1 /**
2 ******************************************************************************
3 * @file stm32g0xx_hal_tim.c
4 * @author MCD Application Team
5 * @brief TIM HAL module driver.
6 * This file provides firmware functions to manage the following
7 * functionalities of the Timer (TIM) peripheral:
8 * + TIM Time Base Initialization
9 * + TIM Time Base Start
10 * + TIM Time Base Start Interruption
11 * + TIM Time Base Start DMA
12 * + TIM Output Compare/PWM Initialization
13 * + TIM Output Compare/PWM Channel Configuration
14 * + TIM Output Compare/PWM Start
15 * + TIM Output Compare/PWM Start Interruption
16 * + TIM Output Compare/PWM Start DMA
17 * + TIM Input Capture Initialization
18 * + TIM Input Capture Channel Configuration
19 * + TIM Input Capture Start
20 * + TIM Input Capture Start Interruption
21 * + TIM Input Capture Start DMA
22 * + TIM One Pulse Initialization
23 * + TIM One Pulse Channel Configuration
24 * + TIM One Pulse Start
25 * + TIM Encoder Interface Initialization
26 * + TIM Encoder Interface Start
27 * + TIM Encoder Interface Start Interruption
28 * + TIM Encoder Interface Start DMA
29 * + Commutation Event configuration with Interruption and DMA
30 * + TIM OCRef clear configuration
31 * + TIM External Clock configuration
32 ******************************************************************************
33 * @attention
34 *
35 * Copyright (c) 2018 STMicroelectronics.
36 * All rights reserved.
37 *
38 * This software is licensed under terms that can be found in the LICENSE file
39 * in the root directory of this software component.
40 * If no LICENSE file comes with this software, it is provided AS-IS.
41 *
42 ******************************************************************************
43 @verbatim
44 ==============================================================================
45 ##### TIMER Generic features #####
46 ==============================================================================
47 [..] The Timer features include:
48 (#) 16-bit up, down, up/down auto-reload counter.
49 (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50 counter clock frequency either by any factor between 1 and 65536.
51 (#) Up to 4 independent channels for:
52 (++) Input Capture
53 (++) Output Compare
54 (++) PWM generation (Edge and Center-aligned Mode)
55 (++) One-pulse mode output
56 (#) Synchronization circuit to control the timer with external signals and to interconnect
57 several timers together.
58 (#) Supports incremental encoder for positioning purposes
59
60 ##### How to use this driver #####
61 ==============================================================================
62 [..]
63 (#) Initialize the TIM low level resources by implementing the following functions
64 depending on the selected feature:
65 (++) Time Base : HAL_TIM_Base_MspInit()
66 (++) Input Capture : HAL_TIM_IC_MspInit()
67 (++) Output Compare : HAL_TIM_OC_MspInit()
68 (++) PWM generation : HAL_TIM_PWM_MspInit()
69 (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70 (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71
72 (#) Initialize the TIM low level resources :
73 (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74 (##) TIM pins configuration
75 (+++) Enable the clock for the TIM GPIOs using the following function:
76 __HAL_RCC_GPIOx_CLK_ENABLE();
77 (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78
79 (#) The external Clock can be configured, if needed (the default clock is the
80 internal clock from the APBx), using the following function:
81 HAL_TIM_ConfigClockSource, the clock configuration should be done before
82 any start function.
83
84 (#) Configure the TIM in the desired functioning mode using one of the
85 Initialization function of this driver:
86 (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87 (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88 Output Compare signal.
89 (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90 PWM signal.
91 (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92 external signal.
93 (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94 in One Pulse Mode.
95 (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96
97 (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98 (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99 (++) Input Capture : HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100 (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101 (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102 (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103 (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104
105 (#) The DMA Burst is managed with the two following functions:
106 HAL_TIM_DMABurst_WriteStart()
107 HAL_TIM_DMABurst_ReadStart()
108
109 *** Callback registration ***
110 =============================================
111
112 [..]
113 The compilation define USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114 allows the user to configure dynamically the driver callbacks.
115
116 [..]
117 Use Function HAL_TIM_RegisterCallback() to register a callback.
118 HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119 the Callback ID and a pointer to the user callback function.
120
121 [..]
122 Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123 weak function.
124 HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125 and the Callback ID.
126
127 [..]
128 These functions allow to register/unregister following callbacks:
129 (+) Base_MspInitCallback : TIM Base Msp Init Callback.
130 (+) Base_MspDeInitCallback : TIM Base Msp DeInit Callback.
131 (+) IC_MspInitCallback : TIM IC Msp Init Callback.
132 (+) IC_MspDeInitCallback : TIM IC Msp DeInit Callback.
133 (+) OC_MspInitCallback : TIM OC Msp Init Callback.
134 (+) OC_MspDeInitCallback : TIM OC Msp DeInit Callback.
135 (+) PWM_MspInitCallback : TIM PWM Msp Init Callback.
136 (+) PWM_MspDeInitCallback : TIM PWM Msp DeInit Callback.
137 (+) OnePulse_MspInitCallback : TIM One Pulse Msp Init Callback.
138 (+) OnePulse_MspDeInitCallback : TIM One Pulse Msp DeInit Callback.
139 (+) Encoder_MspInitCallback : TIM Encoder Msp Init Callback.
140 (+) Encoder_MspDeInitCallback : TIM Encoder Msp DeInit Callback.
141 (+) HallSensor_MspInitCallback : TIM Hall Sensor Msp Init Callback.
142 (+) HallSensor_MspDeInitCallback : TIM Hall Sensor Msp DeInit Callback.
143 (+) PeriodElapsedCallback : TIM Period Elapsed Callback.
144 (+) PeriodElapsedHalfCpltCallback : TIM Period Elapsed half complete Callback.
145 (+) TriggerCallback : TIM Trigger Callback.
146 (+) TriggerHalfCpltCallback : TIM Trigger half complete Callback.
147 (+) IC_CaptureCallback : TIM Input Capture Callback.
148 (+) IC_CaptureHalfCpltCallback : TIM Input Capture half complete Callback.
149 (+) OC_DelayElapsedCallback : TIM Output Compare Delay Elapsed Callback.
150 (+) PWM_PulseFinishedCallback : TIM PWM Pulse Finished Callback.
151 (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152 (+) ErrorCallback : TIM Error Callback.
153 (+) CommutationCallback : TIM Commutation Callback.
154 (+) CommutationHalfCpltCallback : TIM Commutation half complete Callback.
155 (+) BreakCallback : TIM Break Callback.
156 (+) Break2Callback : TIM Break2 Callback.
157
158 [..]
159 By default, after the Init and when the state is HAL_TIM_STATE_RESET
160 all interrupt callbacks are set to the corresponding weak functions:
161 examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
162
163 [..]
164 Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
165 functionalities in the Init / DeInit only when these callbacks are null
166 (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
167 keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
168
169 [..]
170 Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
171 Exception done MspInit / MspDeInit that can be registered / unregistered
172 in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
173 thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
174 In that case first register the MspInit/MspDeInit user callbacks
175 using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
176
177 [..]
178 When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
179 not defined, the callback registration feature is not available and all callbacks
180 are set to the corresponding weak functions.
181
182 @endverbatim
183 ******************************************************************************
184 */
185
186 /* Includes ------------------------------------------------------------------*/
187 #include "stm32g0xx_hal.h"
188
189 /** @addtogroup STM32G0xx_HAL_Driver
190 * @{
191 */
192
193 /** @defgroup TIM TIM
194 * @brief TIM HAL module driver
195 * @{
196 */
197
198 #ifdef HAL_TIM_MODULE_ENABLED
199
200 /* Private typedef -----------------------------------------------------------*/
201 /* Private define ------------------------------------------------------------*/
202 /** @addtogroup TIM_Private_Constants
203 * @{
204 */
205 #define TIMx_OR1_OCREF_CLR 0x00000001U
206 /**
207 * @}
208 */
209
210 /* Private macros ------------------------------------------------------------*/
211 /* Private variables ---------------------------------------------------------*/
212 /* Private function prototypes -----------------------------------------------*/
213 /** @addtogroup TIM_Private_Functions
214 * @{
215 */
216 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
217 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
218 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
219 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
220 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
221 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
222 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
223 uint32_t TIM_ICFilter);
224 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
225 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
226 uint32_t TIM_ICFilter);
227 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
228 uint32_t TIM_ICFilter);
229 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
230 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
231 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
232 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
233 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
234 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
235 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
236 const TIM_SlaveConfigTypeDef *sSlaveConfig);
237 /**
238 * @}
239 */
240 /* Exported functions --------------------------------------------------------*/
241
242 /** @defgroup TIM_Exported_Functions TIM Exported Functions
243 * @{
244 */
245
246 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
247 * @brief Time Base functions
248 *
249 @verbatim
250 ==============================================================================
251 ##### Time Base functions #####
252 ==============================================================================
253 [..]
254 This section provides functions allowing to:
255 (+) Initialize and configure the TIM base.
256 (+) De-initialize the TIM base.
257 (+) Start the Time Base.
258 (+) Stop the Time Base.
259 (+) Start the Time Base and enable interrupt.
260 (+) Stop the Time Base and disable interrupt.
261 (+) Start the Time Base and enable DMA transfer.
262 (+) Stop the Time Base and disable DMA transfer.
263
264 @endverbatim
265 * @{
266 */
267 /**
268 * @brief Initializes the TIM Time base Unit according to the specified
269 * parameters in the TIM_HandleTypeDef and initialize the associated handle.
270 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
271 * requires a timer reset to avoid unexpected direction
272 * due to DIR bit readonly in center aligned mode.
273 * Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
274 * @param htim TIM Base handle
275 * @retval HAL status
276 */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)277 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
278 {
279 /* Check the TIM handle allocation */
280 if (htim == NULL)
281 {
282 return HAL_ERROR;
283 }
284
285 /* Check the parameters */
286 assert_param(IS_TIM_INSTANCE(htim->Instance));
287 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
288 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
289 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
290 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
291
292 if (htim->State == HAL_TIM_STATE_RESET)
293 {
294 /* Allocate lock resource and initialize it */
295 htim->Lock = HAL_UNLOCKED;
296
297 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
298 /* Reset interrupt callbacks to legacy weak callbacks */
299 TIM_ResetCallback(htim);
300
301 if (htim->Base_MspInitCallback == NULL)
302 {
303 htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
304 }
305 /* Init the low level hardware : GPIO, CLOCK, NVIC */
306 htim->Base_MspInitCallback(htim);
307 #else
308 /* Init the low level hardware : GPIO, CLOCK, NVIC */
309 HAL_TIM_Base_MspInit(htim);
310 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
311 }
312
313 /* Set the TIM state */
314 htim->State = HAL_TIM_STATE_BUSY;
315
316 /* Set the Time Base configuration */
317 TIM_Base_SetConfig(htim->Instance, &htim->Init);
318
319 /* Initialize the DMA burst operation state */
320 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
321
322 /* Initialize the TIM channels state */
323 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
324 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
325
326 /* Initialize the TIM state*/
327 htim->State = HAL_TIM_STATE_READY;
328
329 return HAL_OK;
330 }
331
332 /**
333 * @brief DeInitializes the TIM Base peripheral
334 * @param htim TIM Base handle
335 * @retval HAL status
336 */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)337 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
338 {
339 /* Check the parameters */
340 assert_param(IS_TIM_INSTANCE(htim->Instance));
341
342 htim->State = HAL_TIM_STATE_BUSY;
343
344 /* Disable the TIM Peripheral Clock */
345 __HAL_TIM_DISABLE(htim);
346
347 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
348 if (htim->Base_MspDeInitCallback == NULL)
349 {
350 htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
351 }
352 /* DeInit the low level hardware */
353 htim->Base_MspDeInitCallback(htim);
354 #else
355 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
356 HAL_TIM_Base_MspDeInit(htim);
357 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
358
359 /* Change the DMA burst operation state */
360 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
361
362 /* Change the TIM channels state */
363 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
364 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
365
366 /* Change TIM state */
367 htim->State = HAL_TIM_STATE_RESET;
368
369 /* Release Lock */
370 __HAL_UNLOCK(htim);
371
372 return HAL_OK;
373 }
374
375 /**
376 * @brief Initializes the TIM Base MSP.
377 * @param htim TIM Base handle
378 * @retval None
379 */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)380 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
381 {
382 /* Prevent unused argument(s) compilation warning */
383 UNUSED(htim);
384
385 /* NOTE : This function should not be modified, when the callback is needed,
386 the HAL_TIM_Base_MspInit could be implemented in the user file
387 */
388 }
389
390 /**
391 * @brief DeInitializes TIM Base MSP.
392 * @param htim TIM Base handle
393 * @retval None
394 */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)395 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
396 {
397 /* Prevent unused argument(s) compilation warning */
398 UNUSED(htim);
399
400 /* NOTE : This function should not be modified, when the callback is needed,
401 the HAL_TIM_Base_MspDeInit could be implemented in the user file
402 */
403 }
404
405
406 /**
407 * @brief Starts the TIM Base generation.
408 * @param htim TIM Base handle
409 * @retval HAL status
410 */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)411 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
412 {
413 uint32_t tmpsmcr;
414
415 /* Check the parameters */
416 assert_param(IS_TIM_INSTANCE(htim->Instance));
417
418 /* Check the TIM state */
419 if (htim->State != HAL_TIM_STATE_READY)
420 {
421 return HAL_ERROR;
422 }
423
424 /* Set the TIM state */
425 htim->State = HAL_TIM_STATE_BUSY;
426
427 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
428 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
429 {
430 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
431 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
432 {
433 __HAL_TIM_ENABLE(htim);
434 }
435 }
436 else
437 {
438 __HAL_TIM_ENABLE(htim);
439 }
440
441 /* Return function status */
442 return HAL_OK;
443 }
444
445 /**
446 * @brief Stops the TIM Base generation.
447 * @param htim TIM Base handle
448 * @retval HAL status
449 */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)450 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
451 {
452 /* Check the parameters */
453 assert_param(IS_TIM_INSTANCE(htim->Instance));
454
455 /* Disable the Peripheral */
456 __HAL_TIM_DISABLE(htim);
457
458 /* Set the TIM state */
459 htim->State = HAL_TIM_STATE_READY;
460
461 /* Return function status */
462 return HAL_OK;
463 }
464
465 /**
466 * @brief Starts the TIM Base generation in interrupt mode.
467 * @param htim TIM Base handle
468 * @retval HAL status
469 */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)470 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
471 {
472 uint32_t tmpsmcr;
473
474 /* Check the parameters */
475 assert_param(IS_TIM_INSTANCE(htim->Instance));
476
477 /* Check the TIM state */
478 if (htim->State != HAL_TIM_STATE_READY)
479 {
480 return HAL_ERROR;
481 }
482
483 /* Set the TIM state */
484 htim->State = HAL_TIM_STATE_BUSY;
485
486 /* Enable the TIM Update interrupt */
487 __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
488
489 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
490 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
491 {
492 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
493 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
494 {
495 __HAL_TIM_ENABLE(htim);
496 }
497 }
498 else
499 {
500 __HAL_TIM_ENABLE(htim);
501 }
502
503 /* Return function status */
504 return HAL_OK;
505 }
506
507 /**
508 * @brief Stops the TIM Base generation in interrupt mode.
509 * @param htim TIM Base handle
510 * @retval HAL status
511 */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)512 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
513 {
514 /* Check the parameters */
515 assert_param(IS_TIM_INSTANCE(htim->Instance));
516
517 /* Disable the TIM Update interrupt */
518 __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
519
520 /* Disable the Peripheral */
521 __HAL_TIM_DISABLE(htim);
522
523 /* Set the TIM state */
524 htim->State = HAL_TIM_STATE_READY;
525
526 /* Return function status */
527 return HAL_OK;
528 }
529
530 /**
531 * @brief Starts the TIM Base generation in DMA mode.
532 * @param htim TIM Base handle
533 * @param pData The source Buffer address.
534 * @param Length The length of data to be transferred from memory to peripheral.
535 * @retval HAL status
536 */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)537 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
538 {
539 uint32_t tmpsmcr;
540
541 /* Check the parameters */
542 assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
543
544 /* Set the TIM state */
545 if (htim->State == HAL_TIM_STATE_BUSY)
546 {
547 return HAL_BUSY;
548 }
549 else if (htim->State == HAL_TIM_STATE_READY)
550 {
551 if ((pData == NULL) || (Length == 0U))
552 {
553 return HAL_ERROR;
554 }
555 else
556 {
557 htim->State = HAL_TIM_STATE_BUSY;
558 }
559 }
560 else
561 {
562 return HAL_ERROR;
563 }
564
565 /* Set the DMA Period elapsed callbacks */
566 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
567 htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
568
569 /* Set the DMA error callback */
570 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
571
572 /* Enable the DMA channel */
573 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
574 Length) != HAL_OK)
575 {
576 /* Return error status */
577 return HAL_ERROR;
578 }
579
580 /* Enable the TIM Update DMA request */
581 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
582
583 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
584 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
585 {
586 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
587 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
588 {
589 __HAL_TIM_ENABLE(htim);
590 }
591 }
592 else
593 {
594 __HAL_TIM_ENABLE(htim);
595 }
596
597 /* Return function status */
598 return HAL_OK;
599 }
600
601 /**
602 * @brief Stops the TIM Base generation in DMA mode.
603 * @param htim TIM Base handle
604 * @retval HAL status
605 */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)606 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
607 {
608 /* Check the parameters */
609 assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
610
611 /* Disable the TIM Update DMA request */
612 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
613
614 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
615
616 /* Disable the Peripheral */
617 __HAL_TIM_DISABLE(htim);
618
619 /* Set the TIM state */
620 htim->State = HAL_TIM_STATE_READY;
621
622 /* Return function status */
623 return HAL_OK;
624 }
625
626 /**
627 * @}
628 */
629
630 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
631 * @brief TIM Output Compare functions
632 *
633 @verbatim
634 ==============================================================================
635 ##### TIM Output Compare functions #####
636 ==============================================================================
637 [..]
638 This section provides functions allowing to:
639 (+) Initialize and configure the TIM Output Compare.
640 (+) De-initialize the TIM Output Compare.
641 (+) Start the TIM Output Compare.
642 (+) Stop the TIM Output Compare.
643 (+) Start the TIM Output Compare and enable interrupt.
644 (+) Stop the TIM Output Compare and disable interrupt.
645 (+) Start the TIM Output Compare and enable DMA transfer.
646 (+) Stop the TIM Output Compare and disable DMA transfer.
647
648 @endverbatim
649 * @{
650 */
651 /**
652 * @brief Initializes the TIM Output Compare according to the specified
653 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
654 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
655 * requires a timer reset to avoid unexpected direction
656 * due to DIR bit readonly in center aligned mode.
657 * Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
658 * @param htim TIM Output Compare handle
659 * @retval HAL status
660 */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)661 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
662 {
663 /* Check the TIM handle allocation */
664 if (htim == NULL)
665 {
666 return HAL_ERROR;
667 }
668
669 /* Check the parameters */
670 assert_param(IS_TIM_INSTANCE(htim->Instance));
671 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
672 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
673 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
674 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
675
676 if (htim->State == HAL_TIM_STATE_RESET)
677 {
678 /* Allocate lock resource and initialize it */
679 htim->Lock = HAL_UNLOCKED;
680
681 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
682 /* Reset interrupt callbacks to legacy weak callbacks */
683 TIM_ResetCallback(htim);
684
685 if (htim->OC_MspInitCallback == NULL)
686 {
687 htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
688 }
689 /* Init the low level hardware : GPIO, CLOCK, NVIC */
690 htim->OC_MspInitCallback(htim);
691 #else
692 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
693 HAL_TIM_OC_MspInit(htim);
694 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
695 }
696
697 /* Set the TIM state */
698 htim->State = HAL_TIM_STATE_BUSY;
699
700 /* Init the base time for the Output Compare */
701 TIM_Base_SetConfig(htim->Instance, &htim->Init);
702
703 /* Initialize the DMA burst operation state */
704 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
705
706 /* Initialize the TIM channels state */
707 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
708 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
709
710 /* Initialize the TIM state*/
711 htim->State = HAL_TIM_STATE_READY;
712
713 return HAL_OK;
714 }
715
716 /**
717 * @brief DeInitializes the TIM peripheral
718 * @param htim TIM Output Compare handle
719 * @retval HAL status
720 */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)721 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
722 {
723 /* Check the parameters */
724 assert_param(IS_TIM_INSTANCE(htim->Instance));
725
726 htim->State = HAL_TIM_STATE_BUSY;
727
728 /* Disable the TIM Peripheral Clock */
729 __HAL_TIM_DISABLE(htim);
730
731 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
732 if (htim->OC_MspDeInitCallback == NULL)
733 {
734 htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
735 }
736 /* DeInit the low level hardware */
737 htim->OC_MspDeInitCallback(htim);
738 #else
739 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
740 HAL_TIM_OC_MspDeInit(htim);
741 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
742
743 /* Change the DMA burst operation state */
744 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
745
746 /* Change the TIM channels state */
747 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
748 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
749
750 /* Change TIM state */
751 htim->State = HAL_TIM_STATE_RESET;
752
753 /* Release Lock */
754 __HAL_UNLOCK(htim);
755
756 return HAL_OK;
757 }
758
759 /**
760 * @brief Initializes the TIM Output Compare MSP.
761 * @param htim TIM Output Compare handle
762 * @retval None
763 */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)764 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
765 {
766 /* Prevent unused argument(s) compilation warning */
767 UNUSED(htim);
768
769 /* NOTE : This function should not be modified, when the callback is needed,
770 the HAL_TIM_OC_MspInit could be implemented in the user file
771 */
772 }
773
774 /**
775 * @brief DeInitializes TIM Output Compare MSP.
776 * @param htim TIM Output Compare handle
777 * @retval None
778 */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)779 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
780 {
781 /* Prevent unused argument(s) compilation warning */
782 UNUSED(htim);
783
784 /* NOTE : This function should not be modified, when the callback is needed,
785 the HAL_TIM_OC_MspDeInit could be implemented in the user file
786 */
787 }
788
789 /**
790 * @brief Starts the TIM Output Compare signal generation.
791 * @param htim TIM Output Compare handle
792 * @param Channel TIM Channel to be enabled
793 * This parameter can be one of the following values:
794 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
795 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
796 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
797 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
798 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
799 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
800 * @retval HAL status
801 */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)802 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
803 {
804 uint32_t tmpsmcr;
805
806 /* Check the parameters */
807 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
808
809 /* Check the TIM channel state */
810 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
811 {
812 return HAL_ERROR;
813 }
814
815 /* Set the TIM channel state */
816 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
817
818 /* Enable the Output compare channel */
819 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
820
821 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
822 {
823 /* Enable the main output */
824 __HAL_TIM_MOE_ENABLE(htim);
825 }
826
827 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
828 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
829 {
830 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
831 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
832 {
833 __HAL_TIM_ENABLE(htim);
834 }
835 }
836 else
837 {
838 __HAL_TIM_ENABLE(htim);
839 }
840
841 /* Return function status */
842 return HAL_OK;
843 }
844
845 /**
846 * @brief Stops the TIM Output Compare signal generation.
847 * @param htim TIM Output Compare handle
848 * @param Channel TIM Channel to be disabled
849 * This parameter can be one of the following values:
850 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
851 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
852 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
853 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
854 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
855 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
856 * @retval HAL status
857 */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)858 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
859 {
860 /* Check the parameters */
861 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
862
863 /* Disable the Output compare channel */
864 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
865
866 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
867 {
868 /* Disable the Main Output */
869 __HAL_TIM_MOE_DISABLE(htim);
870 }
871
872 /* Disable the Peripheral */
873 __HAL_TIM_DISABLE(htim);
874
875 /* Set the TIM channel state */
876 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
877
878 /* Return function status */
879 return HAL_OK;
880 }
881
882 /**
883 * @brief Starts the TIM Output Compare signal generation in interrupt mode.
884 * @param htim TIM Output Compare handle
885 * @param Channel TIM Channel to be enabled
886 * This parameter can be one of the following values:
887 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
888 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
889 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
890 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
891 * @retval HAL status
892 */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)893 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
894 {
895 HAL_StatusTypeDef status = HAL_OK;
896 uint32_t tmpsmcr;
897
898 /* Check the parameters */
899 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
900
901 /* Check the TIM channel state */
902 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
903 {
904 return HAL_ERROR;
905 }
906
907 /* Set the TIM channel state */
908 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
909
910 switch (Channel)
911 {
912 case TIM_CHANNEL_1:
913 {
914 /* Enable the TIM Capture/Compare 1 interrupt */
915 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
916 break;
917 }
918
919 case TIM_CHANNEL_2:
920 {
921 /* Enable the TIM Capture/Compare 2 interrupt */
922 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
923 break;
924 }
925
926 case TIM_CHANNEL_3:
927 {
928 /* Enable the TIM Capture/Compare 3 interrupt */
929 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
930 break;
931 }
932
933 case TIM_CHANNEL_4:
934 {
935 /* Enable the TIM Capture/Compare 4 interrupt */
936 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
937 break;
938 }
939
940 default:
941 status = HAL_ERROR;
942 break;
943 }
944
945 if (status == HAL_OK)
946 {
947 /* Enable the Output compare channel */
948 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
949
950 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
951 {
952 /* Enable the main output */
953 __HAL_TIM_MOE_ENABLE(htim);
954 }
955
956 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
957 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
958 {
959 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
960 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
961 {
962 __HAL_TIM_ENABLE(htim);
963 }
964 }
965 else
966 {
967 __HAL_TIM_ENABLE(htim);
968 }
969 }
970
971 /* Return function status */
972 return status;
973 }
974
975 /**
976 * @brief Stops the TIM Output Compare signal generation in interrupt mode.
977 * @param htim TIM Output Compare handle
978 * @param Channel TIM Channel to be disabled
979 * This parameter can be one of the following values:
980 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
981 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
982 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
983 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
984 * @retval HAL status
985 */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)986 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
987 {
988 HAL_StatusTypeDef status = HAL_OK;
989
990 /* Check the parameters */
991 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
992
993 switch (Channel)
994 {
995 case TIM_CHANNEL_1:
996 {
997 /* Disable the TIM Capture/Compare 1 interrupt */
998 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
999 break;
1000 }
1001
1002 case TIM_CHANNEL_2:
1003 {
1004 /* Disable the TIM Capture/Compare 2 interrupt */
1005 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1006 break;
1007 }
1008
1009 case TIM_CHANNEL_3:
1010 {
1011 /* Disable the TIM Capture/Compare 3 interrupt */
1012 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1013 break;
1014 }
1015
1016 case TIM_CHANNEL_4:
1017 {
1018 /* Disable the TIM Capture/Compare 4 interrupt */
1019 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1020 break;
1021 }
1022
1023 default:
1024 status = HAL_ERROR;
1025 break;
1026 }
1027
1028 if (status == HAL_OK)
1029 {
1030 /* Disable the Output compare channel */
1031 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1032
1033 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1034 {
1035 /* Disable the Main Output */
1036 __HAL_TIM_MOE_DISABLE(htim);
1037 }
1038
1039 /* Disable the Peripheral */
1040 __HAL_TIM_DISABLE(htim);
1041
1042 /* Set the TIM channel state */
1043 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1044 }
1045
1046 /* Return function status */
1047 return status;
1048 }
1049
1050 /**
1051 * @brief Starts the TIM Output Compare signal generation in DMA mode.
1052 * @param htim TIM Output Compare handle
1053 * @param Channel TIM Channel to be enabled
1054 * This parameter can be one of the following values:
1055 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1056 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1057 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1058 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1059 * @param pData The source Buffer address.
1060 * @param Length The length of data to be transferred from memory to TIM peripheral
1061 * @retval HAL status
1062 */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1063 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1064 uint16_t Length)
1065 {
1066 HAL_StatusTypeDef status = HAL_OK;
1067 uint32_t tmpsmcr;
1068
1069 /* Check the parameters */
1070 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1071
1072 /* Set the TIM channel state */
1073 if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1074 {
1075 return HAL_BUSY;
1076 }
1077 else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1078 {
1079 if ((pData == NULL) || (Length == 0U))
1080 {
1081 return HAL_ERROR;
1082 }
1083 else
1084 {
1085 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1086 }
1087 }
1088 else
1089 {
1090 return HAL_ERROR;
1091 }
1092
1093 switch (Channel)
1094 {
1095 case TIM_CHANNEL_1:
1096 {
1097 /* Set the DMA compare callbacks */
1098 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1099 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1100
1101 /* Set the DMA error callback */
1102 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1103
1104 /* Enable the DMA channel */
1105 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1106 Length) != HAL_OK)
1107 {
1108 /* Return error status */
1109 return HAL_ERROR;
1110 }
1111
1112 /* Enable the TIM Capture/Compare 1 DMA request */
1113 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1114 break;
1115 }
1116
1117 case TIM_CHANNEL_2:
1118 {
1119 /* Set the DMA compare callbacks */
1120 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1121 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1122
1123 /* Set the DMA error callback */
1124 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1125
1126 /* Enable the DMA channel */
1127 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1128 Length) != HAL_OK)
1129 {
1130 /* Return error status */
1131 return HAL_ERROR;
1132 }
1133
1134 /* Enable the TIM Capture/Compare 2 DMA request */
1135 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1136 break;
1137 }
1138
1139 case TIM_CHANNEL_3:
1140 {
1141 /* Set the DMA compare callbacks */
1142 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1143 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1144
1145 /* Set the DMA error callback */
1146 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1147
1148 /* Enable the DMA channel */
1149 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1150 Length) != HAL_OK)
1151 {
1152 /* Return error status */
1153 return HAL_ERROR;
1154 }
1155 /* Enable the TIM Capture/Compare 3 DMA request */
1156 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1157 break;
1158 }
1159
1160 case TIM_CHANNEL_4:
1161 {
1162 /* Set the DMA compare callbacks */
1163 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1164 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1165
1166 /* Set the DMA error callback */
1167 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1168
1169 /* Enable the DMA channel */
1170 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1171 Length) != HAL_OK)
1172 {
1173 /* Return error status */
1174 return HAL_ERROR;
1175 }
1176 /* Enable the TIM Capture/Compare 4 DMA request */
1177 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1178 break;
1179 }
1180
1181 default:
1182 status = HAL_ERROR;
1183 break;
1184 }
1185
1186 if (status == HAL_OK)
1187 {
1188 /* Enable the Output compare channel */
1189 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1190
1191 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1192 {
1193 /* Enable the main output */
1194 __HAL_TIM_MOE_ENABLE(htim);
1195 }
1196
1197 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1198 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1199 {
1200 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1201 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1202 {
1203 __HAL_TIM_ENABLE(htim);
1204 }
1205 }
1206 else
1207 {
1208 __HAL_TIM_ENABLE(htim);
1209 }
1210 }
1211
1212 /* Return function status */
1213 return status;
1214 }
1215
1216 /**
1217 * @brief Stops the TIM Output Compare signal generation in DMA mode.
1218 * @param htim TIM Output Compare handle
1219 * @param Channel TIM Channel to be disabled
1220 * This parameter can be one of the following values:
1221 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1222 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1223 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1224 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1225 * @retval HAL status
1226 */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1227 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1228 {
1229 HAL_StatusTypeDef status = HAL_OK;
1230
1231 /* Check the parameters */
1232 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1233
1234 switch (Channel)
1235 {
1236 case TIM_CHANNEL_1:
1237 {
1238 /* Disable the TIM Capture/Compare 1 DMA request */
1239 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1240 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1241 break;
1242 }
1243
1244 case TIM_CHANNEL_2:
1245 {
1246 /* Disable the TIM Capture/Compare 2 DMA request */
1247 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1248 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1249 break;
1250 }
1251
1252 case TIM_CHANNEL_3:
1253 {
1254 /* Disable the TIM Capture/Compare 3 DMA request */
1255 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1256 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1257 break;
1258 }
1259
1260 case TIM_CHANNEL_4:
1261 {
1262 /* Disable the TIM Capture/Compare 4 interrupt */
1263 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1264 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1265 break;
1266 }
1267
1268 default:
1269 status = HAL_ERROR;
1270 break;
1271 }
1272
1273 if (status == HAL_OK)
1274 {
1275 /* Disable the Output compare channel */
1276 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1277
1278 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1279 {
1280 /* Disable the Main Output */
1281 __HAL_TIM_MOE_DISABLE(htim);
1282 }
1283
1284 /* Disable the Peripheral */
1285 __HAL_TIM_DISABLE(htim);
1286
1287 /* Set the TIM channel state */
1288 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1289 }
1290
1291 /* Return function status */
1292 return status;
1293 }
1294
1295 /**
1296 * @}
1297 */
1298
1299 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1300 * @brief TIM PWM functions
1301 *
1302 @verbatim
1303 ==============================================================================
1304 ##### TIM PWM functions #####
1305 ==============================================================================
1306 [..]
1307 This section provides functions allowing to:
1308 (+) Initialize and configure the TIM PWM.
1309 (+) De-initialize the TIM PWM.
1310 (+) Start the TIM PWM.
1311 (+) Stop the TIM PWM.
1312 (+) Start the TIM PWM and enable interrupt.
1313 (+) Stop the TIM PWM and disable interrupt.
1314 (+) Start the TIM PWM and enable DMA transfer.
1315 (+) Stop the TIM PWM and disable DMA transfer.
1316
1317 @endverbatim
1318 * @{
1319 */
1320 /**
1321 * @brief Initializes the TIM PWM Time Base according to the specified
1322 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
1323 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1324 * requires a timer reset to avoid unexpected direction
1325 * due to DIR bit readonly in center aligned mode.
1326 * Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1327 * @param htim TIM PWM handle
1328 * @retval HAL status
1329 */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1330 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1331 {
1332 /* Check the TIM handle allocation */
1333 if (htim == NULL)
1334 {
1335 return HAL_ERROR;
1336 }
1337
1338 /* Check the parameters */
1339 assert_param(IS_TIM_INSTANCE(htim->Instance));
1340 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1341 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1342 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1343 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1344
1345 if (htim->State == HAL_TIM_STATE_RESET)
1346 {
1347 /* Allocate lock resource and initialize it */
1348 htim->Lock = HAL_UNLOCKED;
1349
1350 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1351 /* Reset interrupt callbacks to legacy weak callbacks */
1352 TIM_ResetCallback(htim);
1353
1354 if (htim->PWM_MspInitCallback == NULL)
1355 {
1356 htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1357 }
1358 /* Init the low level hardware : GPIO, CLOCK, NVIC */
1359 htim->PWM_MspInitCallback(htim);
1360 #else
1361 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1362 HAL_TIM_PWM_MspInit(htim);
1363 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1364 }
1365
1366 /* Set the TIM state */
1367 htim->State = HAL_TIM_STATE_BUSY;
1368
1369 /* Init the base time for the PWM */
1370 TIM_Base_SetConfig(htim->Instance, &htim->Init);
1371
1372 /* Initialize the DMA burst operation state */
1373 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1374
1375 /* Initialize the TIM channels state */
1376 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1377 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1378
1379 /* Initialize the TIM state*/
1380 htim->State = HAL_TIM_STATE_READY;
1381
1382 return HAL_OK;
1383 }
1384
1385 /**
1386 * @brief DeInitializes the TIM peripheral
1387 * @param htim TIM PWM handle
1388 * @retval HAL status
1389 */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1390 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1391 {
1392 /* Check the parameters */
1393 assert_param(IS_TIM_INSTANCE(htim->Instance));
1394
1395 htim->State = HAL_TIM_STATE_BUSY;
1396
1397 /* Disable the TIM Peripheral Clock */
1398 __HAL_TIM_DISABLE(htim);
1399
1400 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1401 if (htim->PWM_MspDeInitCallback == NULL)
1402 {
1403 htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1404 }
1405 /* DeInit the low level hardware */
1406 htim->PWM_MspDeInitCallback(htim);
1407 #else
1408 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1409 HAL_TIM_PWM_MspDeInit(htim);
1410 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1411
1412 /* Change the DMA burst operation state */
1413 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1414
1415 /* Change the TIM channels state */
1416 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1417 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1418
1419 /* Change TIM state */
1420 htim->State = HAL_TIM_STATE_RESET;
1421
1422 /* Release Lock */
1423 __HAL_UNLOCK(htim);
1424
1425 return HAL_OK;
1426 }
1427
1428 /**
1429 * @brief Initializes the TIM PWM MSP.
1430 * @param htim TIM PWM handle
1431 * @retval None
1432 */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1433 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1434 {
1435 /* Prevent unused argument(s) compilation warning */
1436 UNUSED(htim);
1437
1438 /* NOTE : This function should not be modified, when the callback is needed,
1439 the HAL_TIM_PWM_MspInit could be implemented in the user file
1440 */
1441 }
1442
1443 /**
1444 * @brief DeInitializes TIM PWM MSP.
1445 * @param htim TIM PWM handle
1446 * @retval None
1447 */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1448 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1449 {
1450 /* Prevent unused argument(s) compilation warning */
1451 UNUSED(htim);
1452
1453 /* NOTE : This function should not be modified, when the callback is needed,
1454 the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1455 */
1456 }
1457
1458 /**
1459 * @brief Starts the PWM signal generation.
1460 * @param htim TIM handle
1461 * @param Channel TIM Channels to be enabled
1462 * This parameter can be one of the following values:
1463 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1464 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1465 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1466 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1467 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
1468 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
1469 * @retval HAL status
1470 */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1471 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1472 {
1473 uint32_t tmpsmcr;
1474
1475 /* Check the parameters */
1476 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1477
1478 /* Check the TIM channel state */
1479 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1480 {
1481 return HAL_ERROR;
1482 }
1483
1484 /* Set the TIM channel state */
1485 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1486
1487 /* Enable the Capture compare channel */
1488 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1489
1490 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1491 {
1492 /* Enable the main output */
1493 __HAL_TIM_MOE_ENABLE(htim);
1494 }
1495
1496 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1497 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1498 {
1499 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1500 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1501 {
1502 __HAL_TIM_ENABLE(htim);
1503 }
1504 }
1505 else
1506 {
1507 __HAL_TIM_ENABLE(htim);
1508 }
1509
1510 /* Return function status */
1511 return HAL_OK;
1512 }
1513
1514 /**
1515 * @brief Stops the PWM signal generation.
1516 * @param htim TIM PWM handle
1517 * @param Channel TIM Channels to be disabled
1518 * This parameter can be one of the following values:
1519 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1520 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1521 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1522 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1523 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
1524 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
1525 * @retval HAL status
1526 */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1527 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1528 {
1529 /* Check the parameters */
1530 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1531
1532 /* Disable the Capture compare channel */
1533 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1534
1535 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1536 {
1537 /* Disable the Main Output */
1538 __HAL_TIM_MOE_DISABLE(htim);
1539 }
1540
1541 /* Disable the Peripheral */
1542 __HAL_TIM_DISABLE(htim);
1543
1544 /* Set the TIM channel state */
1545 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1546
1547 /* Return function status */
1548 return HAL_OK;
1549 }
1550
1551 /**
1552 * @brief Starts the PWM signal generation in interrupt mode.
1553 * @param htim TIM PWM handle
1554 * @param Channel TIM Channel to be enabled
1555 * This parameter can be one of the following values:
1556 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1557 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1558 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1559 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1560 * @retval HAL status
1561 */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1562 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1563 {
1564 HAL_StatusTypeDef status = HAL_OK;
1565 uint32_t tmpsmcr;
1566
1567 /* Check the parameters */
1568 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1569
1570 /* Check the TIM channel state */
1571 if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1572 {
1573 return HAL_ERROR;
1574 }
1575
1576 /* Set the TIM channel state */
1577 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1578
1579 switch (Channel)
1580 {
1581 case TIM_CHANNEL_1:
1582 {
1583 /* Enable the TIM Capture/Compare 1 interrupt */
1584 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1585 break;
1586 }
1587
1588 case TIM_CHANNEL_2:
1589 {
1590 /* Enable the TIM Capture/Compare 2 interrupt */
1591 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1592 break;
1593 }
1594
1595 case TIM_CHANNEL_3:
1596 {
1597 /* Enable the TIM Capture/Compare 3 interrupt */
1598 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1599 break;
1600 }
1601
1602 case TIM_CHANNEL_4:
1603 {
1604 /* Enable the TIM Capture/Compare 4 interrupt */
1605 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1606 break;
1607 }
1608
1609 default:
1610 status = HAL_ERROR;
1611 break;
1612 }
1613
1614 if (status == HAL_OK)
1615 {
1616 /* Enable the Capture compare channel */
1617 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1618
1619 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1620 {
1621 /* Enable the main output */
1622 __HAL_TIM_MOE_ENABLE(htim);
1623 }
1624
1625 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1626 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1627 {
1628 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1629 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1630 {
1631 __HAL_TIM_ENABLE(htim);
1632 }
1633 }
1634 else
1635 {
1636 __HAL_TIM_ENABLE(htim);
1637 }
1638 }
1639
1640 /* Return function status */
1641 return status;
1642 }
1643
1644 /**
1645 * @brief Stops the PWM signal generation in interrupt mode.
1646 * @param htim TIM PWM handle
1647 * @param Channel TIM Channels to be disabled
1648 * This parameter can be one of the following values:
1649 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1650 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1651 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1652 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1653 * @retval HAL status
1654 */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1655 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1656 {
1657 HAL_StatusTypeDef status = HAL_OK;
1658
1659 /* Check the parameters */
1660 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1661
1662 switch (Channel)
1663 {
1664 case TIM_CHANNEL_1:
1665 {
1666 /* Disable the TIM Capture/Compare 1 interrupt */
1667 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1668 break;
1669 }
1670
1671 case TIM_CHANNEL_2:
1672 {
1673 /* Disable the TIM Capture/Compare 2 interrupt */
1674 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1675 break;
1676 }
1677
1678 case TIM_CHANNEL_3:
1679 {
1680 /* Disable the TIM Capture/Compare 3 interrupt */
1681 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1682 break;
1683 }
1684
1685 case TIM_CHANNEL_4:
1686 {
1687 /* Disable the TIM Capture/Compare 4 interrupt */
1688 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1689 break;
1690 }
1691
1692 default:
1693 status = HAL_ERROR;
1694 break;
1695 }
1696
1697 if (status == HAL_OK)
1698 {
1699 /* Disable the Capture compare channel */
1700 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1701
1702 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1703 {
1704 /* Disable the Main Output */
1705 __HAL_TIM_MOE_DISABLE(htim);
1706 }
1707
1708 /* Disable the Peripheral */
1709 __HAL_TIM_DISABLE(htim);
1710
1711 /* Set the TIM channel state */
1712 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1713 }
1714
1715 /* Return function status */
1716 return status;
1717 }
1718
1719 /**
1720 * @brief Starts the TIM PWM signal generation in DMA mode.
1721 * @param htim TIM PWM handle
1722 * @param Channel TIM Channels to be enabled
1723 * This parameter can be one of the following values:
1724 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1725 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1726 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1727 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1728 * @param pData The source Buffer address.
1729 * @param Length The length of data to be transferred from memory to TIM peripheral
1730 * @retval HAL status
1731 */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1732 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1733 uint16_t Length)
1734 {
1735 HAL_StatusTypeDef status = HAL_OK;
1736 uint32_t tmpsmcr;
1737
1738 /* Check the parameters */
1739 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1740
1741 /* Set the TIM channel state */
1742 if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1743 {
1744 return HAL_BUSY;
1745 }
1746 else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1747 {
1748 if ((pData == NULL) || (Length == 0U))
1749 {
1750 return HAL_ERROR;
1751 }
1752 else
1753 {
1754 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1755 }
1756 }
1757 else
1758 {
1759 return HAL_ERROR;
1760 }
1761
1762 switch (Channel)
1763 {
1764 case TIM_CHANNEL_1:
1765 {
1766 /* Set the DMA compare callbacks */
1767 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1768 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1769
1770 /* Set the DMA error callback */
1771 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1772
1773 /* Enable the DMA channel */
1774 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1775 Length) != HAL_OK)
1776 {
1777 /* Return error status */
1778 return HAL_ERROR;
1779 }
1780
1781 /* Enable the TIM Capture/Compare 1 DMA request */
1782 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1783 break;
1784 }
1785
1786 case TIM_CHANNEL_2:
1787 {
1788 /* Set the DMA compare callbacks */
1789 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1790 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1791
1792 /* Set the DMA error callback */
1793 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1794
1795 /* Enable the DMA channel */
1796 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1797 Length) != HAL_OK)
1798 {
1799 /* Return error status */
1800 return HAL_ERROR;
1801 }
1802 /* Enable the TIM Capture/Compare 2 DMA request */
1803 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1804 break;
1805 }
1806
1807 case TIM_CHANNEL_3:
1808 {
1809 /* Set the DMA compare callbacks */
1810 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1811 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1812
1813 /* Set the DMA error callback */
1814 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1815
1816 /* Enable the DMA channel */
1817 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1818 Length) != HAL_OK)
1819 {
1820 /* Return error status */
1821 return HAL_ERROR;
1822 }
1823 /* Enable the TIM Output Capture/Compare 3 request */
1824 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1825 break;
1826 }
1827
1828 case TIM_CHANNEL_4:
1829 {
1830 /* Set the DMA compare callbacks */
1831 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1832 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1833
1834 /* Set the DMA error callback */
1835 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1836
1837 /* Enable the DMA channel */
1838 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1839 Length) != HAL_OK)
1840 {
1841 /* Return error status */
1842 return HAL_ERROR;
1843 }
1844 /* Enable the TIM Capture/Compare 4 DMA request */
1845 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1846 break;
1847 }
1848
1849 default:
1850 status = HAL_ERROR;
1851 break;
1852 }
1853
1854 if (status == HAL_OK)
1855 {
1856 /* Enable the Capture compare channel */
1857 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1858
1859 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1860 {
1861 /* Enable the main output */
1862 __HAL_TIM_MOE_ENABLE(htim);
1863 }
1864
1865 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1866 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1867 {
1868 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1869 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1870 {
1871 __HAL_TIM_ENABLE(htim);
1872 }
1873 }
1874 else
1875 {
1876 __HAL_TIM_ENABLE(htim);
1877 }
1878 }
1879
1880 /* Return function status */
1881 return status;
1882 }
1883
1884 /**
1885 * @brief Stops the TIM PWM signal generation in DMA mode.
1886 * @param htim TIM PWM handle
1887 * @param Channel TIM Channels to be disabled
1888 * This parameter can be one of the following values:
1889 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
1890 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
1891 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
1892 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
1893 * @retval HAL status
1894 */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1895 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1896 {
1897 HAL_StatusTypeDef status = HAL_OK;
1898
1899 /* Check the parameters */
1900 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1901
1902 switch (Channel)
1903 {
1904 case TIM_CHANNEL_1:
1905 {
1906 /* Disable the TIM Capture/Compare 1 DMA request */
1907 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1908 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1909 break;
1910 }
1911
1912 case TIM_CHANNEL_2:
1913 {
1914 /* Disable the TIM Capture/Compare 2 DMA request */
1915 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1916 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1917 break;
1918 }
1919
1920 case TIM_CHANNEL_3:
1921 {
1922 /* Disable the TIM Capture/Compare 3 DMA request */
1923 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1924 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1925 break;
1926 }
1927
1928 case TIM_CHANNEL_4:
1929 {
1930 /* Disable the TIM Capture/Compare 4 interrupt */
1931 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1932 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1933 break;
1934 }
1935
1936 default:
1937 status = HAL_ERROR;
1938 break;
1939 }
1940
1941 if (status == HAL_OK)
1942 {
1943 /* Disable the Capture compare channel */
1944 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1945
1946 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1947 {
1948 /* Disable the Main Output */
1949 __HAL_TIM_MOE_DISABLE(htim);
1950 }
1951
1952 /* Disable the Peripheral */
1953 __HAL_TIM_DISABLE(htim);
1954
1955 /* Set the TIM channel state */
1956 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1957 }
1958
1959 /* Return function status */
1960 return status;
1961 }
1962
1963 /**
1964 * @}
1965 */
1966
1967 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1968 * @brief TIM Input Capture functions
1969 *
1970 @verbatim
1971 ==============================================================================
1972 ##### TIM Input Capture functions #####
1973 ==============================================================================
1974 [..]
1975 This section provides functions allowing to:
1976 (+) Initialize and configure the TIM Input Capture.
1977 (+) De-initialize the TIM Input Capture.
1978 (+) Start the TIM Input Capture.
1979 (+) Stop the TIM Input Capture.
1980 (+) Start the TIM Input Capture and enable interrupt.
1981 (+) Stop the TIM Input Capture and disable interrupt.
1982 (+) Start the TIM Input Capture and enable DMA transfer.
1983 (+) Stop the TIM Input Capture and disable DMA transfer.
1984
1985 @endverbatim
1986 * @{
1987 */
1988 /**
1989 * @brief Initializes the TIM Input Capture Time base according to the specified
1990 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
1991 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1992 * requires a timer reset to avoid unexpected direction
1993 * due to DIR bit readonly in center aligned mode.
1994 * Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1995 * @param htim TIM Input Capture handle
1996 * @retval HAL status
1997 */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1998 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1999 {
2000 /* Check the TIM handle allocation */
2001 if (htim == NULL)
2002 {
2003 return HAL_ERROR;
2004 }
2005
2006 /* Check the parameters */
2007 assert_param(IS_TIM_INSTANCE(htim->Instance));
2008 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2009 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2010 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2011 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2012
2013 if (htim->State == HAL_TIM_STATE_RESET)
2014 {
2015 /* Allocate lock resource and initialize it */
2016 htim->Lock = HAL_UNLOCKED;
2017
2018 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2019 /* Reset interrupt callbacks to legacy weak callbacks */
2020 TIM_ResetCallback(htim);
2021
2022 if (htim->IC_MspInitCallback == NULL)
2023 {
2024 htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2025 }
2026 /* Init the low level hardware : GPIO, CLOCK, NVIC */
2027 htim->IC_MspInitCallback(htim);
2028 #else
2029 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2030 HAL_TIM_IC_MspInit(htim);
2031 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2032 }
2033
2034 /* Set the TIM state */
2035 htim->State = HAL_TIM_STATE_BUSY;
2036
2037 /* Init the base time for the input capture */
2038 TIM_Base_SetConfig(htim->Instance, &htim->Init);
2039
2040 /* Initialize the DMA burst operation state */
2041 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2042
2043 /* Initialize the TIM channels state */
2044 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2045 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2046
2047 /* Initialize the TIM state*/
2048 htim->State = HAL_TIM_STATE_READY;
2049
2050 return HAL_OK;
2051 }
2052
2053 /**
2054 * @brief DeInitializes the TIM peripheral
2055 * @param htim TIM Input Capture handle
2056 * @retval HAL status
2057 */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2058 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2059 {
2060 /* Check the parameters */
2061 assert_param(IS_TIM_INSTANCE(htim->Instance));
2062
2063 htim->State = HAL_TIM_STATE_BUSY;
2064
2065 /* Disable the TIM Peripheral Clock */
2066 __HAL_TIM_DISABLE(htim);
2067
2068 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2069 if (htim->IC_MspDeInitCallback == NULL)
2070 {
2071 htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2072 }
2073 /* DeInit the low level hardware */
2074 htim->IC_MspDeInitCallback(htim);
2075 #else
2076 /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2077 HAL_TIM_IC_MspDeInit(htim);
2078 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2079
2080 /* Change the DMA burst operation state */
2081 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2082
2083 /* Change the TIM channels state */
2084 TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2085 TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2086
2087 /* Change TIM state */
2088 htim->State = HAL_TIM_STATE_RESET;
2089
2090 /* Release Lock */
2091 __HAL_UNLOCK(htim);
2092
2093 return HAL_OK;
2094 }
2095
2096 /**
2097 * @brief Initializes the TIM Input Capture MSP.
2098 * @param htim TIM Input Capture handle
2099 * @retval None
2100 */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2101 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2102 {
2103 /* Prevent unused argument(s) compilation warning */
2104 UNUSED(htim);
2105
2106 /* NOTE : This function should not be modified, when the callback is needed,
2107 the HAL_TIM_IC_MspInit could be implemented in the user file
2108 */
2109 }
2110
2111 /**
2112 * @brief DeInitializes TIM Input Capture MSP.
2113 * @param htim TIM handle
2114 * @retval None
2115 */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2116 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2117 {
2118 /* Prevent unused argument(s) compilation warning */
2119 UNUSED(htim);
2120
2121 /* NOTE : This function should not be modified, when the callback is needed,
2122 the HAL_TIM_IC_MspDeInit could be implemented in the user file
2123 */
2124 }
2125
2126 /**
2127 * @brief Starts the TIM Input Capture measurement.
2128 * @param htim TIM Input Capture handle
2129 * @param Channel TIM Channels to be enabled
2130 * This parameter can be one of the following values:
2131 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2132 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2133 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2134 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2135 * @retval HAL status
2136 */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2137 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2138 {
2139 uint32_t tmpsmcr;
2140 HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2141 HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2142
2143 /* Check the parameters */
2144 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2145
2146 /* Check the TIM channel state */
2147 if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2148 || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2149 {
2150 return HAL_ERROR;
2151 }
2152
2153 /* Set the TIM channel state */
2154 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2155 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2156
2157 /* Enable the Input Capture channel */
2158 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2159
2160 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2161 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2162 {
2163 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2164 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2165 {
2166 __HAL_TIM_ENABLE(htim);
2167 }
2168 }
2169 else
2170 {
2171 __HAL_TIM_ENABLE(htim);
2172 }
2173
2174 /* Return function status */
2175 return HAL_OK;
2176 }
2177
2178 /**
2179 * @brief Stops the TIM Input Capture measurement.
2180 * @param htim TIM Input Capture handle
2181 * @param Channel TIM Channels to be disabled
2182 * This parameter can be one of the following values:
2183 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2184 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2185 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2186 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2187 * @retval HAL status
2188 */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2189 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2190 {
2191 /* Check the parameters */
2192 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2193
2194 /* Disable the Input Capture channel */
2195 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2196
2197 /* Disable the Peripheral */
2198 __HAL_TIM_DISABLE(htim);
2199
2200 /* Set the TIM channel state */
2201 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2202 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2203
2204 /* Return function status */
2205 return HAL_OK;
2206 }
2207
2208 /**
2209 * @brief Starts the TIM Input Capture measurement in interrupt mode.
2210 * @param htim TIM Input Capture handle
2211 * @param Channel TIM Channels to be enabled
2212 * This parameter can be one of the following values:
2213 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2214 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2215 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2216 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2217 * @retval HAL status
2218 */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2219 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2220 {
2221 HAL_StatusTypeDef status = HAL_OK;
2222 uint32_t tmpsmcr;
2223
2224 HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2225 HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2226
2227 /* Check the parameters */
2228 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2229
2230 /* Check the TIM channel state */
2231 if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2232 || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2233 {
2234 return HAL_ERROR;
2235 }
2236
2237 /* Set the TIM channel state */
2238 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2239 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2240
2241 switch (Channel)
2242 {
2243 case TIM_CHANNEL_1:
2244 {
2245 /* Enable the TIM Capture/Compare 1 interrupt */
2246 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2247 break;
2248 }
2249
2250 case TIM_CHANNEL_2:
2251 {
2252 /* Enable the TIM Capture/Compare 2 interrupt */
2253 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2254 break;
2255 }
2256
2257 case TIM_CHANNEL_3:
2258 {
2259 /* Enable the TIM Capture/Compare 3 interrupt */
2260 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2261 break;
2262 }
2263
2264 case TIM_CHANNEL_4:
2265 {
2266 /* Enable the TIM Capture/Compare 4 interrupt */
2267 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2268 break;
2269 }
2270
2271 default:
2272 status = HAL_ERROR;
2273 break;
2274 }
2275
2276 if (status == HAL_OK)
2277 {
2278 /* Enable the Input Capture channel */
2279 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2280
2281 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2282 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2283 {
2284 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2285 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2286 {
2287 __HAL_TIM_ENABLE(htim);
2288 }
2289 }
2290 else
2291 {
2292 __HAL_TIM_ENABLE(htim);
2293 }
2294 }
2295
2296 /* Return function status */
2297 return status;
2298 }
2299
2300 /**
2301 * @brief Stops the TIM Input Capture measurement in interrupt mode.
2302 * @param htim TIM Input Capture handle
2303 * @param Channel TIM Channels to be disabled
2304 * This parameter can be one of the following values:
2305 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2306 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2307 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2308 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2309 * @retval HAL status
2310 */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2311 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2312 {
2313 HAL_StatusTypeDef status = HAL_OK;
2314
2315 /* Check the parameters */
2316 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2317
2318 switch (Channel)
2319 {
2320 case TIM_CHANNEL_1:
2321 {
2322 /* Disable the TIM Capture/Compare 1 interrupt */
2323 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2324 break;
2325 }
2326
2327 case TIM_CHANNEL_2:
2328 {
2329 /* Disable the TIM Capture/Compare 2 interrupt */
2330 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2331 break;
2332 }
2333
2334 case TIM_CHANNEL_3:
2335 {
2336 /* Disable the TIM Capture/Compare 3 interrupt */
2337 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2338 break;
2339 }
2340
2341 case TIM_CHANNEL_4:
2342 {
2343 /* Disable the TIM Capture/Compare 4 interrupt */
2344 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2345 break;
2346 }
2347
2348 default:
2349 status = HAL_ERROR;
2350 break;
2351 }
2352
2353 if (status == HAL_OK)
2354 {
2355 /* Disable the Input Capture channel */
2356 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2357
2358 /* Disable the Peripheral */
2359 __HAL_TIM_DISABLE(htim);
2360
2361 /* Set the TIM channel state */
2362 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2363 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2364 }
2365
2366 /* Return function status */
2367 return status;
2368 }
2369
2370 /**
2371 * @brief Starts the TIM Input Capture measurement in DMA mode.
2372 * @param htim TIM Input Capture handle
2373 * @param Channel TIM Channels to be enabled
2374 * This parameter can be one of the following values:
2375 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2376 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2377 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2378 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2379 * @param pData The destination Buffer address.
2380 * @param Length The length of data to be transferred from TIM peripheral to memory.
2381 * @retval HAL status
2382 */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2383 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2384 {
2385 HAL_StatusTypeDef status = HAL_OK;
2386 uint32_t tmpsmcr;
2387
2388 HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2389 HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2390
2391 /* Check the parameters */
2392 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2393 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2394
2395 /* Set the TIM channel state */
2396 if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2397 || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2398 {
2399 return HAL_BUSY;
2400 }
2401 else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2402 && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2403 {
2404 if ((pData == NULL) || (Length == 0U))
2405 {
2406 return HAL_ERROR;
2407 }
2408 else
2409 {
2410 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2411 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2412 }
2413 }
2414 else
2415 {
2416 return HAL_ERROR;
2417 }
2418
2419 /* Enable the Input Capture channel */
2420 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2421
2422 switch (Channel)
2423 {
2424 case TIM_CHANNEL_1:
2425 {
2426 /* Set the DMA capture callbacks */
2427 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2428 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2429
2430 /* Set the DMA error callback */
2431 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2432
2433 /* Enable the DMA channel */
2434 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2435 Length) != HAL_OK)
2436 {
2437 /* Return error status */
2438 return HAL_ERROR;
2439 }
2440 /* Enable the TIM Capture/Compare 1 DMA request */
2441 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2442 break;
2443 }
2444
2445 case TIM_CHANNEL_2:
2446 {
2447 /* Set the DMA capture callbacks */
2448 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2449 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2450
2451 /* Set the DMA error callback */
2452 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2453
2454 /* Enable the DMA channel */
2455 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2456 Length) != HAL_OK)
2457 {
2458 /* Return error status */
2459 return HAL_ERROR;
2460 }
2461 /* Enable the TIM Capture/Compare 2 DMA request */
2462 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2463 break;
2464 }
2465
2466 case TIM_CHANNEL_3:
2467 {
2468 /* Set the DMA capture callbacks */
2469 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2470 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2471
2472 /* Set the DMA error callback */
2473 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2474
2475 /* Enable the DMA channel */
2476 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2477 Length) != HAL_OK)
2478 {
2479 /* Return error status */
2480 return HAL_ERROR;
2481 }
2482 /* Enable the TIM Capture/Compare 3 DMA request */
2483 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2484 break;
2485 }
2486
2487 case TIM_CHANNEL_4:
2488 {
2489 /* Set the DMA capture callbacks */
2490 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2491 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2492
2493 /* Set the DMA error callback */
2494 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2495
2496 /* Enable the DMA channel */
2497 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2498 Length) != HAL_OK)
2499 {
2500 /* Return error status */
2501 return HAL_ERROR;
2502 }
2503 /* Enable the TIM Capture/Compare 4 DMA request */
2504 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2505 break;
2506 }
2507
2508 default:
2509 status = HAL_ERROR;
2510 break;
2511 }
2512
2513 /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2514 if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2515 {
2516 tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2517 if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2518 {
2519 __HAL_TIM_ENABLE(htim);
2520 }
2521 }
2522 else
2523 {
2524 __HAL_TIM_ENABLE(htim);
2525 }
2526
2527 /* Return function status */
2528 return status;
2529 }
2530
2531 /**
2532 * @brief Stops the TIM Input Capture measurement in DMA mode.
2533 * @param htim TIM Input Capture handle
2534 * @param Channel TIM Channels to be disabled
2535 * This parameter can be one of the following values:
2536 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
2537 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
2538 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
2539 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
2540 * @retval HAL status
2541 */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2542 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2543 {
2544 HAL_StatusTypeDef status = HAL_OK;
2545
2546 /* Check the parameters */
2547 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2548 assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2549
2550 /* Disable the Input Capture channel */
2551 TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2552
2553 switch (Channel)
2554 {
2555 case TIM_CHANNEL_1:
2556 {
2557 /* Disable the TIM Capture/Compare 1 DMA request */
2558 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2559 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2560 break;
2561 }
2562
2563 case TIM_CHANNEL_2:
2564 {
2565 /* Disable the TIM Capture/Compare 2 DMA request */
2566 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2567 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2568 break;
2569 }
2570
2571 case TIM_CHANNEL_3:
2572 {
2573 /* Disable the TIM Capture/Compare 3 DMA request */
2574 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2575 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2576 break;
2577 }
2578
2579 case TIM_CHANNEL_4:
2580 {
2581 /* Disable the TIM Capture/Compare 4 DMA request */
2582 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2583 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2584 break;
2585 }
2586
2587 default:
2588 status = HAL_ERROR;
2589 break;
2590 }
2591
2592 if (status == HAL_OK)
2593 {
2594 /* Disable the Peripheral */
2595 __HAL_TIM_DISABLE(htim);
2596
2597 /* Set the TIM channel state */
2598 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2599 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2600 }
2601
2602 /* Return function status */
2603 return status;
2604 }
2605 /**
2606 * @}
2607 */
2608
2609 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2610 * @brief TIM One Pulse functions
2611 *
2612 @verbatim
2613 ==============================================================================
2614 ##### TIM One Pulse functions #####
2615 ==============================================================================
2616 [..]
2617 This section provides functions allowing to:
2618 (+) Initialize and configure the TIM One Pulse.
2619 (+) De-initialize the TIM One Pulse.
2620 (+) Start the TIM One Pulse.
2621 (+) Stop the TIM One Pulse.
2622 (+) Start the TIM One Pulse and enable interrupt.
2623 (+) Stop the TIM One Pulse and disable interrupt.
2624 (+) Start the TIM One Pulse and enable DMA transfer.
2625 (+) Stop the TIM One Pulse and disable DMA transfer.
2626
2627 @endverbatim
2628 * @{
2629 */
2630 /**
2631 * @brief Initializes the TIM One Pulse Time Base according to the specified
2632 * parameters in the TIM_HandleTypeDef and initializes the associated handle.
2633 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2634 * requires a timer reset to avoid unexpected direction
2635 * due to DIR bit readonly in center aligned mode.
2636 * Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2637 * @note When the timer instance is initialized in One Pulse mode, timer
2638 * channels 1 and channel 2 are reserved and cannot be used for other
2639 * purpose.
2640 * @param htim TIM One Pulse handle
2641 * @param OnePulseMode Select the One pulse mode.
2642 * This parameter can be one of the following values:
2643 * @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2644 * @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2645 * @retval HAL status
2646 */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2647 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2648 {
2649 /* Check the TIM handle allocation */
2650 if (htim == NULL)
2651 {
2652 return HAL_ERROR;
2653 }
2654
2655 /* Check the parameters */
2656 assert_param(IS_TIM_INSTANCE(htim->Instance));
2657 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2658 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2659 assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2660 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2661 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2662
2663 if (htim->State == HAL_TIM_STATE_RESET)
2664 {
2665 /* Allocate lock resource and initialize it */
2666 htim->Lock = HAL_UNLOCKED;
2667
2668 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2669 /* Reset interrupt callbacks to legacy weak callbacks */
2670 TIM_ResetCallback(htim);
2671
2672 if (htim->OnePulse_MspInitCallback == NULL)
2673 {
2674 htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2675 }
2676 /* Init the low level hardware : GPIO, CLOCK, NVIC */
2677 htim->OnePulse_MspInitCallback(htim);
2678 #else
2679 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2680 HAL_TIM_OnePulse_MspInit(htim);
2681 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2682 }
2683
2684 /* Set the TIM state */
2685 htim->State = HAL_TIM_STATE_BUSY;
2686
2687 /* Configure the Time base in the One Pulse Mode */
2688 TIM_Base_SetConfig(htim->Instance, &htim->Init);
2689
2690 /* Reset the OPM Bit */
2691 htim->Instance->CR1 &= ~TIM_CR1_OPM;
2692
2693 /* Configure the OPM Mode */
2694 htim->Instance->CR1 |= OnePulseMode;
2695
2696 /* Initialize the DMA burst operation state */
2697 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2698
2699 /* Initialize the TIM channels state */
2700 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2701 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2702 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2703 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2704
2705 /* Initialize the TIM state*/
2706 htim->State = HAL_TIM_STATE_READY;
2707
2708 return HAL_OK;
2709 }
2710
2711 /**
2712 * @brief DeInitializes the TIM One Pulse
2713 * @param htim TIM One Pulse handle
2714 * @retval HAL status
2715 */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2716 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2717 {
2718 /* Check the parameters */
2719 assert_param(IS_TIM_INSTANCE(htim->Instance));
2720
2721 htim->State = HAL_TIM_STATE_BUSY;
2722
2723 /* Disable the TIM Peripheral Clock */
2724 __HAL_TIM_DISABLE(htim);
2725
2726 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2727 if (htim->OnePulse_MspDeInitCallback == NULL)
2728 {
2729 htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2730 }
2731 /* DeInit the low level hardware */
2732 htim->OnePulse_MspDeInitCallback(htim);
2733 #else
2734 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2735 HAL_TIM_OnePulse_MspDeInit(htim);
2736 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2737
2738 /* Change the DMA burst operation state */
2739 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2740
2741 /* Set the TIM channel state */
2742 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2743 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2744 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2745 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2746
2747 /* Change TIM state */
2748 htim->State = HAL_TIM_STATE_RESET;
2749
2750 /* Release Lock */
2751 __HAL_UNLOCK(htim);
2752
2753 return HAL_OK;
2754 }
2755
2756 /**
2757 * @brief Initializes the TIM One Pulse MSP.
2758 * @param htim TIM One Pulse handle
2759 * @retval None
2760 */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2761 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2762 {
2763 /* Prevent unused argument(s) compilation warning */
2764 UNUSED(htim);
2765
2766 /* NOTE : This function should not be modified, when the callback is needed,
2767 the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2768 */
2769 }
2770
2771 /**
2772 * @brief DeInitializes TIM One Pulse MSP.
2773 * @param htim TIM One Pulse handle
2774 * @retval None
2775 */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2776 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2777 {
2778 /* Prevent unused argument(s) compilation warning */
2779 UNUSED(htim);
2780
2781 /* NOTE : This function should not be modified, when the callback is needed,
2782 the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2783 */
2784 }
2785
2786 /**
2787 * @brief Starts the TIM One Pulse signal generation.
2788 * @note Though OutputChannel parameter is deprecated and ignored by the function
2789 * it has been kept to avoid HAL_TIM API compatibility break.
2790 * @note The pulse output channel is determined when calling
2791 * @ref HAL_TIM_OnePulse_ConfigChannel().
2792 * @param htim TIM One Pulse handle
2793 * @param OutputChannel See note above
2794 * @retval HAL status
2795 */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2796 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2797 {
2798 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2799 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2800 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2801 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2802
2803 /* Prevent unused argument(s) compilation warning */
2804 UNUSED(OutputChannel);
2805
2806 /* Check the TIM channels state */
2807 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2808 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2809 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2810 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2811 {
2812 return HAL_ERROR;
2813 }
2814
2815 /* Set the TIM channels state */
2816 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2817 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2818 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2819 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2820
2821 /* Enable the Capture compare and the Input Capture channels
2822 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2823 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2824 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2825 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2826
2827 No need to enable the counter, it's enabled automatically by hardware
2828 (the counter starts in response to a stimulus and generate a pulse */
2829
2830 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2831 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2832
2833 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2834 {
2835 /* Enable the main output */
2836 __HAL_TIM_MOE_ENABLE(htim);
2837 }
2838
2839 /* Return function status */
2840 return HAL_OK;
2841 }
2842
2843 /**
2844 * @brief Stops the TIM One Pulse signal generation.
2845 * @note Though OutputChannel parameter is deprecated and ignored by the function
2846 * it has been kept to avoid HAL_TIM API compatibility break.
2847 * @note The pulse output channel is determined when calling
2848 * @ref HAL_TIM_OnePulse_ConfigChannel().
2849 * @param htim TIM One Pulse handle
2850 * @param OutputChannel See note above
2851 * @retval HAL status
2852 */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2853 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2854 {
2855 /* Prevent unused argument(s) compilation warning */
2856 UNUSED(OutputChannel);
2857
2858 /* Disable the Capture compare and the Input Capture channels
2859 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2860 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2861 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2862 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2863
2864 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2865 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2866
2867 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2868 {
2869 /* Disable the Main Output */
2870 __HAL_TIM_MOE_DISABLE(htim);
2871 }
2872
2873 /* Disable the Peripheral */
2874 __HAL_TIM_DISABLE(htim);
2875
2876 /* Set the TIM channels state */
2877 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2878 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2879 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2880 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2881
2882 /* Return function status */
2883 return HAL_OK;
2884 }
2885
2886 /**
2887 * @brief Starts the TIM One Pulse signal generation in interrupt mode.
2888 * @note Though OutputChannel parameter is deprecated and ignored by the function
2889 * it has been kept to avoid HAL_TIM API compatibility break.
2890 * @note The pulse output channel is determined when calling
2891 * @ref HAL_TIM_OnePulse_ConfigChannel().
2892 * @param htim TIM One Pulse handle
2893 * @param OutputChannel See note above
2894 * @retval HAL status
2895 */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2896 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2897 {
2898 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2899 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2900 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2901 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2902
2903 /* Prevent unused argument(s) compilation warning */
2904 UNUSED(OutputChannel);
2905
2906 /* Check the TIM channels state */
2907 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2908 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2909 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2910 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2911 {
2912 return HAL_ERROR;
2913 }
2914
2915 /* Set the TIM channels state */
2916 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2917 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2918 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2919 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2920
2921 /* Enable the Capture compare and the Input Capture channels
2922 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2923 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2924 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2925 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2926
2927 No need to enable the counter, it's enabled automatically by hardware
2928 (the counter starts in response to a stimulus and generate a pulse */
2929
2930 /* Enable the TIM Capture/Compare 1 interrupt */
2931 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2932
2933 /* Enable the TIM Capture/Compare 2 interrupt */
2934 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2935
2936 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2937 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2938
2939 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2940 {
2941 /* Enable the main output */
2942 __HAL_TIM_MOE_ENABLE(htim);
2943 }
2944
2945 /* Return function status */
2946 return HAL_OK;
2947 }
2948
2949 /**
2950 * @brief Stops the TIM One Pulse signal generation in interrupt mode.
2951 * @note Though OutputChannel parameter is deprecated and ignored by the function
2952 * it has been kept to avoid HAL_TIM API compatibility break.
2953 * @note The pulse output channel is determined when calling
2954 * @ref HAL_TIM_OnePulse_ConfigChannel().
2955 * @param htim TIM One Pulse handle
2956 * @param OutputChannel See note above
2957 * @retval HAL status
2958 */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2959 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2960 {
2961 /* Prevent unused argument(s) compilation warning */
2962 UNUSED(OutputChannel);
2963
2964 /* Disable the TIM Capture/Compare 1 interrupt */
2965 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2966
2967 /* Disable the TIM Capture/Compare 2 interrupt */
2968 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2969
2970 /* Disable the Capture compare and the Input Capture channels
2971 (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2972 if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2973 if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2974 whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2975 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2976 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2977
2978 if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2979 {
2980 /* Disable the Main Output */
2981 __HAL_TIM_MOE_DISABLE(htim);
2982 }
2983
2984 /* Disable the Peripheral */
2985 __HAL_TIM_DISABLE(htim);
2986
2987 /* Set the TIM channels state */
2988 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2989 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2990 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2991 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2992
2993 /* Return function status */
2994 return HAL_OK;
2995 }
2996
2997 /**
2998 * @}
2999 */
3000
3001 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
3002 * @brief TIM Encoder functions
3003 *
3004 @verbatim
3005 ==============================================================================
3006 ##### TIM Encoder functions #####
3007 ==============================================================================
3008 [..]
3009 This section provides functions allowing to:
3010 (+) Initialize and configure the TIM Encoder.
3011 (+) De-initialize the TIM Encoder.
3012 (+) Start the TIM Encoder.
3013 (+) Stop the TIM Encoder.
3014 (+) Start the TIM Encoder and enable interrupt.
3015 (+) Stop the TIM Encoder and disable interrupt.
3016 (+) Start the TIM Encoder and enable DMA transfer.
3017 (+) Stop the TIM Encoder and disable DMA transfer.
3018
3019 @endverbatim
3020 * @{
3021 */
3022 /**
3023 * @brief Initializes the TIM Encoder Interface and initialize the associated handle.
3024 * @note Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3025 * requires a timer reset to avoid unexpected direction
3026 * due to DIR bit readonly in center aligned mode.
3027 * Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3028 * @note Encoder mode and External clock mode 2 are not compatible and must not be selected together
3029 * Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3030 * using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3031 * @note When the timer instance is initialized in Encoder mode, timer
3032 * channels 1 and channel 2 are reserved and cannot be used for other
3033 * purpose.
3034 * @param htim TIM Encoder Interface handle
3035 * @param sConfig TIM Encoder Interface configuration structure
3036 * @retval HAL status
3037 */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,TIM_Encoder_InitTypeDef * sConfig)3038 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim, TIM_Encoder_InitTypeDef *sConfig)
3039 {
3040 uint32_t tmpsmcr;
3041 uint32_t tmpccmr1;
3042 uint32_t tmpccer;
3043
3044 /* Check the TIM handle allocation */
3045 if (htim == NULL)
3046 {
3047 return HAL_ERROR;
3048 }
3049
3050 /* Check the parameters */
3051 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3052 assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3053 assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3054 assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3055 assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3056 assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3057 assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3058 assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3059 assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3060 assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3061 assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3062 assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3063 assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3064 assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
3065
3066 if (htim->State == HAL_TIM_STATE_RESET)
3067 {
3068 /* Allocate lock resource and initialize it */
3069 htim->Lock = HAL_UNLOCKED;
3070
3071 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3072 /* Reset interrupt callbacks to legacy weak callbacks */
3073 TIM_ResetCallback(htim);
3074
3075 if (htim->Encoder_MspInitCallback == NULL)
3076 {
3077 htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3078 }
3079 /* Init the low level hardware : GPIO, CLOCK, NVIC */
3080 htim->Encoder_MspInitCallback(htim);
3081 #else
3082 /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3083 HAL_TIM_Encoder_MspInit(htim);
3084 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3085 }
3086
3087 /* Set the TIM state */
3088 htim->State = HAL_TIM_STATE_BUSY;
3089
3090 /* Reset the SMS and ECE bits */
3091 htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3092
3093 /* Configure the Time base in the Encoder Mode */
3094 TIM_Base_SetConfig(htim->Instance, &htim->Init);
3095
3096 /* Get the TIMx SMCR register value */
3097 tmpsmcr = htim->Instance->SMCR;
3098
3099 /* Get the TIMx CCMR1 register value */
3100 tmpccmr1 = htim->Instance->CCMR1;
3101
3102 /* Get the TIMx CCER register value */
3103 tmpccer = htim->Instance->CCER;
3104
3105 /* Set the encoder Mode */
3106 tmpsmcr |= sConfig->EncoderMode;
3107
3108 /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3109 tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3110 tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3111
3112 /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3113 tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3114 tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3115 tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3116 tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3117
3118 /* Set the TI1 and the TI2 Polarities */
3119 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3120 tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
3121 tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3122
3123 /* Write to TIMx SMCR */
3124 htim->Instance->SMCR = tmpsmcr;
3125
3126 /* Write to TIMx CCMR1 */
3127 htim->Instance->CCMR1 = tmpccmr1;
3128
3129 /* Write to TIMx CCER */
3130 htim->Instance->CCER = tmpccer;
3131
3132 /* Initialize the DMA burst operation state */
3133 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3134
3135 /* Set the TIM channels state */
3136 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3137 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3138 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3139 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3140
3141 /* Initialize the TIM state*/
3142 htim->State = HAL_TIM_STATE_READY;
3143
3144 return HAL_OK;
3145 }
3146
3147
3148 /**
3149 * @brief DeInitializes the TIM Encoder interface
3150 * @param htim TIM Encoder Interface handle
3151 * @retval HAL status
3152 */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3153 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3154 {
3155 /* Check the parameters */
3156 assert_param(IS_TIM_INSTANCE(htim->Instance));
3157
3158 htim->State = HAL_TIM_STATE_BUSY;
3159
3160 /* Disable the TIM Peripheral Clock */
3161 __HAL_TIM_DISABLE(htim);
3162
3163 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3164 if (htim->Encoder_MspDeInitCallback == NULL)
3165 {
3166 htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3167 }
3168 /* DeInit the low level hardware */
3169 htim->Encoder_MspDeInitCallback(htim);
3170 #else
3171 /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3172 HAL_TIM_Encoder_MspDeInit(htim);
3173 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3174
3175 /* Change the DMA burst operation state */
3176 htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3177
3178 /* Set the TIM channels state */
3179 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3180 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3181 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3182 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3183
3184 /* Change TIM state */
3185 htim->State = HAL_TIM_STATE_RESET;
3186
3187 /* Release Lock */
3188 __HAL_UNLOCK(htim);
3189
3190 return HAL_OK;
3191 }
3192
3193 /**
3194 * @brief Initializes the TIM Encoder Interface MSP.
3195 * @param htim TIM Encoder Interface handle
3196 * @retval None
3197 */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3198 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3199 {
3200 /* Prevent unused argument(s) compilation warning */
3201 UNUSED(htim);
3202
3203 /* NOTE : This function should not be modified, when the callback is needed,
3204 the HAL_TIM_Encoder_MspInit could be implemented in the user file
3205 */
3206 }
3207
3208 /**
3209 * @brief DeInitializes TIM Encoder Interface MSP.
3210 * @param htim TIM Encoder Interface handle
3211 * @retval None
3212 */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3213 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3214 {
3215 /* Prevent unused argument(s) compilation warning */
3216 UNUSED(htim);
3217
3218 /* NOTE : This function should not be modified, when the callback is needed,
3219 the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3220 */
3221 }
3222
3223 /**
3224 * @brief Starts the TIM Encoder Interface.
3225 * @param htim TIM Encoder Interface handle
3226 * @param Channel TIM Channels to be enabled
3227 * This parameter can be one of the following values:
3228 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3229 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3230 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3231 * @retval HAL status
3232 */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3233 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3234 {
3235 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3236 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3237 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3238 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3239
3240 /* Check the parameters */
3241 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3242
3243 /* Set the TIM channel(s) state */
3244 if (Channel == TIM_CHANNEL_1)
3245 {
3246 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3247 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3248 {
3249 return HAL_ERROR;
3250 }
3251 else
3252 {
3253 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3254 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3255 }
3256 }
3257 else if (Channel == TIM_CHANNEL_2)
3258 {
3259 if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3260 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3261 {
3262 return HAL_ERROR;
3263 }
3264 else
3265 {
3266 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3267 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3268 }
3269 }
3270 else
3271 {
3272 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3273 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3274 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3275 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3276 {
3277 return HAL_ERROR;
3278 }
3279 else
3280 {
3281 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3282 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3283 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3284 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3285 }
3286 }
3287
3288 /* Enable the encoder interface channels */
3289 switch (Channel)
3290 {
3291 case TIM_CHANNEL_1:
3292 {
3293 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3294 break;
3295 }
3296
3297 case TIM_CHANNEL_2:
3298 {
3299 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3300 break;
3301 }
3302
3303 default :
3304 {
3305 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3306 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3307 break;
3308 }
3309 }
3310 /* Enable the Peripheral */
3311 __HAL_TIM_ENABLE(htim);
3312
3313 /* Return function status */
3314 return HAL_OK;
3315 }
3316
3317 /**
3318 * @brief Stops the TIM Encoder Interface.
3319 * @param htim TIM Encoder Interface handle
3320 * @param Channel TIM Channels to be disabled
3321 * This parameter can be one of the following values:
3322 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3323 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3324 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3325 * @retval HAL status
3326 */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3327 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3328 {
3329 /* Check the parameters */
3330 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3331
3332 /* Disable the Input Capture channels 1 and 2
3333 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3334 switch (Channel)
3335 {
3336 case TIM_CHANNEL_1:
3337 {
3338 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3339 break;
3340 }
3341
3342 case TIM_CHANNEL_2:
3343 {
3344 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3345 break;
3346 }
3347
3348 default :
3349 {
3350 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3351 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3352 break;
3353 }
3354 }
3355
3356 /* Disable the Peripheral */
3357 __HAL_TIM_DISABLE(htim);
3358
3359 /* Set the TIM channel(s) state */
3360 if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3361 {
3362 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3363 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3364 }
3365 else
3366 {
3367 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3368 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3369 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3370 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3371 }
3372
3373 /* Return function status */
3374 return HAL_OK;
3375 }
3376
3377 /**
3378 * @brief Starts the TIM Encoder Interface in interrupt mode.
3379 * @param htim TIM Encoder Interface handle
3380 * @param Channel TIM Channels to be enabled
3381 * This parameter can be one of the following values:
3382 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3383 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3384 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3385 * @retval HAL status
3386 */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3387 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3388 {
3389 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3390 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3391 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3392 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3393
3394 /* Check the parameters */
3395 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3396
3397 /* Set the TIM channel(s) state */
3398 if (Channel == TIM_CHANNEL_1)
3399 {
3400 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3401 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3402 {
3403 return HAL_ERROR;
3404 }
3405 else
3406 {
3407 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3408 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3409 }
3410 }
3411 else if (Channel == TIM_CHANNEL_2)
3412 {
3413 if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3414 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3415 {
3416 return HAL_ERROR;
3417 }
3418 else
3419 {
3420 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3421 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3422 }
3423 }
3424 else
3425 {
3426 if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3427 || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3428 || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3429 || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3430 {
3431 return HAL_ERROR;
3432 }
3433 else
3434 {
3435 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3436 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3437 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3438 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3439 }
3440 }
3441
3442 /* Enable the encoder interface channels */
3443 /* Enable the capture compare Interrupts 1 and/or 2 */
3444 switch (Channel)
3445 {
3446 case TIM_CHANNEL_1:
3447 {
3448 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3449 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3450 break;
3451 }
3452
3453 case TIM_CHANNEL_2:
3454 {
3455 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3456 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3457 break;
3458 }
3459
3460 default :
3461 {
3462 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3463 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3464 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3465 __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3466 break;
3467 }
3468 }
3469
3470 /* Enable the Peripheral */
3471 __HAL_TIM_ENABLE(htim);
3472
3473 /* Return function status */
3474 return HAL_OK;
3475 }
3476
3477 /**
3478 * @brief Stops the TIM Encoder Interface in interrupt mode.
3479 * @param htim TIM Encoder Interface handle
3480 * @param Channel TIM Channels to be disabled
3481 * This parameter can be one of the following values:
3482 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3483 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3484 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3485 * @retval HAL status
3486 */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3487 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3488 {
3489 /* Check the parameters */
3490 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3491
3492 /* Disable the Input Capture channels 1 and 2
3493 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3494 if (Channel == TIM_CHANNEL_1)
3495 {
3496 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3497
3498 /* Disable the capture compare Interrupts 1 */
3499 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3500 }
3501 else if (Channel == TIM_CHANNEL_2)
3502 {
3503 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3504
3505 /* Disable the capture compare Interrupts 2 */
3506 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3507 }
3508 else
3509 {
3510 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3511 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3512
3513 /* Disable the capture compare Interrupts 1 and 2 */
3514 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3515 __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3516 }
3517
3518 /* Disable the Peripheral */
3519 __HAL_TIM_DISABLE(htim);
3520
3521 /* Set the TIM channel(s) state */
3522 if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3523 {
3524 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3525 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3526 }
3527 else
3528 {
3529 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3530 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3531 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3532 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3533 }
3534
3535 /* Return function status */
3536 return HAL_OK;
3537 }
3538
3539 /**
3540 * @brief Starts the TIM Encoder Interface in DMA mode.
3541 * @param htim TIM Encoder Interface handle
3542 * @param Channel TIM Channels to be enabled
3543 * This parameter can be one of the following values:
3544 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3545 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3546 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3547 * @param pData1 The destination Buffer address for IC1.
3548 * @param pData2 The destination Buffer address for IC2.
3549 * @param Length The length of data to be transferred from TIM peripheral to memory.
3550 * @retval HAL status
3551 */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3552 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3553 uint32_t *pData2, uint16_t Length)
3554 {
3555 HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3556 HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3557 HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3558 HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3559
3560 /* Check the parameters */
3561 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3562
3563 /* Set the TIM channel(s) state */
3564 if (Channel == TIM_CHANNEL_1)
3565 {
3566 if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3567 || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3568 {
3569 return HAL_BUSY;
3570 }
3571 else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3572 && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3573 {
3574 if ((pData1 == NULL) || (Length == 0U))
3575 {
3576 return HAL_ERROR;
3577 }
3578 else
3579 {
3580 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3581 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3582 }
3583 }
3584 else
3585 {
3586 return HAL_ERROR;
3587 }
3588 }
3589 else if (Channel == TIM_CHANNEL_2)
3590 {
3591 if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3592 || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3593 {
3594 return HAL_BUSY;
3595 }
3596 else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3597 && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3598 {
3599 if ((pData2 == NULL) || (Length == 0U))
3600 {
3601 return HAL_ERROR;
3602 }
3603 else
3604 {
3605 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3606 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3607 }
3608 }
3609 else
3610 {
3611 return HAL_ERROR;
3612 }
3613 }
3614 else
3615 {
3616 if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3617 || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3618 || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3619 || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3620 {
3621 return HAL_BUSY;
3622 }
3623 else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3624 && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3625 && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3626 && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3627 {
3628 if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3629 {
3630 return HAL_ERROR;
3631 }
3632 else
3633 {
3634 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3635 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3636 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3637 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3638 }
3639 }
3640 else
3641 {
3642 return HAL_ERROR;
3643 }
3644 }
3645
3646 switch (Channel)
3647 {
3648 case TIM_CHANNEL_1:
3649 {
3650 /* Set the DMA capture callbacks */
3651 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3652 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3653
3654 /* Set the DMA error callback */
3655 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3656
3657 /* Enable the DMA channel */
3658 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3659 Length) != HAL_OK)
3660 {
3661 /* Return error status */
3662 return HAL_ERROR;
3663 }
3664 /* Enable the TIM Input Capture DMA request */
3665 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3666
3667 /* Enable the Capture compare channel */
3668 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3669
3670 /* Enable the Peripheral */
3671 __HAL_TIM_ENABLE(htim);
3672
3673 break;
3674 }
3675
3676 case TIM_CHANNEL_2:
3677 {
3678 /* Set the DMA capture callbacks */
3679 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3680 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3681
3682 /* Set the DMA error callback */
3683 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3684 /* Enable the DMA channel */
3685 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3686 Length) != HAL_OK)
3687 {
3688 /* Return error status */
3689 return HAL_ERROR;
3690 }
3691 /* Enable the TIM Input Capture DMA request */
3692 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3693
3694 /* Enable the Capture compare channel */
3695 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3696
3697 /* Enable the Peripheral */
3698 __HAL_TIM_ENABLE(htim);
3699
3700 break;
3701 }
3702
3703 default:
3704 {
3705 /* Set the DMA capture callbacks */
3706 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3707 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3708
3709 /* Set the DMA error callback */
3710 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3711
3712 /* Enable the DMA channel */
3713 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3714 Length) != HAL_OK)
3715 {
3716 /* Return error status */
3717 return HAL_ERROR;
3718 }
3719
3720 /* Set the DMA capture callbacks */
3721 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3722 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3723
3724 /* Set the DMA error callback */
3725 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3726
3727 /* Enable the DMA channel */
3728 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3729 Length) != HAL_OK)
3730 {
3731 /* Return error status */
3732 return HAL_ERROR;
3733 }
3734
3735 /* Enable the TIM Input Capture DMA request */
3736 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3737 /* Enable the TIM Input Capture DMA request */
3738 __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3739
3740 /* Enable the Capture compare channel */
3741 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3742 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3743
3744 /* Enable the Peripheral */
3745 __HAL_TIM_ENABLE(htim);
3746
3747 break;
3748 }
3749 }
3750
3751 /* Return function status */
3752 return HAL_OK;
3753 }
3754
3755 /**
3756 * @brief Stops the TIM Encoder Interface in DMA mode.
3757 * @param htim TIM Encoder Interface handle
3758 * @param Channel TIM Channels to be enabled
3759 * This parameter can be one of the following values:
3760 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
3761 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
3762 * @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3763 * @retval HAL status
3764 */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3765 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3766 {
3767 /* Check the parameters */
3768 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3769
3770 /* Disable the Input Capture channels 1 and 2
3771 (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3772 if (Channel == TIM_CHANNEL_1)
3773 {
3774 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3775
3776 /* Disable the capture compare DMA Request 1 */
3777 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3778 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3779 }
3780 else if (Channel == TIM_CHANNEL_2)
3781 {
3782 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3783
3784 /* Disable the capture compare DMA Request 2 */
3785 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3786 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3787 }
3788 else
3789 {
3790 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3791 TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3792
3793 /* Disable the capture compare DMA Request 1 and 2 */
3794 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3795 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3796 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3797 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3798 }
3799
3800 /* Disable the Peripheral */
3801 __HAL_TIM_DISABLE(htim);
3802
3803 /* Set the TIM channel(s) state */
3804 if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3805 {
3806 TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3807 TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3808 }
3809 else
3810 {
3811 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3812 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3813 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3814 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3815 }
3816
3817 /* Return function status */
3818 return HAL_OK;
3819 }
3820
3821 /**
3822 * @}
3823 */
3824 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3825 * @brief TIM IRQ handler management
3826 *
3827 @verbatim
3828 ==============================================================================
3829 ##### IRQ handler management #####
3830 ==============================================================================
3831 [..]
3832 This section provides Timer IRQ handler function.
3833
3834 @endverbatim
3835 * @{
3836 */
3837 /**
3838 * @brief This function handles TIM interrupts requests.
3839 * @param htim TIM handle
3840 * @retval None
3841 */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3842 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3843 {
3844 /* Capture compare 1 event */
3845 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
3846 {
3847 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET)
3848 {
3849 {
3850 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
3851 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3852
3853 /* Input capture event */
3854 if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3855 {
3856 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3857 htim->IC_CaptureCallback(htim);
3858 #else
3859 HAL_TIM_IC_CaptureCallback(htim);
3860 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3861 }
3862 /* Output compare event */
3863 else
3864 {
3865 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3866 htim->OC_DelayElapsedCallback(htim);
3867 htim->PWM_PulseFinishedCallback(htim);
3868 #else
3869 HAL_TIM_OC_DelayElapsedCallback(htim);
3870 HAL_TIM_PWM_PulseFinishedCallback(htim);
3871 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3872 }
3873 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3874 }
3875 }
3876 }
3877 /* Capture compare 2 event */
3878 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
3879 {
3880 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET)
3881 {
3882 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
3883 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3884 /* Input capture event */
3885 if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3886 {
3887 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3888 htim->IC_CaptureCallback(htim);
3889 #else
3890 HAL_TIM_IC_CaptureCallback(htim);
3891 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3892 }
3893 /* Output compare event */
3894 else
3895 {
3896 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3897 htim->OC_DelayElapsedCallback(htim);
3898 htim->PWM_PulseFinishedCallback(htim);
3899 #else
3900 HAL_TIM_OC_DelayElapsedCallback(htim);
3901 HAL_TIM_PWM_PulseFinishedCallback(htim);
3902 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3903 }
3904 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3905 }
3906 }
3907 /* Capture compare 3 event */
3908 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
3909 {
3910 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET)
3911 {
3912 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
3913 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3914 /* Input capture event */
3915 if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3916 {
3917 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3918 htim->IC_CaptureCallback(htim);
3919 #else
3920 HAL_TIM_IC_CaptureCallback(htim);
3921 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3922 }
3923 /* Output compare event */
3924 else
3925 {
3926 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3927 htim->OC_DelayElapsedCallback(htim);
3928 htim->PWM_PulseFinishedCallback(htim);
3929 #else
3930 HAL_TIM_OC_DelayElapsedCallback(htim);
3931 HAL_TIM_PWM_PulseFinishedCallback(htim);
3932 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3933 }
3934 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3935 }
3936 }
3937 /* Capture compare 4 event */
3938 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
3939 {
3940 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET)
3941 {
3942 __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
3943 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3944 /* Input capture event */
3945 if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3946 {
3947 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3948 htim->IC_CaptureCallback(htim);
3949 #else
3950 HAL_TIM_IC_CaptureCallback(htim);
3951 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3952 }
3953 /* Output compare event */
3954 else
3955 {
3956 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3957 htim->OC_DelayElapsedCallback(htim);
3958 htim->PWM_PulseFinishedCallback(htim);
3959 #else
3960 HAL_TIM_OC_DelayElapsedCallback(htim);
3961 HAL_TIM_PWM_PulseFinishedCallback(htim);
3962 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3963 }
3964 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3965 }
3966 }
3967 /* TIM Update event */
3968 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
3969 {
3970 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
3971 {
3972 __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
3973 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3974 htim->PeriodElapsedCallback(htim);
3975 #else
3976 HAL_TIM_PeriodElapsedCallback(htim);
3977 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3978 }
3979 }
3980 /* TIM Break input event */
3981 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
3982 {
3983 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
3984 {
3985 __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
3986 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3987 htim->BreakCallback(htim);
3988 #else
3989 HAL_TIMEx_BreakCallback(htim);
3990 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3991 }
3992 }
3993 /* TIM Break2 input event */
3994 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET)
3995 {
3996 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
3997 {
3998 __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
3999 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4000 htim->Break2Callback(htim);
4001 #else
4002 HAL_TIMEx_Break2Callback(htim);
4003 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4004 }
4005 }
4006 /* TIM Trigger detection event */
4007 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
4008 {
4009 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET)
4010 {
4011 __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
4012 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4013 htim->TriggerCallback(htim);
4014 #else
4015 HAL_TIM_TriggerCallback(htim);
4016 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4017 }
4018 }
4019 /* TIM commutation event */
4020 if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
4021 {
4022 if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET)
4023 {
4024 __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
4025 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4026 htim->CommutationCallback(htim);
4027 #else
4028 HAL_TIMEx_CommutCallback(htim);
4029 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4030 }
4031 }
4032 }
4033
4034 /**
4035 * @}
4036 */
4037
4038 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4039 * @brief TIM Peripheral Control functions
4040 *
4041 @verbatim
4042 ==============================================================================
4043 ##### Peripheral Control functions #####
4044 ==============================================================================
4045 [..]
4046 This section provides functions allowing to:
4047 (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4048 (+) Configure External Clock source.
4049 (+) Configure Complementary channels, break features and dead time.
4050 (+) Configure Master and the Slave synchronization.
4051 (+) Configure the DMA Burst Mode.
4052
4053 @endverbatim
4054 * @{
4055 */
4056
4057 /**
4058 * @brief Initializes the TIM Output Compare Channels according to the specified
4059 * parameters in the TIM_OC_InitTypeDef.
4060 * @param htim TIM Output Compare handle
4061 * @param sConfig TIM Output Compare configuration structure
4062 * @param Channel TIM Channels to configure
4063 * This parameter can be one of the following values:
4064 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4065 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4066 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
4067 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
4068 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
4069 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
4070 * @retval HAL status
4071 */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4072 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4073 const TIM_OC_InitTypeDef *sConfig,
4074 uint32_t Channel)
4075 {
4076 HAL_StatusTypeDef status = HAL_OK;
4077
4078 /* Check the parameters */
4079 assert_param(IS_TIM_CHANNELS(Channel));
4080 assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4081 assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4082
4083 /* Process Locked */
4084 __HAL_LOCK(htim);
4085
4086 switch (Channel)
4087 {
4088 case TIM_CHANNEL_1:
4089 {
4090 /* Check the parameters */
4091 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4092
4093 /* Configure the TIM Channel 1 in Output Compare */
4094 TIM_OC1_SetConfig(htim->Instance, sConfig);
4095 break;
4096 }
4097
4098 case TIM_CHANNEL_2:
4099 {
4100 /* Check the parameters */
4101 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4102
4103 /* Configure the TIM Channel 2 in Output Compare */
4104 TIM_OC2_SetConfig(htim->Instance, sConfig);
4105 break;
4106 }
4107
4108 case TIM_CHANNEL_3:
4109 {
4110 /* Check the parameters */
4111 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4112
4113 /* Configure the TIM Channel 3 in Output Compare */
4114 TIM_OC3_SetConfig(htim->Instance, sConfig);
4115 break;
4116 }
4117
4118 case TIM_CHANNEL_4:
4119 {
4120 /* Check the parameters */
4121 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4122
4123 /* Configure the TIM Channel 4 in Output Compare */
4124 TIM_OC4_SetConfig(htim->Instance, sConfig);
4125 break;
4126 }
4127
4128 case TIM_CHANNEL_5:
4129 {
4130 /* Check the parameters */
4131 assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4132
4133 /* Configure the TIM Channel 5 in Output Compare */
4134 TIM_OC5_SetConfig(htim->Instance, sConfig);
4135 break;
4136 }
4137
4138 case TIM_CHANNEL_6:
4139 {
4140 /* Check the parameters */
4141 assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4142
4143 /* Configure the TIM Channel 6 in Output Compare */
4144 TIM_OC6_SetConfig(htim->Instance, sConfig);
4145 break;
4146 }
4147
4148 default:
4149 status = HAL_ERROR;
4150 break;
4151 }
4152
4153 __HAL_UNLOCK(htim);
4154
4155 return status;
4156 }
4157
4158 /**
4159 * @brief Initializes the TIM Input Capture Channels according to the specified
4160 * parameters in the TIM_IC_InitTypeDef.
4161 * @param htim TIM IC handle
4162 * @param sConfig TIM Input Capture configuration structure
4163 * @param Channel TIM Channel to configure
4164 * This parameter can be one of the following values:
4165 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4166 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4167 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
4168 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
4169 * @retval HAL status
4170 */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4171 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4172 {
4173 HAL_StatusTypeDef status = HAL_OK;
4174
4175 /* Check the parameters */
4176 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4177 assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4178 assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4179 assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4180 assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4181
4182 /* Process Locked */
4183 __HAL_LOCK(htim);
4184
4185 if (Channel == TIM_CHANNEL_1)
4186 {
4187 /* TI1 Configuration */
4188 TIM_TI1_SetConfig(htim->Instance,
4189 sConfig->ICPolarity,
4190 sConfig->ICSelection,
4191 sConfig->ICFilter);
4192
4193 /* Reset the IC1PSC Bits */
4194 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4195
4196 /* Set the IC1PSC value */
4197 htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4198 }
4199 else if (Channel == TIM_CHANNEL_2)
4200 {
4201 /* TI2 Configuration */
4202 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4203
4204 TIM_TI2_SetConfig(htim->Instance,
4205 sConfig->ICPolarity,
4206 sConfig->ICSelection,
4207 sConfig->ICFilter);
4208
4209 /* Reset the IC2PSC Bits */
4210 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4211
4212 /* Set the IC2PSC value */
4213 htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4214 }
4215 else if (Channel == TIM_CHANNEL_3)
4216 {
4217 /* TI3 Configuration */
4218 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4219
4220 TIM_TI3_SetConfig(htim->Instance,
4221 sConfig->ICPolarity,
4222 sConfig->ICSelection,
4223 sConfig->ICFilter);
4224
4225 /* Reset the IC3PSC Bits */
4226 htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4227
4228 /* Set the IC3PSC value */
4229 htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4230 }
4231 else if (Channel == TIM_CHANNEL_4)
4232 {
4233 /* TI4 Configuration */
4234 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4235
4236 TIM_TI4_SetConfig(htim->Instance,
4237 sConfig->ICPolarity,
4238 sConfig->ICSelection,
4239 sConfig->ICFilter);
4240
4241 /* Reset the IC4PSC Bits */
4242 htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4243
4244 /* Set the IC4PSC value */
4245 htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4246 }
4247 else
4248 {
4249 status = HAL_ERROR;
4250 }
4251
4252 __HAL_UNLOCK(htim);
4253
4254 return status;
4255 }
4256
4257 /**
4258 * @brief Initializes the TIM PWM channels according to the specified
4259 * parameters in the TIM_OC_InitTypeDef.
4260 * @param htim TIM PWM handle
4261 * @param sConfig TIM PWM configuration structure
4262 * @param Channel TIM Channels to be configured
4263 * This parameter can be one of the following values:
4264 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4265 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4266 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
4267 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
4268 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
4269 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
4270 * @retval HAL status
4271 */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4272 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4273 const TIM_OC_InitTypeDef *sConfig,
4274 uint32_t Channel)
4275 {
4276 HAL_StatusTypeDef status = HAL_OK;
4277
4278 /* Check the parameters */
4279 assert_param(IS_TIM_CHANNELS(Channel));
4280 assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4281 assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4282 assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4283
4284 /* Process Locked */
4285 __HAL_LOCK(htim);
4286
4287 switch (Channel)
4288 {
4289 case TIM_CHANNEL_1:
4290 {
4291 /* Check the parameters */
4292 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4293
4294 /* Configure the Channel 1 in PWM mode */
4295 TIM_OC1_SetConfig(htim->Instance, sConfig);
4296
4297 /* Set the Preload enable bit for channel1 */
4298 htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4299
4300 /* Configure the Output Fast mode */
4301 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4302 htim->Instance->CCMR1 |= sConfig->OCFastMode;
4303 break;
4304 }
4305
4306 case TIM_CHANNEL_2:
4307 {
4308 /* Check the parameters */
4309 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4310
4311 /* Configure the Channel 2 in PWM mode */
4312 TIM_OC2_SetConfig(htim->Instance, sConfig);
4313
4314 /* Set the Preload enable bit for channel2 */
4315 htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4316
4317 /* Configure the Output Fast mode */
4318 htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4319 htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4320 break;
4321 }
4322
4323 case TIM_CHANNEL_3:
4324 {
4325 /* Check the parameters */
4326 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4327
4328 /* Configure the Channel 3 in PWM mode */
4329 TIM_OC3_SetConfig(htim->Instance, sConfig);
4330
4331 /* Set the Preload enable bit for channel3 */
4332 htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4333
4334 /* Configure the Output Fast mode */
4335 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4336 htim->Instance->CCMR2 |= sConfig->OCFastMode;
4337 break;
4338 }
4339
4340 case TIM_CHANNEL_4:
4341 {
4342 /* Check the parameters */
4343 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4344
4345 /* Configure the Channel 4 in PWM mode */
4346 TIM_OC4_SetConfig(htim->Instance, sConfig);
4347
4348 /* Set the Preload enable bit for channel4 */
4349 htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4350
4351 /* Configure the Output Fast mode */
4352 htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4353 htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4354 break;
4355 }
4356
4357 case TIM_CHANNEL_5:
4358 {
4359 /* Check the parameters */
4360 assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4361
4362 /* Configure the Channel 5 in PWM mode */
4363 TIM_OC5_SetConfig(htim->Instance, sConfig);
4364
4365 /* Set the Preload enable bit for channel5*/
4366 htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
4367
4368 /* Configure the Output Fast mode */
4369 htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
4370 htim->Instance->CCMR3 |= sConfig->OCFastMode;
4371 break;
4372 }
4373
4374 case TIM_CHANNEL_6:
4375 {
4376 /* Check the parameters */
4377 assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4378
4379 /* Configure the Channel 6 in PWM mode */
4380 TIM_OC6_SetConfig(htim->Instance, sConfig);
4381
4382 /* Set the Preload enable bit for channel6 */
4383 htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
4384
4385 /* Configure the Output Fast mode */
4386 htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
4387 htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
4388 break;
4389 }
4390
4391 default:
4392 status = HAL_ERROR;
4393 break;
4394 }
4395
4396 __HAL_UNLOCK(htim);
4397
4398 return status;
4399 }
4400
4401 /**
4402 * @brief Initializes the TIM One Pulse Channels according to the specified
4403 * parameters in the TIM_OnePulse_InitTypeDef.
4404 * @param htim TIM One Pulse handle
4405 * @param sConfig TIM One Pulse configuration structure
4406 * @param OutputChannel TIM output channel to configure
4407 * This parameter can be one of the following values:
4408 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4409 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4410 * @param InputChannel TIM input Channel to configure
4411 * This parameter can be one of the following values:
4412 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
4413 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
4414 * @note To output a waveform with a minimum delay user can enable the fast
4415 * mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4416 * output is forced in response to the edge detection on TIx input,
4417 * without taking in account the comparison.
4418 * @retval HAL status
4419 */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4420 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim, TIM_OnePulse_InitTypeDef *sConfig,
4421 uint32_t OutputChannel, uint32_t InputChannel)
4422 {
4423 HAL_StatusTypeDef status = HAL_OK;
4424 TIM_OC_InitTypeDef temp1;
4425
4426 /* Check the parameters */
4427 assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4428 assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4429
4430 if (OutputChannel != InputChannel)
4431 {
4432 /* Process Locked */
4433 __HAL_LOCK(htim);
4434
4435 htim->State = HAL_TIM_STATE_BUSY;
4436
4437 /* Extract the Output compare configuration from sConfig structure */
4438 temp1.OCMode = sConfig->OCMode;
4439 temp1.Pulse = sConfig->Pulse;
4440 temp1.OCPolarity = sConfig->OCPolarity;
4441 temp1.OCNPolarity = sConfig->OCNPolarity;
4442 temp1.OCIdleState = sConfig->OCIdleState;
4443 temp1.OCNIdleState = sConfig->OCNIdleState;
4444
4445 switch (OutputChannel)
4446 {
4447 case TIM_CHANNEL_1:
4448 {
4449 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4450
4451 TIM_OC1_SetConfig(htim->Instance, &temp1);
4452 break;
4453 }
4454
4455 case TIM_CHANNEL_2:
4456 {
4457 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4458
4459 TIM_OC2_SetConfig(htim->Instance, &temp1);
4460 break;
4461 }
4462
4463 default:
4464 status = HAL_ERROR;
4465 break;
4466 }
4467
4468 if (status == HAL_OK)
4469 {
4470 switch (InputChannel)
4471 {
4472 case TIM_CHANNEL_1:
4473 {
4474 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4475
4476 TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4477 sConfig->ICSelection, sConfig->ICFilter);
4478
4479 /* Reset the IC1PSC Bits */
4480 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4481
4482 /* Select the Trigger source */
4483 htim->Instance->SMCR &= ~TIM_SMCR_TS;
4484 htim->Instance->SMCR |= TIM_TS_TI1FP1;
4485
4486 /* Select the Slave Mode */
4487 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4488 htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4489 break;
4490 }
4491
4492 case TIM_CHANNEL_2:
4493 {
4494 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4495
4496 TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4497 sConfig->ICSelection, sConfig->ICFilter);
4498
4499 /* Reset the IC2PSC Bits */
4500 htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4501
4502 /* Select the Trigger source */
4503 htim->Instance->SMCR &= ~TIM_SMCR_TS;
4504 htim->Instance->SMCR |= TIM_TS_TI2FP2;
4505
4506 /* Select the Slave Mode */
4507 htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4508 htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4509 break;
4510 }
4511
4512 default:
4513 status = HAL_ERROR;
4514 break;
4515 }
4516 }
4517
4518 htim->State = HAL_TIM_STATE_READY;
4519
4520 __HAL_UNLOCK(htim);
4521
4522 return status;
4523 }
4524 else
4525 {
4526 return HAL_ERROR;
4527 }
4528 }
4529
4530 /**
4531 * @brief Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4532 * @param htim TIM handle
4533 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
4534 * This parameter can be one of the following values:
4535 * @arg TIM_DMABASE_CR1
4536 * @arg TIM_DMABASE_CR2
4537 * @arg TIM_DMABASE_SMCR
4538 * @arg TIM_DMABASE_DIER
4539 * @arg TIM_DMABASE_SR
4540 * @arg TIM_DMABASE_EGR
4541 * @arg TIM_DMABASE_CCMR1
4542 * @arg TIM_DMABASE_CCMR2
4543 * @arg TIM_DMABASE_CCER
4544 * @arg TIM_DMABASE_CNT
4545 * @arg TIM_DMABASE_PSC
4546 * @arg TIM_DMABASE_ARR
4547 * @arg TIM_DMABASE_RCR
4548 * @arg TIM_DMABASE_CCR1
4549 * @arg TIM_DMABASE_CCR2
4550 * @arg TIM_DMABASE_CCR3
4551 * @arg TIM_DMABASE_CCR4
4552 * @arg TIM_DMABASE_BDTR
4553 * @arg TIM_DMABASE_OR1
4554 * @arg TIM_DMABASE_CCMR3
4555 * @arg TIM_DMABASE_CCR5
4556 * @arg TIM_DMABASE_CCR6
4557 * @arg TIM_DMABASE_AF1
4558 * @arg TIM_DMABASE_AF2
4559 * @arg TIM_DMABASE_TISEL
4560 * @param BurstRequestSrc TIM DMA Request sources
4561 * This parameter can be one of the following values:
4562 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4563 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4564 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4565 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4566 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4567 * @arg TIM_DMA_COM: TIM Commutation DMA source
4568 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4569 * @param BurstBuffer The Buffer address.
4570 * @param BurstLength DMA Burst length. This parameter can be one value
4571 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4572 * @note This function should be used only when BurstLength is equal to DMA data transfer length.
4573 * @retval HAL status
4574 */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4575 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4576 uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t BurstLength)
4577 {
4578 HAL_StatusTypeDef status;
4579
4580 status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4581 ((BurstLength) >> 8U) + 1U);
4582
4583
4584
4585 return status;
4586 }
4587
4588 /**
4589 * @brief Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4590 * @param htim TIM handle
4591 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data write
4592 * This parameter can be one of the following values:
4593 * @arg TIM_DMABASE_CR1
4594 * @arg TIM_DMABASE_CR2
4595 * @arg TIM_DMABASE_SMCR
4596 * @arg TIM_DMABASE_DIER
4597 * @arg TIM_DMABASE_SR
4598 * @arg TIM_DMABASE_EGR
4599 * @arg TIM_DMABASE_CCMR1
4600 * @arg TIM_DMABASE_CCMR2
4601 * @arg TIM_DMABASE_CCER
4602 * @arg TIM_DMABASE_CNT
4603 * @arg TIM_DMABASE_PSC
4604 * @arg TIM_DMABASE_ARR
4605 * @arg TIM_DMABASE_RCR
4606 * @arg TIM_DMABASE_CCR1
4607 * @arg TIM_DMABASE_CCR2
4608 * @arg TIM_DMABASE_CCR3
4609 * @arg TIM_DMABASE_CCR4
4610 * @arg TIM_DMABASE_BDTR
4611 * @arg TIM_DMABASE_OR1
4612 * @arg TIM_DMABASE_CCMR3
4613 * @arg TIM_DMABASE_CCR5
4614 * @arg TIM_DMABASE_CCR6
4615 * @arg TIM_DMABASE_AF1
4616 * @arg TIM_DMABASE_AF2
4617 * @arg TIM_DMABASE_TISEL
4618 * @param BurstRequestSrc TIM DMA Request sources
4619 * This parameter can be one of the following values:
4620 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4621 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4622 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4623 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4624 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4625 * @arg TIM_DMA_COM: TIM Commutation DMA source
4626 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4627 * @param BurstBuffer The Buffer address.
4628 * @param BurstLength DMA Burst length. This parameter can be one value
4629 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4630 * @param DataLength Data length. This parameter can be one value
4631 * between 1 and 0xFFFF.
4632 * @retval HAL status
4633 */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4634 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4635 uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4636 uint32_t BurstLength, uint32_t DataLength)
4637 {
4638 HAL_StatusTypeDef status = HAL_OK;
4639
4640 /* Check the parameters */
4641 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4642 assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4643 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4644 assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4645 assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4646
4647 if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4648 {
4649 return HAL_BUSY;
4650 }
4651 else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4652 {
4653 if ((BurstBuffer == NULL) && (BurstLength > 0U))
4654 {
4655 return HAL_ERROR;
4656 }
4657 else
4658 {
4659 htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4660 }
4661 }
4662 else
4663 {
4664 /* nothing to do */
4665 }
4666
4667 switch (BurstRequestSrc)
4668 {
4669 case TIM_DMA_UPDATE:
4670 {
4671 /* Set the DMA Period elapsed callbacks */
4672 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4673 htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4674
4675 /* Set the DMA error callback */
4676 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4677
4678 /* Enable the DMA channel */
4679 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4680 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4681 {
4682 /* Return error status */
4683 return HAL_ERROR;
4684 }
4685 break;
4686 }
4687 case TIM_DMA_CC1:
4688 {
4689 /* Set the DMA compare callbacks */
4690 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4691 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4692
4693 /* Set the DMA error callback */
4694 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4695
4696 /* Enable the DMA channel */
4697 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4698 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4699 {
4700 /* Return error status */
4701 return HAL_ERROR;
4702 }
4703 break;
4704 }
4705 case TIM_DMA_CC2:
4706 {
4707 /* Set the DMA compare callbacks */
4708 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4709 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4710
4711 /* Set the DMA error callback */
4712 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4713
4714 /* Enable the DMA channel */
4715 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4716 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4717 {
4718 /* Return error status */
4719 return HAL_ERROR;
4720 }
4721 break;
4722 }
4723 case TIM_DMA_CC3:
4724 {
4725 /* Set the DMA compare callbacks */
4726 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4727 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4728
4729 /* Set the DMA error callback */
4730 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4731
4732 /* Enable the DMA channel */
4733 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4734 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4735 {
4736 /* Return error status */
4737 return HAL_ERROR;
4738 }
4739 break;
4740 }
4741 case TIM_DMA_CC4:
4742 {
4743 /* Set the DMA compare callbacks */
4744 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4745 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4746
4747 /* Set the DMA error callback */
4748 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4749
4750 /* Enable the DMA channel */
4751 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4752 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4753 {
4754 /* Return error status */
4755 return HAL_ERROR;
4756 }
4757 break;
4758 }
4759 case TIM_DMA_COM:
4760 {
4761 /* Set the DMA commutation callbacks */
4762 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
4763 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
4764
4765 /* Set the DMA error callback */
4766 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4767
4768 /* Enable the DMA channel */
4769 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4770 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4771 {
4772 /* Return error status */
4773 return HAL_ERROR;
4774 }
4775 break;
4776 }
4777 case TIM_DMA_TRIGGER:
4778 {
4779 /* Set the DMA trigger callbacks */
4780 htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4781 htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4782
4783 /* Set the DMA error callback */
4784 htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4785
4786 /* Enable the DMA channel */
4787 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4788 (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4789 {
4790 /* Return error status */
4791 return HAL_ERROR;
4792 }
4793 break;
4794 }
4795 default:
4796 status = HAL_ERROR;
4797 break;
4798 }
4799
4800 if (status == HAL_OK)
4801 {
4802 /* Configure the DMA Burst Mode */
4803 htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4804 /* Enable the TIM DMA Request */
4805 __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4806 }
4807
4808 /* Return function status */
4809 return status;
4810 }
4811
4812 /**
4813 * @brief Stops the TIM DMA Burst mode
4814 * @param htim TIM handle
4815 * @param BurstRequestSrc TIM DMA Request sources to disable
4816 * @retval HAL status
4817 */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4818 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4819 {
4820 HAL_StatusTypeDef status = HAL_OK;
4821
4822 /* Check the parameters */
4823 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4824
4825 /* Abort the DMA transfer (at least disable the DMA channel) */
4826 switch (BurstRequestSrc)
4827 {
4828 case TIM_DMA_UPDATE:
4829 {
4830 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4831 break;
4832 }
4833 case TIM_DMA_CC1:
4834 {
4835 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4836 break;
4837 }
4838 case TIM_DMA_CC2:
4839 {
4840 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4841 break;
4842 }
4843 case TIM_DMA_CC3:
4844 {
4845 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4846 break;
4847 }
4848 case TIM_DMA_CC4:
4849 {
4850 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4851 break;
4852 }
4853 case TIM_DMA_COM:
4854 {
4855 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4856 break;
4857 }
4858 case TIM_DMA_TRIGGER:
4859 {
4860 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4861 break;
4862 }
4863 default:
4864 status = HAL_ERROR;
4865 break;
4866 }
4867
4868 if (status == HAL_OK)
4869 {
4870 /* Disable the TIM Update DMA request */
4871 __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4872
4873 /* Change the DMA burst operation state */
4874 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4875 }
4876
4877 /* Return function status */
4878 return status;
4879 }
4880
4881 /**
4882 * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4883 * @param htim TIM handle
4884 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
4885 * This parameter can be one of the following values:
4886 * @arg TIM_DMABASE_CR1
4887 * @arg TIM_DMABASE_CR2
4888 * @arg TIM_DMABASE_SMCR
4889 * @arg TIM_DMABASE_DIER
4890 * @arg TIM_DMABASE_SR
4891 * @arg TIM_DMABASE_EGR
4892 * @arg TIM_DMABASE_CCMR1
4893 * @arg TIM_DMABASE_CCMR2
4894 * @arg TIM_DMABASE_CCER
4895 * @arg TIM_DMABASE_CNT
4896 * @arg TIM_DMABASE_PSC
4897 * @arg TIM_DMABASE_ARR
4898 * @arg TIM_DMABASE_RCR
4899 * @arg TIM_DMABASE_CCR1
4900 * @arg TIM_DMABASE_CCR2
4901 * @arg TIM_DMABASE_CCR3
4902 * @arg TIM_DMABASE_CCR4
4903 * @arg TIM_DMABASE_BDTR
4904 * @arg TIM_DMABASE_OR1
4905 * @arg TIM_DMABASE_CCMR3
4906 * @arg TIM_DMABASE_CCR5
4907 * @arg TIM_DMABASE_CCR6
4908 * @arg TIM_DMABASE_AF1
4909 * @arg TIM_DMABASE_AF2
4910 * @arg TIM_DMABASE_TISEL
4911 * @param BurstRequestSrc TIM DMA Request sources
4912 * This parameter can be one of the following values:
4913 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4914 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4915 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4916 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4917 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4918 * @arg TIM_DMA_COM: TIM Commutation DMA source
4919 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4920 * @param BurstBuffer The Buffer address.
4921 * @param BurstLength DMA Burst length. This parameter can be one value
4922 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4923 * @note This function should be used only when BurstLength is equal to DMA data transfer length.
4924 * @retval HAL status
4925 */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4926 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4927 uint32_t BurstRequestSrc, uint32_t *BurstBuffer, uint32_t BurstLength)
4928 {
4929 HAL_StatusTypeDef status;
4930
4931 status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4932 ((BurstLength) >> 8U) + 1U);
4933
4934
4935 return status;
4936 }
4937
4938 /**
4939 * @brief Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4940 * @param htim TIM handle
4941 * @param BurstBaseAddress TIM Base address from where the DMA will start the Data read
4942 * This parameter can be one of the following values:
4943 * @arg TIM_DMABASE_CR1
4944 * @arg TIM_DMABASE_CR2
4945 * @arg TIM_DMABASE_SMCR
4946 * @arg TIM_DMABASE_DIER
4947 * @arg TIM_DMABASE_SR
4948 * @arg TIM_DMABASE_EGR
4949 * @arg TIM_DMABASE_CCMR1
4950 * @arg TIM_DMABASE_CCMR2
4951 * @arg TIM_DMABASE_CCER
4952 * @arg TIM_DMABASE_CNT
4953 * @arg TIM_DMABASE_PSC
4954 * @arg TIM_DMABASE_ARR
4955 * @arg TIM_DMABASE_RCR
4956 * @arg TIM_DMABASE_CCR1
4957 * @arg TIM_DMABASE_CCR2
4958 * @arg TIM_DMABASE_CCR3
4959 * @arg TIM_DMABASE_CCR4
4960 * @arg TIM_DMABASE_BDTR
4961 * @arg TIM_DMABASE_OR1
4962 * @arg TIM_DMABASE_CCMR3
4963 * @arg TIM_DMABASE_CCR5
4964 * @arg TIM_DMABASE_CCR6
4965 * @arg TIM_DMABASE_AF1
4966 * @arg TIM_DMABASE_AF2
4967 * @arg TIM_DMABASE_TISEL
4968 * @param BurstRequestSrc TIM DMA Request sources
4969 * This parameter can be one of the following values:
4970 * @arg TIM_DMA_UPDATE: TIM update Interrupt source
4971 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4972 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4973 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4974 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4975 * @arg TIM_DMA_COM: TIM Commutation DMA source
4976 * @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4977 * @param BurstBuffer The Buffer address.
4978 * @param BurstLength DMA Burst length. This parameter can be one value
4979 * between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4980 * @param DataLength Data length. This parameter can be one value
4981 * between 1 and 0xFFFF.
4982 * @retval HAL status
4983 */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4984 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4985 uint32_t BurstRequestSrc, uint32_t *BurstBuffer,
4986 uint32_t BurstLength, uint32_t DataLength)
4987 {
4988 HAL_StatusTypeDef status = HAL_OK;
4989
4990 /* Check the parameters */
4991 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4992 assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4993 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4994 assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4995 assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4996
4997 if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4998 {
4999 return HAL_BUSY;
5000 }
5001 else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
5002 {
5003 if ((BurstBuffer == NULL) && (BurstLength > 0U))
5004 {
5005 return HAL_ERROR;
5006 }
5007 else
5008 {
5009 htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
5010 }
5011 }
5012 else
5013 {
5014 /* nothing to do */
5015 }
5016 switch (BurstRequestSrc)
5017 {
5018 case TIM_DMA_UPDATE:
5019 {
5020 /* Set the DMA Period elapsed callbacks */
5021 htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
5022 htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
5023
5024 /* Set the DMA error callback */
5025 htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
5026
5027 /* Enable the DMA channel */
5028 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5029 DataLength) != HAL_OK)
5030 {
5031 /* Return error status */
5032 return HAL_ERROR;
5033 }
5034 break;
5035 }
5036 case TIM_DMA_CC1:
5037 {
5038 /* Set the DMA capture callbacks */
5039 htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
5040 htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5041
5042 /* Set the DMA error callback */
5043 htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
5044
5045 /* Enable the DMA channel */
5046 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5047 DataLength) != HAL_OK)
5048 {
5049 /* Return error status */
5050 return HAL_ERROR;
5051 }
5052 break;
5053 }
5054 case TIM_DMA_CC2:
5055 {
5056 /* Set the DMA capture callbacks */
5057 htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
5058 htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5059
5060 /* Set the DMA error callback */
5061 htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
5062
5063 /* Enable the DMA channel */
5064 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5065 DataLength) != HAL_OK)
5066 {
5067 /* Return error status */
5068 return HAL_ERROR;
5069 }
5070 break;
5071 }
5072 case TIM_DMA_CC3:
5073 {
5074 /* Set the DMA capture callbacks */
5075 htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
5076 htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5077
5078 /* Set the DMA error callback */
5079 htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
5080
5081 /* Enable the DMA channel */
5082 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5083 DataLength) != HAL_OK)
5084 {
5085 /* Return error status */
5086 return HAL_ERROR;
5087 }
5088 break;
5089 }
5090 case TIM_DMA_CC4:
5091 {
5092 /* Set the DMA capture callbacks */
5093 htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
5094 htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5095
5096 /* Set the DMA error callback */
5097 htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
5098
5099 /* Enable the DMA channel */
5100 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5101 DataLength) != HAL_OK)
5102 {
5103 /* Return error status */
5104 return HAL_ERROR;
5105 }
5106 break;
5107 }
5108 case TIM_DMA_COM:
5109 {
5110 /* Set the DMA commutation callbacks */
5111 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback = TIMEx_DMACommutationCplt;
5112 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback = TIMEx_DMACommutationHalfCplt;
5113
5114 /* Set the DMA error callback */
5115 htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
5116
5117 /* Enable the DMA channel */
5118 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5119 DataLength) != HAL_OK)
5120 {
5121 /* Return error status */
5122 return HAL_ERROR;
5123 }
5124 break;
5125 }
5126 case TIM_DMA_TRIGGER:
5127 {
5128 /* Set the DMA trigger callbacks */
5129 htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5130 htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5131
5132 /* Set the DMA error callback */
5133 htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5134
5135 /* Enable the DMA channel */
5136 if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5137 DataLength) != HAL_OK)
5138 {
5139 /* Return error status */
5140 return HAL_ERROR;
5141 }
5142 break;
5143 }
5144 default:
5145 status = HAL_ERROR;
5146 break;
5147 }
5148
5149 if (status == HAL_OK)
5150 {
5151 /* Configure the DMA Burst Mode */
5152 htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5153
5154 /* Enable the TIM DMA Request */
5155 __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5156 }
5157
5158 /* Return function status */
5159 return status;
5160 }
5161
5162 /**
5163 * @brief Stop the DMA burst reading
5164 * @param htim TIM handle
5165 * @param BurstRequestSrc TIM DMA Request sources to disable.
5166 * @retval HAL status
5167 */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5168 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5169 {
5170 HAL_StatusTypeDef status = HAL_OK;
5171
5172 /* Check the parameters */
5173 assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5174
5175 /* Abort the DMA transfer (at least disable the DMA channel) */
5176 switch (BurstRequestSrc)
5177 {
5178 case TIM_DMA_UPDATE:
5179 {
5180 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5181 break;
5182 }
5183 case TIM_DMA_CC1:
5184 {
5185 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5186 break;
5187 }
5188 case TIM_DMA_CC2:
5189 {
5190 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5191 break;
5192 }
5193 case TIM_DMA_CC3:
5194 {
5195 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5196 break;
5197 }
5198 case TIM_DMA_CC4:
5199 {
5200 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5201 break;
5202 }
5203 case TIM_DMA_COM:
5204 {
5205 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5206 break;
5207 }
5208 case TIM_DMA_TRIGGER:
5209 {
5210 (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5211 break;
5212 }
5213 default:
5214 status = HAL_ERROR;
5215 break;
5216 }
5217
5218 if (status == HAL_OK)
5219 {
5220 /* Disable the TIM Update DMA request */
5221 __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5222
5223 /* Change the DMA burst operation state */
5224 htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5225 }
5226
5227 /* Return function status */
5228 return status;
5229 }
5230
5231 /**
5232 * @brief Generate a software event
5233 * @param htim TIM handle
5234 * @param EventSource specifies the event source.
5235 * This parameter can be one of the following values:
5236 * @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5237 * @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5238 * @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5239 * @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5240 * @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5241 * @arg TIM_EVENTSOURCE_COM: Timer COM event source
5242 * @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5243 * @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5244 * @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
5245 * @note Basic timers can only generate an update event.
5246 * @note TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5247 * @note TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant
5248 * only for timer instances supporting break input(s).
5249 * @retval HAL status
5250 */
5251
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5252 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5253 {
5254 /* Check the parameters */
5255 assert_param(IS_TIM_INSTANCE(htim->Instance));
5256 assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5257
5258 /* Process Locked */
5259 __HAL_LOCK(htim);
5260
5261 /* Change the TIM state */
5262 htim->State = HAL_TIM_STATE_BUSY;
5263
5264 /* Set the event sources */
5265 htim->Instance->EGR = EventSource;
5266
5267 /* Change the TIM state */
5268 htim->State = HAL_TIM_STATE_READY;
5269
5270 __HAL_UNLOCK(htim);
5271
5272 /* Return function status */
5273 return HAL_OK;
5274 }
5275
5276 /**
5277 * @brief Configures the OCRef clear feature
5278 * @param htim TIM handle
5279 * @param sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5280 * contains the OCREF clear feature and parameters for the TIM peripheral.
5281 * @param Channel specifies the TIM Channel
5282 * This parameter can be one of the following values:
5283 * @arg TIM_CHANNEL_1: TIM Channel 1
5284 * @arg TIM_CHANNEL_2: TIM Channel 2
5285 * @arg TIM_CHANNEL_3: TIM Channel 3
5286 * @arg TIM_CHANNEL_4: TIM Channel 4
5287 * @arg TIM_CHANNEL_5: TIM Channel 5
5288 * @arg TIM_CHANNEL_6: TIM Channel 6
5289 * @retval HAL status
5290 */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5291 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5292 const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5293 uint32_t Channel)
5294 {
5295 HAL_StatusTypeDef status = HAL_OK;
5296
5297 /* Check the parameters */
5298 assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5299 assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5300
5301 /* Process Locked */
5302 __HAL_LOCK(htim);
5303
5304 htim->State = HAL_TIM_STATE_BUSY;
5305
5306 switch (sClearInputConfig->ClearInputSource)
5307 {
5308 case TIM_CLEARINPUTSOURCE_NONE:
5309 {
5310 /* Clear the OCREF clear selection bit and the the ETR Bits */
5311 CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5312
5313 /* Clear TIMx_OR1_OCREF_CLR (reset value) */
5314 CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR);
5315 break;
5316 }
5317 #if defined(COMP1) || defined(COMP2) || defined(COMP3)
5318 #if defined(COMP1) && defined(COMP2)
5319 case TIM_CLEARINPUTSOURCE_COMP1:
5320 case TIM_CLEARINPUTSOURCE_COMP2:
5321 #endif /* COMP1 && COMP2 */
5322 #if defined(COMP3)
5323 case TIM_CLEARINPUTSOURCE_COMP3:
5324 #endif /* COMP3 */
5325 {
5326 /* Clear the OCREF clear selection bit */
5327 CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5328
5329 /* OCREF_CLR_INT is connected to COMPx output */
5330 MODIFY_REG(htim->Instance->OR1, TIMx_OR1_OCREF_CLR, sClearInputConfig->ClearInputSource);
5331 break;
5332 }
5333 #endif /* COMP1 || COMP2 || COMP3 */
5334
5335 case TIM_CLEARINPUTSOURCE_ETR:
5336 {
5337 /* Check the parameters */
5338 assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5339 assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5340 assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5341
5342 /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5343 if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5344 {
5345 htim->State = HAL_TIM_STATE_READY;
5346 __HAL_UNLOCK(htim);
5347 return HAL_ERROR;
5348 }
5349
5350 TIM_ETR_SetConfig(htim->Instance,
5351 sClearInputConfig->ClearInputPrescaler,
5352 sClearInputConfig->ClearInputPolarity,
5353 sClearInputConfig->ClearInputFilter);
5354
5355 /* Set the OCREF clear selection bit */
5356 SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5357
5358 /* Clear TIMx_OR1_OCREF_CLR (reset value) */
5359 CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR);
5360 break;
5361 }
5362
5363 default:
5364 status = HAL_ERROR;
5365 break;
5366 }
5367
5368 if (status == HAL_OK)
5369 {
5370 switch (Channel)
5371 {
5372 case TIM_CHANNEL_1:
5373 {
5374 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5375 {
5376 /* Enable the OCREF clear feature for Channel 1 */
5377 SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5378 }
5379 else
5380 {
5381 /* Disable the OCREF clear feature for Channel 1 */
5382 CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5383 }
5384 break;
5385 }
5386 case TIM_CHANNEL_2:
5387 {
5388 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5389 {
5390 /* Enable the OCREF clear feature for Channel 2 */
5391 SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5392 }
5393 else
5394 {
5395 /* Disable the OCREF clear feature for Channel 2 */
5396 CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5397 }
5398 break;
5399 }
5400 case TIM_CHANNEL_3:
5401 {
5402 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5403 {
5404 /* Enable the OCREF clear feature for Channel 3 */
5405 SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5406 }
5407 else
5408 {
5409 /* Disable the OCREF clear feature for Channel 3 */
5410 CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5411 }
5412 break;
5413 }
5414 case TIM_CHANNEL_4:
5415 {
5416 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5417 {
5418 /* Enable the OCREF clear feature for Channel 4 */
5419 SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5420 }
5421 else
5422 {
5423 /* Disable the OCREF clear feature for Channel 4 */
5424 CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5425 }
5426 break;
5427 }
5428 case TIM_CHANNEL_5:
5429 {
5430 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5431 {
5432 /* Enable the OCREF clear feature for Channel 5 */
5433 SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5434 }
5435 else
5436 {
5437 /* Disable the OCREF clear feature for Channel 5 */
5438 CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5439 }
5440 break;
5441 }
5442 case TIM_CHANNEL_6:
5443 {
5444 if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5445 {
5446 /* Enable the OCREF clear feature for Channel 6 */
5447 SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5448 }
5449 else
5450 {
5451 /* Disable the OCREF clear feature for Channel 6 */
5452 CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5453 }
5454 break;
5455 }
5456 default:
5457 break;
5458 }
5459 }
5460
5461 htim->State = HAL_TIM_STATE_READY;
5462
5463 __HAL_UNLOCK(htim);
5464
5465 return status;
5466 }
5467
5468 /**
5469 * @brief Configures the clock source to be used
5470 * @param htim TIM handle
5471 * @param sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5472 * contains the clock source information for the TIM peripheral.
5473 * @retval HAL status
5474 */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5475 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5476 {
5477 HAL_StatusTypeDef status = HAL_OK;
5478 uint32_t tmpsmcr;
5479
5480 /* Process Locked */
5481 __HAL_LOCK(htim);
5482
5483 htim->State = HAL_TIM_STATE_BUSY;
5484
5485 /* Check the parameters */
5486 assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5487
5488 /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5489 tmpsmcr = htim->Instance->SMCR;
5490 tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5491 tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5492 htim->Instance->SMCR = tmpsmcr;
5493
5494 switch (sClockSourceConfig->ClockSource)
5495 {
5496 case TIM_CLOCKSOURCE_INTERNAL:
5497 {
5498 assert_param(IS_TIM_INSTANCE(htim->Instance));
5499 break;
5500 }
5501
5502 case TIM_CLOCKSOURCE_ETRMODE1:
5503 {
5504 /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5505 assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5506
5507 /* Check ETR input conditioning related parameters */
5508 assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5509 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5510 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5511
5512 /* Configure the ETR Clock source */
5513 TIM_ETR_SetConfig(htim->Instance,
5514 sClockSourceConfig->ClockPrescaler,
5515 sClockSourceConfig->ClockPolarity,
5516 sClockSourceConfig->ClockFilter);
5517
5518 /* Select the External clock mode1 and the ETRF trigger */
5519 tmpsmcr = htim->Instance->SMCR;
5520 tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5521 /* Write to TIMx SMCR */
5522 htim->Instance->SMCR = tmpsmcr;
5523 break;
5524 }
5525
5526 case TIM_CLOCKSOURCE_ETRMODE2:
5527 {
5528 /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5529 assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5530
5531 /* Check ETR input conditioning related parameters */
5532 assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5533 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5534 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5535
5536 /* Configure the ETR Clock source */
5537 TIM_ETR_SetConfig(htim->Instance,
5538 sClockSourceConfig->ClockPrescaler,
5539 sClockSourceConfig->ClockPolarity,
5540 sClockSourceConfig->ClockFilter);
5541 /* Enable the External clock mode2 */
5542 htim->Instance->SMCR |= TIM_SMCR_ECE;
5543 break;
5544 }
5545
5546 case TIM_CLOCKSOURCE_TI1:
5547 {
5548 /* Check whether or not the timer instance supports external clock mode 1 */
5549 assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5550
5551 /* Check TI1 input conditioning related parameters */
5552 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5553 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5554
5555 TIM_TI1_ConfigInputStage(htim->Instance,
5556 sClockSourceConfig->ClockPolarity,
5557 sClockSourceConfig->ClockFilter);
5558 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5559 break;
5560 }
5561
5562 case TIM_CLOCKSOURCE_TI2:
5563 {
5564 /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5565 assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5566
5567 /* Check TI2 input conditioning related parameters */
5568 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5569 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5570
5571 TIM_TI2_ConfigInputStage(htim->Instance,
5572 sClockSourceConfig->ClockPolarity,
5573 sClockSourceConfig->ClockFilter);
5574 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5575 break;
5576 }
5577
5578 case TIM_CLOCKSOURCE_TI1ED:
5579 {
5580 /* Check whether or not the timer instance supports external clock mode 1 */
5581 assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5582
5583 /* Check TI1 input conditioning related parameters */
5584 assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5585 assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5586
5587 TIM_TI1_ConfigInputStage(htim->Instance,
5588 sClockSourceConfig->ClockPolarity,
5589 sClockSourceConfig->ClockFilter);
5590 TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5591 break;
5592 }
5593
5594 case TIM_CLOCKSOURCE_ITR0:
5595 case TIM_CLOCKSOURCE_ITR1:
5596 case TIM_CLOCKSOURCE_ITR2:
5597 case TIM_CLOCKSOURCE_ITR3:
5598 {
5599 /* Check whether or not the timer instance supports internal trigger input */
5600 assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5601
5602 TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5603 break;
5604 }
5605
5606 default:
5607 status = HAL_ERROR;
5608 break;
5609 }
5610 htim->State = HAL_TIM_STATE_READY;
5611
5612 __HAL_UNLOCK(htim);
5613
5614 return status;
5615 }
5616
5617 /**
5618 * @brief Selects the signal connected to the TI1 input: direct from CH1_input
5619 * or a XOR combination between CH1_input, CH2_input & CH3_input
5620 * @param htim TIM handle.
5621 * @param TI1_Selection Indicate whether or not channel 1 is connected to the
5622 * output of a XOR gate.
5623 * This parameter can be one of the following values:
5624 * @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5625 * @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5626 * pins are connected to the TI1 input (XOR combination)
5627 * @retval HAL status
5628 */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5629 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5630 {
5631 uint32_t tmpcr2;
5632
5633 /* Check the parameters */
5634 assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5635 assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5636
5637 /* Get the TIMx CR2 register value */
5638 tmpcr2 = htim->Instance->CR2;
5639
5640 /* Reset the TI1 selection */
5641 tmpcr2 &= ~TIM_CR2_TI1S;
5642
5643 /* Set the TI1 selection */
5644 tmpcr2 |= TI1_Selection;
5645
5646 /* Write to TIMxCR2 */
5647 htim->Instance->CR2 = tmpcr2;
5648
5649 return HAL_OK;
5650 }
5651
5652 /**
5653 * @brief Configures the TIM in Slave mode
5654 * @param htim TIM handle.
5655 * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5656 * contains the selected trigger (internal trigger input, filtered
5657 * timer input or external trigger input) and the Slave mode
5658 * (Disable, Reset, Gated, Trigger, External clock mode 1).
5659 * @retval HAL status
5660 */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5661 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5662 {
5663 /* Check the parameters */
5664 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5665 assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5666 assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5667
5668 __HAL_LOCK(htim);
5669
5670 htim->State = HAL_TIM_STATE_BUSY;
5671
5672 if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5673 {
5674 htim->State = HAL_TIM_STATE_READY;
5675 __HAL_UNLOCK(htim);
5676 return HAL_ERROR;
5677 }
5678
5679 /* Disable Trigger Interrupt */
5680 __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5681
5682 /* Disable Trigger DMA request */
5683 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5684
5685 htim->State = HAL_TIM_STATE_READY;
5686
5687 __HAL_UNLOCK(htim);
5688
5689 return HAL_OK;
5690 }
5691
5692 /**
5693 * @brief Configures the TIM in Slave mode in interrupt mode
5694 * @param htim TIM handle.
5695 * @param sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5696 * contains the selected trigger (internal trigger input, filtered
5697 * timer input or external trigger input) and the Slave mode
5698 * (Disable, Reset, Gated, Trigger, External clock mode 1).
5699 * @retval HAL status
5700 */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5701 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5702 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5703 {
5704 /* Check the parameters */
5705 assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5706 assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5707 assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5708
5709 __HAL_LOCK(htim);
5710
5711 htim->State = HAL_TIM_STATE_BUSY;
5712
5713 if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5714 {
5715 htim->State = HAL_TIM_STATE_READY;
5716 __HAL_UNLOCK(htim);
5717 return HAL_ERROR;
5718 }
5719
5720 /* Enable Trigger Interrupt */
5721 __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5722
5723 /* Disable Trigger DMA request */
5724 __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5725
5726 htim->State = HAL_TIM_STATE_READY;
5727
5728 __HAL_UNLOCK(htim);
5729
5730 return HAL_OK;
5731 }
5732
5733 /**
5734 * @brief Read the captured value from Capture Compare unit
5735 * @param htim TIM handle.
5736 * @param Channel TIM Channels to be enabled
5737 * This parameter can be one of the following values:
5738 * @arg TIM_CHANNEL_1: TIM Channel 1 selected
5739 * @arg TIM_CHANNEL_2: TIM Channel 2 selected
5740 * @arg TIM_CHANNEL_3: TIM Channel 3 selected
5741 * @arg TIM_CHANNEL_4: TIM Channel 4 selected
5742 * @retval Captured value
5743 */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5744 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5745 {
5746 uint32_t tmpreg = 0U;
5747
5748 switch (Channel)
5749 {
5750 case TIM_CHANNEL_1:
5751 {
5752 /* Check the parameters */
5753 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5754
5755 /* Return the capture 1 value */
5756 tmpreg = htim->Instance->CCR1;
5757
5758 break;
5759 }
5760 case TIM_CHANNEL_2:
5761 {
5762 /* Check the parameters */
5763 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5764
5765 /* Return the capture 2 value */
5766 tmpreg = htim->Instance->CCR2;
5767
5768 break;
5769 }
5770
5771 case TIM_CHANNEL_3:
5772 {
5773 /* Check the parameters */
5774 assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5775
5776 /* Return the capture 3 value */
5777 tmpreg = htim->Instance->CCR3;
5778
5779 break;
5780 }
5781
5782 case TIM_CHANNEL_4:
5783 {
5784 /* Check the parameters */
5785 assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5786
5787 /* Return the capture 4 value */
5788 tmpreg = htim->Instance->CCR4;
5789
5790 break;
5791 }
5792
5793 default:
5794 break;
5795 }
5796
5797 return tmpreg;
5798 }
5799
5800 /**
5801 * @}
5802 */
5803
5804 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5805 * @brief TIM Callbacks functions
5806 *
5807 @verbatim
5808 ==============================================================================
5809 ##### TIM Callbacks functions #####
5810 ==============================================================================
5811 [..]
5812 This section provides TIM callback functions:
5813 (+) TIM Period elapsed callback
5814 (+) TIM Output Compare callback
5815 (+) TIM Input capture callback
5816 (+) TIM Trigger callback
5817 (+) TIM Error callback
5818
5819 @endverbatim
5820 * @{
5821 */
5822
5823 /**
5824 * @brief Period elapsed callback in non-blocking mode
5825 * @param htim TIM handle
5826 * @retval None
5827 */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5828 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5829 {
5830 /* Prevent unused argument(s) compilation warning */
5831 UNUSED(htim);
5832
5833 /* NOTE : This function should not be modified, when the callback is needed,
5834 the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5835 */
5836 }
5837
5838 /**
5839 * @brief Period elapsed half complete callback in non-blocking mode
5840 * @param htim TIM handle
5841 * @retval None
5842 */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5843 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5844 {
5845 /* Prevent unused argument(s) compilation warning */
5846 UNUSED(htim);
5847
5848 /* NOTE : This function should not be modified, when the callback is needed,
5849 the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5850 */
5851 }
5852
5853 /**
5854 * @brief Output Compare callback in non-blocking mode
5855 * @param htim TIM OC handle
5856 * @retval None
5857 */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5858 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5859 {
5860 /* Prevent unused argument(s) compilation warning */
5861 UNUSED(htim);
5862
5863 /* NOTE : This function should not be modified, when the callback is needed,
5864 the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5865 */
5866 }
5867
5868 /**
5869 * @brief Input Capture callback in non-blocking mode
5870 * @param htim TIM IC handle
5871 * @retval None
5872 */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5873 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5874 {
5875 /* Prevent unused argument(s) compilation warning */
5876 UNUSED(htim);
5877
5878 /* NOTE : This function should not be modified, when the callback is needed,
5879 the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5880 */
5881 }
5882
5883 /**
5884 * @brief Input Capture half complete callback in non-blocking mode
5885 * @param htim TIM IC handle
5886 * @retval None
5887 */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5888 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5889 {
5890 /* Prevent unused argument(s) compilation warning */
5891 UNUSED(htim);
5892
5893 /* NOTE : This function should not be modified, when the callback is needed,
5894 the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5895 */
5896 }
5897
5898 /**
5899 * @brief PWM Pulse finished callback in non-blocking mode
5900 * @param htim TIM handle
5901 * @retval None
5902 */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5903 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5904 {
5905 /* Prevent unused argument(s) compilation warning */
5906 UNUSED(htim);
5907
5908 /* NOTE : This function should not be modified, when the callback is needed,
5909 the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5910 */
5911 }
5912
5913 /**
5914 * @brief PWM Pulse finished half complete callback in non-blocking mode
5915 * @param htim TIM handle
5916 * @retval None
5917 */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5918 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5919 {
5920 /* Prevent unused argument(s) compilation warning */
5921 UNUSED(htim);
5922
5923 /* NOTE : This function should not be modified, when the callback is needed,
5924 the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5925 */
5926 }
5927
5928 /**
5929 * @brief Hall Trigger detection callback in non-blocking mode
5930 * @param htim TIM handle
5931 * @retval None
5932 */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5933 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5934 {
5935 /* Prevent unused argument(s) compilation warning */
5936 UNUSED(htim);
5937
5938 /* NOTE : This function should not be modified, when the callback is needed,
5939 the HAL_TIM_TriggerCallback could be implemented in the user file
5940 */
5941 }
5942
5943 /**
5944 * @brief Hall Trigger detection half complete callback in non-blocking mode
5945 * @param htim TIM handle
5946 * @retval None
5947 */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5948 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5949 {
5950 /* Prevent unused argument(s) compilation warning */
5951 UNUSED(htim);
5952
5953 /* NOTE : This function should not be modified, when the callback is needed,
5954 the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5955 */
5956 }
5957
5958 /**
5959 * @brief Timer error callback in non-blocking mode
5960 * @param htim TIM handle
5961 * @retval None
5962 */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5963 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5964 {
5965 /* Prevent unused argument(s) compilation warning */
5966 UNUSED(htim);
5967
5968 /* NOTE : This function should not be modified, when the callback is needed,
5969 the HAL_TIM_ErrorCallback could be implemented in the user file
5970 */
5971 }
5972
5973 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5974 /**
5975 * @brief Register a User TIM callback to be used instead of the weak predefined callback
5976 * @param htim tim handle
5977 * @param CallbackID ID of the callback to be registered
5978 * This parameter can be one of the following values:
5979 * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5980 * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5981 * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5982 * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5983 * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5984 * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5985 * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5986 * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5987 * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5988 * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5989 * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5990 * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5991 * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5992 * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5993 * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5994 * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5995 * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5996 * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5997 * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5998 * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5999 * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6000 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6001 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6002 * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6003 * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6004 * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6005 * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6006 * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6007 * @param pCallback pointer to the callback function
6008 * @retval status
6009 */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)6010 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
6011 pTIM_CallbackTypeDef pCallback)
6012 {
6013 HAL_StatusTypeDef status = HAL_OK;
6014
6015 if (pCallback == NULL)
6016 {
6017 return HAL_ERROR;
6018 }
6019 /* Process locked */
6020 __HAL_LOCK(htim);
6021
6022 if (htim->State == HAL_TIM_STATE_READY)
6023 {
6024 switch (CallbackID)
6025 {
6026 case HAL_TIM_BASE_MSPINIT_CB_ID :
6027 htim->Base_MspInitCallback = pCallback;
6028 break;
6029
6030 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6031 htim->Base_MspDeInitCallback = pCallback;
6032 break;
6033
6034 case HAL_TIM_IC_MSPINIT_CB_ID :
6035 htim->IC_MspInitCallback = pCallback;
6036 break;
6037
6038 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6039 htim->IC_MspDeInitCallback = pCallback;
6040 break;
6041
6042 case HAL_TIM_OC_MSPINIT_CB_ID :
6043 htim->OC_MspInitCallback = pCallback;
6044 break;
6045
6046 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6047 htim->OC_MspDeInitCallback = pCallback;
6048 break;
6049
6050 case HAL_TIM_PWM_MSPINIT_CB_ID :
6051 htim->PWM_MspInitCallback = pCallback;
6052 break;
6053
6054 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6055 htim->PWM_MspDeInitCallback = pCallback;
6056 break;
6057
6058 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6059 htim->OnePulse_MspInitCallback = pCallback;
6060 break;
6061
6062 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6063 htim->OnePulse_MspDeInitCallback = pCallback;
6064 break;
6065
6066 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6067 htim->Encoder_MspInitCallback = pCallback;
6068 break;
6069
6070 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6071 htim->Encoder_MspDeInitCallback = pCallback;
6072 break;
6073
6074 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6075 htim->HallSensor_MspInitCallback = pCallback;
6076 break;
6077
6078 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6079 htim->HallSensor_MspDeInitCallback = pCallback;
6080 break;
6081
6082 case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6083 htim->PeriodElapsedCallback = pCallback;
6084 break;
6085
6086 case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6087 htim->PeriodElapsedHalfCpltCallback = pCallback;
6088 break;
6089
6090 case HAL_TIM_TRIGGER_CB_ID :
6091 htim->TriggerCallback = pCallback;
6092 break;
6093
6094 case HAL_TIM_TRIGGER_HALF_CB_ID :
6095 htim->TriggerHalfCpltCallback = pCallback;
6096 break;
6097
6098 case HAL_TIM_IC_CAPTURE_CB_ID :
6099 htim->IC_CaptureCallback = pCallback;
6100 break;
6101
6102 case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6103 htim->IC_CaptureHalfCpltCallback = pCallback;
6104 break;
6105
6106 case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6107 htim->OC_DelayElapsedCallback = pCallback;
6108 break;
6109
6110 case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6111 htim->PWM_PulseFinishedCallback = pCallback;
6112 break;
6113
6114 case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6115 htim->PWM_PulseFinishedHalfCpltCallback = pCallback;
6116 break;
6117
6118 case HAL_TIM_ERROR_CB_ID :
6119 htim->ErrorCallback = pCallback;
6120 break;
6121
6122 case HAL_TIM_COMMUTATION_CB_ID :
6123 htim->CommutationCallback = pCallback;
6124 break;
6125
6126 case HAL_TIM_COMMUTATION_HALF_CB_ID :
6127 htim->CommutationHalfCpltCallback = pCallback;
6128 break;
6129
6130 case HAL_TIM_BREAK_CB_ID :
6131 htim->BreakCallback = pCallback;
6132 break;
6133
6134 case HAL_TIM_BREAK2_CB_ID :
6135 htim->Break2Callback = pCallback;
6136 break;
6137
6138 default :
6139 /* Return error status */
6140 status = HAL_ERROR;
6141 break;
6142 }
6143 }
6144 else if (htim->State == HAL_TIM_STATE_RESET)
6145 {
6146 switch (CallbackID)
6147 {
6148 case HAL_TIM_BASE_MSPINIT_CB_ID :
6149 htim->Base_MspInitCallback = pCallback;
6150 break;
6151
6152 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6153 htim->Base_MspDeInitCallback = pCallback;
6154 break;
6155
6156 case HAL_TIM_IC_MSPINIT_CB_ID :
6157 htim->IC_MspInitCallback = pCallback;
6158 break;
6159
6160 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6161 htim->IC_MspDeInitCallback = pCallback;
6162 break;
6163
6164 case HAL_TIM_OC_MSPINIT_CB_ID :
6165 htim->OC_MspInitCallback = pCallback;
6166 break;
6167
6168 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6169 htim->OC_MspDeInitCallback = pCallback;
6170 break;
6171
6172 case HAL_TIM_PWM_MSPINIT_CB_ID :
6173 htim->PWM_MspInitCallback = pCallback;
6174 break;
6175
6176 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6177 htim->PWM_MspDeInitCallback = pCallback;
6178 break;
6179
6180 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6181 htim->OnePulse_MspInitCallback = pCallback;
6182 break;
6183
6184 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6185 htim->OnePulse_MspDeInitCallback = pCallback;
6186 break;
6187
6188 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6189 htim->Encoder_MspInitCallback = pCallback;
6190 break;
6191
6192 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6193 htim->Encoder_MspDeInitCallback = pCallback;
6194 break;
6195
6196 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6197 htim->HallSensor_MspInitCallback = pCallback;
6198 break;
6199
6200 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6201 htim->HallSensor_MspDeInitCallback = pCallback;
6202 break;
6203
6204 default :
6205 /* Return error status */
6206 status = HAL_ERROR;
6207 break;
6208 }
6209 }
6210 else
6211 {
6212 /* Return error status */
6213 status = HAL_ERROR;
6214 }
6215
6216 /* Release Lock */
6217 __HAL_UNLOCK(htim);
6218
6219 return status;
6220 }
6221
6222 /**
6223 * @brief Unregister a TIM callback
6224 * TIM callback is redirected to the weak predefined callback
6225 * @param htim tim handle
6226 * @param CallbackID ID of the callback to be unregistered
6227 * This parameter can be one of the following values:
6228 * @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6229 * @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6230 * @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6231 * @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6232 * @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6233 * @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6234 * @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6235 * @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6236 * @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6237 * @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6238 * @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6239 * @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6240 * @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6241 * @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6242 * @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6243 * @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6244 * @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6245 * @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6246 * @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6247 * @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6248 * @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6249 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6250 * @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6251 * @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6252 * @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6253 * @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6254 * @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6255 * @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6256 * @retval status
6257 */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6258 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6259 {
6260 HAL_StatusTypeDef status = HAL_OK;
6261
6262 /* Process locked */
6263 __HAL_LOCK(htim);
6264
6265 if (htim->State == HAL_TIM_STATE_READY)
6266 {
6267 switch (CallbackID)
6268 {
6269 case HAL_TIM_BASE_MSPINIT_CB_ID :
6270 /* Legacy weak Base MspInit Callback */
6271 htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
6272 break;
6273
6274 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6275 /* Legacy weak Base Msp DeInit Callback */
6276 htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
6277 break;
6278
6279 case HAL_TIM_IC_MSPINIT_CB_ID :
6280 /* Legacy weak IC Msp Init Callback */
6281 htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
6282 break;
6283
6284 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6285 /* Legacy weak IC Msp DeInit Callback */
6286 htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
6287 break;
6288
6289 case HAL_TIM_OC_MSPINIT_CB_ID :
6290 /* Legacy weak OC Msp Init Callback */
6291 htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
6292 break;
6293
6294 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6295 /* Legacy weak OC Msp DeInit Callback */
6296 htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
6297 break;
6298
6299 case HAL_TIM_PWM_MSPINIT_CB_ID :
6300 /* Legacy weak PWM Msp Init Callback */
6301 htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
6302 break;
6303
6304 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6305 /* Legacy weak PWM Msp DeInit Callback */
6306 htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
6307 break;
6308
6309 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6310 /* Legacy weak One Pulse Msp Init Callback */
6311 htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
6312 break;
6313
6314 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6315 /* Legacy weak One Pulse Msp DeInit Callback */
6316 htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
6317 break;
6318
6319 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6320 /* Legacy weak Encoder Msp Init Callback */
6321 htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
6322 break;
6323
6324 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6325 /* Legacy weak Encoder Msp DeInit Callback */
6326 htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
6327 break;
6328
6329 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6330 /* Legacy weak Hall Sensor Msp Init Callback */
6331 htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
6332 break;
6333
6334 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6335 /* Legacy weak Hall Sensor Msp DeInit Callback */
6336 htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6337 break;
6338
6339 case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6340 /* Legacy weak Period Elapsed Callback */
6341 htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
6342 break;
6343
6344 case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6345 /* Legacy weak Period Elapsed half complete Callback */
6346 htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
6347 break;
6348
6349 case HAL_TIM_TRIGGER_CB_ID :
6350 /* Legacy weak Trigger Callback */
6351 htim->TriggerCallback = HAL_TIM_TriggerCallback;
6352 break;
6353
6354 case HAL_TIM_TRIGGER_HALF_CB_ID :
6355 /* Legacy weak Trigger half complete Callback */
6356 htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
6357 break;
6358
6359 case HAL_TIM_IC_CAPTURE_CB_ID :
6360 /* Legacy weak IC Capture Callback */
6361 htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
6362 break;
6363
6364 case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6365 /* Legacy weak IC Capture half complete Callback */
6366 htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
6367 break;
6368
6369 case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6370 /* Legacy weak OC Delay Elapsed Callback */
6371 htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
6372 break;
6373
6374 case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6375 /* Legacy weak PWM Pulse Finished Callback */
6376 htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
6377 break;
6378
6379 case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6380 /* Legacy weak PWM Pulse Finished half complete Callback */
6381 htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6382 break;
6383
6384 case HAL_TIM_ERROR_CB_ID :
6385 /* Legacy weak Error Callback */
6386 htim->ErrorCallback = HAL_TIM_ErrorCallback;
6387 break;
6388
6389 case HAL_TIM_COMMUTATION_CB_ID :
6390 /* Legacy weak Commutation Callback */
6391 htim->CommutationCallback = HAL_TIMEx_CommutCallback;
6392 break;
6393
6394 case HAL_TIM_COMMUTATION_HALF_CB_ID :
6395 /* Legacy weak Commutation half complete Callback */
6396 htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
6397 break;
6398
6399 case HAL_TIM_BREAK_CB_ID :
6400 /* Legacy weak Break Callback */
6401 htim->BreakCallback = HAL_TIMEx_BreakCallback;
6402 break;
6403
6404 case HAL_TIM_BREAK2_CB_ID :
6405 /* Legacy weak Break2 Callback */
6406 htim->Break2Callback = HAL_TIMEx_Break2Callback;
6407 break;
6408
6409 default :
6410 /* Return error status */
6411 status = HAL_ERROR;
6412 break;
6413 }
6414 }
6415 else if (htim->State == HAL_TIM_STATE_RESET)
6416 {
6417 switch (CallbackID)
6418 {
6419 case HAL_TIM_BASE_MSPINIT_CB_ID :
6420 /* Legacy weak Base MspInit Callback */
6421 htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
6422 break;
6423
6424 case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6425 /* Legacy weak Base Msp DeInit Callback */
6426 htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
6427 break;
6428
6429 case HAL_TIM_IC_MSPINIT_CB_ID :
6430 /* Legacy weak IC Msp Init Callback */
6431 htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
6432 break;
6433
6434 case HAL_TIM_IC_MSPDEINIT_CB_ID :
6435 /* Legacy weak IC Msp DeInit Callback */
6436 htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
6437 break;
6438
6439 case HAL_TIM_OC_MSPINIT_CB_ID :
6440 /* Legacy weak OC Msp Init Callback */
6441 htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
6442 break;
6443
6444 case HAL_TIM_OC_MSPDEINIT_CB_ID :
6445 /* Legacy weak OC Msp DeInit Callback */
6446 htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
6447 break;
6448
6449 case HAL_TIM_PWM_MSPINIT_CB_ID :
6450 /* Legacy weak PWM Msp Init Callback */
6451 htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
6452 break;
6453
6454 case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6455 /* Legacy weak PWM Msp DeInit Callback */
6456 htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
6457 break;
6458
6459 case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6460 /* Legacy weak One Pulse Msp Init Callback */
6461 htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
6462 break;
6463
6464 case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6465 /* Legacy weak One Pulse Msp DeInit Callback */
6466 htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
6467 break;
6468
6469 case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6470 /* Legacy weak Encoder Msp Init Callback */
6471 htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
6472 break;
6473
6474 case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6475 /* Legacy weak Encoder Msp DeInit Callback */
6476 htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
6477 break;
6478
6479 case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6480 /* Legacy weak Hall Sensor Msp Init Callback */
6481 htim->HallSensor_MspInitCallback = HAL_TIMEx_HallSensor_MspInit;
6482 break;
6483
6484 case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6485 /* Legacy weak Hall Sensor Msp DeInit Callback */
6486 htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6487 break;
6488
6489 default :
6490 /* Return error status */
6491 status = HAL_ERROR;
6492 break;
6493 }
6494 }
6495 else
6496 {
6497 /* Return error status */
6498 status = HAL_ERROR;
6499 }
6500
6501 /* Release Lock */
6502 __HAL_UNLOCK(htim);
6503
6504 return status;
6505 }
6506 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6507
6508 /**
6509 * @}
6510 */
6511
6512 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6513 * @brief TIM Peripheral State functions
6514 *
6515 @verbatim
6516 ==============================================================================
6517 ##### Peripheral State functions #####
6518 ==============================================================================
6519 [..]
6520 This subsection permits to get in run-time the status of the peripheral
6521 and the data flow.
6522
6523 @endverbatim
6524 * @{
6525 */
6526
6527 /**
6528 * @brief Return the TIM Base handle state.
6529 * @param htim TIM Base handle
6530 * @retval HAL state
6531 */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6532 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6533 {
6534 return htim->State;
6535 }
6536
6537 /**
6538 * @brief Return the TIM OC handle state.
6539 * @param htim TIM Output Compare handle
6540 * @retval HAL state
6541 */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6542 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6543 {
6544 return htim->State;
6545 }
6546
6547 /**
6548 * @brief Return the TIM PWM handle state.
6549 * @param htim TIM handle
6550 * @retval HAL state
6551 */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6552 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6553 {
6554 return htim->State;
6555 }
6556
6557 /**
6558 * @brief Return the TIM Input Capture handle state.
6559 * @param htim TIM IC handle
6560 * @retval HAL state
6561 */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6562 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6563 {
6564 return htim->State;
6565 }
6566
6567 /**
6568 * @brief Return the TIM One Pulse Mode handle state.
6569 * @param htim TIM OPM handle
6570 * @retval HAL state
6571 */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6572 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6573 {
6574 return htim->State;
6575 }
6576
6577 /**
6578 * @brief Return the TIM Encoder Mode handle state.
6579 * @param htim TIM Encoder Interface handle
6580 * @retval HAL state
6581 */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6582 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6583 {
6584 return htim->State;
6585 }
6586
6587 /**
6588 * @brief Return the TIM Encoder Mode handle state.
6589 * @param htim TIM handle
6590 * @retval Active channel
6591 */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6592 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6593 {
6594 return htim->Channel;
6595 }
6596
6597 /**
6598 * @brief Return actual state of the TIM channel.
6599 * @param htim TIM handle
6600 * @param Channel TIM Channel
6601 * This parameter can be one of the following values:
6602 * @arg TIM_CHANNEL_1: TIM Channel 1
6603 * @arg TIM_CHANNEL_2: TIM Channel 2
6604 * @arg TIM_CHANNEL_3: TIM Channel 3
6605 * @arg TIM_CHANNEL_4: TIM Channel 4
6606 * @arg TIM_CHANNEL_5: TIM Channel 5
6607 * @arg TIM_CHANNEL_6: TIM Channel 6
6608 * @retval TIM Channel state
6609 */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6610 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim, uint32_t Channel)
6611 {
6612 HAL_TIM_ChannelStateTypeDef channel_state;
6613
6614 /* Check the parameters */
6615 assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6616
6617 channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6618
6619 return channel_state;
6620 }
6621
6622 /**
6623 * @brief Return actual state of a DMA burst operation.
6624 * @param htim TIM handle
6625 * @retval DMA burst state
6626 */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6627 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6628 {
6629 /* Check the parameters */
6630 assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6631
6632 return htim->DMABurstState;
6633 }
6634
6635 /**
6636 * @}
6637 */
6638
6639 /**
6640 * @}
6641 */
6642
6643 /** @defgroup TIM_Private_Functions TIM Private Functions
6644 * @{
6645 */
6646
6647 /**
6648 * @brief TIM DMA error callback
6649 * @param hdma pointer to DMA handle.
6650 * @retval None
6651 */
TIM_DMAError(DMA_HandleTypeDef * hdma)6652 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6653 {
6654 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6655
6656 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6657 {
6658 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6659 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6660 }
6661 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6662 {
6663 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6664 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6665 }
6666 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6667 {
6668 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6669 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6670 }
6671 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6672 {
6673 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6674 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6675 }
6676 else
6677 {
6678 htim->State = HAL_TIM_STATE_READY;
6679 }
6680
6681 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6682 htim->ErrorCallback(htim);
6683 #else
6684 HAL_TIM_ErrorCallback(htim);
6685 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6686
6687 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6688 }
6689
6690 /**
6691 * @brief TIM DMA Delay Pulse complete callback.
6692 * @param hdma pointer to DMA handle.
6693 * @retval None
6694 */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6695 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6696 {
6697 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6698
6699 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6700 {
6701 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6702
6703 if (hdma->Init.Mode == DMA_NORMAL)
6704 {
6705 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6706 }
6707 }
6708 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6709 {
6710 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6711
6712 if (hdma->Init.Mode == DMA_NORMAL)
6713 {
6714 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6715 }
6716 }
6717 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6718 {
6719 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6720
6721 if (hdma->Init.Mode == DMA_NORMAL)
6722 {
6723 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6724 }
6725 }
6726 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6727 {
6728 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6729
6730 if (hdma->Init.Mode == DMA_NORMAL)
6731 {
6732 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6733 }
6734 }
6735 else
6736 {
6737 /* nothing to do */
6738 }
6739
6740 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6741 htim->PWM_PulseFinishedCallback(htim);
6742 #else
6743 HAL_TIM_PWM_PulseFinishedCallback(htim);
6744 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6745
6746 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6747 }
6748
6749 /**
6750 * @brief TIM DMA Delay Pulse half complete callback.
6751 * @param hdma pointer to DMA handle.
6752 * @retval None
6753 */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6754 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6755 {
6756 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6757
6758 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6759 {
6760 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6761 }
6762 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6763 {
6764 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6765 }
6766 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6767 {
6768 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6769 }
6770 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6771 {
6772 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6773 }
6774 else
6775 {
6776 /* nothing to do */
6777 }
6778
6779 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6780 htim->PWM_PulseFinishedHalfCpltCallback(htim);
6781 #else
6782 HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6783 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6784
6785 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6786 }
6787
6788 /**
6789 * @brief TIM DMA Capture complete callback.
6790 * @param hdma pointer to DMA handle.
6791 * @retval None
6792 */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6793 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6794 {
6795 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6796
6797 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6798 {
6799 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6800
6801 if (hdma->Init.Mode == DMA_NORMAL)
6802 {
6803 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6804 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6805 }
6806 }
6807 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6808 {
6809 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6810
6811 if (hdma->Init.Mode == DMA_NORMAL)
6812 {
6813 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6814 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6815 }
6816 }
6817 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6818 {
6819 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6820
6821 if (hdma->Init.Mode == DMA_NORMAL)
6822 {
6823 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6824 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6825 }
6826 }
6827 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6828 {
6829 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6830
6831 if (hdma->Init.Mode == DMA_NORMAL)
6832 {
6833 TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6834 TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6835 }
6836 }
6837 else
6838 {
6839 /* nothing to do */
6840 }
6841
6842 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6843 htim->IC_CaptureCallback(htim);
6844 #else
6845 HAL_TIM_IC_CaptureCallback(htim);
6846 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6847
6848 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6849 }
6850
6851 /**
6852 * @brief TIM DMA Capture half complete callback.
6853 * @param hdma pointer to DMA handle.
6854 * @retval None
6855 */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6856 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6857 {
6858 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6859
6860 if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6861 {
6862 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6863 }
6864 else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6865 {
6866 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6867 }
6868 else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6869 {
6870 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6871 }
6872 else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6873 {
6874 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6875 }
6876 else
6877 {
6878 /* nothing to do */
6879 }
6880
6881 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6882 htim->IC_CaptureHalfCpltCallback(htim);
6883 #else
6884 HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6885 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6886
6887 htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6888 }
6889
6890 /**
6891 * @brief TIM DMA Period Elapse complete callback.
6892 * @param hdma pointer to DMA handle.
6893 * @retval None
6894 */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6895 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6896 {
6897 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6898
6899 if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6900 {
6901 htim->State = HAL_TIM_STATE_READY;
6902 }
6903
6904 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6905 htim->PeriodElapsedCallback(htim);
6906 #else
6907 HAL_TIM_PeriodElapsedCallback(htim);
6908 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6909 }
6910
6911 /**
6912 * @brief TIM DMA Period Elapse half complete callback.
6913 * @param hdma pointer to DMA handle.
6914 * @retval None
6915 */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6916 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6917 {
6918 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6919
6920 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6921 htim->PeriodElapsedHalfCpltCallback(htim);
6922 #else
6923 HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6924 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6925 }
6926
6927 /**
6928 * @brief TIM DMA Trigger callback.
6929 * @param hdma pointer to DMA handle.
6930 * @retval None
6931 */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6932 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6933 {
6934 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6935
6936 if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6937 {
6938 htim->State = HAL_TIM_STATE_READY;
6939 }
6940
6941 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6942 htim->TriggerCallback(htim);
6943 #else
6944 HAL_TIM_TriggerCallback(htim);
6945 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6946 }
6947
6948 /**
6949 * @brief TIM DMA Trigger half complete callback.
6950 * @param hdma pointer to DMA handle.
6951 * @retval None
6952 */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6953 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6954 {
6955 TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6956
6957 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6958 htim->TriggerHalfCpltCallback(htim);
6959 #else
6960 HAL_TIM_TriggerHalfCpltCallback(htim);
6961 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6962 }
6963
6964 /**
6965 * @brief Time Base configuration
6966 * @param TIMx TIM peripheral
6967 * @param Structure TIM Base configuration structure
6968 * @retval None
6969 */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6970 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6971 {
6972 uint32_t tmpcr1;
6973 tmpcr1 = TIMx->CR1;
6974
6975 /* Set TIM Time Base Unit parameters ---------------------------------------*/
6976 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6977 {
6978 /* Select the Counter Mode */
6979 tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6980 tmpcr1 |= Structure->CounterMode;
6981 }
6982
6983 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6984 {
6985 /* Set the clock division */
6986 tmpcr1 &= ~TIM_CR1_CKD;
6987 tmpcr1 |= (uint32_t)Structure->ClockDivision;
6988 }
6989
6990 /* Set the auto-reload preload */
6991 MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6992
6993 TIMx->CR1 = tmpcr1;
6994
6995 /* Set the Autoreload value */
6996 TIMx->ARR = (uint32_t)Structure->Period ;
6997
6998 /* Set the Prescaler value */
6999 TIMx->PSC = Structure->Prescaler;
7000
7001 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
7002 {
7003 /* Set the Repetition Counter value */
7004 TIMx->RCR = Structure->RepetitionCounter;
7005 }
7006
7007 /* Generate an update event to reload the Prescaler
7008 and the repetition counter (only for advanced timer) value immediately */
7009 TIMx->EGR = TIM_EGR_UG;
7010 }
7011
7012 /**
7013 * @brief Timer Output Compare 1 configuration
7014 * @param TIMx to select the TIM peripheral
7015 * @param OC_Config The output configuration structure
7016 * @retval None
7017 */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7018 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7019 {
7020 uint32_t tmpccmrx;
7021 uint32_t tmpccer;
7022 uint32_t tmpcr2;
7023
7024 /* Disable the Channel 1: Reset the CC1E Bit */
7025 TIMx->CCER &= ~TIM_CCER_CC1E;
7026
7027 /* Get the TIMx CCER register value */
7028 tmpccer = TIMx->CCER;
7029 /* Get the TIMx CR2 register value */
7030 tmpcr2 = TIMx->CR2;
7031
7032 /* Get the TIMx CCMR1 register value */
7033 tmpccmrx = TIMx->CCMR1;
7034
7035 /* Reset the Output Compare Mode Bits */
7036 tmpccmrx &= ~TIM_CCMR1_OC1M;
7037 tmpccmrx &= ~TIM_CCMR1_CC1S;
7038 /* Select the Output Compare Mode */
7039 tmpccmrx |= OC_Config->OCMode;
7040
7041 /* Reset the Output Polarity level */
7042 tmpccer &= ~TIM_CCER_CC1P;
7043 /* Set the Output Compare Polarity */
7044 tmpccer |= OC_Config->OCPolarity;
7045
7046 if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
7047 {
7048 /* Check parameters */
7049 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7050
7051 /* Reset the Output N Polarity level */
7052 tmpccer &= ~TIM_CCER_CC1NP;
7053 /* Set the Output N Polarity */
7054 tmpccer |= OC_Config->OCNPolarity;
7055 /* Reset the Output N State */
7056 tmpccer &= ~TIM_CCER_CC1NE;
7057 }
7058
7059 if (IS_TIM_BREAK_INSTANCE(TIMx))
7060 {
7061 /* Check parameters */
7062 assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7063 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7064
7065 /* Reset the Output Compare and Output Compare N IDLE State */
7066 tmpcr2 &= ~TIM_CR2_OIS1;
7067 tmpcr2 &= ~TIM_CR2_OIS1N;
7068 /* Set the Output Idle state */
7069 tmpcr2 |= OC_Config->OCIdleState;
7070 /* Set the Output N Idle state */
7071 tmpcr2 |= OC_Config->OCNIdleState;
7072 }
7073
7074 /* Write to TIMx CR2 */
7075 TIMx->CR2 = tmpcr2;
7076
7077 /* Write to TIMx CCMR1 */
7078 TIMx->CCMR1 = tmpccmrx;
7079
7080 /* Set the Capture Compare Register value */
7081 TIMx->CCR1 = OC_Config->Pulse;
7082
7083 /* Write to TIMx CCER */
7084 TIMx->CCER = tmpccer;
7085 }
7086
7087 /**
7088 * @brief Timer Output Compare 2 configuration
7089 * @param TIMx to select the TIM peripheral
7090 * @param OC_Config The output configuration structure
7091 * @retval None
7092 */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7093 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7094 {
7095 uint32_t tmpccmrx;
7096 uint32_t tmpccer;
7097 uint32_t tmpcr2;
7098
7099 /* Disable the Channel 2: Reset the CC2E Bit */
7100 TIMx->CCER &= ~TIM_CCER_CC2E;
7101
7102 /* Get the TIMx CCER register value */
7103 tmpccer = TIMx->CCER;
7104 /* Get the TIMx CR2 register value */
7105 tmpcr2 = TIMx->CR2;
7106
7107 /* Get the TIMx CCMR1 register value */
7108 tmpccmrx = TIMx->CCMR1;
7109
7110 /* Reset the Output Compare mode and Capture/Compare selection Bits */
7111 tmpccmrx &= ~TIM_CCMR1_OC2M;
7112 tmpccmrx &= ~TIM_CCMR1_CC2S;
7113
7114 /* Select the Output Compare Mode */
7115 tmpccmrx |= (OC_Config->OCMode << 8U);
7116
7117 /* Reset the Output Polarity level */
7118 tmpccer &= ~TIM_CCER_CC2P;
7119 /* Set the Output Compare Polarity */
7120 tmpccer |= (OC_Config->OCPolarity << 4U);
7121
7122 if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
7123 {
7124 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7125
7126 /* Reset the Output N Polarity level */
7127 tmpccer &= ~TIM_CCER_CC2NP;
7128 /* Set the Output N Polarity */
7129 tmpccer |= (OC_Config->OCNPolarity << 4U);
7130 /* Reset the Output N State */
7131 tmpccer &= ~TIM_CCER_CC2NE;
7132
7133 }
7134
7135 if (IS_TIM_BREAK_INSTANCE(TIMx))
7136 {
7137 /* Check parameters */
7138 assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7139 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7140
7141 /* Reset the Output Compare and Output Compare N IDLE State */
7142 tmpcr2 &= ~TIM_CR2_OIS2;
7143 tmpcr2 &= ~TIM_CR2_OIS2N;
7144 /* Set the Output Idle state */
7145 tmpcr2 |= (OC_Config->OCIdleState << 2U);
7146 /* Set the Output N Idle state */
7147 tmpcr2 |= (OC_Config->OCNIdleState << 2U);
7148 }
7149
7150 /* Write to TIMx CR2 */
7151 TIMx->CR2 = tmpcr2;
7152
7153 /* Write to TIMx CCMR1 */
7154 TIMx->CCMR1 = tmpccmrx;
7155
7156 /* Set the Capture Compare Register value */
7157 TIMx->CCR2 = OC_Config->Pulse;
7158
7159 /* Write to TIMx CCER */
7160 TIMx->CCER = tmpccer;
7161 }
7162
7163 /**
7164 * @brief Timer Output Compare 3 configuration
7165 * @param TIMx to select the TIM peripheral
7166 * @param OC_Config The output configuration structure
7167 * @retval None
7168 */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7169 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7170 {
7171 uint32_t tmpccmrx;
7172 uint32_t tmpccer;
7173 uint32_t tmpcr2;
7174
7175 /* Disable the Channel 3: Reset the CC2E Bit */
7176 TIMx->CCER &= ~TIM_CCER_CC3E;
7177
7178 /* Get the TIMx CCER register value */
7179 tmpccer = TIMx->CCER;
7180 /* Get the TIMx CR2 register value */
7181 tmpcr2 = TIMx->CR2;
7182
7183 /* Get the TIMx CCMR2 register value */
7184 tmpccmrx = TIMx->CCMR2;
7185
7186 /* Reset the Output Compare mode and Capture/Compare selection Bits */
7187 tmpccmrx &= ~TIM_CCMR2_OC3M;
7188 tmpccmrx &= ~TIM_CCMR2_CC3S;
7189 /* Select the Output Compare Mode */
7190 tmpccmrx |= OC_Config->OCMode;
7191
7192 /* Reset the Output Polarity level */
7193 tmpccer &= ~TIM_CCER_CC3P;
7194 /* Set the Output Compare Polarity */
7195 tmpccer |= (OC_Config->OCPolarity << 8U);
7196
7197 if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7198 {
7199 assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7200
7201 /* Reset the Output N Polarity level */
7202 tmpccer &= ~TIM_CCER_CC3NP;
7203 /* Set the Output N Polarity */
7204 tmpccer |= (OC_Config->OCNPolarity << 8U);
7205 /* Reset the Output N State */
7206 tmpccer &= ~TIM_CCER_CC3NE;
7207 }
7208
7209 if (IS_TIM_BREAK_INSTANCE(TIMx))
7210 {
7211 /* Check parameters */
7212 assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7213 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7214
7215 /* Reset the Output Compare and Output Compare N IDLE State */
7216 tmpcr2 &= ~TIM_CR2_OIS3;
7217 tmpcr2 &= ~TIM_CR2_OIS3N;
7218 /* Set the Output Idle state */
7219 tmpcr2 |= (OC_Config->OCIdleState << 4U);
7220 /* Set the Output N Idle state */
7221 tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7222 }
7223
7224 /* Write to TIMx CR2 */
7225 TIMx->CR2 = tmpcr2;
7226
7227 /* Write to TIMx CCMR2 */
7228 TIMx->CCMR2 = tmpccmrx;
7229
7230 /* Set the Capture Compare Register value */
7231 TIMx->CCR3 = OC_Config->Pulse;
7232
7233 /* Write to TIMx CCER */
7234 TIMx->CCER = tmpccer;
7235 }
7236
7237 /**
7238 * @brief Timer Output Compare 4 configuration
7239 * @param TIMx to select the TIM peripheral
7240 * @param OC_Config The output configuration structure
7241 * @retval None
7242 */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7243 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7244 {
7245 uint32_t tmpccmrx;
7246 uint32_t tmpccer;
7247 uint32_t tmpcr2;
7248
7249 /* Disable the Channel 4: Reset the CC4E Bit */
7250 TIMx->CCER &= ~TIM_CCER_CC4E;
7251
7252 /* Get the TIMx CCER register value */
7253 tmpccer = TIMx->CCER;
7254 /* Get the TIMx CR2 register value */
7255 tmpcr2 = TIMx->CR2;
7256
7257 /* Get the TIMx CCMR2 register value */
7258 tmpccmrx = TIMx->CCMR2;
7259
7260 /* Reset the Output Compare mode and Capture/Compare selection Bits */
7261 tmpccmrx &= ~TIM_CCMR2_OC4M;
7262 tmpccmrx &= ~TIM_CCMR2_CC4S;
7263
7264 /* Select the Output Compare Mode */
7265 tmpccmrx |= (OC_Config->OCMode << 8U);
7266
7267 /* Reset the Output Polarity level */
7268 tmpccer &= ~TIM_CCER_CC4P;
7269 /* Set the Output Compare Polarity */
7270 tmpccer |= (OC_Config->OCPolarity << 12U);
7271
7272 if (IS_TIM_BREAK_INSTANCE(TIMx))
7273 {
7274 /* Check parameters */
7275 assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7276
7277 /* Reset the Output Compare IDLE State */
7278 tmpcr2 &= ~TIM_CR2_OIS4;
7279
7280 /* Set the Output Idle state */
7281 tmpcr2 |= (OC_Config->OCIdleState << 6U);
7282 }
7283
7284 /* Write to TIMx CR2 */
7285 TIMx->CR2 = tmpcr2;
7286
7287 /* Write to TIMx CCMR2 */
7288 TIMx->CCMR2 = tmpccmrx;
7289
7290 /* Set the Capture Compare Register value */
7291 TIMx->CCR4 = OC_Config->Pulse;
7292
7293 /* Write to TIMx CCER */
7294 TIMx->CCER = tmpccer;
7295 }
7296
7297 /**
7298 * @brief Timer Output Compare 5 configuration
7299 * @param TIMx to select the TIM peripheral
7300 * @param OC_Config The output configuration structure
7301 * @retval None
7302 */
TIM_OC5_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7303 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
7304 const TIM_OC_InitTypeDef *OC_Config)
7305 {
7306 uint32_t tmpccmrx;
7307 uint32_t tmpccer;
7308 uint32_t tmpcr2;
7309
7310 /* Disable the output: Reset the CCxE Bit */
7311 TIMx->CCER &= ~TIM_CCER_CC5E;
7312
7313 /* Get the TIMx CCER register value */
7314 tmpccer = TIMx->CCER;
7315 /* Get the TIMx CR2 register value */
7316 tmpcr2 = TIMx->CR2;
7317 /* Get the TIMx CCMR1 register value */
7318 tmpccmrx = TIMx->CCMR3;
7319
7320 /* Reset the Output Compare Mode Bits */
7321 tmpccmrx &= ~(TIM_CCMR3_OC5M);
7322 /* Select the Output Compare Mode */
7323 tmpccmrx |= OC_Config->OCMode;
7324
7325 /* Reset the Output Polarity level */
7326 tmpccer &= ~TIM_CCER_CC5P;
7327 /* Set the Output Compare Polarity */
7328 tmpccer |= (OC_Config->OCPolarity << 16U);
7329
7330 if (IS_TIM_BREAK_INSTANCE(TIMx))
7331 {
7332 /* Reset the Output Compare IDLE State */
7333 tmpcr2 &= ~TIM_CR2_OIS5;
7334 /* Set the Output Idle state */
7335 tmpcr2 |= (OC_Config->OCIdleState << 8U);
7336 }
7337 /* Write to TIMx CR2 */
7338 TIMx->CR2 = tmpcr2;
7339
7340 /* Write to TIMx CCMR3 */
7341 TIMx->CCMR3 = tmpccmrx;
7342
7343 /* Set the Capture Compare Register value */
7344 TIMx->CCR5 = OC_Config->Pulse;
7345
7346 /* Write to TIMx CCER */
7347 TIMx->CCER = tmpccer;
7348 }
7349
7350 /**
7351 * @brief Timer Output Compare 6 configuration
7352 * @param TIMx to select the TIM peripheral
7353 * @param OC_Config The output configuration structure
7354 * @retval None
7355 */
TIM_OC6_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7356 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
7357 const TIM_OC_InitTypeDef *OC_Config)
7358 {
7359 uint32_t tmpccmrx;
7360 uint32_t tmpccer;
7361 uint32_t tmpcr2;
7362
7363 /* Disable the output: Reset the CCxE Bit */
7364 TIMx->CCER &= ~TIM_CCER_CC6E;
7365
7366 /* Get the TIMx CCER register value */
7367 tmpccer = TIMx->CCER;
7368 /* Get the TIMx CR2 register value */
7369 tmpcr2 = TIMx->CR2;
7370 /* Get the TIMx CCMR1 register value */
7371 tmpccmrx = TIMx->CCMR3;
7372
7373 /* Reset the Output Compare Mode Bits */
7374 tmpccmrx &= ~(TIM_CCMR3_OC6M);
7375 /* Select the Output Compare Mode */
7376 tmpccmrx |= (OC_Config->OCMode << 8U);
7377
7378 /* Reset the Output Polarity level */
7379 tmpccer &= (uint32_t)~TIM_CCER_CC6P;
7380 /* Set the Output Compare Polarity */
7381 tmpccer |= (OC_Config->OCPolarity << 20U);
7382
7383 if (IS_TIM_BREAK_INSTANCE(TIMx))
7384 {
7385 /* Reset the Output Compare IDLE State */
7386 tmpcr2 &= ~TIM_CR2_OIS6;
7387 /* Set the Output Idle state */
7388 tmpcr2 |= (OC_Config->OCIdleState << 10U);
7389 }
7390
7391 /* Write to TIMx CR2 */
7392 TIMx->CR2 = tmpcr2;
7393
7394 /* Write to TIMx CCMR3 */
7395 TIMx->CCMR3 = tmpccmrx;
7396
7397 /* Set the Capture Compare Register value */
7398 TIMx->CCR6 = OC_Config->Pulse;
7399
7400 /* Write to TIMx CCER */
7401 TIMx->CCER = tmpccer;
7402 }
7403
7404 /**
7405 * @brief Slave Timer configuration function
7406 * @param htim TIM handle
7407 * @param sSlaveConfig Slave timer configuration
7408 * @retval None
7409 */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7410 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7411 const TIM_SlaveConfigTypeDef *sSlaveConfig)
7412 {
7413 HAL_StatusTypeDef status = HAL_OK;
7414 uint32_t tmpsmcr;
7415 uint32_t tmpccmr1;
7416 uint32_t tmpccer;
7417
7418 /* Get the TIMx SMCR register value */
7419 tmpsmcr = htim->Instance->SMCR;
7420
7421 /* Reset the Trigger Selection Bits */
7422 tmpsmcr &= ~TIM_SMCR_TS;
7423 /* Set the Input Trigger source */
7424 tmpsmcr |= sSlaveConfig->InputTrigger;
7425
7426 /* Reset the slave mode Bits */
7427 tmpsmcr &= ~TIM_SMCR_SMS;
7428 /* Set the slave mode */
7429 tmpsmcr |= sSlaveConfig->SlaveMode;
7430
7431 /* Write to TIMx SMCR */
7432 htim->Instance->SMCR = tmpsmcr;
7433
7434 /* Configure the trigger prescaler, filter, and polarity */
7435 switch (sSlaveConfig->InputTrigger)
7436 {
7437 case TIM_TS_ETRF:
7438 {
7439 /* Check the parameters */
7440 assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7441 assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7442 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7443 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7444 /* Configure the ETR Trigger source */
7445 TIM_ETR_SetConfig(htim->Instance,
7446 sSlaveConfig->TriggerPrescaler,
7447 sSlaveConfig->TriggerPolarity,
7448 sSlaveConfig->TriggerFilter);
7449 break;
7450 }
7451
7452 case TIM_TS_TI1F_ED:
7453 {
7454 /* Check the parameters */
7455 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7456 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7457
7458 if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7459 {
7460 return HAL_ERROR;
7461 }
7462
7463 /* Disable the Channel 1: Reset the CC1E Bit */
7464 tmpccer = htim->Instance->CCER;
7465 htim->Instance->CCER &= ~TIM_CCER_CC1E;
7466 tmpccmr1 = htim->Instance->CCMR1;
7467
7468 /* Set the filter */
7469 tmpccmr1 &= ~TIM_CCMR1_IC1F;
7470 tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7471
7472 /* Write to TIMx CCMR1 and CCER registers */
7473 htim->Instance->CCMR1 = tmpccmr1;
7474 htim->Instance->CCER = tmpccer;
7475 break;
7476 }
7477
7478 case TIM_TS_TI1FP1:
7479 {
7480 /* Check the parameters */
7481 assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7482 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7483 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7484
7485 /* Configure TI1 Filter and Polarity */
7486 TIM_TI1_ConfigInputStage(htim->Instance,
7487 sSlaveConfig->TriggerPolarity,
7488 sSlaveConfig->TriggerFilter);
7489 break;
7490 }
7491
7492 case TIM_TS_TI2FP2:
7493 {
7494 /* Check the parameters */
7495 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7496 assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7497 assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7498
7499 /* Configure TI2 Filter and Polarity */
7500 TIM_TI2_ConfigInputStage(htim->Instance,
7501 sSlaveConfig->TriggerPolarity,
7502 sSlaveConfig->TriggerFilter);
7503 break;
7504 }
7505
7506 case TIM_TS_ITR0:
7507 case TIM_TS_ITR1:
7508 case TIM_TS_ITR2:
7509 case TIM_TS_ITR3:
7510 {
7511 /* Check the parameter */
7512 assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7513 break;
7514 }
7515
7516 default:
7517 status = HAL_ERROR;
7518 break;
7519 }
7520
7521 return status;
7522 }
7523
7524 /**
7525 * @brief Configure the TI1 as Input.
7526 * @param TIMx to select the TIM peripheral.
7527 * @param TIM_ICPolarity The Input Polarity.
7528 * This parameter can be one of the following values:
7529 * @arg TIM_ICPOLARITY_RISING
7530 * @arg TIM_ICPOLARITY_FALLING
7531 * @arg TIM_ICPOLARITY_BOTHEDGE
7532 * @param TIM_ICSelection specifies the input to be used.
7533 * This parameter can be one of the following values:
7534 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7535 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7536 * @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7537 * @param TIM_ICFilter Specifies the Input Capture Filter.
7538 * This parameter must be a value between 0x00 and 0x0F.
7539 * @retval None
7540 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7541 * (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7542 * protected against un-initialized filter and polarity values.
7543 */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7544 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7545 uint32_t TIM_ICFilter)
7546 {
7547 uint32_t tmpccmr1;
7548 uint32_t tmpccer;
7549
7550 /* Disable the Channel 1: Reset the CC1E Bit */
7551 TIMx->CCER &= ~TIM_CCER_CC1E;
7552 tmpccmr1 = TIMx->CCMR1;
7553 tmpccer = TIMx->CCER;
7554
7555 /* Select the Input */
7556 if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7557 {
7558 tmpccmr1 &= ~TIM_CCMR1_CC1S;
7559 tmpccmr1 |= TIM_ICSelection;
7560 }
7561 else
7562 {
7563 tmpccmr1 |= TIM_CCMR1_CC1S_0;
7564 }
7565
7566 /* Set the filter */
7567 tmpccmr1 &= ~TIM_CCMR1_IC1F;
7568 tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7569
7570 /* Select the Polarity and set the CC1E Bit */
7571 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7572 tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7573
7574 /* Write to TIMx CCMR1 and CCER registers */
7575 TIMx->CCMR1 = tmpccmr1;
7576 TIMx->CCER = tmpccer;
7577 }
7578
7579 /**
7580 * @brief Configure the Polarity and Filter for TI1.
7581 * @param TIMx to select the TIM peripheral.
7582 * @param TIM_ICPolarity The Input Polarity.
7583 * This parameter can be one of the following values:
7584 * @arg TIM_ICPOLARITY_RISING
7585 * @arg TIM_ICPOLARITY_FALLING
7586 * @arg TIM_ICPOLARITY_BOTHEDGE
7587 * @param TIM_ICFilter Specifies the Input Capture Filter.
7588 * This parameter must be a value between 0x00 and 0x0F.
7589 * @retval None
7590 */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7591 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7592 {
7593 uint32_t tmpccmr1;
7594 uint32_t tmpccer;
7595
7596 /* Disable the Channel 1: Reset the CC1E Bit */
7597 tmpccer = TIMx->CCER;
7598 TIMx->CCER &= ~TIM_CCER_CC1E;
7599 tmpccmr1 = TIMx->CCMR1;
7600
7601 /* Set the filter */
7602 tmpccmr1 &= ~TIM_CCMR1_IC1F;
7603 tmpccmr1 |= (TIM_ICFilter << 4U);
7604
7605 /* Select the Polarity and set the CC1E Bit */
7606 tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7607 tmpccer |= TIM_ICPolarity;
7608
7609 /* Write to TIMx CCMR1 and CCER registers */
7610 TIMx->CCMR1 = tmpccmr1;
7611 TIMx->CCER = tmpccer;
7612 }
7613
7614 /**
7615 * @brief Configure the TI2 as Input.
7616 * @param TIMx to select the TIM peripheral
7617 * @param TIM_ICPolarity The Input Polarity.
7618 * This parameter can be one of the following values:
7619 * @arg TIM_ICPOLARITY_RISING
7620 * @arg TIM_ICPOLARITY_FALLING
7621 * @arg TIM_ICPOLARITY_BOTHEDGE
7622 * @param TIM_ICSelection specifies the input to be used.
7623 * This parameter can be one of the following values:
7624 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7625 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7626 * @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7627 * @param TIM_ICFilter Specifies the Input Capture Filter.
7628 * This parameter must be a value between 0x00 and 0x0F.
7629 * @retval None
7630 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7631 * (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7632 * protected against un-initialized filter and polarity values.
7633 */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7634 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7635 uint32_t TIM_ICFilter)
7636 {
7637 uint32_t tmpccmr1;
7638 uint32_t tmpccer;
7639
7640 /* Disable the Channel 2: Reset the CC2E Bit */
7641 TIMx->CCER &= ~TIM_CCER_CC2E;
7642 tmpccmr1 = TIMx->CCMR1;
7643 tmpccer = TIMx->CCER;
7644
7645 /* Select the Input */
7646 tmpccmr1 &= ~TIM_CCMR1_CC2S;
7647 tmpccmr1 |= (TIM_ICSelection << 8U);
7648
7649 /* Set the filter */
7650 tmpccmr1 &= ~TIM_CCMR1_IC2F;
7651 tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7652
7653 /* Select the Polarity and set the CC2E Bit */
7654 tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7655 tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7656
7657 /* Write to TIMx CCMR1 and CCER registers */
7658 TIMx->CCMR1 = tmpccmr1 ;
7659 TIMx->CCER = tmpccer;
7660 }
7661
7662 /**
7663 * @brief Configure the Polarity and Filter for TI2.
7664 * @param TIMx to select the TIM peripheral.
7665 * @param TIM_ICPolarity The Input Polarity.
7666 * This parameter can be one of the following values:
7667 * @arg TIM_ICPOLARITY_RISING
7668 * @arg TIM_ICPOLARITY_FALLING
7669 * @arg TIM_ICPOLARITY_BOTHEDGE
7670 * @param TIM_ICFilter Specifies the Input Capture Filter.
7671 * This parameter must be a value between 0x00 and 0x0F.
7672 * @retval None
7673 */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7674 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7675 {
7676 uint32_t tmpccmr1;
7677 uint32_t tmpccer;
7678
7679 /* Disable the Channel 2: Reset the CC2E Bit */
7680 TIMx->CCER &= ~TIM_CCER_CC2E;
7681 tmpccmr1 = TIMx->CCMR1;
7682 tmpccer = TIMx->CCER;
7683
7684 /* Set the filter */
7685 tmpccmr1 &= ~TIM_CCMR1_IC2F;
7686 tmpccmr1 |= (TIM_ICFilter << 12U);
7687
7688 /* Select the Polarity and set the CC2E Bit */
7689 tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7690 tmpccer |= (TIM_ICPolarity << 4U);
7691
7692 /* Write to TIMx CCMR1 and CCER registers */
7693 TIMx->CCMR1 = tmpccmr1 ;
7694 TIMx->CCER = tmpccer;
7695 }
7696
7697 /**
7698 * @brief Configure the TI3 as Input.
7699 * @param TIMx to select the TIM peripheral
7700 * @param TIM_ICPolarity The Input Polarity.
7701 * This parameter can be one of the following values:
7702 * @arg TIM_ICPOLARITY_RISING
7703 * @arg TIM_ICPOLARITY_FALLING
7704 * @arg TIM_ICPOLARITY_BOTHEDGE
7705 * @param TIM_ICSelection specifies the input to be used.
7706 * This parameter can be one of the following values:
7707 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7708 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7709 * @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7710 * @param TIM_ICFilter Specifies the Input Capture Filter.
7711 * This parameter must be a value between 0x00 and 0x0F.
7712 * @retval None
7713 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7714 * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7715 * protected against un-initialized filter and polarity values.
7716 */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7717 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7718 uint32_t TIM_ICFilter)
7719 {
7720 uint32_t tmpccmr2;
7721 uint32_t tmpccer;
7722
7723 /* Disable the Channel 3: Reset the CC3E Bit */
7724 TIMx->CCER &= ~TIM_CCER_CC3E;
7725 tmpccmr2 = TIMx->CCMR2;
7726 tmpccer = TIMx->CCER;
7727
7728 /* Select the Input */
7729 tmpccmr2 &= ~TIM_CCMR2_CC3S;
7730 tmpccmr2 |= TIM_ICSelection;
7731
7732 /* Set the filter */
7733 tmpccmr2 &= ~TIM_CCMR2_IC3F;
7734 tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7735
7736 /* Select the Polarity and set the CC3E Bit */
7737 tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
7738 tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
7739
7740 /* Write to TIMx CCMR2 and CCER registers */
7741 TIMx->CCMR2 = tmpccmr2;
7742 TIMx->CCER = tmpccer;
7743 }
7744
7745 /**
7746 * @brief Configure the TI4 as Input.
7747 * @param TIMx to select the TIM peripheral
7748 * @param TIM_ICPolarity The Input Polarity.
7749 * This parameter can be one of the following values:
7750 * @arg TIM_ICPOLARITY_RISING
7751 * @arg TIM_ICPOLARITY_FALLING
7752 * @arg TIM_ICPOLARITY_BOTHEDGE
7753 * @param TIM_ICSelection specifies the input to be used.
7754 * This parameter can be one of the following values:
7755 * @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7756 * @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7757 * @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7758 * @param TIM_ICFilter Specifies the Input Capture Filter.
7759 * This parameter must be a value between 0x00 and 0x0F.
7760 * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7761 * (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7762 * protected against un-initialized filter and polarity values.
7763 * @retval None
7764 */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7765 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7766 uint32_t TIM_ICFilter)
7767 {
7768 uint32_t tmpccmr2;
7769 uint32_t tmpccer;
7770
7771 /* Disable the Channel 4: Reset the CC4E Bit */
7772 TIMx->CCER &= ~TIM_CCER_CC4E;
7773 tmpccmr2 = TIMx->CCMR2;
7774 tmpccer = TIMx->CCER;
7775
7776 /* Select the Input */
7777 tmpccmr2 &= ~TIM_CCMR2_CC4S;
7778 tmpccmr2 |= (TIM_ICSelection << 8U);
7779
7780 /* Set the filter */
7781 tmpccmr2 &= ~TIM_CCMR2_IC4F;
7782 tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7783
7784 /* Select the Polarity and set the CC4E Bit */
7785 tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
7786 tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
7787
7788 /* Write to TIMx CCMR2 and CCER registers */
7789 TIMx->CCMR2 = tmpccmr2;
7790 TIMx->CCER = tmpccer ;
7791 }
7792
7793 /**
7794 * @brief Selects the Input Trigger source
7795 * @param TIMx to select the TIM peripheral
7796 * @param InputTriggerSource The Input Trigger source.
7797 * This parameter can be one of the following values:
7798 * @arg TIM_TS_ITR0: Internal Trigger 0
7799 * @arg TIM_TS_ITR1: Internal Trigger 1
7800 * @arg TIM_TS_ITR2: Internal Trigger 2
7801 * @arg TIM_TS_ITR3: Internal Trigger 3
7802 * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7803 * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7804 * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7805 * @arg TIM_TS_ETRF: External Trigger input
7806 * @retval None
7807 */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7808 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7809 {
7810 uint32_t tmpsmcr;
7811
7812 /* Get the TIMx SMCR register value */
7813 tmpsmcr = TIMx->SMCR;
7814 /* Reset the TS Bits */
7815 tmpsmcr &= ~TIM_SMCR_TS;
7816 /* Set the Input Trigger source and the slave mode*/
7817 tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7818 /* Write to TIMx SMCR */
7819 TIMx->SMCR = tmpsmcr;
7820 }
7821 /**
7822 * @brief Configures the TIMx External Trigger (ETR).
7823 * @param TIMx to select the TIM peripheral
7824 * @param TIM_ExtTRGPrescaler The external Trigger Prescaler.
7825 * This parameter can be one of the following values:
7826 * @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7827 * @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7828 * @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7829 * @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7830 * @param TIM_ExtTRGPolarity The external Trigger Polarity.
7831 * This parameter can be one of the following values:
7832 * @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7833 * @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7834 * @param ExtTRGFilter External Trigger Filter.
7835 * This parameter must be a value between 0x00 and 0x0F
7836 * @retval None
7837 */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7838 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7839 uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7840 {
7841 uint32_t tmpsmcr;
7842
7843 tmpsmcr = TIMx->SMCR;
7844
7845 /* Reset the ETR Bits */
7846 tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7847
7848 /* Set the Prescaler, the Filter value and the Polarity */
7849 tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7850
7851 /* Write to TIMx SMCR */
7852 TIMx->SMCR = tmpsmcr;
7853 }
7854
7855 /**
7856 * @brief Enables or disables the TIM Capture Compare Channel x.
7857 * @param TIMx to select the TIM peripheral
7858 * @param Channel specifies the TIM Channel
7859 * This parameter can be one of the following values:
7860 * @arg TIM_CHANNEL_1: TIM Channel 1
7861 * @arg TIM_CHANNEL_2: TIM Channel 2
7862 * @arg TIM_CHANNEL_3: TIM Channel 3
7863 * @arg TIM_CHANNEL_4: TIM Channel 4
7864 * @arg TIM_CHANNEL_5: TIM Channel 5 selected
7865 * @arg TIM_CHANNEL_6: TIM Channel 6 selected
7866 * @param ChannelState specifies the TIM Channel CCxE bit new state.
7867 * This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7868 * @retval None
7869 */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7870 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7871 {
7872 uint32_t tmp;
7873
7874 /* Check the parameters */
7875 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7876 assert_param(IS_TIM_CHANNELS(Channel));
7877
7878 tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7879
7880 /* Reset the CCxE Bit */
7881 TIMx->CCER &= ~tmp;
7882
7883 /* Set or reset the CCxE Bit */
7884 TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7885 }
7886
7887 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7888 /**
7889 * @brief Reset interrupt callbacks to the legacy weak callbacks.
7890 * @param htim pointer to a TIM_HandleTypeDef structure that contains
7891 * the configuration information for TIM module.
7892 * @retval None
7893 */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7894 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7895 {
7896 /* Reset the TIM callback to the legacy weak callbacks */
7897 htim->PeriodElapsedCallback = HAL_TIM_PeriodElapsedCallback;
7898 htim->PeriodElapsedHalfCpltCallback = HAL_TIM_PeriodElapsedHalfCpltCallback;
7899 htim->TriggerCallback = HAL_TIM_TriggerCallback;
7900 htim->TriggerHalfCpltCallback = HAL_TIM_TriggerHalfCpltCallback;
7901 htim->IC_CaptureCallback = HAL_TIM_IC_CaptureCallback;
7902 htim->IC_CaptureHalfCpltCallback = HAL_TIM_IC_CaptureHalfCpltCallback;
7903 htim->OC_DelayElapsedCallback = HAL_TIM_OC_DelayElapsedCallback;
7904 htim->PWM_PulseFinishedCallback = HAL_TIM_PWM_PulseFinishedCallback;
7905 htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7906 htim->ErrorCallback = HAL_TIM_ErrorCallback;
7907 htim->CommutationCallback = HAL_TIMEx_CommutCallback;
7908 htim->CommutationHalfCpltCallback = HAL_TIMEx_CommutHalfCpltCallback;
7909 htim->BreakCallback = HAL_TIMEx_BreakCallback;
7910 htim->Break2Callback = HAL_TIMEx_Break2Callback;
7911 }
7912 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7913
7914 /**
7915 * @}
7916 */
7917
7918 #endif /* HAL_TIM_MODULE_ENABLED */
7919 /**
7920 * @}
7921 */
7922
7923 /**
7924 * @}
7925 */
7926