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1093 
1094     /* Set the complementary output Idle state */
1095     MODIFY_REG(tmpcr2, TIM_CR2_OIS4N, TIM_OCInitStruct->OCNIdleState << 7U);
1096   }
1097 
1098   /* Write to TIMx CR2 */
1099   LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1100 
1101   /* Write to TIMx CCMR2 */
1102   LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1103 
1104   /* Set the Capture Compare Register value */
1105   LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1106 
1107   /* Write to TIMx CCER */
1108   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1109 
1110   return SUCCESS;
1111 }
1112 
1113 /**
1114   * @brief  Configure the TIMx output channel 5.
1115   * @param  TIMx Timer Instance
1116   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1117   * @retval An ErrorStatus enumeration value:
1118   *          - SUCCESS: TIMx registers are de-initialized
1119   *          - ERROR: not applicable
1120   */
OC5Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1121 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1122 {
1123   uint32_t tmpccmr3;
1124   uint32_t tmpccer;
1125 
1126   /* Check the parameters */
1127   assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1128   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1129   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1130   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1131   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1132   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1133 
1134   /* Disable the Channel 5: Reset the CC5E Bit */
1135   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1136 
1137   /* Get the TIMx CCER register value */
1138   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1139 
1140   /* Get the TIMx CCMR3 register value */
1141   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1142 
1143   /* Select the Output Compare Mode */
1144   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1145 
1146   /* Set the Output Compare Polarity */
1147   MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1148 
1149   /* Set the Output State */
1150   MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1151 
1152   if (IS_TIM_BREAK_INSTANCE(TIMx))
1153   {
1154     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1155     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1156 
1157     /* Set the Output Idle state */
1158     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1159 
1160   }
1161 
1162   /* Write to TIMx CCMR3 */
1163   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1164 
1165   /* Set the Capture Compare Register value */
1166   LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1167 
1168   /* Write to TIMx CCER */
1169   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1170 
1171   return SUCCESS;
1172 }
1173 
1174 /**
1175   * @brief  Configure the TIMx output channel 6.
1176   * @param  TIMx Timer Instance
1177   * @param  TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1178   * @retval An ErrorStatus enumeration value:
1179   *          - SUCCESS: TIMx registers are de-initialized
1180   *          - ERROR: not applicable
1181   */
OC6Config(TIM_TypeDef * TIMx,const LL_TIM_OC_InitTypeDef * TIM_OCInitStruct)1182 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, const LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1183 {
1184   uint32_t tmpccmr3;
1185   uint32_t tmpccer;
1186 
1187   /* Check the parameters */
1188   assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1189   assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1190   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1191   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1192   assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1193   assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1194 
1195   /* Disable the Channel 5: Reset the CC6E Bit */
1196   CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1197 
1198   /* Get the TIMx CCER register value */
1199   tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1200 
1201   /* Get the TIMx CCMR3 register value */
1202   tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1203 
1204   /* Select the Output Compare Mode */
1205   MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1206 
1207   /* Set the Output Compare Polarity */
1208   MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1209 
1210   /* Set the Output State */
1211   MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1212 
1213   if (IS_TIM_BREAK_INSTANCE(TIMx))
1214   {
1215     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1216     assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1217 
1218     /* Set the Output Idle state */
1219     MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1220   }
1221 
1222   /* Write to TIMx CCMR3 */
1223   LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1224 
1225   /* Set the Capture Compare Register value */
1226   LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1227 
1228   /* Write to TIMx CCER */
1229   LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1230 
1231   return SUCCESS;
1232 }
1233 
1234 /**
1235   * @brief  Configure the TIMx input channel 1.
1236   * @param  TIMx Timer Instance
1237   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1238   * @retval An ErrorStatus enumeration value:
1239   *          - SUCCESS: TIMx registers are de-initialized
1240   *          - ERROR: not applicable
1241   */
IC1Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1242 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1243 {
1244   /* Check the parameters */
1245   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1246   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1247   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1248   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1249   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1250 
1251   /* Disable the Channel 1: Reset the CC1E Bit */
1252   TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1253 
1254   /* Select the Input and set the filter and the prescaler value */
1255   MODIFY_REG(TIMx->CCMR1,
1256              (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1257              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1258 
1259   /* Select the Polarity and set the CC1E Bit */
1260   MODIFY_REG(TIMx->CCER,
1261              (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1262              (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1263 
1264   return SUCCESS;
1265 }
1266 
1267 /**
1268   * @brief  Configure the TIMx input channel 2.
1269   * @param  TIMx Timer Instance
1270   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1271   * @retval An ErrorStatus enumeration value:
1272   *          - SUCCESS: TIMx registers are de-initialized
1273   *          - ERROR: not applicable
1274   */
IC2Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1275 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1276 {
1277   /* Check the parameters */
1278   assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1279   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1280   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1281   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1282   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1283 
1284   /* Disable the Channel 2: Reset the CC2E Bit */
1285   TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1286 
1287   /* Select the Input and set the filter and the prescaler value */
1288   MODIFY_REG(TIMx->CCMR1,
1289              (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1290              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1291 
1292   /* Select the Polarity and set the CC2E Bit */
1293   MODIFY_REG(TIMx->CCER,
1294              (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1295              ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1296 
1297   return SUCCESS;
1298 }
1299 
1300 /**
1301   * @brief  Configure the TIMx input channel 3.
1302   * @param  TIMx Timer Instance
1303   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1304   * @retval An ErrorStatus enumeration value:
1305   *          - SUCCESS: TIMx registers are de-initialized
1306   *          - ERROR: not applicable
1307   */
IC3Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1308 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1309 {
1310   /* Check the parameters */
1311   assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1312   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1313   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1314   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1315   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1316 
1317   /* Disable the Channel 3: Reset the CC3E Bit */
1318   TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1319 
1320   /* Select the Input and set the filter and the prescaler value */
1321   MODIFY_REG(TIMx->CCMR2,
1322              (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1323              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1324 
1325   /* Select the Polarity and set the CC3E Bit */
1326   MODIFY_REG(TIMx->CCER,
1327              (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1328              ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1329 
1330   return SUCCESS;
1331 }
1332 
1333 /**
1334   * @brief  Configure the TIMx input channel 4.
1335   * @param  TIMx Timer Instance
1336   * @param  TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1337   * @retval An ErrorStatus enumeration value:
1338   *          - SUCCESS: TIMx registers are de-initialized
1339   *          - ERROR: not applicable
1340   */
IC4Config(TIM_TypeDef * TIMx,const LL_TIM_IC_InitTypeDef * TIM_ICInitStruct)1341 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, const LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1342 {
1343   /* Check the parameters */
1344   assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1345   assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1346   assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1347   assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1348   assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1349 
1350   /* Disable the Channel 4: Reset the CC4E Bit */
1351   TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1352 
1353   /* Select the Input and set the filter and the prescaler value */
1354   MODIFY_REG(TIMx->CCMR2,
1355              (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1356              (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1357 
1358   /* Select the Polarity and set the CC4E Bit */
1359   MODIFY_REG(TIMx->CCER,
1360              (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1361              ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1362 
1363   return SUCCESS;
1364 }
1365 
1366 
1367 /**
1368   * @}
1369   */
1370 
1371 /**
1372   * @}
1373   */
1374 
1375 #endif /* TIM1 || TIM2 || TIM3 || TIM4 || TIM5 || TIM6 || TIM7 || TIM8 || TIM15 || TIM16 || TIM17 || TIM20 */
1376 
1377 /**
1378   * @}
1379   */
1380 
1381 #endif /* USE_FULL_LL_DRIVER */
1382 
1383