1 /**
2 ******************************************************************************
3 * @file stm32l0xx_hal_uart_ex.c
4 * @author MCD Application Team
5 * @brief Extended UART HAL module driver.
6 * This file provides firmware functions to manage the following extended
7 * functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART).
8 * + Initialization and de-initialization functions
9 * + Peripheral Control functions
10 *
11 *
12 ******************************************************************************
13 * @attention
14 *
15 * Copyright (c) 2016 STMicroelectronics.
16 * All rights reserved.
17 *
18 * This software is licensed under terms that can be found in the LICENSE file
19 * in the root directory of this software component.
20 * If no LICENSE file comes with this software, it is provided AS-IS.
21 *
22 ******************************************************************************
23 @verbatim
24 ==============================================================================
25 ##### UART peripheral extended features #####
26 ==============================================================================
27
28 (#) Declare a UART_HandleTypeDef handle structure.
29
30 (#) For the UART RS485 Driver Enable mode, initialize the UART registers
31 by calling the HAL_RS485Ex_Init() API.
32
33 @endverbatim
34 ******************************************************************************
35 */
36
37 /* Includes ------------------------------------------------------------------*/
38 #include "stm32l0xx_hal.h"
39
40 /** @addtogroup STM32L0xx_HAL_Driver
41 * @{
42 */
43
44 /** @defgroup UARTEx UARTEx
45 * @brief UART Extended HAL module driver
46 * @{
47 */
48
49 #ifdef HAL_UART_MODULE_ENABLED
50
51 /* Private typedef -----------------------------------------------------------*/
52 /* Private define ------------------------------------------------------------*/
53
54 /* Private macros ------------------------------------------------------------*/
55 /* Private variables ---------------------------------------------------------*/
56 /* Private function prototypes -----------------------------------------------*/
57 /** @defgroup UARTEx_Private_Functions UARTEx Private Functions
58 * @{
59 */
60 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection);
61 /**
62 * @}
63 */
64
65 /* Exported functions --------------------------------------------------------*/
66
67 /** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions
68 * @{
69 */
70
71 /** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions
72 * @brief Extended Initialization and Configuration Functions
73 *
74 @verbatim
75 ===============================================================================
76 ##### Initialization and Configuration functions #####
77 ===============================================================================
78 [..]
79 This subsection provides a set of functions allowing to initialize the USARTx or the UARTy
80 in asynchronous mode.
81 (+) For the asynchronous mode the parameters below can be configured:
82 (++) Baud Rate
83 (++) Word Length
84 (++) Stop Bit
85 (++) Parity: If the parity is enabled, then the MSB bit of the data written
86 in the data register is transmitted but is changed by the parity bit.
87 (++) Hardware flow control
88 (++) Receiver/transmitter modes
89 (++) Over Sampling Method
90 (++) One-Bit Sampling Method
91 (+) For the asynchronous mode, the following advanced features can be configured as well:
92 (++) TX and/or RX pin level inversion
93 (++) data logical level inversion
94 (++) RX and TX pins swap
95 (++) RX overrun detection disabling
96 (++) DMA disabling on RX error
97 (++) MSB first on communication line
98 (++) auto Baud rate detection
99 [..]
100 The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration
101 procedures (details for the procedures are available in reference manual).
102
103 @endverbatim
104
105 Depending on the frame length defined by the M1 and M0 bits (7-bit,
106 8-bit or 9-bit), the possible UART formats are listed in the
107 following table.
108
109 Table 1. UART frame format.
110 +-----------------------------------------------------------------------+
111 | M1 bit | M0 bit | PCE bit | UART frame |
112 |---------|---------|-----------|---------------------------------------|
113 | 0 | 0 | 0 | | SB | 8 bit data | STB | |
114 |---------|---------|-----------|---------------------------------------|
115 | 0 | 0 | 1 | | SB | 7 bit data | PB | STB | |
116 |---------|---------|-----------|---------------------------------------|
117 | 0 | 1 | 0 | | SB | 9 bit data | STB | |
118 |---------|---------|-----------|---------------------------------------|
119 | 0 | 1 | 1 | | SB | 8 bit data | PB | STB | |
120 |---------|---------|-----------|---------------------------------------|
121 | 1 | 0 | 0 | | SB | 7 bit data | STB | |
122 |---------|---------|-----------|---------------------------------------|
123 | 1 | 0 | 1 | | SB | 6 bit data | PB | STB | |
124 +-----------------------------------------------------------------------+
125
126 * @{
127 */
128
129 /**
130 * @brief Initialize the RS485 Driver enable feature according to the specified
131 * parameters in the UART_InitTypeDef and creates the associated handle.
132 * @param huart UART handle.
133 * @param Polarity Select the driver enable polarity.
134 * This parameter can be one of the following values:
135 * @arg @ref UART_DE_POLARITY_HIGH DE signal is active high
136 * @arg @ref UART_DE_POLARITY_LOW DE signal is active low
137 * @param AssertionTime Driver Enable assertion time:
138 * 5-bit value defining the time between the activation of the DE (Driver Enable)
139 * signal and the beginning of the start bit. It is expressed in sample time
140 * units (1/8 or 1/16 bit time, depending on the oversampling rate)
141 * @param DeassertionTime Driver Enable deassertion time:
142 * 5-bit value defining the time between the end of the last stop bit, in a
143 * transmitted message, and the de-activation of the DE (Driver Enable) signal.
144 * It is expressed in sample time units (1/8 or 1/16 bit time, depending on the
145 * oversampling rate).
146 * @retval HAL status
147 */
HAL_RS485Ex_Init(UART_HandleTypeDef * huart,uint32_t Polarity,uint32_t AssertionTime,uint32_t DeassertionTime)148 HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime,
149 uint32_t DeassertionTime)
150 {
151 uint32_t temp;
152
153 /* Check the UART handle allocation */
154 if (huart == NULL)
155 {
156 return HAL_ERROR;
157 }
158 /* Check the Driver Enable UART instance */
159 assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance));
160
161 /* Check the Driver Enable polarity */
162 assert_param(IS_UART_DE_POLARITY(Polarity));
163
164 /* Check the Driver Enable assertion time */
165 assert_param(IS_UART_ASSERTIONTIME(AssertionTime));
166
167 /* Check the Driver Enable deassertion time */
168 assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime));
169
170 if (huart->gState == HAL_UART_STATE_RESET)
171 {
172 /* Allocate lock resource and initialize it */
173 huart->Lock = HAL_UNLOCKED;
174
175 #if (USE_HAL_UART_REGISTER_CALLBACKS == 1)
176 UART_InitCallbacksToDefault(huart);
177
178 if (huart->MspInitCallback == NULL)
179 {
180 huart->MspInitCallback = HAL_UART_MspInit;
181 }
182
183 /* Init the low level hardware */
184 huart->MspInitCallback(huart);
185 #else
186 /* Init the low level hardware : GPIO, CLOCK, CORTEX */
187 HAL_UART_MspInit(huart);
188 #endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */
189 }
190
191 huart->gState = HAL_UART_STATE_BUSY;
192
193 /* Disable the Peripheral */
194 __HAL_UART_DISABLE(huart);
195
196 /* Set the UART Communication parameters */
197 if (UART_SetConfig(huart) == HAL_ERROR)
198 {
199 return HAL_ERROR;
200 }
201
202 if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT)
203 {
204 UART_AdvFeatureConfig(huart);
205 }
206
207 /* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */
208 SET_BIT(huart->Instance->CR3, USART_CR3_DEM);
209
210 /* Set the Driver Enable polarity */
211 MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity);
212
213 /* Set the Driver Enable assertion and deassertion times */
214 temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS);
215 temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS);
216 MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp);
217
218 /* Enable the Peripheral */
219 __HAL_UART_ENABLE(huart);
220
221 /* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */
222 return (UART_CheckIdleState(huart));
223 }
224
225 /**
226 * @}
227 */
228
229 /** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions
230 * @brief Extended functions
231 *
232 @verbatim
233 ===============================================================================
234 ##### IO operation functions #####
235 ===============================================================================
236 This subsection provides a set of Wakeup and FIFO mode related callback functions.
237
238 (#) Wakeup from Stop mode Callback:
239 (+) HAL_UARTEx_WakeupCallback()
240
241 @endverbatim
242 * @{
243 */
244
245 /**
246 * @brief UART wakeup from Stop mode callback.
247 * @param huart UART handle.
248 * @retval None
249 */
HAL_UARTEx_WakeupCallback(UART_HandleTypeDef * huart)250 __weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart)
251 {
252 /* Prevent unused argument(s) compilation warning */
253 UNUSED(huart);
254
255 /* NOTE : This function should not be modified, when the callback is needed,
256 the HAL_UARTEx_WakeupCallback can be implemented in the user file.
257 */
258 }
259
260
261 /**
262 * @}
263 */
264
265 /** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions
266 * @brief Extended Peripheral Control functions
267 *
268 @verbatim
269 ===============================================================================
270 ##### Peripheral Control functions #####
271 ===============================================================================
272 [..] This section provides the following functions:
273 (+) HAL_UARTEx_EnableClockStopMode() API enables the UART clock (HSI or LSE only) during stop mode
274 (+) HAL_UARTEx_DisableClockStopMode() API disables the above functionality
275 (+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address
276 detection length to more than 4 bits for multiprocessor address mark wake up.
277 (+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode
278 trigger: address match, Start Bit detection or RXNE bit status.
279 (+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode
280 (+) HAL_UARTEx_DisableStopMode() API disables the above functionality
281
282 [..] This subsection also provides a set of additional functions providing enhanced reception
283 services to user. (For example, these functions allow application to handle use cases
284 where number of data to be received is unknown).
285
286 (#) Compared to standard reception services which only consider number of received
287 data elements as reception completion criteria, these functions also consider additional events
288 as triggers for updating reception status to caller :
289 (+) Detection of inactivity period (RX line has not been active for a given period).
290 (++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state)
291 for 1 frame time, after last received byte.
292 (++) RX inactivity detected by RTO, i.e. line has been in idle state
293 for a programmable time, after last received byte.
294 (+) Detection that a specific character has been received.
295
296 (#) There are two mode of transfer:
297 (+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received,
298 or till IDLE event occurs. Reception is handled only during function execution.
299 When function exits, no data reception could occur. HAL status and number of actually received data elements,
300 are returned by function after finishing transfer.
301 (+) Non-Blocking mode: The reception is performed using Interrupts or DMA.
302 These API's return the HAL status.
303 The end of the data processing will be indicated through the
304 dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode.
305 The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process
306 The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected.
307
308 (#) Blocking mode API:
309 (+) HAL_UARTEx_ReceiveToIdle()
310
311 (#) Non-Blocking mode API with Interrupt:
312 (+) HAL_UARTEx_ReceiveToIdle_IT()
313
314 (#) Non-Blocking mode API with DMA:
315 (+) HAL_UARTEx_ReceiveToIdle_DMA()
316
317 @endverbatim
318 * @{
319 */
320
321 /**
322 * @brief Keep UART Clock enabled when in Stop Mode.
323 * @note When the USART clock source is configured to be LSE or HSI, it is possible to keep enabled
324 * this clock during STOP mode by setting the UCESM bit in USART_CR3 control register.
325 * @note When LPUART is used to wakeup from stop with LSE is selected as LPUART clock source,
326 * and desired baud rate is 9600 baud, the bit UCESM bit in LPUART_CR3 control register must be set.
327 * @param huart UART handle.
328 * @retval HAL status
329 */
HAL_UARTEx_EnableClockStopMode(UART_HandleTypeDef * huart)330 HAL_StatusTypeDef HAL_UARTEx_EnableClockStopMode(UART_HandleTypeDef *huart)
331 {
332 /* Process Locked */
333 __HAL_LOCK(huart);
334
335 /* Set UCESM bit */
336 ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_UCESM);
337
338 /* Process Unlocked */
339 __HAL_UNLOCK(huart);
340
341 return HAL_OK;
342 }
343
344 /**
345 * @brief Disable UART Clock when in Stop Mode.
346 * @param huart UART handle.
347 * @retval HAL status
348 */
HAL_UARTEx_DisableClockStopMode(UART_HandleTypeDef * huart)349 HAL_StatusTypeDef HAL_UARTEx_DisableClockStopMode(UART_HandleTypeDef *huart)
350 {
351 /* Process Locked */
352 __HAL_LOCK(huart);
353
354 /* Clear UCESM bit */
355 ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_UCESM);
356
357 /* Process Unlocked */
358 __HAL_UNLOCK(huart);
359
360 return HAL_OK;
361 }
362
363 /**
364 * @brief By default in multiprocessor mode, when the wake up method is set
365 * to address mark, the UART handles only 4-bit long addresses detection;
366 * this API allows to enable longer addresses detection (6-, 7- or 8-bit
367 * long).
368 * @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode,
369 * 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode.
370 * @param huart UART handle.
371 * @param AddressLength This parameter can be one of the following values:
372 * @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address
373 * @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address
374 * @retval HAL status
375 */
HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef * huart,uint32_t AddressLength)376 HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength)
377 {
378 /* Check the UART handle allocation */
379 if (huart == NULL)
380 {
381 return HAL_ERROR;
382 }
383
384 /* Check the address length parameter */
385 assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength));
386
387 huart->gState = HAL_UART_STATE_BUSY;
388
389 /* Disable the Peripheral */
390 __HAL_UART_DISABLE(huart);
391
392 /* Set the address length */
393 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength);
394
395 /* Enable the Peripheral */
396 __HAL_UART_ENABLE(huart);
397
398 /* TEACK and/or REACK to check before moving huart->gState to Ready */
399 return (UART_CheckIdleState(huart));
400 }
401
402 /**
403 * @brief Set Wakeup from Stop mode interrupt flag selection.
404 * @note It is the application responsibility to enable the interrupt used as
405 * usart_wkup interrupt source before entering low-power mode.
406 * @param huart UART handle.
407 * @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status.
408 * This parameter can be one of the following values:
409 * @arg @ref UART_WAKEUP_ON_ADDRESS
410 * @arg @ref UART_WAKEUP_ON_STARTBIT
411 * @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY
412 * @retval HAL status
413 */
HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)414 HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
415 {
416 HAL_StatusTypeDef status = HAL_OK;
417 uint32_t tickstart;
418
419 /* check the wake-up from stop mode UART instance */
420 assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance));
421 /* check the wake-up selection parameter */
422 assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent));
423
424 /* Process Locked */
425 __HAL_LOCK(huart);
426
427 huart->gState = HAL_UART_STATE_BUSY;
428
429 /* Disable the Peripheral */
430 __HAL_UART_DISABLE(huart);
431
432 /* Set the wake-up selection scheme */
433 MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent);
434
435 if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS)
436 {
437 UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection);
438 }
439
440 /* Enable the Peripheral */
441 __HAL_UART_ENABLE(huart);
442
443 /* Init tickstart for timeout management */
444 tickstart = HAL_GetTick();
445
446 /* Wait until REACK flag is set */
447 if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK)
448 {
449 status = HAL_TIMEOUT;
450 }
451 else
452 {
453 /* Initialize the UART State */
454 huart->gState = HAL_UART_STATE_READY;
455 }
456
457 /* Process Unlocked */
458 __HAL_UNLOCK(huart);
459
460 return status;
461 }
462
463 /**
464 * @brief Enable UART Stop Mode.
465 * @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE.
466 * @param huart UART handle.
467 * @retval HAL status
468 */
HAL_UARTEx_EnableStopMode(UART_HandleTypeDef * huart)469 HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart)
470 {
471 /* Process Locked */
472 __HAL_LOCK(huart);
473
474 /* Set UESM bit */
475 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM);
476
477 /* Process Unlocked */
478 __HAL_UNLOCK(huart);
479
480 return HAL_OK;
481 }
482
483 /**
484 * @brief Disable UART Stop Mode.
485 * @param huart UART handle.
486 * @retval HAL status
487 */
HAL_UARTEx_DisableStopMode(UART_HandleTypeDef * huart)488 HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart)
489 {
490 /* Process Locked */
491 __HAL_LOCK(huart);
492
493 /* Clear UESM bit */
494 ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM);
495
496 /* Process Unlocked */
497 __HAL_UNLOCK(huart);
498
499 return HAL_OK;
500 }
501
502 /**
503 * @brief Receive an amount of data in blocking mode till either the expected number of data
504 * is received or an IDLE event occurs.
505 * @note HAL_OK is returned if reception is completed (expected number of data has been received)
506 * or if reception is stopped after IDLE event (less than the expected number of data has been received)
507 * In this case, RxLen output parameter indicates number of data available in reception buffer.
508 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
509 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
510 * of uint16_t available through pData.
511 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
512 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
513 * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
514 * use of specific alignment compilation directives or pragmas might be required to ensure proper
515 * alignment for pData.
516 * @param huart UART handle.
517 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
518 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
519 * @param RxLen Number of data elements finally received
520 * (could be lower than Size, in case reception ends on IDLE event)
521 * @param Timeout Timeout duration expressed in ms (covers the whole reception sequence).
522 * @retval HAL status
523 */
HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size,uint16_t * RxLen,uint32_t Timeout)524 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen,
525 uint32_t Timeout)
526 {
527 uint8_t *pdata8bits;
528 uint16_t *pdata16bits;
529 uint16_t uhMask;
530 uint32_t tickstart;
531
532 /* Check that a Rx process is not already ongoing */
533 if (huart->RxState == HAL_UART_STATE_READY)
534 {
535 if ((pData == NULL) || (Size == 0U))
536 {
537 return HAL_ERROR;
538 }
539
540 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
541 should be aligned on a uint16_t frontier, as data to be received from RDR will be
542 handled through a uint16_t cast. */
543 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
544 {
545 if ((((uint32_t)pData) & 1U) != 0U)
546 {
547 return HAL_ERROR;
548 }
549 }
550
551 huart->ErrorCode = HAL_UART_ERROR_NONE;
552 huart->RxState = HAL_UART_STATE_BUSY_RX;
553 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
554 huart->RxEventType = HAL_UART_RXEVENT_TC;
555
556 /* Init tickstart for timeout management */
557 tickstart = HAL_GetTick();
558
559 huart->RxXferSize = Size;
560 huart->RxXferCount = Size;
561
562 /* Computation of UART mask to apply to RDR register */
563 UART_MASK_COMPUTATION(huart);
564 uhMask = huart->Mask;
565
566 /* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */
567 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
568 {
569 pdata8bits = NULL;
570 pdata16bits = (uint16_t *) pData;
571 }
572 else
573 {
574 pdata8bits = pData;
575 pdata16bits = NULL;
576 }
577
578 /* Initialize output number of received elements */
579 *RxLen = 0U;
580
581 /* as long as data have to be received */
582 while (huart->RxXferCount > 0U)
583 {
584 /* Check if IDLE flag is set */
585 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE))
586 {
587 /* Clear IDLE flag in ISR */
588 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
589
590 /* If Set, but no data ever received, clear flag without exiting loop */
591 /* If Set, and data has already been received, this means Idle Event is valid : End reception */
592 if (*RxLen > 0U)
593 {
594 huart->RxEventType = HAL_UART_RXEVENT_IDLE;
595 huart->RxState = HAL_UART_STATE_READY;
596
597 return HAL_OK;
598 }
599 }
600
601 /* Check if RXNE flag is set */
602 if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE))
603 {
604 if (pdata8bits == NULL)
605 {
606 *pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask);
607 pdata16bits++;
608 }
609 else
610 {
611 *pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask);
612 pdata8bits++;
613 }
614 /* Increment number of received elements */
615 *RxLen += 1U;
616 huart->RxXferCount--;
617 }
618
619 /* Check for the Timeout */
620 if (Timeout != HAL_MAX_DELAY)
621 {
622 if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
623 {
624 huart->RxState = HAL_UART_STATE_READY;
625
626 return HAL_TIMEOUT;
627 }
628 }
629 }
630
631 /* Set number of received elements in output parameter : RxLen */
632 *RxLen = huart->RxXferSize - huart->RxXferCount;
633 /* At end of Rx process, restore huart->RxState to Ready */
634 huart->RxState = HAL_UART_STATE_READY;
635
636 return HAL_OK;
637 }
638 else
639 {
640 return HAL_BUSY;
641 }
642 }
643
644 /**
645 * @brief Receive an amount of data in interrupt mode till either the expected number of data
646 * is received or an IDLE event occurs.
647 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
648 * to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating
649 * number of received data elements.
650 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
651 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
652 * of uint16_t available through pData.
653 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
654 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
655 * (16 bits) (as received data will be handled using uint16_t pointer cast). Depending on compilation chain,
656 * use of specific alignment compilation directives or pragmas might be required
657 * to ensure proper alignment for pData.
658 * @param huart UART handle.
659 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
660 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
661 * @retval HAL status
662 */
HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)663 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
664 {
665 HAL_StatusTypeDef status;
666
667 /* Check that a Rx process is not already ongoing */
668 if (huart->RxState == HAL_UART_STATE_READY)
669 {
670 if ((pData == NULL) || (Size == 0U))
671 {
672 return HAL_ERROR;
673 }
674
675 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
676 should be aligned on a uint16_t frontier, as data to be received from RDR will be
677 handled through a uint16_t cast. */
678 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
679 {
680 if ((((uint32_t)pData) & 1U) != 0U)
681 {
682 return HAL_ERROR;
683 }
684 }
685
686 /* Set Reception type to reception till IDLE Event*/
687 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
688 huart->RxEventType = HAL_UART_RXEVENT_TC;
689
690 status = UART_Start_Receive_IT(huart, pData, Size);
691
692 /* Check Rx process has been successfully started */
693 if (status == HAL_OK)
694 {
695 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
696 {
697 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
698 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
699 }
700 else
701 {
702 /* In case of errors already pending when reception is started,
703 Interrupts may have already been raised and lead to reception abortion.
704 (Overrun error for instance).
705 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
706 status = HAL_ERROR;
707 }
708 }
709
710 return status;
711 }
712 else
713 {
714 return HAL_BUSY;
715 }
716 }
717
718 /**
719 * @brief Receive an amount of data in DMA mode till either the expected number
720 * of data is received or an IDLE event occurs.
721 * @note Reception is initiated by this function call. Further progress of reception is achieved thanks
722 * to DMA services, transferring automatically received data elements in user reception buffer and
723 * calling registered callbacks at half/end of reception. UART IDLE events are also used to consider
724 * reception phase as ended. In all cases, callback execution will indicate number of received data elements.
725 * @note When the UART parity is enabled (PCE = 1), the received data contain
726 * the parity bit (MSB position).
727 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
728 * the received data is handled as a set of uint16_t. In this case, Size must indicate the number
729 * of uint16_t available through pData.
730 * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01),
731 * address of user data buffer for storing data to be received, should be aligned on a half word frontier
732 * (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain,
733 * use of specific alignment compilation directives or pragmas might be required
734 * to ensure proper alignment for pData.
735 * @param huart UART handle.
736 * @param pData Pointer to data buffer (uint8_t or uint16_t data elements).
737 * @param Size Amount of data elements (uint8_t or uint16_t) to be received.
738 * @retval HAL status
739 */
HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef * huart,uint8_t * pData,uint16_t Size)740 HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
741 {
742 HAL_StatusTypeDef status;
743
744 /* Check that a Rx process is not already ongoing */
745 if (huart->RxState == HAL_UART_STATE_READY)
746 {
747 if ((pData == NULL) || (Size == 0U))
748 {
749 return HAL_ERROR;
750 }
751
752 /* In case of 9bits/No Parity transfer, pData buffer provided as input parameter
753 should be aligned on a uint16_t frontier, as data copy from RDR will be
754 handled by DMA from a uint16_t frontier. */
755 if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE))
756 {
757 if ((((uint32_t)pData) & 1U) != 0U)
758 {
759 return HAL_ERROR;
760 }
761 }
762
763 /* Set Reception type to reception till IDLE Event*/
764 huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE;
765 huart->RxEventType = HAL_UART_RXEVENT_TC;
766
767 status = UART_Start_Receive_DMA(huart, pData, Size);
768
769 /* Check Rx process has been successfully started */
770 if (status == HAL_OK)
771 {
772 if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE)
773 {
774 __HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF);
775 ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE);
776 }
777 else
778 {
779 /* In case of errors already pending when reception is started,
780 Interrupts may have already been raised and lead to reception abortion.
781 (Overrun error for instance).
782 In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */
783 status = HAL_ERROR;
784 }
785 }
786
787 return status;
788 }
789 else
790 {
791 return HAL_BUSY;
792 }
793 }
794
795 /**
796 * @brief Provide Rx Event type that has lead to RxEvent callback execution.
797 * @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress
798 * of reception process is provided to application through calls of Rx Event callback (either default one
799 * HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event,
800 * Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead
801 * to Rx Event callback execution.
802 * @note This function is expected to be called within the user implementation of Rx Event Callback,
803 * in order to provide the accurate value :
804 * In Interrupt Mode :
805 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
806 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
807 * received data is lower than expected one)
808 * In DMA Mode :
809 * - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received)
810 * - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received
811 * - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of
812 * received data is lower than expected one).
813 * In DMA mode, RxEvent callback could be called several times;
814 * When DMA is configured in Normal Mode, HT event does not stop Reception process;
815 * When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process;
816 * @param huart UART handle.
817 * @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values)
818 */
HAL_UARTEx_GetRxEventType(UART_HandleTypeDef * huart)819 HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart)
820 {
821 /* Return Rx Event type value, as stored in UART handle */
822 return (huart->RxEventType);
823 }
824
825 /**
826 * @}
827 */
828
829 /**
830 * @}
831 */
832
833 /** @addtogroup UARTEx_Private_Functions
834 * @{
835 */
836
837 /**
838 * @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection.
839 * @param huart UART handle.
840 * @param WakeUpSelection UART wake up from stop mode parameters.
841 * @retval None
842 */
UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef * huart,UART_WakeUpTypeDef WakeUpSelection)843 static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection)
844 {
845 assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength));
846
847 /* Set the USART address length */
848 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength);
849
850 /* Set the USART address node */
851 MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS));
852 }
853
854 /**
855 * @}
856 */
857
858 #endif /* HAL_UART_MODULE_ENABLED */
859
860 /**
861 * @}
862 */
863
864 /**
865 * @}
866 */
867
868