1 /**
2   ******************************************************************************
3   * @file    stm32l4xx_hal_rtc.c
4   * @author  MCD Application Team
5   * @brief   RTC HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Real-Time Clock (RTC) peripheral:
8   *           + Initialization/de-initialization functions
9   *           + Calendar (Time and Date) configuration
10   *           + Alarms (Alarm A and Alarm B) configuration
11   *           + WakeUp Timer configuration
12   *           + TimeStamp configuration
13   *           + Tampers configuration
14   *           + Backup Data Registers configuration
15   *           + RTC Tamper and TimeStamp Pins Selection
16   *           + Interrupts and flags management
17   *
18   ******************************************************************************
19   * @attention
20   *
21   * Copyright (c) 2017 STMicroelectronics.
22   * All rights reserved.
23   *
24   * This software is licensed under terms that can be found in the LICENSE file
25   * in the root directory of this software component.
26   * If no LICENSE file comes with this software, it is provided AS-IS.
27   *
28   ******************************************************************************
29   @verbatim
30  ===============================================================================
31                           ##### RTC Operating Condition #####
32  ===============================================================================
33   [..] The real-time clock (RTC) and the RTC backup registers can be powered
34        from the VBAT voltage when the main VDD supply is powered off.
35        To retain the content of the RTC backup registers and supply the RTC
36        when VDD is turned off, VBAT pin can be connected to an optional
37        standby voltage supplied by a battery or by another source.
38 
39                    ##### Backup Domain Reset #####
40  ===============================================================================
41   [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
42        to their reset values.
43        A backup domain reset is generated when one of the following events occurs:
44     (#) Software reset, triggered by setting the BDRST bit in the
45         RCC Backup domain control register (RCC_BDCR).
46     (#) VDD or VBAT power on, if both supplies have previously been powered off.
47     (#) Tamper detection event resets all data backup registers.
48 
49                    ##### Backup Domain Access #####
50   ==================================================================
51   [..] After reset, the backup domain (RTC registers and RTC backup data registers)
52        is protected against possible unwanted write accesses.
53   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
54     (+) Enable the Power Controller (PWR) APB1 interface clock using the
55         __HAL_RCC_PWR_CLK_ENABLE() function.
56     (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
57     (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
58     (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
59 
60   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
61     (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
62         PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
63     (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
64 
65                   ##### How to use RTC Driver #####
66  ===================================================================
67   [..]
68     (+) Enable the RTC domain access (see description in the section above).
69     (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
70         format using the HAL_RTC_Init() function.
71 
72   *** Time and Date configuration ***
73   ===================================
74   [..]
75     (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
76         and HAL_RTC_SetDate() functions.
77     (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
78 
79   *** Alarm configuration ***
80   ===========================
81   [..]
82     (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
83             You can also configure the RTC Alarm with interrupt mode using the
84             HAL_RTC_SetAlarm_IT() function.
85     (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
86 
87                   ##### RTC and low power modes #####
88   ==================================================================
89   [..] The MCU can be woken up from a low power mode by an RTC alternate
90        function.
91   [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
92        RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
93        These RTC alternate functions can wake up the system from the Stop and
94        Standby low power modes.
95   [..] The system can also wake up from low power modes without depending
96        on an external interrupt (Auto-wakeup mode), by using the RTC alarm
97        or the RTC wakeup events.
98   [..] The RTC provides a programmable time base for waking up from the
99        Stop or Standby mode at regular intervals.
100        Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
101        is LSE or LSI.
102 
103   *** Callback registration ***
104   =============================================
105 
106   [..]
107   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
108   not defined, the callback registration feature is not available and all callbacks
109   are set to the corresponding weak functions. This is the recommended configuration
110   in order to optimize memory/code consumption footprint/performances.
111 
112   [..]
113   The compilation define  USE_RTC_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115   Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
116 
117   [..]
118   Function HAL_RTC_RegisterCallback() allows to register following callbacks:
119     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
120     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
121     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
122     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
123 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
124     (+) SSRUEventCallback            : RTC SSRU Event callback.
125 #endif
126     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
127     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
128     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
129     (+) MspInitCallback              : RTC MspInit callback.
130     (+) MspDeInitCallback            : RTC MspDeInit callback.
131   This function takes as parameters the HAL peripheral handle, the Callback ID
132   and a pointer to the user callback function.
133 
134   [..]
135   Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
136   weak function.
137   HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
138   and the Callback ID.
139   This function allows to reset following callbacks:
140     (+) AlarmAEventCallback          : RTC Alarm A Event callback.
141     (+) AlarmBEventCallback          : RTC Alarm B Event callback.
142     (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
143     (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
144 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
145     (+) SSRUEventCallback            : RTC SSRU Event callback.
146 #endif
147     (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
148     (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
149     (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
150     (+) MspInitCallback              : RTC MspInit callback.
151     (+) MspDeInitCallback            : RTC MspDeInit callback.
152 
153   [..]
154   By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
155   all callbacks are set to the corresponding weak functions :
156   examples AlarmAEventCallback(), TimeStampEventCallback().
157   Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
158   in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
159   (not registered beforehand).
160   If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
161   keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
162 
163   [..]
164   Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
165   Exception done MspInit/MspDeInit that can be registered/unregistered
166   in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
167   thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
168   In that case first register the MspInit/MspDeInit user callbacks
169   using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
170   or HAL_RTC_Init() function.
171 
172   [..]
173   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
174   not defined, the callback registration feature is not available and all callbacks
175   are set to the corresponding weak functions.
176 
177   @endverbatim
178   ******************************************************************************
179   */
180 
181 /* Includes ------------------------------------------------------------------*/
182 #include "stm32l4xx_hal.h"
183 
184 /** @addtogroup STM32L4xx_HAL_Driver
185   * @{
186   */
187 
188 
189 /** @addtogroup RTC
190   * @brief RTC HAL module driver
191   * @{
192   */
193 
194 #ifdef HAL_RTC_MODULE_ENABLED
195 
196 /* Private typedef -----------------------------------------------------------*/
197 /* Private define ------------------------------------------------------------*/
198 /* Private macro -------------------------------------------------------------*/
199 /* Private variables ---------------------------------------------------------*/
200 /* Private function prototypes -----------------------------------------------*/
201 /* Exported functions --------------------------------------------------------*/
202 
203 /** @addtogroup RTC_Exported_Functions
204   * @{
205   */
206 
207 /** @addtogroup RTC_Exported_Functions_Group1
208  *  @brief    Initialization and Configuration functions
209  *
210 @verbatim
211  ===============================================================================
212               ##### Initialization and de-initialization functions #####
213  ===============================================================================
214    [..] This section provides functions allowing to initialize and configure the
215          RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
216          RTC registers Write protection, enter and exit the RTC initialization mode,
217          RTC registers synchronization check and reference clock detection enable.
218          (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
219              It is split into 2 programmable prescalers to minimize power consumption.
220              (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
221              (++) When both prescalers are used, it is recommended to configure the
222                  asynchronous prescaler to a high value to minimize power consumption.
223          (#) All RTC registers are Write protected. Writing to the RTC registers
224              is enabled by writing a key into the Write Protection register, RTC_WPR.
225          (#) To configure the RTC Calendar, user application should enter
226              initialization mode. In this mode, the calendar counter is stopped
227              and its value can be updated. When the initialization sequence is
228              complete, the calendar restarts counting after 4 RTCCLK cycles.
229          (#) To read the calendar through the shadow registers after Calendar
230              initialization, calendar update or after wakeup from low power modes
231              the software must first clear the RSF flag. The software must then
232              wait until it is set again before reading the calendar, which means
233              that the calendar registers have been correctly copied into the
234              RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
235              implements the above software sequence (RSF clear and RSF check).
236 
237 @endverbatim
238   * @{
239   */
240 
241 /**
242   * @brief  Initialize the RTC peripheral
243   * @param  hrtc RTC handle
244   * @retval HAL status
245   */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)246 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
247 {
248   HAL_StatusTypeDef status = HAL_ERROR;
249 
250   /* Check the RTC peripheral state */
251   if (hrtc != NULL)
252   {
253     /* Check the parameters */
254     assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
255     assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
256     assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
257     assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
258     assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
259     assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
260     assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
261     assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
262 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
263     assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
264 #endif
265 
266 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
267     assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
268     assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
269 #endif
270 
271 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
272     if (hrtc->State == HAL_RTC_STATE_RESET)
273     {
274       /* Allocate lock resource and initialize it */
275       hrtc->Lock = HAL_UNLOCKED;
276       hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;             /* Legacy weak AlarmAEventCallback      */
277       hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;           /* Legacy weak AlarmBEventCallback      */
278       hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;        /* Legacy weak TimeStampEventCallback   */
279       hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback;      /* Legacy weak WakeUpTimerEventCallback */
280 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
281       hrtc->SSRUEventCallback            =  HAL_RTCEx_SSRUEventCallback;             /* Legacy weak SSRUEventCallback */
282 #endif
283 
284 #if defined(RTC_TAMPER1_SUPPORT)
285       hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;          /* Legacy weak Tamper1EventCallback     */
286 #endif /* RTC_TAMPER1_SUPPORT */
287       hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;          /* Legacy weak Tamper2EventCallback     */
288 #if defined(RTC_TAMPER3_SUPPORT)
289       hrtc->Tamper3EventCallback         =  HAL_RTCEx_Tamper3EventCallback;          /* Legacy weak Tamper3EventCallback     */
290 #endif /* RTC_TAMPER3_SUPPORT */
291 
292       if (hrtc->MspInitCallback == NULL)
293       {
294         hrtc->MspInitCallback = HAL_RTC_MspInit;
295       }
296       /* Init the low level hardware */
297       hrtc->MspInitCallback(hrtc);
298 
299       if (hrtc->MspDeInitCallback == NULL)
300       {
301         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
302       }
303     }
304 #else /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
305     if (hrtc->State == HAL_RTC_STATE_RESET)
306     {
307       /* Allocate lock resource and initialize it */
308       hrtc->Lock = HAL_UNLOCKED;
309 
310       /* Initialize RTC MSP */
311       HAL_RTC_MspInit(hrtc);
312     }
313 #endif /* #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
314 
315 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
316     /* Process TAMP ip offset from RTC one */
317     hrtc->TampOffset = (TAMP_BASE - RTC_BASE);
318 #endif
319     /* Set RTC state */
320     hrtc->State = HAL_RTC_STATE_BUSY;
321 
322     /* Check whether the calendar needs to be initialized */
323     if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
324     {
325       /* Disable the write protection for RTC registers */
326       __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
327 
328       /* Enter Initialization mode */
329       status = RTC_EnterInitMode(hrtc);
330 
331       if (status == HAL_OK)
332       {
333 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
334         /* Clear RTC_CR FMT, OSEL, POL and TAMPOE Bits */
335         hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE);
336 #else
337         /* Clear RTC_CR FMT, OSEL and POL Bits */
338         hrtc->Instance->CR &= ~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL);
339 #endif
340         /* Set RTC_CR register */
341         hrtc->Instance->CR |= (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
342 
343         /* Configure the RTC PRER */
344         hrtc->Instance->PRER = (hrtc->Init.SynchPrediv);
345         hrtc->Instance->PRER |= (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos);
346 
347 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
348         /* Configure the Binary mode */
349         MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
350 #endif
351       }
352 
353       /* Exit Initialization mode */
354       status = RTC_ExitInitMode(hrtc);
355 
356       if (status == HAL_OK)
357       {
358 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
359         hrtc->Instance->CR &= ~(RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN);
360         hrtc->Instance->CR |= (hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
361 #else
362         hrtc->Instance->OR &= ~(RTC_OR_ALARMOUTTYPE | RTC_OR_OUT_RMP);
363         hrtc->Instance->OR |= (hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
364 #endif
365       }
366 
367       /* Enable the write protection for RTC registers */
368       __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
369     }
370     else
371     {
372       /* The calendar is already initialized */
373       status = HAL_OK;
374     }
375 
376     if (status == HAL_OK)
377     {
378         hrtc->State = HAL_RTC_STATE_READY;
379     }
380   }
381 
382   return status;
383 }
384 
385 /**
386   * @brief  DeInitialize the RTC peripheral.
387   * @note   This function does not reset the RTC Backup Data registers.
388   * @param  hrtc RTC handle
389   * @retval HAL status
390   */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)391 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
392 {
393   HAL_StatusTypeDef status = HAL_ERROR;
394 
395   /* Check the RTC peripheral state */
396   if (hrtc != NULL)
397   {
398     /* Check the parameters */
399     assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
400 
401     /* Set RTC state */
402     hrtc->State = HAL_RTC_STATE_BUSY;
403 
404     /* Disable the write protection for RTC registers */
405     __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
406 
407     /* Enter Initialization mode */
408     status = RTC_EnterInitMode(hrtc);
409 
410     if (status == HAL_OK)
411     {
412       /* Reset all RTC CR register bits */
413       hrtc->Instance->TR = 0x00000000U;
414       hrtc->Instance->DR = ((uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
415       hrtc->Instance->CR &= 0x00000000U;
416 
417       hrtc->Instance->WUTR = RTC_WUTR_WUT;
418       hrtc->Instance->PRER = ((uint32_t)(RTC_PRER_PREDIV_A | 0x000000FFU));
419       hrtc->Instance->ALRMAR = 0x00000000U;
420       hrtc->Instance->ALRMBR = 0x00000000U;
421       hrtc->Instance->SHIFTR = 0x00000000U;
422       hrtc->Instance->CALR = 0x00000000U;
423       hrtc->Instance->ALRMASSR = 0x00000000U;
424       hrtc->Instance->ALRMBSSR = 0x00000000U;
425 
426       /* Exit initialization mode */
427       status = RTC_ExitInitMode(hrtc);
428 
429 
430       if (status == HAL_OK)
431       {
432 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
433         /* Reset TAMP registers */
434         ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR1 = 0xFFFF0000U;
435         ((TAMP_TypeDef *)((uint32_t)hrtc->Instance + hrtc->TampOffset))->CR2 = 0x00000000U;
436 #else
437         /* Reset Tamper configuration register */
438         hrtc->Instance->TAMPCR = 0x00000000U;
439 
440         /* Reset Option register */
441         hrtc->Instance->OR = 0x00000000U;
442 #endif
443 
444         /* Enable the write protection for RTC registers */
445         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
446 
447 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
448         if (hrtc->MspDeInitCallback == NULL)
449         {
450           hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
451         }
452 
453         /* DeInit the low level hardware: CLOCK, NVIC.*/
454         hrtc->MspDeInitCallback(hrtc);
455 #else
456         /* De-Initialize RTC MSP */
457         HAL_RTC_MspDeInit(hrtc);
458 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
459 
460         hrtc->State = HAL_RTC_STATE_RESET;
461 
462         /* Release Lock */
463         __HAL_UNLOCK(hrtc);
464       }
465     }
466   }
467 
468   return status;
469 }
470 
471 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
472 /**
473   * @brief  Register a User RTC Callback
474   *         To be used instead of the weak predefined callback
475   * @param  hrtc RTC handle
476   * @param  CallbackID ID of the callback to be registered
477   *         This parameter can be one of the following values:
478   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
479   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
480   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
481   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
482   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
483   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
484   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
485   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
486   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
487   * @param  pCallback pointer to the Callback function
488   * @retval HAL status
489   */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)490 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
491 {
492   HAL_StatusTypeDef status = HAL_OK;
493 
494   if (pCallback == NULL)
495   {
496     return HAL_ERROR;
497   }
498 
499   /* Process locked */
500   __HAL_LOCK(hrtc);
501 
502   if (HAL_RTC_STATE_READY == hrtc->State)
503   {
504     switch (CallbackID)
505     {
506       case HAL_RTC_ALARM_A_EVENT_CB_ID :
507         hrtc->AlarmAEventCallback = pCallback;
508         break;
509 
510       case HAL_RTC_ALARM_B_EVENT_CB_ID :
511         hrtc->AlarmBEventCallback = pCallback;
512         break;
513 
514       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
515         hrtc->TimeStampEventCallback = pCallback;
516         break;
517 
518       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
519         hrtc->WakeUpTimerEventCallback = pCallback;
520         break;
521 
522 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
523       case HAL_RTC_SSRU_EVENT_CB_ID :
524         hrtc->SSRUEventCallback = pCallback;
525         break;
526 #endif
527 
528 #if defined(RTC_TAMPER1_SUPPORT)
529       case HAL_RTC_TAMPER1_EVENT_CB_ID :
530         hrtc->Tamper1EventCallback = pCallback;
531         break;
532 #endif /* RTC_TAMPER1_SUPPORT */
533 
534       case HAL_RTC_TAMPER2_EVENT_CB_ID :
535         hrtc->Tamper2EventCallback = pCallback;
536         break;
537 
538 #if defined(RTC_TAMPER3_SUPPORT)
539       case HAL_RTC_TAMPER3_EVENT_CB_ID :
540         hrtc->Tamper3EventCallback = pCallback;
541         break;
542 #endif /* RTC_TAMPER3_SUPPORT */
543 
544       case HAL_RTC_MSPINIT_CB_ID :
545         hrtc->MspInitCallback = pCallback;
546         break;
547 
548       case HAL_RTC_MSPDEINIT_CB_ID :
549         hrtc->MspDeInitCallback = pCallback;
550         break;
551 
552       default :
553         /* Return error status */
554         status =  HAL_ERROR;
555         break;
556     }
557   }
558   else if (HAL_RTC_STATE_RESET == hrtc->State)
559   {
560     switch (CallbackID)
561     {
562       case HAL_RTC_MSPINIT_CB_ID :
563         hrtc->MspInitCallback = pCallback;
564         break;
565 
566       case HAL_RTC_MSPDEINIT_CB_ID :
567         hrtc->MspDeInitCallback = pCallback;
568         break;
569 
570       default :
571         /* Return error status */
572         status =  HAL_ERROR;
573         break;
574     }
575   }
576   else
577   {
578     /* Return error status */
579     status =  HAL_ERROR;
580   }
581 
582   /* Release Lock */
583   __HAL_UNLOCK(hrtc);
584 
585   return status;
586 }
587 
588 /**
589   * @brief  Unregister an RTC Callback
590   *         RTC callback is redirected to the weak predefined callback
591   * @param  hrtc RTC handle
592   * @param  CallbackID ID of the callback to be unregistered
593   *         This parameter can be one of the following values:
594   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
595   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
596   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
597 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
598   *          @arg @ref HAL_RTC_SSRU_EVENT_CB_ID             SSRU Callback ID
599 #endif
600   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      WakeUp Timer Event Callback ID
601   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
602   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
603   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
604   *          @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
605   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
606   * @retval HAL status
607   */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)608 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
609 {
610   HAL_StatusTypeDef status = HAL_OK;
611 
612   /* Process locked */
613   __HAL_LOCK(hrtc);
614 
615   if (HAL_RTC_STATE_READY == hrtc->State)
616   {
617     switch (CallbackID)
618     {
619       case HAL_RTC_ALARM_A_EVENT_CB_ID :
620         hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;         /* Legacy weak AlarmAEventCallback    */
621         break;
622 
623       case HAL_RTC_ALARM_B_EVENT_CB_ID :
624         hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;          /* Legacy weak AlarmBEventCallback */
625         break;
626 
627       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
628         hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;    /* Legacy weak TimeStampEventCallback    */
629         break;
630 
631       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
632         hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
633         break;
634 
635 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
636       case HAL_RTC_SSRU_EVENT_CB_ID :
637         hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;               /* Legacy weak SSRUEventCallback */
638         break;
639 #endif
640 
641 #if defined(RTC_TAMPER1_SUPPORT)
642       case HAL_RTC_TAMPER1_EVENT_CB_ID :
643         hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
644         break;
645 #endif /* RTC_TAMPER1_SUPPORT */
646 
647       case HAL_RTC_TAMPER2_EVENT_CB_ID :
648         hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
649         break;
650 
651 #if defined(RTC_TAMPER3_SUPPORT)
652       case HAL_RTC_TAMPER3_EVENT_CB_ID :
653         hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;         /* Legacy weak Tamper3EventCallback         */
654         break;
655 #endif /* RTC_TAMPER3_SUPPORT */
656 
657       case HAL_RTC_MSPINIT_CB_ID :
658         hrtc->MspInitCallback = HAL_RTC_MspInit;
659         break;
660 
661       case HAL_RTC_MSPDEINIT_CB_ID :
662         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
663         break;
664 
665       default :
666         /* Return error status */
667         status =  HAL_ERROR;
668         break;
669     }
670   }
671   else if (HAL_RTC_STATE_RESET == hrtc->State)
672   {
673     switch (CallbackID)
674     {
675       case HAL_RTC_MSPINIT_CB_ID :
676         hrtc->MspInitCallback = HAL_RTC_MspInit;
677         break;
678 
679       case HAL_RTC_MSPDEINIT_CB_ID :
680         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
681         break;
682 
683       default :
684         /* Return error status */
685         status =  HAL_ERROR;
686         break;
687     }
688   }
689   else
690   {
691     /* Return error status */
692     status =  HAL_ERROR;
693   }
694 
695   /* Release Lock */
696   __HAL_UNLOCK(hrtc);
697 
698   return status;
699 }
700 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
701 
702 /**
703   * @brief  Initialize the RTC MSP.
704   * @param  hrtc RTC handle
705   * @retval None
706   */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)707 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
708 {
709   /* Prevent unused argument(s) compilation warning */
710   UNUSED(hrtc);
711 
712   /* NOTE : This function should not be modified, when the callback is needed,
713             the HAL_RTC_MspInit could be implemented in the user file
714    */
715 }
716 
717 /**
718   * @brief  DeInitialize the RTC MSP.
719   * @param  hrtc RTC handle
720   * @retval None
721   */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)722 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
723 {
724   /* Prevent unused argument(s) compilation warning */
725   UNUSED(hrtc);
726 
727   /* NOTE : This function should not be modified, when the callback is needed,
728             the HAL_RTC_MspDeInit could be implemented in the user file
729    */
730 }
731 
732 /**
733   * @}
734   */
735 
736 /** @addtogroup RTC_Exported_Functions_Group2
737  *  @brief   RTC Time and Date functions
738  *
739 @verbatim
740  ===============================================================================
741                  ##### RTC Time and Date functions #####
742  ===============================================================================
743 
744  [..] This section provides functions allowing to configure Time and Date features
745 
746 @endverbatim
747   * @{
748   */
749 
750 #if defined (STM32L4P5xx) || defined (STM32L4Q5xx)
751 /**
752   * @brief  Set RTC current time.
753   * @param  hrtc RTC handle
754   * @param  sTime Pointer to Time structure
755   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically reset to 0xFFFFFFFF
756              else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to the A 7-bit async prescaler (RTC_PRER_PREDIV_A)
757   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
758   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
759   *          else this parameter can be one of the following values
760   *             @arg RTC_FORMAT_BIN: Binary format
761   *             @arg RTC_FORMAT_BCD: BCD format
762   * @retval HAL status
763   */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)764 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
765 {
766   uint32_t tmpreg;
767   HAL_StatusTypeDef status;
768 
769 #ifdef USE_FULL_ASSERT
770   /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration. */
771   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
772   {
773     /* Check the parameters */
774     assert_param(IS_RTC_FORMAT(Format));
775     assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
776     assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
777   }
778 #endif
779 
780   /* Process Locked */
781   __HAL_LOCK(hrtc);
782 
783   hrtc->State = HAL_RTC_STATE_BUSY;
784 
785   /* Disable the write protection for RTC registers */
786   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
787 
788   /* Enter Initialization mode */
789   status = RTC_EnterInitMode(hrtc);
790   if (status == HAL_OK)
791   {
792     /* Check Binary mode ((32-bit free-running counter) */
793     if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
794     {
795       if (Format == RTC_FORMAT_BIN)
796       {
797         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
798         {
799           assert_param(IS_RTC_HOUR12(sTime->Hours));
800           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
801         }
802         else
803         {
804           sTime->TimeFormat = 0x00U;
805           assert_param(IS_RTC_HOUR24(sTime->Hours));
806         }
807         assert_param(IS_RTC_MINUTES(sTime->Minutes));
808         assert_param(IS_RTC_SECONDS(sTime->Seconds));
809 
810         tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
811                             ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
812                             ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
813                             (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
814 
815       }
816       else
817       {
818         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
819         {
820           assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
821           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
822         }
823         else
824         {
825           sTime->TimeFormat = 0x00U;
826           assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
827         }
828         assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
829         assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
830         tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
831                   ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
832                   ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
833                   ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
834       }
835 
836       /* Set the RTC_TR register */
837       WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
838 
839       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
840       CLEAR_BIT(RTC->CR, RTC_CR_BKP);
841 
842       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
843       SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation));
844     }
845   }
846 
847   /* Exit Initialization mode */
848   status = RTC_ExitInitMode(hrtc);
849 
850 
851   /* Enable the write protection for RTC registers */
852   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
853 
854   if (status == HAL_OK)
855   {
856     hrtc->State = HAL_RTC_STATE_READY;
857   }
858 
859   /* Process Unlocked */
860   __HAL_UNLOCK(hrtc);
861 
862   return status;
863 }
864 
865 /**
866   * @brief  Get RTC current time.
867   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
868   *        value in second fraction ratio with time unit following generic formula:
869   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
870   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
871   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
872   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
873   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
874   *        to ensure consistency between the time and date values.
875   * @param  hrtc RTC handle
876   * @param  sTime
877   *          if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
878   *          else
879   *             Pointer to Time structure with Hours, Minutes and Seconds fields returned
880 *               with input format (BIN or BCD), also SubSeconds field returning the
881 *               RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
882 *               factor to be used for second fraction ratio computation.
883   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
884   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
885   *          else this parameter can be one of the following values:
886   *            @arg RTC_FORMAT_BIN: Binary format
887   *            @arg RTC_FORMAT_BCD: BCD format
888   * @retval HAL status
889   */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)890 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
891 {
892   uint32_t tmpreg;
893 
894   UNUSED(hrtc);
895   /* Get subseconds structure field from the corresponding register*/
896   sTime->SubSeconds = READ_REG(RTC->SSR);
897 
898   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
899   {
900     /* Check the parameters */
901     assert_param(IS_RTC_FORMAT(Format));
902 
903     /* Get SecondFraction structure field from the corresponding register field*/
904     sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
905 
906     /* Get the TR register */
907     tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
908 
909     /* Fill the structure fields with the read parameters */
910     sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
911     sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
912     sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
913     sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
914 
915     /* Check the input parameters format */
916     if (Format == RTC_FORMAT_BIN)
917     {
918       /* Convert the time structure parameters to Binary format */
919       sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
920       sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
921       sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
922     }
923   }
924 
925   return HAL_OK;
926 }
927 
928 /**
929   * @brief  Set RTC current date.
930   * @param  hrtc RTC handle
931   * @param  sDate Pointer to date structure
932   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
933   *          This parameter can be one of the following values:
934   *            @arg RTC_FORMAT_BIN: Binary format
935   *            @arg RTC_FORMAT_BCD: BCD format
936   * @retval HAL status
937   */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)938 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
939 {
940   uint32_t datetmpreg;
941   HAL_StatusTypeDef status;
942 
943   /* Check the parameters */
944   assert_param(IS_RTC_FORMAT(Format));
945 
946   /* Process Locked */
947   __HAL_LOCK(hrtc);
948 
949   hrtc->State = HAL_RTC_STATE_BUSY;
950 
951   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
952   {
953     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
954   }
955 
956   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
957 
958   if (Format == RTC_FORMAT_BIN)
959   {
960     assert_param(IS_RTC_YEAR(sDate->Year));
961     assert_param(IS_RTC_MONTH(sDate->Month));
962     assert_param(IS_RTC_DATE(sDate->Date));
963 
964     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
965                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
966                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
967                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
968   }
969   else
970   {
971     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
972     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
973     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
974 
975     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
976                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
977                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
978                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
979   }
980 
981   /* Disable the write protection for RTC registers */
982   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
983 
984   /* Enter Initialization mode */
985   status = RTC_EnterInitMode(hrtc);
986   if (status == HAL_OK)
987   {
988     /* Set the RTC_DR register */
989     WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
990 
991     /* Exit Initialization mode */
992     status = RTC_ExitInitMode(hrtc);
993   }
994 
995   /* Enable the write protection for RTC registers */
996   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
997 
998   if (status == HAL_OK)
999   {
1000     hrtc->State = HAL_RTC_STATE_READY ;
1001   }
1002 
1003   /* Process Unlocked */
1004   __HAL_UNLOCK(hrtc);
1005 
1006   return status;
1007 }
1008 
1009 /**
1010   * @brief  Get RTC current date.
1011   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1012   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1013   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
1014   * @param  hrtc RTC handle
1015   * @param  sDate Pointer to Date structure
1016   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1017   *          This parameter can be one of the following values:
1018   *            @arg RTC_FORMAT_BIN: Binary format
1019   *            @arg RTC_FORMAT_BCD: BCD format
1020   * @retval HAL status
1021   */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1022 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1023 {
1024   uint32_t datetmpreg;
1025 
1026   UNUSED(hrtc);
1027   /* Check the parameters */
1028   assert_param(IS_RTC_FORMAT(Format));
1029 
1030   /* Get the DR register */
1031   datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
1032 
1033   /* Fill the structure fields with the read parameters */
1034   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1035   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1036   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1037   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1038 
1039   /* Check the input parameters format */
1040   if (Format == RTC_FORMAT_BIN)
1041   {
1042     /* Convert the date structure parameters to Binary format */
1043     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1044     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1045     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1046   }
1047   return HAL_OK;
1048 }
1049 
1050 /**
1051   * @}
1052   */
1053 
1054 /** @addtogroup RTC_Exported_Functions_Group3
1055  *  @brief   RTC Alarm functions
1056  *
1057 @verbatim
1058  ===============================================================================
1059                  ##### RTC Alarm functions #####
1060  ===============================================================================
1061 
1062  [..] This section provides functions allowing to configure Alarm feature
1063 
1064 @endverbatim
1065   * @{
1066   */
1067 /**
1068   * @brief  Set the specified RTC Alarm.
1069   * @param  hrtc RTC handle
1070   * @param  sAlarm Pointer to Alarm structure
1071   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1072   *             sAlarm->AlarmTime.SubSeconds
1073   *             sAlarm->AlarmSubSecondMask
1074   *             sAlarm->BinaryAutoClr
1075   * @param  Format of the entered parameters.
1076   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1077   *          else this parameter can be one of the following values
1078   *             @arg RTC_FORMAT_BIN: Binary format
1079   *             @arg RTC_FORMAT_BCD: BCD format
1080   * @retval HAL status
1081   */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1082 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1083 {
1084   uint32_t tmpreg = 0, binaryMode;
1085 
1086   __HAL_LOCK(hrtc);
1087   hrtc->State = HAL_RTC_STATE_BUSY;
1088 
1089 #ifdef  USE_FULL_ASSERT
1090   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
1091   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1092   {
1093     assert_param(IS_RTC_FORMAT(Format));
1094     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1095     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1096     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1097     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1098     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1099   }
1100   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1101   {
1102     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1103     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1104   }
1105   else /* RTC_BINARY_MIX */
1106   {
1107     assert_param(IS_RTC_FORMAT(Format));
1108     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1109     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1110     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1111     /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
1112     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1113   }
1114 #endif
1115 
1116   /* Get Binary mode (32-bit free-running counter configuration) */
1117   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1118 
1119   if (binaryMode != RTC_BINARY_ONLY)
1120   {
1121     if (Format == RTC_FORMAT_BIN)
1122     {
1123       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1124       {
1125         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1126         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1127       }
1128       else
1129       {
1130         sAlarm->AlarmTime.TimeFormat = 0x00U;
1131         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1132       }
1133       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1134       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1135 
1136       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1137       {
1138         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1139       }
1140       else
1141       {
1142         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1143       }
1144       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1145                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1146                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1147                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1148                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1149                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1150                 ((uint32_t)sAlarm->AlarmMask));
1151     }
1152     else /* format BCD */
1153     {
1154       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1155       {
1156         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1157         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1158       }
1159       else
1160       {
1161         sAlarm->AlarmTime.TimeFormat = 0x00U;
1162         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1163       }
1164 
1165       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1166       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1167 
1168 #ifdef  USE_FULL_ASSERT
1169       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1170       {
1171         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1172       }
1173       else
1174       {
1175         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1176       }
1177 
1178 #endif /* USE_FULL_ASSERT */
1179       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1180                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1181                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1182                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1183                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1184                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1185                 ((uint32_t)sAlarm->AlarmMask));
1186     }
1187   }
1188 
1189   /* Disable the write protection for RTC registers */
1190   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1191 
1192   /* Configure the Alarm register */
1193   if (sAlarm->Alarm == RTC_ALARM_A)
1194   {
1195     /* Disable the Alarm A interrupt */
1196     /* In case of interrupt mode is used, the interrupt source must disabled */
1197     CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
1198 
1199     /* Clear flag alarm A */
1200     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1201 
1202     if (binaryMode == RTC_BINARY_ONLY)
1203     {
1204       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1205     }
1206     else
1207     {
1208       WRITE_REG(RTC->ALRMAR, tmpreg);
1209       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1210     }
1211 
1212     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1213 
1214     /* Configure the Alarm state: Enable Alarm */
1215     SET_BIT(RTC->CR, RTC_CR_ALRAE);
1216   }
1217   else
1218   {
1219     /* Disable the Alarm B interrupt */
1220     /* In case of interrupt mode is used, the interrupt source must disabled */
1221     CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
1222 
1223     /* Clear flag alarm B */
1224     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1225 
1226     if (binaryMode == RTC_BINARY_ONLY)
1227     {
1228       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1229     }
1230     else
1231     {
1232       WRITE_REG(RTC->ALRMBR, tmpreg);
1233       WRITE_REG(RTC->ALRMBSSR,  sAlarm->AlarmSubSecondMask);
1234     }
1235 
1236     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1237 
1238     /* Configure the Alarm state: Enable Alarm */
1239     SET_BIT(RTC->CR, RTC_CR_ALRBE);
1240   }
1241 
1242   /* Enable the write protection for RTC registers */
1243   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1244 
1245   /* Change RTC state */
1246   hrtc->State = HAL_RTC_STATE_READY;
1247 
1248   /* Process Unlocked */
1249   __HAL_UNLOCK(hrtc);
1250 
1251   return HAL_OK;
1252 }
1253 
1254 /**
1255   * @brief  Set the specified RTC Alarm with Interrupt.
1256   * @param  hrtc RTC handle
1257   * @param  sAlarm Pointer to Alarm structure
1258   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1259   *             sAlarm->AlarmTime.SubSeconds
1260   *             sAlarm->AlarmSubSecondMask
1261   *             sAlarm->BinaryAutoClr
1262   * @param  Format Specifies the format of the entered parameters.
1263   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1264   *          else this parameter can be one of the following values
1265   *             @arg RTC_FORMAT_BIN: Binary format
1266   *             @arg RTC_FORMAT_BCD: BCD format
1267   * @retval HAL status
1268   */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1269 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1270 {
1271   uint32_t tmpreg = 0, binaryMode;
1272 
1273   /* Process Locked */
1274   __HAL_LOCK(hrtc);
1275   hrtc->State = HAL_RTC_STATE_BUSY;
1276 
1277 #ifdef  USE_FULL_ASSERT
1278   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
1279   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1280   {
1281     assert_param(IS_RTC_FORMAT(Format));
1282     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1283     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1284     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1285     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1286     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1287   }
1288   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1289   {
1290     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1291     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1292   }
1293   else /* RTC_BINARY_MIX */
1294   {
1295     assert_param(IS_RTC_FORMAT(Format));
1296     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1297     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1298     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1299     /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items + the upper SSR bits */
1300     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1301   }
1302 #endif
1303 
1304   /* Get Binary mode (32-bit free-running counter configuration) */
1305   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1306 
1307   if (binaryMode != RTC_BINARY_ONLY)
1308   {
1309     if (Format == RTC_FORMAT_BIN)
1310     {
1311       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1312       {
1313         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1314         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1315       }
1316       else
1317       {
1318         sAlarm->AlarmTime.TimeFormat = 0x00U;
1319         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1320       }
1321       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1322       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1323 
1324       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1325       {
1326         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1327       }
1328       else
1329       {
1330         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1331       }
1332       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1333                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1334                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1335                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1336                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1337                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1338                 ((uint32_t)sAlarm->AlarmMask));
1339     }
1340     else /* Format BCD */
1341     {
1342       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1343       {
1344         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1345         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1346       }
1347       else
1348       {
1349         sAlarm->AlarmTime.TimeFormat = 0x00U;
1350         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1351       }
1352 
1353       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1354       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1355 
1356 #ifdef  USE_FULL_ASSERT
1357       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1358       {
1359         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1360       }
1361       else
1362       {
1363         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1364       }
1365 
1366 #endif /* USE_FULL_ASSERT */
1367       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1368                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1369                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1370                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1371                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1372                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1373                 ((uint32_t)sAlarm->AlarmMask));
1374 
1375     }
1376   }
1377 
1378   /* Disable the write protection for RTC registers */
1379   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1380 
1381   /* Configure the Alarm register */
1382   if (sAlarm->Alarm == RTC_ALARM_A)
1383   {
1384     /* Disable the Alarm A interrupt */
1385     CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1386     /* Clear flag alarm A */
1387     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1388 
1389     if (binaryMode == RTC_BINARY_ONLY)
1390     {
1391       RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
1392     }
1393     else
1394     {
1395       WRITE_REG(RTC->ALRMAR, tmpreg);
1396       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1397     }
1398 
1399     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1400 
1401     /* Configure the Alarm interrupt */
1402     SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1403   }
1404   else
1405   {
1406     /* Disable the Alarm B interrupt */
1407     CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1408     /* Clear flag alarm B */
1409     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1410 
1411     if (binaryMode == RTC_BINARY_ONLY)
1412     {
1413       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1414     }
1415     else
1416     {
1417       WRITE_REG(RTC->ALRMBR, tmpreg);
1418       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
1419     }
1420 
1421     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1422 
1423     /* Configure the Alarm interrupt */
1424     SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1425   }
1426 
1427   /* RTC Alarm Interrupt Configuration: EXTI configuration */
1428   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1429   __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
1430 
1431   /* Enable the write protection for RTC registers */
1432   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1433 
1434   hrtc->State = HAL_RTC_STATE_READY;
1435 
1436   /* Process Unlocked */
1437   __HAL_UNLOCK(hrtc);
1438 
1439   return HAL_OK;
1440 }
1441 
1442 #else /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
1443 
1444 /**
1445   * @brief  Set RTC current time.
1446   * @param  hrtc RTC handle
1447   * @param  sTime Pointer to Time structure
1448   * @param  Format Specifies the format of the entered parameters.
1449   *          This parameter can be one of the following values:
1450   *            @arg RTC_FORMAT_BIN: Binary data format
1451   *            @arg RTC_FORMAT_BCD: BCD data format
1452   * @retval HAL status
1453   */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1454 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1455 {
1456   uint32_t tmpreg;
1457   HAL_StatusTypeDef status;
1458 
1459   /* Check the parameters */
1460   assert_param(IS_RTC_FORMAT(Format));
1461   assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
1462   assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
1463 
1464   /* Process Locked */
1465   __HAL_LOCK(hrtc);
1466 
1467   hrtc->State = HAL_RTC_STATE_BUSY;
1468 
1469   /* Disable the write protection for RTC registers */
1470   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1471 
1472   /* Enter Initialization mode */
1473   status = RTC_EnterInitMode(hrtc);
1474   if (status == HAL_OK)
1475   {
1476     if (Format == RTC_FORMAT_BIN)
1477     {
1478       if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1479       {
1480         assert_param(IS_RTC_HOUR12(sTime->Hours));
1481         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1482       }
1483       else
1484       {
1485         sTime->TimeFormat = 0x00U;
1486         assert_param(IS_RTC_HOUR24(sTime->Hours));
1487       }
1488       assert_param(IS_RTC_MINUTES(sTime->Minutes));
1489       assert_param(IS_RTC_SECONDS(sTime->Seconds));
1490 
1491       tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
1492                           ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1493                           ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
1494                           (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
1495     }
1496     else
1497     {
1498       if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1499       {
1500         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
1501         assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1502       }
1503       else
1504       {
1505         sTime->TimeFormat = 0x00U;
1506         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
1507       }
1508       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
1509       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
1510       tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
1511                 ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1512                 ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
1513                 ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
1514     }
1515 
1516     /* Set the RTC_TR register */
1517     hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
1518 
1519     /* Clear the bits to be configured */
1520     hrtc->Instance->CR &= ((uint32_t)~RTC_CR_BKP);
1521 
1522     /* Configure the RTC_CR register */
1523     hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
1524 
1525     /* Exit Initialization mode */
1526     status = RTC_ExitInitMode(hrtc);
1527   }
1528 
1529   /* Enable the write protection for RTC registers */
1530   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1531 
1532   if (status == HAL_OK)
1533   {
1534     hrtc->State = HAL_RTC_STATE_READY;
1535   }
1536 
1537   /* Process Unlocked */
1538   __HAL_UNLOCK(hrtc);
1539 
1540   return status;
1541 }
1542 
1543 /**
1544   * @brief  Get RTC current time.
1545   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
1546   *        value in second fraction ratio with time unit following generic formula:
1547   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
1548   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
1549   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1550   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1551   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
1552   *        to ensure consistency between the time and date values.
1553   * @param  hrtc RTC handle
1554   * @param  sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
1555   *                with input format (BIN or BCD), also SubSeconds field returning the
1556   *                RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
1557   *                factor to be used for second fraction ratio computation.
1558   * @param  Format Specifies the format of the entered parameters.
1559   *          This parameter can be one of the following values:
1560   *            @arg RTC_FORMAT_BIN: Binary data format
1561   *            @arg RTC_FORMAT_BCD: BCD data format
1562   * @retval HAL status
1563   */
HAL_RTC_GetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1564 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1565 {
1566   uint32_t tmpreg;
1567 
1568   /* Check the parameters */
1569   assert_param(IS_RTC_FORMAT(Format));
1570 
1571   /* Get subseconds structure field from the corresponding register*/
1572   sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
1573 
1574   /* Get SecondFraction structure field from the corresponding register field*/
1575   sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);
1576 
1577   /* Get the TR register */
1578   tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);
1579 
1580   /* Fill the structure fields with the read parameters */
1581   sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
1582   sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
1583   sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
1584   sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
1585 
1586   /* Check the input parameters format */
1587   if (Format == RTC_FORMAT_BIN)
1588   {
1589     /* Convert the time structure parameters to Binary format */
1590     sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
1591     sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
1592     sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
1593   }
1594 
1595   return HAL_OK;
1596 }
1597 
1598 /**
1599   * @brief  Set RTC current date.
1600   * @param  hrtc RTC handle
1601   * @param  sDate Pointer to date structure
1602   * @param  Format specifies the format of the entered parameters.
1603   *          This parameter can be one of the following values:
1604   *            @arg RTC_FORMAT_BIN: Binary data format
1605   *            @arg RTC_FORMAT_BCD: BCD data format
1606   * @retval HAL status
1607   */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1608 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1609 {
1610   uint32_t datetmpreg;
1611   HAL_StatusTypeDef status;
1612 
1613   /* Check the parameters */
1614   assert_param(IS_RTC_FORMAT(Format));
1615 
1616   /* Process Locked */
1617   __HAL_LOCK(hrtc);
1618 
1619   hrtc->State = HAL_RTC_STATE_BUSY;
1620 
1621   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
1622   {
1623     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
1624   }
1625 
1626   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
1627 
1628   if (Format == RTC_FORMAT_BIN)
1629   {
1630     assert_param(IS_RTC_YEAR(sDate->Year));
1631     assert_param(IS_RTC_MONTH(sDate->Month));
1632     assert_param(IS_RTC_DATE(sDate->Date));
1633 
1634     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
1635                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
1636                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
1637                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
1638   }
1639   else
1640   {
1641     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
1642     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
1643     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
1644 
1645     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
1646                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
1647                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
1648                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
1649   }
1650 
1651   /* Disable the write protection for RTC registers */
1652   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1653 
1654   /* Enter Initialization mode */
1655   status = RTC_EnterInitMode(hrtc);
1656   if (status == HAL_OK)
1657   {
1658     /* Set the RTC_DR register */
1659     hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
1660 
1661     /* Exit Initialization mode */
1662     status = RTC_ExitInitMode(hrtc);
1663   }
1664 
1665   /* Enable the write protection for RTC registers */
1666   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1667 
1668   if (status == HAL_OK)
1669   {
1670     hrtc->State = HAL_RTC_STATE_READY ;
1671   }
1672 
1673   /* Process Unlocked */
1674   __HAL_UNLOCK(hrtc);
1675 
1676   return status;
1677 }
1678 
1679 /**
1680   * @brief  Get RTC current date.
1681   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1682   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1683   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
1684   * @param  hrtc RTC handle
1685   * @param  sDate Pointer to Date structure
1686   * @param  Format Specifies the format of the entered parameters.
1687   *          This parameter can be one of the following values:
1688   *            @arg RTC_FORMAT_BIN:  Binary data format
1689   *            @arg RTC_FORMAT_BCD:  BCD data format
1690   * @retval HAL status
1691   */
HAL_RTC_GetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1692 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1693 {
1694   uint32_t datetmpreg;
1695 
1696   /* Check the parameters */
1697   assert_param(IS_RTC_FORMAT(Format));
1698 
1699   /* Get the DR register */
1700   datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
1701 
1702   /* Fill the structure fields with the read parameters */
1703   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1704   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1705   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1706   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1707 
1708   /* Check the input parameters format */
1709   if (Format == RTC_FORMAT_BIN)
1710   {
1711     /* Convert the date structure parameters to Binary format */
1712     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1713     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1714     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1715   }
1716   return HAL_OK;
1717 }
1718 
1719 /**
1720   * @}
1721   */
1722 
1723 /** @addtogroup RTC_Exported_Functions_Group3
1724  *  @brief   RTC Alarm functions
1725  *
1726 @verbatim
1727  ===============================================================================
1728                  ##### RTC Alarm functions #####
1729  ===============================================================================
1730 
1731  [..] This section provides functions allowing to configure Alarm feature
1732 
1733 @endverbatim
1734   * @{
1735   */
1736 /**
1737   * @brief  Set the specified RTC Alarm.
1738   * @param  hrtc RTC handle
1739   * @param  sAlarm Pointer to Alarm structure
1740   * @param  Format Specifies the format of the entered parameters.
1741   *          This parameter can be one of the following values:
1742   *             @arg RTC_FORMAT_BIN: Binary data format
1743   *             @arg RTC_FORMAT_BCD: BCD data format
1744   * @retval HAL status
1745   */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1746 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1747 {
1748   uint32_t tmpreg, subsecondtmpreg;
1749 
1750   /* Check the parameters */
1751   assert_param(IS_RTC_FORMAT(Format));
1752   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1753   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1754   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1755   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1756   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1757 
1758   /* Process Locked */
1759   __HAL_LOCK(hrtc);
1760 
1761   hrtc->State = HAL_RTC_STATE_BUSY;
1762 
1763   if (Format == RTC_FORMAT_BIN)
1764   {
1765     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1766     {
1767       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1768       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1769     }
1770     else
1771     {
1772       sAlarm->AlarmTime.TimeFormat = 0x00U;
1773       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1774     }
1775     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1776     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1777 
1778     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1779     {
1780       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1781     }
1782     else
1783     {
1784       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1785     }
1786     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1787               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1788               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1789               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1790               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1791               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1792               ((uint32_t)sAlarm->AlarmMask));
1793   }
1794   else
1795   {
1796     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1797     {
1798       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1799       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1800     }
1801     else
1802     {
1803       sAlarm->AlarmTime.TimeFormat = 0x00U;
1804       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1805     }
1806 
1807     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1808     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1809 
1810 #ifdef  USE_FULL_ASSERT
1811     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1812     {
1813       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1814     }
1815     else
1816     {
1817       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1818     }
1819 
1820 #endif /* USE_FULL_ASSERT */
1821     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1822               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1823               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1824               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1825               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1826               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1827               ((uint32_t)sAlarm->AlarmMask));
1828   }
1829 
1830   /* Configure the Alarm A or Alarm B Sub Second registers */
1831   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1832 
1833   /* Disable the write protection for RTC registers */
1834   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1835 
1836   /* Configure the Alarm register */
1837   if (sAlarm->Alarm == RTC_ALARM_A)
1838   {
1839     /* Disable the Alarm A interrupt */
1840     __HAL_RTC_ALARMA_DISABLE(hrtc);
1841     /* Clear flag alarm A */
1842     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1843     /* In case of interrupt mode is used, the interrupt source must disabled */
1844     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1845 
1846 #if defined (RTC_FLAG_ALRAWF)
1847     uint32_t tickstart = HAL_GetTick();
1848     /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
1849     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
1850     {
1851       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1852       {
1853         /* Enable the write protection for RTC registers */
1854         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1855 
1856         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1857 
1858         /* Process Unlocked */
1859         __HAL_UNLOCK(hrtc);
1860 
1861         return HAL_TIMEOUT;
1862       }
1863     }
1864 #endif
1865 
1866     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
1867     /* Configure the Alarm A Sub Second register */
1868     hrtc->Instance->ALRMASSR = subsecondtmpreg;
1869     /* Configure the Alarm state: Enable Alarm */
1870     __HAL_RTC_ALARMA_ENABLE(hrtc);
1871   }
1872   else
1873   {
1874     /* Disable the Alarm B interrupt */
1875     __HAL_RTC_ALARMB_DISABLE(hrtc);
1876     /* Clear flag alarm B */
1877     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
1878     /* In case of interrupt mode is used, the interrupt source must disabled */
1879     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
1880 
1881 #if defined (RTC_FLAG_ALRBWF)
1882     uint32_t tickstart = HAL_GetTick();
1883     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
1884     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
1885     {
1886       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1887       {
1888         /* Enable the write protection for RTC registers */
1889         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1890 
1891         hrtc->State = HAL_RTC_STATE_TIMEOUT;
1892 
1893         /* Process Unlocked */
1894         __HAL_UNLOCK(hrtc);
1895 
1896         return HAL_TIMEOUT;
1897       }
1898     }
1899 #endif
1900 
1901     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
1902     /* Configure the Alarm B Sub Second register */
1903     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
1904     /* Configure the Alarm state: Enable Alarm */
1905     __HAL_RTC_ALARMB_ENABLE(hrtc);
1906   }
1907 
1908   /* Enable the write protection for RTC registers */
1909   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1910 
1911   /* Change RTC state */
1912   hrtc->State = HAL_RTC_STATE_READY;
1913 
1914   /* Process Unlocked */
1915   __HAL_UNLOCK(hrtc);
1916 
1917   return HAL_OK;
1918 }
1919 
1920 /**
1921   * @brief  Set the specified RTC Alarm with Interrupt.
1922   * @note   The Alarm register can only be written when the corresponding Alarm
1923   *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
1924   * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1925   * @param  hrtc RTC handle
1926   * @param  sAlarm Pointer to Alarm structure
1927   * @param  Format Specifies the format of the entered parameters.
1928   *          This parameter can be one of the following values:
1929   *             @arg RTC_FORMAT_BIN: Binary data format
1930   *             @arg RTC_FORMAT_BCD: BCD data format
1931   * @retval HAL status
1932   */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1933 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1934 {
1935   uint32_t tmpreg, subsecondtmpreg;
1936 
1937   /* Check the parameters */
1938   assert_param(IS_RTC_FORMAT(Format));
1939   assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1940   assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1941   assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1942   assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1943   assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1944 
1945   /* Process Locked */
1946   __HAL_LOCK(hrtc);
1947 
1948   hrtc->State = HAL_RTC_STATE_BUSY;
1949 
1950   if (Format == RTC_FORMAT_BIN)
1951   {
1952     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1953     {
1954       assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1955       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1956     }
1957     else
1958     {
1959       sAlarm->AlarmTime.TimeFormat = 0x00U;
1960       assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1961     }
1962     assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1963     assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1964 
1965     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1966     {
1967       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1968     }
1969     else
1970     {
1971       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1972     }
1973 
1974     tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1975               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1976               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1977               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1978               ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1979               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1980               ((uint32_t)sAlarm->AlarmMask));
1981   }
1982   else
1983   {
1984     if ((hrtc->Instance->CR & RTC_CR_FMT) != 0U)
1985     {
1986       assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1987       assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1988     }
1989     else
1990     {
1991       sAlarm->AlarmTime.TimeFormat = 0x00U;
1992       assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1993     }
1994 
1995     assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1996     assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1997 
1998 #ifdef  USE_FULL_ASSERT
1999     if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
2000     {
2001       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
2002     }
2003     else
2004     {
2005       assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
2006     }
2007 
2008 #endif /* USE_FULL_ASSERT */
2009     tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
2010               ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
2011               ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
2012               ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
2013               ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
2014               ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
2015               ((uint32_t)sAlarm->AlarmMask));
2016   }
2017   /* Configure the Alarm A or Alarm B Sub Second registers */
2018   subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
2019 
2020   /* Disable the write protection for RTC registers */
2021   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2022 
2023   /* Configure the Alarm register */
2024   if (sAlarm->Alarm == RTC_ALARM_A)
2025   {
2026     /* Disable the Alarm A interrupt */
2027     __HAL_RTC_ALARMA_DISABLE(hrtc);
2028 
2029     /* Clear flag alarm A */
2030     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
2031 
2032 #if defined (RTC_FLAG_ALRAWF)
2033     uint32_t tickstart = HAL_GetTick();
2034     /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
2035     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
2036     {
2037       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2038       {
2039         /* Enable the write protection for RTC registers */
2040         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2041 
2042         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2043 
2044         /* Process Unlocked */
2045         __HAL_UNLOCK(hrtc);
2046 
2047         return HAL_TIMEOUT;
2048       }
2049     }
2050 #endif
2051 
2052     hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
2053     /* Configure the Alarm A Sub Second register */
2054     hrtc->Instance->ALRMASSR = subsecondtmpreg;
2055     /* Configure the Alarm state: Enable Alarm */
2056     __HAL_RTC_ALARMA_ENABLE(hrtc);
2057     /* Configure the Alarm interrupt */
2058     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
2059   }
2060   else
2061   {
2062     /* Disable the Alarm B interrupt */
2063     __HAL_RTC_ALARMB_DISABLE(hrtc);
2064 
2065     /* Clear flag alarm B */
2066     __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
2067 
2068 #if defined (RTC_FLAG_ALRBWF)
2069     uint32_t tickstart = HAL_GetTick();
2070     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
2071     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
2072     {
2073       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2074       {
2075         /* Enable the write protection for RTC registers */
2076         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2077 
2078         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2079 
2080         /* Process Unlocked */
2081         __HAL_UNLOCK(hrtc);
2082 
2083         return HAL_TIMEOUT;
2084       }
2085     }
2086 #endif
2087 
2088     hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
2089     /* Configure the Alarm B Sub Second register */
2090     hrtc->Instance->ALRMBSSR = subsecondtmpreg;
2091     /* Configure the Alarm state: Enable Alarm */
2092     __HAL_RTC_ALARMB_ENABLE(hrtc);
2093     /* Configure the Alarm interrupt */
2094     __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
2095   }
2096 
2097   /* RTC Alarm Interrupt Configuration: EXTI configuration */
2098   __HAL_RTC_ALARM_EXTI_ENABLE_IT();
2099   __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
2100 
2101   /* Enable the write protection for RTC registers */
2102   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2103 
2104   hrtc->State = HAL_RTC_STATE_READY;
2105 
2106   /* Process Unlocked */
2107   __HAL_UNLOCK(hrtc);
2108 
2109   return HAL_OK;
2110 }
2111 
2112 #endif /* #if defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2113 
2114 /**
2115   * @brief  Deactivate the specified RTC Alarm.
2116   * @param  hrtc RTC handle
2117   * @param  Alarm Specifies the Alarm.
2118   *          This parameter can be one of the following values:
2119   *            @arg RTC_ALARM_A:  AlarmA
2120   *            @arg RTC_ALARM_B:  AlarmB
2121   * @retval HAL status
2122   */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)2123 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
2124 {
2125   /* Check the parameters */
2126   assert_param(IS_RTC_ALARM(Alarm));
2127 
2128   /* Process Locked */
2129   __HAL_LOCK(hrtc);
2130 
2131   hrtc->State = HAL_RTC_STATE_BUSY;
2132 
2133   /* Disable the write protection for RTC registers */
2134   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2135 
2136   if (Alarm == RTC_ALARM_A)
2137   {
2138     /* AlarmA */
2139 #if defined (RTC_ALRMASSR_SSCLR)
2140     CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
2141 #endif
2142 
2143     __HAL_RTC_ALARMA_DISABLE(hrtc);
2144 
2145     /* In case of interrupt mode is used, the interrupt source must disabled */
2146     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
2147 
2148 #if defined (RTC_FLAG_ALRAWF)
2149     uint32_t tickstart = HAL_GetTick();
2150     /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
2151     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == 0U)
2152     {
2153       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
2154       {
2155         /* Enable the write protection for RTC registers */
2156         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2157 
2158         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2159 
2160         /* Process Unlocked */
2161         __HAL_UNLOCK(hrtc);
2162 
2163         return HAL_TIMEOUT;
2164       }
2165     }
2166 #endif
2167   }
2168   else
2169   {
2170     /* AlarmB */
2171 #if defined (RTC_ALRMBSSR_SSCLR)
2172     CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMASSR_SSCLR);
2173 #endif
2174 
2175     __HAL_RTC_ALARMB_DISABLE(hrtc);
2176 
2177     /* In case of interrupt mode is used, the interrupt source must disabled */
2178     __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);
2179 
2180 #if defined (RTC_FLAG_ALRBWF)
2181     uint32_t tickstart = HAL_GetTick();
2182     /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
2183     while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == 0U)
2184     {
2185       if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2186       {
2187         /* Enable the write protection for RTC registers */
2188         __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2189 
2190         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2191 
2192         /* Process Unlocked */
2193         __HAL_UNLOCK(hrtc);
2194 
2195         return HAL_TIMEOUT;
2196       }
2197     }
2198 #endif
2199   }
2200   /* Enable the write protection for RTC registers */
2201   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2202 
2203   hrtc->State = HAL_RTC_STATE_READY;
2204 
2205   /* Process Unlocked */
2206   __HAL_UNLOCK(hrtc);
2207 
2208   return HAL_OK;
2209 }
2210 
2211 /**
2212   * @brief  Get the RTC Alarm value and masks.
2213   * @param  hrtc RTC handle
2214   * @param  sAlarm Pointer to Date structure
2215   * @param  Alarm Specifies the Alarm.
2216   *          This parameter can be one of the following values:
2217   *             @arg RTC_ALARM_A: AlarmA
2218   *             @arg RTC_ALARM_B: AlarmB
2219   * @param  Format Specifies the format of the entered parameters.
2220   *          This parameter can be one of the following values:
2221   *             @arg RTC_FORMAT_BIN: Binary data format
2222   *             @arg RTC_FORMAT_BCD: BCD data format
2223   * @retval HAL status
2224   */
HAL_RTC_GetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)2225 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
2226 {
2227   uint32_t tmpreg, subsecondtmpreg;
2228 
2229   /* Check the parameters */
2230   assert_param(IS_RTC_FORMAT(Format));
2231   assert_param(IS_RTC_ALARM(Alarm));
2232 
2233   if (Alarm == RTC_ALARM_A)
2234   {
2235     /* AlarmA */
2236     sAlarm->Alarm = RTC_ALARM_A;
2237 
2238     tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
2239     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR) & RTC_ALRMASSR_SS);
2240 
2241     /* Fill the structure with the read parameters */
2242     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
2243     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
2244     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
2245     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
2246     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
2247     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
2248     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
2249     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
2250   }
2251   else
2252   {
2253     sAlarm->Alarm = RTC_ALARM_B;
2254 
2255     tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
2256     subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
2257 
2258     /* Fill the structure with the read parameters */
2259     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
2260     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
2261     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
2262     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
2263     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
2264     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
2265     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
2266     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
2267   }
2268 
2269   if (Format == RTC_FORMAT_BIN)
2270   {
2271     sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
2272     sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
2273     sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
2274     sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
2275   }
2276 
2277   return HAL_OK;
2278 }
2279 
2280 
2281 /**
2282   * @brief  Daylight Saving Time, Add one hour to the calendar in one single operation
2283   *         without going through the initialization procedure.
2284   * @param  hrtc RTC handle
2285   * @retval None
2286   */
HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef * hrtc)2287 void HAL_RTC_DST_Add1Hour(RTC_HandleTypeDef *hrtc)
2288 {
2289   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2290   SET_BIT(hrtc->Instance->CR, RTC_CR_ADD1H);
2291   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2292 }
2293 
2294 /**
2295   * @brief  Daylight Saving Time, Subtract one hour from the calendar in one
2296   *         single operation without going through the initialization procedure.
2297   * @param  hrtc RTC handle
2298   * @retval None
2299   */
HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef * hrtc)2300 void HAL_RTC_DST_Sub1Hour(RTC_HandleTypeDef *hrtc)
2301 {
2302   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2303   SET_BIT(hrtc->Instance->CR, RTC_CR_SUB1H);
2304   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2305 }
2306 
2307 /**
2308   * @brief  Daylight Saving Time, Set the store operation bit.
2309   * @note   It can be used by the software in order to memorize the DST status.
2310   * @param  hrtc RTC handle
2311   * @retval None
2312   */
HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef * hrtc)2313 void HAL_RTC_DST_SetStoreOperation(RTC_HandleTypeDef *hrtc)
2314 {
2315   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2316   SET_BIT(hrtc->Instance->CR, RTC_CR_BKP);
2317   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2318 }
2319 
2320 /**
2321   * @brief  Daylight Saving Time, Clear the store operation bit.
2322   * @param  hrtc RTC handle
2323   * @retval None
2324   */
HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef * hrtc)2325 void HAL_RTC_DST_ClearStoreOperation(RTC_HandleTypeDef *hrtc)
2326 {
2327   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
2328   CLEAR_BIT(hrtc->Instance->CR, RTC_CR_BKP);
2329   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
2330 }
2331 
2332 /**
2333   * @brief  Daylight Saving Time, Read the store operation bit.
2334   * @param  hrtc RTC handle
2335   * @retval operation see RTC_StoreOperation_Definitions
2336   */
HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef * hrtc)2337 uint32_t HAL_RTC_DST_ReadStoreOperation(RTC_HandleTypeDef *hrtc)
2338 {
2339   return READ_BIT(hrtc->Instance->CR, RTC_CR_BKP);
2340 }
2341 
2342 /**
2343   * @brief  Handle Alarm interrupt request.
2344   * @param  hrtc RTC handle
2345   * @retval None
2346   */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)2347 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
2348 {
2349   /* Clear the EXTI's line Flag for RTC Alarm */
2350   __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
2351 
2352 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2353   /* Get interrupt status */
2354   uint32_t tmp = hrtc->Instance->MISR;
2355 
2356   if ((tmp & RTC_MISR_ALRAMF) != 0u)
2357   {
2358     /* Clear the AlarmA interrupt pending bit */
2359     hrtc->Instance->SCR = RTC_SCR_CALRAF;
2360 
2361 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2362     /* Call Compare Match registered Callback */
2363     hrtc->AlarmAEventCallback(hrtc);
2364 #else  /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
2365     HAL_RTC_AlarmAEventCallback(hrtc);
2366 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS == 1) */
2367   }
2368 
2369   if ((tmp & RTC_MISR_ALRBMF) != 0u)
2370   {
2371     /* Clear the AlarmB interrupt pending bit */
2372     hrtc->Instance->SCR = RTC_SCR_CALRBF;
2373 
2374 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2375     /* Call Compare Match registered Callback */
2376     hrtc->AlarmBEventCallback(hrtc);
2377 #else
2378     HAL_RTCEx_AlarmBEventCallback(hrtc);
2379 #endif
2380   }
2381 
2382 #else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2383 
2384   /* Get the AlarmA interrupt source enable status */
2385   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA) != 0U)
2386   {
2387     /* Get the pending status of the AlarmA Interrupt */
2388     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != 0U)
2389     {
2390       /* Clear the AlarmA interrupt pending bit */
2391       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
2392 
2393 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2394       hrtc->AlarmAEventCallback(hrtc);
2395 #else
2396       HAL_RTC_AlarmAEventCallback(hrtc);
2397 #endif
2398     }
2399   }
2400 
2401   /* Get the AlarmB interrupt source enable status */
2402   if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRB) != 0U)
2403   {
2404     /* Get the pending status of the AlarmB Interrupt */
2405     if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBF) != 0U)
2406     {
2407       /* Clear the AlarmB interrupt pending bit */
2408       __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);
2409 
2410 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
2411       hrtc->AlarmBEventCallback(hrtc);
2412 #else
2413       HAL_RTCEx_AlarmBEventCallback(hrtc);
2414 #endif
2415     }
2416   }
2417 #endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2418 
2419   /* Change RTC state */
2420   hrtc->State = HAL_RTC_STATE_READY;
2421 }
2422 
2423 /**
2424   * @brief  Alarm A callback.
2425   * @param  hrtc RTC handle
2426   * @retval None
2427   */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)2428 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
2429 {
2430   /* Prevent unused argument(s) compilation warning */
2431   UNUSED(hrtc);
2432 
2433   /* NOTE : This function should not be modified, when the callback is needed,
2434             the HAL_RTC_AlarmAEventCallback could be implemented in the user file
2435    */
2436 }
2437 
2438 /**
2439   * @brief  Handle AlarmA Polling request.
2440   * @param  hrtc RTC handle
2441   * @param  Timeout Timeout duration
2442   * @retval HAL status
2443   */
HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef * hrtc,uint32_t Timeout)2444 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
2445 {
2446 
2447   uint32_t tickstart = HAL_GetTick();
2448 
2449   while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == 0U)
2450   {
2451     if (Timeout != HAL_MAX_DELAY)
2452     {
2453       if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2454       {
2455         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2456         return HAL_TIMEOUT;
2457       }
2458     }
2459   }
2460 
2461   /* Clear the Alarm interrupt pending bit */
2462   __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
2463 
2464   /* Change RTC state */
2465   hrtc->State = HAL_RTC_STATE_READY;
2466 
2467   return HAL_OK;
2468 }
2469 
2470 /**
2471   * @}
2472   */
2473 
2474 /** @addtogroup RTC_Exported_Functions_Group4
2475  *  @brief   Peripheral Control functions
2476  *
2477 @verbatim
2478  ===============================================================================
2479                      ##### Peripheral Control functions #####
2480  ===============================================================================
2481     [..]
2482     This subsection provides functions allowing to
2483       (+) Wait for RTC Time and Date Synchronization
2484 
2485 @endverbatim
2486   * @{
2487   */
2488 
2489 /**
2490   * @brief  Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
2491   *         synchronized with RTC APB clock.
2492   * @note   The RTC Resynchronization mode is write protected, use the
2493   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2494   * @note   To read the calendar through the shadow registers after Calendar
2495   *         initialization, calendar update or after wakeup from low power modes
2496   *         the software must first clear the RSF flag.
2497   *         The software must then wait until it is set again before reading
2498   *         the calendar, which means that the calendar registers have been
2499   *         correctly copied into the RTC_TR and RTC_DR shadow registers.
2500   * @param  hrtc RTC handle
2501   * @retval HAL status
2502   */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)2503 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
2504 {
2505   uint32_t tickstart;
2506 
2507 #if defined(STM32L412xx) || defined(STM32L422xx)
2508   /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
2509   hrtc->Instance->ICSR = ((uint32_t)(RTC_RSF_MASK & RTC_ICSR_RESERVED_MASK));
2510 #elif defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2511   /* Clear RSF flag (use a read-modify-write sequence to preserve the other read-write bits) */
2512   hrtc->Instance->ICSR &= (uint32_t)RTC_RSF_MASK;
2513 #else
2514   /* Clear RSF flag, keep reserved bits at reset values (setting other flags has no effect) */
2515   hrtc->Instance->ISR = ((uint32_t)(RTC_RSF_MASK & RTC_ISR_RESERVED_MASK));
2516 #endif
2517 
2518   tickstart = HAL_GetTick();
2519 
2520   /* Wait the registers to be synchronised */
2521 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2522   while ((hrtc->Instance->ICSR & RTC_ICSR_RSF) == 0U)
2523 #else
2524   while ((hrtc->Instance->ISR & RTC_ISR_RSF) == 0U)
2525 #endif
2526   {
2527     if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2528     {
2529       return HAL_TIMEOUT;
2530     }
2531   }
2532 
2533   return HAL_OK;
2534 }
2535 
2536 /**
2537   * @}
2538   */
2539 
2540 /** @addtogroup RTC_Exported_Functions_Group5
2541  *  @brief   Peripheral State functions
2542  *
2543 @verbatim
2544  ===============================================================================
2545                      ##### Peripheral State functions #####
2546  ===============================================================================
2547     [..]
2548     This subsection provides functions allowing to
2549       (+) Get RTC state
2550 
2551 @endverbatim
2552   * @{
2553   */
2554 /**
2555   * @brief  Return the RTC handle state.
2556   * @param  hrtc RTC handle
2557   * @retval HAL state
2558   */
HAL_RTC_GetState(RTC_HandleTypeDef * hrtc)2559 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
2560 {
2561   /* Return RTC handle state */
2562   return hrtc->State;
2563 }
2564 
2565 /**
2566   * @}
2567   */
2568 
2569 /**
2570   * @}
2571   */
2572 
2573 /** @addtogroup RTC_Private_Functions
2574   * @{
2575   */
2576 /**
2577   * @brief  Enter the RTC Initialization mode.
2578   * @note   The RTC Initialization mode is write protected, use the
2579   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2580   * @param  hrtc RTC handle
2581   * @retval HAL status
2582   */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)2583 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
2584 {
2585   uint32_t tickstart;
2586   HAL_StatusTypeDef status = HAL_OK;
2587 
2588   /* Check if the Initialization mode is set */
2589 #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx)
2590   if ((hrtc->Instance->ICSR & RTC_ICSR_INITF) == 0U)
2591   {
2592     /* Set the Initialization mode */
2593     SET_BIT(hrtc->Instance->ICSR, RTC_ICSR_INIT);
2594 
2595     tickstart = HAL_GetTick();
2596     /* Wait till RTC is in INIT state and if Time out is reached exit */
2597     while ((READ_BIT(hrtc->Instance->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
2598     {
2599       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
2600       {
2601         status = HAL_TIMEOUT;
2602         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2603       }
2604     }
2605   }
2606 #else /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2607   if ((hrtc->Instance->ISR & RTC_ISR_INITF) == 0U)
2608   {
2609     /* Set the Initialization mode */
2610     hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;
2611 
2612     tickstart = HAL_GetTick();
2613     /* Wait till RTC is in INIT state and if Time out is reached exit */
2614     while ((READ_BIT(hrtc->Instance->ISR, RTC_ISR_INITF) == 0U) && (status != HAL_TIMEOUT))
2615     {
2616       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
2617       {
2618         status = HAL_TIMEOUT;
2619         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2620       }
2621     }
2622   }
2623 #endif /* #if defined(STM32L412xx) || defined(STM32L422xx) || defined (STM32L4P5xx) || defined (STM32L4Q5xx) */
2624 
2625   return status;
2626 }
2627 
2628 /**
2629   * @brief  Exit the RTC Initialization mode.
2630   * @param  hrtc RTC handle
2631   * @retval HAL status
2632   */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)2633 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
2634 {
2635   HAL_StatusTypeDef status = HAL_OK;
2636 
2637   /* Exit Initialization mode */
2638 #if defined(STM32L412xx) || defined(STM32L422xx) || defined(STM32L4P5xx) || defined(STM32L4Q5xx)
2639   CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
2640 #else
2641   /* Exit Initialization mode */
2642   CLEAR_BIT(RTC->ISR, RTC_ISR_INIT);
2643 #endif
2644 
2645   /* If CR_BYPSHAD bit = 0, wait for synchro */
2646   if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
2647   {
2648     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2649     {
2650       hrtc->State = HAL_RTC_STATE_TIMEOUT;
2651       status = HAL_TIMEOUT;
2652     }
2653   }
2654   else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry */
2655   {
2656     /* Clear BYPSHAD bit */
2657     CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
2658     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2659     {
2660       hrtc->State = HAL_RTC_STATE_TIMEOUT;
2661       status = HAL_TIMEOUT;
2662     }
2663     /* Restore BYPSHAD bit */
2664     SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
2665   }
2666 
2667   return status;
2668 }
2669 
2670 
2671 
2672 /**
2673   * @brief  Convert a 2 digit decimal to BCD format.
2674   * @param  Value Byte to be converted
2675   * @retval Converted byte
2676   */
RTC_ByteToBcd2(uint8_t Value)2677 uint8_t RTC_ByteToBcd2(uint8_t Value)
2678 {
2679   uint32_t bcdhigh = 0U;
2680   uint8_t temp = Value;
2681 
2682   while (temp >= 10U)
2683   {
2684     bcdhigh++;
2685     temp -= 10U;
2686   }
2687 
2688   return ((uint8_t)(bcdhigh << 4U) | temp);
2689 }
2690 
2691 /**
2692   * @brief  Convert from 2 digit BCD to Binary.
2693   * @param  Value BCD value to be converted
2694   * @retval Converted word
2695   */
RTC_Bcd2ToByte(uint8_t Value)2696 uint8_t RTC_Bcd2ToByte(uint8_t Value)
2697 {
2698   uint8_t tmp;
2699   tmp = ((Value & 0xF0U) >> 4U) * 10U;
2700   return (tmp + (Value & 0x0FU));
2701 }
2702 
2703 /**
2704   * @}
2705   */
2706 
2707 #endif /* HAL_RTC_MODULE_ENABLED */
2708 /**
2709   * @}
2710   */
2711 
2712 /**
2713   * @}
2714   */
2715