1 /**
2   ******************************************************************************
3   * @file    stm32g0xx_hal_tim.c
4   * @author  MCD Application Team
5   * @brief   TIM HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Timer (TIM) peripheral:
8   *           + TIM Time Base Initialization
9   *           + TIM Time Base Start
10   *           + TIM Time Base Start Interruption
11   *           + TIM Time Base Start DMA
12   *           + TIM Output Compare/PWM Initialization
13   *           + TIM Output Compare/PWM Channel Configuration
14   *           + TIM Output Compare/PWM  Start
15   *           + TIM Output Compare/PWM  Start Interruption
16   *           + TIM Output Compare/PWM Start DMA
17   *           + TIM Input Capture Initialization
18   *           + TIM Input Capture Channel Configuration
19   *           + TIM Input Capture Start
20   *           + TIM Input Capture Start Interruption
21   *           + TIM Input Capture Start DMA
22   *           + TIM One Pulse Initialization
23   *           + TIM One Pulse Channel Configuration
24   *           + TIM One Pulse Start
25   *           + TIM Encoder Interface Initialization
26   *           + TIM Encoder Interface Start
27   *           + TIM Encoder Interface Start Interruption
28   *           + TIM Encoder Interface Start DMA
29   *           + Commutation Event configuration with Interruption and DMA
30   *           + TIM OCRef clear configuration
31   *           + TIM External Clock configuration
32   ******************************************************************************
33   * @attention
34   *
35   * Copyright (c) 2018 STMicroelectronics.
36   * All rights reserved.
37   *
38   * This software is licensed under terms that can be found in the LICENSE file
39   * in the root directory of this software component.
40   * If no LICENSE file comes with this software, it is provided AS-IS.
41   *
42   ******************************************************************************
43   @verbatim
44   ==============================================================================
45                       ##### TIMER Generic features #####
46   ==============================================================================
47   [..] The Timer features include:
48        (#) 16-bit up, down, up/down auto-reload counter.
49        (#) 16-bit programmable prescaler allowing dividing (also on the fly) the
50            counter clock frequency either by any factor between 1 and 65536.
51        (#) Up to 4 independent channels for:
52            (++) Input Capture
53            (++) Output Compare
54            (++) PWM generation (Edge and Center-aligned Mode)
55            (++) One-pulse mode output
56        (#) Synchronization circuit to control the timer with external signals and to interconnect
57             several timers together.
58        (#) Supports incremental encoder for positioning purposes
59 
60             ##### How to use this driver #####
61   ==============================================================================
62     [..]
63      (#) Initialize the TIM low level resources by implementing the following functions
64          depending on the selected feature:
65            (++) Time Base : HAL_TIM_Base_MspInit()
66            (++) Input Capture : HAL_TIM_IC_MspInit()
67            (++) Output Compare : HAL_TIM_OC_MspInit()
68            (++) PWM generation : HAL_TIM_PWM_MspInit()
69            (++) One-pulse mode output : HAL_TIM_OnePulse_MspInit()
70            (++) Encoder mode output : HAL_TIM_Encoder_MspInit()
71 
72      (#) Initialize the TIM low level resources :
73         (##) Enable the TIM interface clock using __HAL_RCC_TIMx_CLK_ENABLE();
74         (##) TIM pins configuration
75             (+++) Enable the clock for the TIM GPIOs using the following function:
76              __HAL_RCC_GPIOx_CLK_ENABLE();
77             (+++) Configure these TIM pins in Alternate function mode using HAL_GPIO_Init();
78 
79      (#) The external Clock can be configured, if needed (the default clock is the
80          internal clock from the APBx), using the following function:
81          HAL_TIM_ConfigClockSource, the clock configuration should be done before
82          any start function.
83 
84      (#) Configure the TIM in the desired functioning mode using one of the
85        Initialization function of this driver:
86        (++) HAL_TIM_Base_Init: to use the Timer to generate a simple time base
87        (++) HAL_TIM_OC_Init and HAL_TIM_OC_ConfigChannel: to use the Timer to generate an
88             Output Compare signal.
89        (++) HAL_TIM_PWM_Init and HAL_TIM_PWM_ConfigChannel: to use the Timer to generate a
90             PWM signal.
91        (++) HAL_TIM_IC_Init and HAL_TIM_IC_ConfigChannel: to use the Timer to measure an
92             external signal.
93        (++) HAL_TIM_OnePulse_Init and HAL_TIM_OnePulse_ConfigChannel: to use the Timer
94             in One Pulse Mode.
95        (++) HAL_TIM_Encoder_Init: to use the Timer Encoder Interface.
96 
97      (#) Activate the TIM peripheral using one of the start functions depending from the feature used:
98            (++) Time Base : HAL_TIM_Base_Start(), HAL_TIM_Base_Start_DMA(), HAL_TIM_Base_Start_IT()
99            (++) Input Capture :  HAL_TIM_IC_Start(), HAL_TIM_IC_Start_DMA(), HAL_TIM_IC_Start_IT()
100            (++) Output Compare : HAL_TIM_OC_Start(), HAL_TIM_OC_Start_DMA(), HAL_TIM_OC_Start_IT()
101            (++) PWM generation : HAL_TIM_PWM_Start(), HAL_TIM_PWM_Start_DMA(), HAL_TIM_PWM_Start_IT()
102            (++) One-pulse mode output : HAL_TIM_OnePulse_Start(), HAL_TIM_OnePulse_Start_IT()
103            (++) Encoder mode output : HAL_TIM_Encoder_Start(), HAL_TIM_Encoder_Start_DMA(), HAL_TIM_Encoder_Start_IT().
104 
105      (#) The DMA Burst is managed with the two following functions:
106          HAL_TIM_DMABurst_WriteStart()
107          HAL_TIM_DMABurst_ReadStart()
108 
109     *** Callback registration ***
110   =============================================
111 
112   [..]
113   The compilation define  USE_HAL_TIM_REGISTER_CALLBACKS when set to 1
114   allows the user to configure dynamically the driver callbacks.
115 
116   [..]
117   Use Function HAL_TIM_RegisterCallback() to register a callback.
118   HAL_TIM_RegisterCallback() takes as parameters the HAL peripheral handle,
119   the Callback ID and a pointer to the user callback function.
120 
121   [..]
122   Use function HAL_TIM_UnRegisterCallback() to reset a callback to the default
123   weak function.
124   HAL_TIM_UnRegisterCallback takes as parameters the HAL peripheral handle,
125   and the Callback ID.
126 
127   [..]
128   These functions allow to register/unregister following callbacks:
129     (+) Base_MspInitCallback              : TIM Base Msp Init Callback.
130     (+) Base_MspDeInitCallback            : TIM Base Msp DeInit Callback.
131     (+) IC_MspInitCallback                : TIM IC Msp Init Callback.
132     (+) IC_MspDeInitCallback              : TIM IC Msp DeInit Callback.
133     (+) OC_MspInitCallback                : TIM OC Msp Init Callback.
134     (+) OC_MspDeInitCallback              : TIM OC Msp DeInit Callback.
135     (+) PWM_MspInitCallback               : TIM PWM Msp Init Callback.
136     (+) PWM_MspDeInitCallback             : TIM PWM Msp DeInit Callback.
137     (+) OnePulse_MspInitCallback          : TIM One Pulse Msp Init Callback.
138     (+) OnePulse_MspDeInitCallback        : TIM One Pulse Msp DeInit Callback.
139     (+) Encoder_MspInitCallback           : TIM Encoder Msp Init Callback.
140     (+) Encoder_MspDeInitCallback         : TIM Encoder Msp DeInit Callback.
141     (+) HallSensor_MspInitCallback        : TIM Hall Sensor Msp Init Callback.
142     (+) HallSensor_MspDeInitCallback      : TIM Hall Sensor Msp DeInit Callback.
143     (+) PeriodElapsedCallback             : TIM Period Elapsed Callback.
144     (+) PeriodElapsedHalfCpltCallback     : TIM Period Elapsed half complete Callback.
145     (+) TriggerCallback                   : TIM Trigger Callback.
146     (+) TriggerHalfCpltCallback           : TIM Trigger half complete Callback.
147     (+) IC_CaptureCallback                : TIM Input Capture Callback.
148     (+) IC_CaptureHalfCpltCallback        : TIM Input Capture half complete Callback.
149     (+) OC_DelayElapsedCallback           : TIM Output Compare Delay Elapsed Callback.
150     (+) PWM_PulseFinishedCallback         : TIM PWM Pulse Finished Callback.
151     (+) PWM_PulseFinishedHalfCpltCallback : TIM PWM Pulse Finished half complete Callback.
152     (+) ErrorCallback                     : TIM Error Callback.
153     (+) CommutationCallback               : TIM Commutation Callback.
154     (+) CommutationHalfCpltCallback       : TIM Commutation half complete Callback.
155     (+) BreakCallback                     : TIM Break Callback.
156     (+) Break2Callback                    : TIM Break2 Callback.
157 
158   [..]
159 By default, after the Init and when the state is HAL_TIM_STATE_RESET
160 all interrupt callbacks are set to the corresponding weak functions:
161   examples HAL_TIM_TriggerCallback(), HAL_TIM_ErrorCallback().
162 
163   [..]
164   Exception done for MspInit and MspDeInit functions that are reset to the legacy weak
165   functionalities in the Init / DeInit only when these callbacks are null
166   (not registered beforehand). If not, MspInit or MspDeInit are not null, the Init / DeInit
167     keep and use the user MspInit / MspDeInit callbacks(registered beforehand)
168 
169   [..]
170     Callbacks can be registered / unregistered in HAL_TIM_STATE_READY state only.
171     Exception done MspInit / MspDeInit that can be registered / unregistered
172     in HAL_TIM_STATE_READY or HAL_TIM_STATE_RESET state,
173     thus registered(user) MspInit / DeInit callbacks can be used during the Init / DeInit.
174   In that case first register the MspInit/MspDeInit user callbacks
175       using HAL_TIM_RegisterCallback() before calling DeInit or Init function.
176 
177   [..]
178       When The compilation define USE_HAL_TIM_REGISTER_CALLBACKS is set to 0 or
179       not defined, the callback registration feature is not available and all callbacks
180       are set to the corresponding weak functions.
181 
182   @endverbatim
183   ******************************************************************************
184   */
185 
186 /* Includes ------------------------------------------------------------------*/
187 #include "stm32g0xx_hal.h"
188 
189 /** @addtogroup STM32G0xx_HAL_Driver
190   * @{
191   */
192 
193 /** @defgroup TIM TIM
194   * @brief TIM HAL module driver
195   * @{
196   */
197 
198 #ifdef HAL_TIM_MODULE_ENABLED
199 
200 /* Private typedef -----------------------------------------------------------*/
201 /* Private define ------------------------------------------------------------*/
202 /** @addtogroup TIM_Private_Constants
203   * @{
204   */
205 #define TIMx_OR1_OCREF_CLR 0x00000001U
206 /**
207   * @}
208   */
209 
210 /* Private macros ------------------------------------------------------------*/
211 /* Private variables ---------------------------------------------------------*/
212 /* Private function prototypes -----------------------------------------------*/
213 /** @addtogroup TIM_Private_Functions
214   * @{
215   */
216 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
217 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
218 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
219 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
220 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config);
221 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
222 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
223                               uint32_t TIM_ICFilter);
224 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter);
225 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
226                               uint32_t TIM_ICFilter);
227 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
228                               uint32_t TIM_ICFilter);
229 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource);
230 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma);
231 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma);
232 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma);
233 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma);
234 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma);
235 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
236                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig);
237 /**
238   * @}
239   */
240 /* Exported functions --------------------------------------------------------*/
241 
242 /** @defgroup TIM_Exported_Functions TIM Exported Functions
243   * @{
244   */
245 
246 /** @defgroup TIM_Exported_Functions_Group1 TIM Time Base functions
247   *  @brief    Time Base functions
248   *
249 @verbatim
250   ==============================================================================
251               ##### Time Base functions #####
252   ==============================================================================
253   [..]
254     This section provides functions allowing to:
255     (+) Initialize and configure the TIM base.
256     (+) De-initialize the TIM base.
257     (+) Start the Time Base.
258     (+) Stop the Time Base.
259     (+) Start the Time Base and enable interrupt.
260     (+) Stop the Time Base and disable interrupt.
261     (+) Start the Time Base and enable DMA transfer.
262     (+) Stop the Time Base and disable DMA transfer.
263 
264 @endverbatim
265   * @{
266   */
267 /**
268   * @brief  Initializes the TIM Time base Unit according to the specified
269   *         parameters in the TIM_HandleTypeDef and initialize the associated handle.
270   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
271   *         requires a timer reset to avoid unexpected direction
272   *         due to DIR bit readonly in center aligned mode.
273   *         Ex: call @ref HAL_TIM_Base_DeInit() before HAL_TIM_Base_Init()
274   * @param  htim TIM Base handle
275   * @retval HAL status
276   */
HAL_TIM_Base_Init(TIM_HandleTypeDef * htim)277 HAL_StatusTypeDef HAL_TIM_Base_Init(TIM_HandleTypeDef *htim)
278 {
279   /* Check the TIM handle allocation */
280   if (htim == NULL)
281   {
282     return HAL_ERROR;
283   }
284 
285   /* Check the parameters */
286   assert_param(IS_TIM_INSTANCE(htim->Instance));
287   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
288   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
289   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
290   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
291 
292   if (htim->State == HAL_TIM_STATE_RESET)
293   {
294     /* Allocate lock resource and initialize it */
295     htim->Lock = HAL_UNLOCKED;
296 
297 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
298     /* Reset interrupt callbacks to legacy weak callbacks */
299     TIM_ResetCallback(htim);
300 
301     if (htim->Base_MspInitCallback == NULL)
302     {
303       htim->Base_MspInitCallback = HAL_TIM_Base_MspInit;
304     }
305     /* Init the low level hardware : GPIO, CLOCK, NVIC */
306     htim->Base_MspInitCallback(htim);
307 #else
308     /* Init the low level hardware : GPIO, CLOCK, NVIC */
309     HAL_TIM_Base_MspInit(htim);
310 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
311   }
312 
313   /* Set the TIM state */
314   htim->State = HAL_TIM_STATE_BUSY;
315 
316   /* Set the Time Base configuration */
317   TIM_Base_SetConfig(htim->Instance, &htim->Init);
318 
319   /* Initialize the DMA burst operation state */
320   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
321 
322   /* Initialize the TIM channels state */
323   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
324   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
325 
326   /* Initialize the TIM state*/
327   htim->State = HAL_TIM_STATE_READY;
328 
329   return HAL_OK;
330 }
331 
332 /**
333   * @brief  DeInitializes the TIM Base peripheral
334   * @param  htim TIM Base handle
335   * @retval HAL status
336   */
HAL_TIM_Base_DeInit(TIM_HandleTypeDef * htim)337 HAL_StatusTypeDef HAL_TIM_Base_DeInit(TIM_HandleTypeDef *htim)
338 {
339   /* Check the parameters */
340   assert_param(IS_TIM_INSTANCE(htim->Instance));
341 
342   htim->State = HAL_TIM_STATE_BUSY;
343 
344   /* Disable the TIM Peripheral Clock */
345   __HAL_TIM_DISABLE(htim);
346 
347 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
348   if (htim->Base_MspDeInitCallback == NULL)
349   {
350     htim->Base_MspDeInitCallback = HAL_TIM_Base_MspDeInit;
351   }
352   /* DeInit the low level hardware */
353   htim->Base_MspDeInitCallback(htim);
354 #else
355   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
356   HAL_TIM_Base_MspDeInit(htim);
357 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
358 
359   /* Change the DMA burst operation state */
360   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
361 
362   /* Change the TIM channels state */
363   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
364   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
365 
366   /* Change TIM state */
367   htim->State = HAL_TIM_STATE_RESET;
368 
369   /* Release Lock */
370   __HAL_UNLOCK(htim);
371 
372   return HAL_OK;
373 }
374 
375 /**
376   * @brief  Initializes the TIM Base MSP.
377   * @param  htim TIM Base handle
378   * @retval None
379   */
HAL_TIM_Base_MspInit(TIM_HandleTypeDef * htim)380 __weak void HAL_TIM_Base_MspInit(TIM_HandleTypeDef *htim)
381 {
382   /* Prevent unused argument(s) compilation warning */
383   UNUSED(htim);
384 
385   /* NOTE : This function should not be modified, when the callback is needed,
386             the HAL_TIM_Base_MspInit could be implemented in the user file
387    */
388 }
389 
390 /**
391   * @brief  DeInitializes TIM Base MSP.
392   * @param  htim TIM Base handle
393   * @retval None
394   */
HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef * htim)395 __weak void HAL_TIM_Base_MspDeInit(TIM_HandleTypeDef *htim)
396 {
397   /* Prevent unused argument(s) compilation warning */
398   UNUSED(htim);
399 
400   /* NOTE : This function should not be modified, when the callback is needed,
401             the HAL_TIM_Base_MspDeInit could be implemented in the user file
402    */
403 }
404 
405 
406 /**
407   * @brief  Starts the TIM Base generation.
408   * @param  htim TIM Base handle
409   * @retval HAL status
410   */
HAL_TIM_Base_Start(TIM_HandleTypeDef * htim)411 HAL_StatusTypeDef HAL_TIM_Base_Start(TIM_HandleTypeDef *htim)
412 {
413   uint32_t tmpsmcr;
414 
415   /* Check the parameters */
416   assert_param(IS_TIM_INSTANCE(htim->Instance));
417 
418   /* Check the TIM state */
419   if (htim->State != HAL_TIM_STATE_READY)
420   {
421     return HAL_ERROR;
422   }
423 
424   /* Set the TIM state */
425   htim->State = HAL_TIM_STATE_BUSY;
426 
427   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
428   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
429   {
430     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
431     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
432     {
433       __HAL_TIM_ENABLE(htim);
434     }
435   }
436   else
437   {
438     __HAL_TIM_ENABLE(htim);
439   }
440 
441   /* Return function status */
442   return HAL_OK;
443 }
444 
445 /**
446   * @brief  Stops the TIM Base generation.
447   * @param  htim TIM Base handle
448   * @retval HAL status
449   */
HAL_TIM_Base_Stop(TIM_HandleTypeDef * htim)450 HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim)
451 {
452   /* Check the parameters */
453   assert_param(IS_TIM_INSTANCE(htim->Instance));
454 
455   /* Disable the Peripheral */
456   __HAL_TIM_DISABLE(htim);
457 
458   /* Set the TIM state */
459   htim->State = HAL_TIM_STATE_READY;
460 
461   /* Return function status */
462   return HAL_OK;
463 }
464 
465 /**
466   * @brief  Starts the TIM Base generation in interrupt mode.
467   * @param  htim TIM Base handle
468   * @retval HAL status
469   */
HAL_TIM_Base_Start_IT(TIM_HandleTypeDef * htim)470 HAL_StatusTypeDef HAL_TIM_Base_Start_IT(TIM_HandleTypeDef *htim)
471 {
472   uint32_t tmpsmcr;
473 
474   /* Check the parameters */
475   assert_param(IS_TIM_INSTANCE(htim->Instance));
476 
477   /* Check the TIM state */
478   if (htim->State != HAL_TIM_STATE_READY)
479   {
480     return HAL_ERROR;
481   }
482 
483   /* Set the TIM state */
484   htim->State = HAL_TIM_STATE_BUSY;
485 
486   /* Enable the TIM Update interrupt */
487   __HAL_TIM_ENABLE_IT(htim, TIM_IT_UPDATE);
488 
489   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
490   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
491   {
492     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
493     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
494     {
495       __HAL_TIM_ENABLE(htim);
496     }
497   }
498   else
499   {
500     __HAL_TIM_ENABLE(htim);
501   }
502 
503   /* Return function status */
504   return HAL_OK;
505 }
506 
507 /**
508   * @brief  Stops the TIM Base generation in interrupt mode.
509   * @param  htim TIM Base handle
510   * @retval HAL status
511   */
HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef * htim)512 HAL_StatusTypeDef HAL_TIM_Base_Stop_IT(TIM_HandleTypeDef *htim)
513 {
514   /* Check the parameters */
515   assert_param(IS_TIM_INSTANCE(htim->Instance));
516 
517   /* Disable the TIM Update interrupt */
518   __HAL_TIM_DISABLE_IT(htim, TIM_IT_UPDATE);
519 
520   /* Disable the Peripheral */
521   __HAL_TIM_DISABLE(htim);
522 
523   /* Set the TIM state */
524   htim->State = HAL_TIM_STATE_READY;
525 
526   /* Return function status */
527   return HAL_OK;
528 }
529 
530 /**
531   * @brief  Starts the TIM Base generation in DMA mode.
532   * @param  htim TIM Base handle
533   * @param  pData The source Buffer address.
534   * @param  Length The length of data to be transferred from memory to peripheral.
535   * @retval HAL status
536   */
HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef * htim,const uint32_t * pData,uint16_t Length)537 HAL_StatusTypeDef HAL_TIM_Base_Start_DMA(TIM_HandleTypeDef *htim, const uint32_t *pData, uint16_t Length)
538 {
539   uint32_t tmpsmcr;
540 
541   /* Check the parameters */
542   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
543 
544   /* Set the TIM state */
545   if (htim->State == HAL_TIM_STATE_BUSY)
546   {
547     return HAL_BUSY;
548   }
549   else if (htim->State == HAL_TIM_STATE_READY)
550   {
551     if ((pData == NULL) || (Length == 0U))
552     {
553       return HAL_ERROR;
554     }
555     else
556     {
557       htim->State = HAL_TIM_STATE_BUSY;
558     }
559   }
560   else
561   {
562     return HAL_ERROR;
563   }
564 
565   /* Set the DMA Period elapsed callbacks */
566   htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
567   htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
568 
569   /* Set the DMA error callback */
570   htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
571 
572   /* Enable the DMA channel */
573   if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)pData, (uint32_t)&htim->Instance->ARR,
574                        Length) != HAL_OK)
575   {
576     /* Return error status */
577     return HAL_ERROR;
578   }
579 
580   /* Enable the TIM Update DMA request */
581   __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_UPDATE);
582 
583   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
584   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
585   {
586     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
587     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
588     {
589       __HAL_TIM_ENABLE(htim);
590     }
591   }
592   else
593   {
594     __HAL_TIM_ENABLE(htim);
595   }
596 
597   /* Return function status */
598   return HAL_OK;
599 }
600 
601 /**
602   * @brief  Stops the TIM Base generation in DMA mode.
603   * @param  htim TIM Base handle
604   * @retval HAL status
605   */
HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef * htim)606 HAL_StatusTypeDef HAL_TIM_Base_Stop_DMA(TIM_HandleTypeDef *htim)
607 {
608   /* Check the parameters */
609   assert_param(IS_TIM_DMA_INSTANCE(htim->Instance));
610 
611   /* Disable the TIM Update DMA request */
612   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_UPDATE);
613 
614   (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
615 
616   /* Disable the Peripheral */
617   __HAL_TIM_DISABLE(htim);
618 
619   /* Set the TIM state */
620   htim->State = HAL_TIM_STATE_READY;
621 
622   /* Return function status */
623   return HAL_OK;
624 }
625 
626 /**
627   * @}
628   */
629 
630 /** @defgroup TIM_Exported_Functions_Group2 TIM Output Compare functions
631   *  @brief    TIM Output Compare functions
632   *
633 @verbatim
634   ==============================================================================
635                   ##### TIM Output Compare functions #####
636   ==============================================================================
637   [..]
638     This section provides functions allowing to:
639     (+) Initialize and configure the TIM Output Compare.
640     (+) De-initialize the TIM Output Compare.
641     (+) Start the TIM Output Compare.
642     (+) Stop the TIM Output Compare.
643     (+) Start the TIM Output Compare and enable interrupt.
644     (+) Stop the TIM Output Compare and disable interrupt.
645     (+) Start the TIM Output Compare and enable DMA transfer.
646     (+) Stop the TIM Output Compare and disable DMA transfer.
647 
648 @endverbatim
649   * @{
650   */
651 /**
652   * @brief  Initializes the TIM Output Compare according to the specified
653   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
654   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
655   *         requires a timer reset to avoid unexpected direction
656   *         due to DIR bit readonly in center aligned mode.
657   *         Ex: call @ref HAL_TIM_OC_DeInit() before HAL_TIM_OC_Init()
658   * @param  htim TIM Output Compare handle
659   * @retval HAL status
660   */
HAL_TIM_OC_Init(TIM_HandleTypeDef * htim)661 HAL_StatusTypeDef HAL_TIM_OC_Init(TIM_HandleTypeDef *htim)
662 {
663   /* Check the TIM handle allocation */
664   if (htim == NULL)
665   {
666     return HAL_ERROR;
667   }
668 
669   /* Check the parameters */
670   assert_param(IS_TIM_INSTANCE(htim->Instance));
671   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
672   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
673   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
674   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
675 
676   if (htim->State == HAL_TIM_STATE_RESET)
677   {
678     /* Allocate lock resource and initialize it */
679     htim->Lock = HAL_UNLOCKED;
680 
681 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
682     /* Reset interrupt callbacks to legacy weak callbacks */
683     TIM_ResetCallback(htim);
684 
685     if (htim->OC_MspInitCallback == NULL)
686     {
687       htim->OC_MspInitCallback = HAL_TIM_OC_MspInit;
688     }
689     /* Init the low level hardware : GPIO, CLOCK, NVIC */
690     htim->OC_MspInitCallback(htim);
691 #else
692     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
693     HAL_TIM_OC_MspInit(htim);
694 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
695   }
696 
697   /* Set the TIM state */
698   htim->State = HAL_TIM_STATE_BUSY;
699 
700   /* Init the base time for the Output Compare */
701   TIM_Base_SetConfig(htim->Instance,  &htim->Init);
702 
703   /* Initialize the DMA burst operation state */
704   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
705 
706   /* Initialize the TIM channels state */
707   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
708   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
709 
710   /* Initialize the TIM state*/
711   htim->State = HAL_TIM_STATE_READY;
712 
713   return HAL_OK;
714 }
715 
716 /**
717   * @brief  DeInitializes the TIM peripheral
718   * @param  htim TIM Output Compare handle
719   * @retval HAL status
720   */
HAL_TIM_OC_DeInit(TIM_HandleTypeDef * htim)721 HAL_StatusTypeDef HAL_TIM_OC_DeInit(TIM_HandleTypeDef *htim)
722 {
723   /* Check the parameters */
724   assert_param(IS_TIM_INSTANCE(htim->Instance));
725 
726   htim->State = HAL_TIM_STATE_BUSY;
727 
728   /* Disable the TIM Peripheral Clock */
729   __HAL_TIM_DISABLE(htim);
730 
731 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
732   if (htim->OC_MspDeInitCallback == NULL)
733   {
734     htim->OC_MspDeInitCallback = HAL_TIM_OC_MspDeInit;
735   }
736   /* DeInit the low level hardware */
737   htim->OC_MspDeInitCallback(htim);
738 #else
739   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
740   HAL_TIM_OC_MspDeInit(htim);
741 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
742 
743   /* Change the DMA burst operation state */
744   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
745 
746   /* Change the TIM channels state */
747   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
748   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
749 
750   /* Change TIM state */
751   htim->State = HAL_TIM_STATE_RESET;
752 
753   /* Release Lock */
754   __HAL_UNLOCK(htim);
755 
756   return HAL_OK;
757 }
758 
759 /**
760   * @brief  Initializes the TIM Output Compare MSP.
761   * @param  htim TIM Output Compare handle
762   * @retval None
763   */
HAL_TIM_OC_MspInit(TIM_HandleTypeDef * htim)764 __weak void HAL_TIM_OC_MspInit(TIM_HandleTypeDef *htim)
765 {
766   /* Prevent unused argument(s) compilation warning */
767   UNUSED(htim);
768 
769   /* NOTE : This function should not be modified, when the callback is needed,
770             the HAL_TIM_OC_MspInit could be implemented in the user file
771    */
772 }
773 
774 /**
775   * @brief  DeInitializes TIM Output Compare MSP.
776   * @param  htim TIM Output Compare handle
777   * @retval None
778   */
HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef * htim)779 __weak void HAL_TIM_OC_MspDeInit(TIM_HandleTypeDef *htim)
780 {
781   /* Prevent unused argument(s) compilation warning */
782   UNUSED(htim);
783 
784   /* NOTE : This function should not be modified, when the callback is needed,
785             the HAL_TIM_OC_MspDeInit could be implemented in the user file
786    */
787 }
788 
789 /**
790   * @brief  Starts the TIM Output Compare signal generation.
791   * @param  htim TIM Output Compare handle
792   * @param  Channel TIM Channel to be enabled
793   *          This parameter can be one of the following values:
794   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
795   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
796   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
797   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
798   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
799   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
800   * @retval HAL status
801   */
HAL_TIM_OC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)802 HAL_StatusTypeDef HAL_TIM_OC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
803 {
804   uint32_t tmpsmcr;
805 
806   /* Check the parameters */
807   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
808 
809   /* Check the TIM channel state */
810   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
811   {
812     return HAL_ERROR;
813   }
814 
815   /* Set the TIM channel state */
816   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
817 
818   /* Enable the Output compare channel */
819   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
820 
821   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
822   {
823     /* Enable the main output */
824     __HAL_TIM_MOE_ENABLE(htim);
825   }
826 
827   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
828   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
829   {
830     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
831     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
832     {
833       __HAL_TIM_ENABLE(htim);
834     }
835   }
836   else
837   {
838     __HAL_TIM_ENABLE(htim);
839   }
840 
841   /* Return function status */
842   return HAL_OK;
843 }
844 
845 /**
846   * @brief  Stops the TIM Output Compare signal generation.
847   * @param  htim TIM Output Compare handle
848   * @param  Channel TIM Channel to be disabled
849   *          This parameter can be one of the following values:
850   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
851   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
852   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
853   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
854   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
855   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
856   * @retval HAL status
857   */
HAL_TIM_OC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)858 HAL_StatusTypeDef HAL_TIM_OC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
859 {
860   /* Check the parameters */
861   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
862 
863   /* Disable the Output compare channel */
864   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
865 
866   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
867   {
868     /* Disable the Main Output */
869     __HAL_TIM_MOE_DISABLE(htim);
870   }
871 
872   /* Disable the Peripheral */
873   __HAL_TIM_DISABLE(htim);
874 
875   /* Set the TIM channel state */
876   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
877 
878   /* Return function status */
879   return HAL_OK;
880 }
881 
882 /**
883   * @brief  Starts the TIM Output Compare signal generation in interrupt mode.
884   * @param  htim TIM Output Compare handle
885   * @param  Channel TIM Channel to be enabled
886   *          This parameter can be one of the following values:
887   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
888   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
889   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
890   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
891   * @retval HAL status
892   */
HAL_TIM_OC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)893 HAL_StatusTypeDef HAL_TIM_OC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
894 {
895   HAL_StatusTypeDef status = HAL_OK;
896   uint32_t tmpsmcr;
897 
898   /* Check the parameters */
899   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
900 
901   /* Check the TIM channel state */
902   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
903   {
904     return HAL_ERROR;
905   }
906 
907   /* Set the TIM channel state */
908   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
909 
910   switch (Channel)
911   {
912     case TIM_CHANNEL_1:
913     {
914       /* Enable the TIM Capture/Compare 1 interrupt */
915       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
916       break;
917     }
918 
919     case TIM_CHANNEL_2:
920     {
921       /* Enable the TIM Capture/Compare 2 interrupt */
922       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
923       break;
924     }
925 
926     case TIM_CHANNEL_3:
927     {
928       /* Enable the TIM Capture/Compare 3 interrupt */
929       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
930       break;
931     }
932 
933     case TIM_CHANNEL_4:
934     {
935       /* Enable the TIM Capture/Compare 4 interrupt */
936       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
937       break;
938     }
939 
940     default:
941       status = HAL_ERROR;
942       break;
943   }
944 
945   if (status == HAL_OK)
946   {
947     /* Enable the Output compare channel */
948     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
949 
950     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
951     {
952       /* Enable the main output */
953       __HAL_TIM_MOE_ENABLE(htim);
954     }
955 
956     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
957     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
958     {
959       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
960       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
961       {
962         __HAL_TIM_ENABLE(htim);
963       }
964     }
965     else
966     {
967       __HAL_TIM_ENABLE(htim);
968     }
969   }
970 
971   /* Return function status */
972   return status;
973 }
974 
975 /**
976   * @brief  Stops the TIM Output Compare signal generation in interrupt mode.
977   * @param  htim TIM Output Compare handle
978   * @param  Channel TIM Channel to be disabled
979   *          This parameter can be one of the following values:
980   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
981   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
982   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
983   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
984   * @retval HAL status
985   */
HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)986 HAL_StatusTypeDef HAL_TIM_OC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
987 {
988   HAL_StatusTypeDef status = HAL_OK;
989 
990   /* Check the parameters */
991   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
992 
993   switch (Channel)
994   {
995     case TIM_CHANNEL_1:
996     {
997       /* Disable the TIM Capture/Compare 1 interrupt */
998       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
999       break;
1000     }
1001 
1002     case TIM_CHANNEL_2:
1003     {
1004       /* Disable the TIM Capture/Compare 2 interrupt */
1005       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1006       break;
1007     }
1008 
1009     case TIM_CHANNEL_3:
1010     {
1011       /* Disable the TIM Capture/Compare 3 interrupt */
1012       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1013       break;
1014     }
1015 
1016     case TIM_CHANNEL_4:
1017     {
1018       /* Disable the TIM Capture/Compare 4 interrupt */
1019       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1020       break;
1021     }
1022 
1023     default:
1024       status = HAL_ERROR;
1025       break;
1026   }
1027 
1028   if (status == HAL_OK)
1029   {
1030     /* Disable the Output compare channel */
1031     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1032 
1033     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1034     {
1035       /* Disable the Main Output */
1036       __HAL_TIM_MOE_DISABLE(htim);
1037     }
1038 
1039     /* Disable the Peripheral */
1040     __HAL_TIM_DISABLE(htim);
1041 
1042     /* Set the TIM channel state */
1043     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1044   }
1045 
1046   /* Return function status */
1047   return status;
1048 }
1049 
1050 /**
1051   * @brief  Starts the TIM Output Compare signal generation in DMA mode.
1052   * @param  htim TIM Output Compare handle
1053   * @param  Channel TIM Channel to be enabled
1054   *          This parameter can be one of the following values:
1055   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1056   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1057   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1058   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1059   * @param  pData The source Buffer address.
1060   * @param  Length The length of data to be transferred from memory to TIM peripheral
1061   * @retval HAL status
1062   */
HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1063 HAL_StatusTypeDef HAL_TIM_OC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1064                                        uint16_t Length)
1065 {
1066   HAL_StatusTypeDef status = HAL_OK;
1067   uint32_t tmpsmcr;
1068 
1069   /* Check the parameters */
1070   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1071 
1072   /* Set the TIM channel state */
1073   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1074   {
1075     return HAL_BUSY;
1076   }
1077   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1078   {
1079     if ((pData == NULL) || (Length == 0U))
1080     {
1081       return HAL_ERROR;
1082     }
1083     else
1084     {
1085       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1086     }
1087   }
1088   else
1089   {
1090     return HAL_ERROR;
1091   }
1092 
1093   switch (Channel)
1094   {
1095     case TIM_CHANNEL_1:
1096     {
1097       /* Set the DMA compare callbacks */
1098       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1099       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1100 
1101       /* Set the DMA error callback */
1102       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1103 
1104       /* Enable the DMA channel */
1105       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1106                            Length) != HAL_OK)
1107       {
1108         /* Return error status */
1109         return HAL_ERROR;
1110       }
1111 
1112       /* Enable the TIM Capture/Compare 1 DMA request */
1113       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1114       break;
1115     }
1116 
1117     case TIM_CHANNEL_2:
1118     {
1119       /* Set the DMA compare callbacks */
1120       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1121       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1122 
1123       /* Set the DMA error callback */
1124       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1125 
1126       /* Enable the DMA channel */
1127       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1128                            Length) != HAL_OK)
1129       {
1130         /* Return error status */
1131         return HAL_ERROR;
1132       }
1133 
1134       /* Enable the TIM Capture/Compare 2 DMA request */
1135       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1136       break;
1137     }
1138 
1139     case TIM_CHANNEL_3:
1140     {
1141       /* Set the DMA compare callbacks */
1142       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1143       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1144 
1145       /* Set the DMA error callback */
1146       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1147 
1148       /* Enable the DMA channel */
1149       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1150                            Length) != HAL_OK)
1151       {
1152         /* Return error status */
1153         return HAL_ERROR;
1154       }
1155       /* Enable the TIM Capture/Compare 3 DMA request */
1156       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1157       break;
1158     }
1159 
1160     case TIM_CHANNEL_4:
1161     {
1162       /* Set the DMA compare callbacks */
1163       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1164       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1165 
1166       /* Set the DMA error callback */
1167       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1168 
1169       /* Enable the DMA channel */
1170       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1171                            Length) != HAL_OK)
1172       {
1173         /* Return error status */
1174         return HAL_ERROR;
1175       }
1176       /* Enable the TIM Capture/Compare 4 DMA request */
1177       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1178       break;
1179     }
1180 
1181     default:
1182       status = HAL_ERROR;
1183       break;
1184   }
1185 
1186   if (status == HAL_OK)
1187   {
1188     /* Enable the Output compare channel */
1189     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1190 
1191     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1192     {
1193       /* Enable the main output */
1194       __HAL_TIM_MOE_ENABLE(htim);
1195     }
1196 
1197     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1198     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1199     {
1200       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1201       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1202       {
1203         __HAL_TIM_ENABLE(htim);
1204       }
1205     }
1206     else
1207     {
1208       __HAL_TIM_ENABLE(htim);
1209     }
1210   }
1211 
1212   /* Return function status */
1213   return status;
1214 }
1215 
1216 /**
1217   * @brief  Stops the TIM Output Compare signal generation in DMA mode.
1218   * @param  htim TIM Output Compare handle
1219   * @param  Channel TIM Channel to be disabled
1220   *          This parameter can be one of the following values:
1221   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1222   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1223   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1224   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1225   * @retval HAL status
1226   */
HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1227 HAL_StatusTypeDef HAL_TIM_OC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1228 {
1229   HAL_StatusTypeDef status = HAL_OK;
1230 
1231   /* Check the parameters */
1232   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1233 
1234   switch (Channel)
1235   {
1236     case TIM_CHANNEL_1:
1237     {
1238       /* Disable the TIM Capture/Compare 1 DMA request */
1239       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1240       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1241       break;
1242     }
1243 
1244     case TIM_CHANNEL_2:
1245     {
1246       /* Disable the TIM Capture/Compare 2 DMA request */
1247       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1248       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1249       break;
1250     }
1251 
1252     case TIM_CHANNEL_3:
1253     {
1254       /* Disable the TIM Capture/Compare 3 DMA request */
1255       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1256       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1257       break;
1258     }
1259 
1260     case TIM_CHANNEL_4:
1261     {
1262       /* Disable the TIM Capture/Compare 4 interrupt */
1263       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1264       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1265       break;
1266     }
1267 
1268     default:
1269       status = HAL_ERROR;
1270       break;
1271   }
1272 
1273   if (status == HAL_OK)
1274   {
1275     /* Disable the Output compare channel */
1276     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1277 
1278     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1279     {
1280       /* Disable the Main Output */
1281       __HAL_TIM_MOE_DISABLE(htim);
1282     }
1283 
1284     /* Disable the Peripheral */
1285     __HAL_TIM_DISABLE(htim);
1286 
1287     /* Set the TIM channel state */
1288     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1289   }
1290 
1291   /* Return function status */
1292   return status;
1293 }
1294 
1295 /**
1296   * @}
1297   */
1298 
1299 /** @defgroup TIM_Exported_Functions_Group3 TIM PWM functions
1300   *  @brief    TIM PWM functions
1301   *
1302 @verbatim
1303   ==============================================================================
1304                           ##### TIM PWM functions #####
1305   ==============================================================================
1306   [..]
1307     This section provides functions allowing to:
1308     (+) Initialize and configure the TIM PWM.
1309     (+) De-initialize the TIM PWM.
1310     (+) Start the TIM PWM.
1311     (+) Stop the TIM PWM.
1312     (+) Start the TIM PWM and enable interrupt.
1313     (+) Stop the TIM PWM and disable interrupt.
1314     (+) Start the TIM PWM and enable DMA transfer.
1315     (+) Stop the TIM PWM and disable DMA transfer.
1316 
1317 @endverbatim
1318   * @{
1319   */
1320 /**
1321   * @brief  Initializes the TIM PWM Time Base according to the specified
1322   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1323   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1324   *         requires a timer reset to avoid unexpected direction
1325   *         due to DIR bit readonly in center aligned mode.
1326   *         Ex: call @ref HAL_TIM_PWM_DeInit() before HAL_TIM_PWM_Init()
1327   * @param  htim TIM PWM handle
1328   * @retval HAL status
1329   */
HAL_TIM_PWM_Init(TIM_HandleTypeDef * htim)1330 HAL_StatusTypeDef HAL_TIM_PWM_Init(TIM_HandleTypeDef *htim)
1331 {
1332   /* Check the TIM handle allocation */
1333   if (htim == NULL)
1334   {
1335     return HAL_ERROR;
1336   }
1337 
1338   /* Check the parameters */
1339   assert_param(IS_TIM_INSTANCE(htim->Instance));
1340   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
1341   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
1342   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
1343   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
1344 
1345   if (htim->State == HAL_TIM_STATE_RESET)
1346   {
1347     /* Allocate lock resource and initialize it */
1348     htim->Lock = HAL_UNLOCKED;
1349 
1350 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1351     /* Reset interrupt callbacks to legacy weak callbacks */
1352     TIM_ResetCallback(htim);
1353 
1354     if (htim->PWM_MspInitCallback == NULL)
1355     {
1356       htim->PWM_MspInitCallback = HAL_TIM_PWM_MspInit;
1357     }
1358     /* Init the low level hardware : GPIO, CLOCK, NVIC */
1359     htim->PWM_MspInitCallback(htim);
1360 #else
1361     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
1362     HAL_TIM_PWM_MspInit(htim);
1363 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1364   }
1365 
1366   /* Set the TIM state */
1367   htim->State = HAL_TIM_STATE_BUSY;
1368 
1369   /* Init the base time for the PWM */
1370   TIM_Base_SetConfig(htim->Instance, &htim->Init);
1371 
1372   /* Initialize the DMA burst operation state */
1373   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
1374 
1375   /* Initialize the TIM channels state */
1376   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1377   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
1378 
1379   /* Initialize the TIM state*/
1380   htim->State = HAL_TIM_STATE_READY;
1381 
1382   return HAL_OK;
1383 }
1384 
1385 /**
1386   * @brief  DeInitializes the TIM peripheral
1387   * @param  htim TIM PWM handle
1388   * @retval HAL status
1389   */
HAL_TIM_PWM_DeInit(TIM_HandleTypeDef * htim)1390 HAL_StatusTypeDef HAL_TIM_PWM_DeInit(TIM_HandleTypeDef *htim)
1391 {
1392   /* Check the parameters */
1393   assert_param(IS_TIM_INSTANCE(htim->Instance));
1394 
1395   htim->State = HAL_TIM_STATE_BUSY;
1396 
1397   /* Disable the TIM Peripheral Clock */
1398   __HAL_TIM_DISABLE(htim);
1399 
1400 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
1401   if (htim->PWM_MspDeInitCallback == NULL)
1402   {
1403     htim->PWM_MspDeInitCallback = HAL_TIM_PWM_MspDeInit;
1404   }
1405   /* DeInit the low level hardware */
1406   htim->PWM_MspDeInitCallback(htim);
1407 #else
1408   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
1409   HAL_TIM_PWM_MspDeInit(htim);
1410 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
1411 
1412   /* Change the DMA burst operation state */
1413   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
1414 
1415   /* Change the TIM channels state */
1416   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1417   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
1418 
1419   /* Change TIM state */
1420   htim->State = HAL_TIM_STATE_RESET;
1421 
1422   /* Release Lock */
1423   __HAL_UNLOCK(htim);
1424 
1425   return HAL_OK;
1426 }
1427 
1428 /**
1429   * @brief  Initializes the TIM PWM MSP.
1430   * @param  htim TIM PWM handle
1431   * @retval None
1432   */
HAL_TIM_PWM_MspInit(TIM_HandleTypeDef * htim)1433 __weak void HAL_TIM_PWM_MspInit(TIM_HandleTypeDef *htim)
1434 {
1435   /* Prevent unused argument(s) compilation warning */
1436   UNUSED(htim);
1437 
1438   /* NOTE : This function should not be modified, when the callback is needed,
1439             the HAL_TIM_PWM_MspInit could be implemented in the user file
1440    */
1441 }
1442 
1443 /**
1444   * @brief  DeInitializes TIM PWM MSP.
1445   * @param  htim TIM PWM handle
1446   * @retval None
1447   */
HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef * htim)1448 __weak void HAL_TIM_PWM_MspDeInit(TIM_HandleTypeDef *htim)
1449 {
1450   /* Prevent unused argument(s) compilation warning */
1451   UNUSED(htim);
1452 
1453   /* NOTE : This function should not be modified, when the callback is needed,
1454             the HAL_TIM_PWM_MspDeInit could be implemented in the user file
1455    */
1456 }
1457 
1458 /**
1459   * @brief  Starts the PWM signal generation.
1460   * @param  htim TIM handle
1461   * @param  Channel TIM Channels to be enabled
1462   *          This parameter can be one of the following values:
1463   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1464   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1465   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1466   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1467   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
1468   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
1469   * @retval HAL status
1470   */
HAL_TIM_PWM_Start(TIM_HandleTypeDef * htim,uint32_t Channel)1471 HAL_StatusTypeDef HAL_TIM_PWM_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
1472 {
1473   uint32_t tmpsmcr;
1474 
1475   /* Check the parameters */
1476   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1477 
1478   /* Check the TIM channel state */
1479   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1480   {
1481     return HAL_ERROR;
1482   }
1483 
1484   /* Set the TIM channel state */
1485   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1486 
1487   /* Enable the Capture compare channel */
1488   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1489 
1490   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1491   {
1492     /* Enable the main output */
1493     __HAL_TIM_MOE_ENABLE(htim);
1494   }
1495 
1496   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1497   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1498   {
1499     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1500     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1501     {
1502       __HAL_TIM_ENABLE(htim);
1503     }
1504   }
1505   else
1506   {
1507     __HAL_TIM_ENABLE(htim);
1508   }
1509 
1510   /* Return function status */
1511   return HAL_OK;
1512 }
1513 
1514 /**
1515   * @brief  Stops the PWM signal generation.
1516   * @param  htim TIM PWM handle
1517   * @param  Channel TIM Channels to be disabled
1518   *          This parameter can be one of the following values:
1519   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1520   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1521   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1522   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1523   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
1524   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
1525   * @retval HAL status
1526   */
HAL_TIM_PWM_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)1527 HAL_StatusTypeDef HAL_TIM_PWM_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
1528 {
1529   /* Check the parameters */
1530   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1531 
1532   /* Disable the Capture compare channel */
1533   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1534 
1535   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1536   {
1537     /* Disable the Main Output */
1538     __HAL_TIM_MOE_DISABLE(htim);
1539   }
1540 
1541   /* Disable the Peripheral */
1542   __HAL_TIM_DISABLE(htim);
1543 
1544   /* Set the TIM channel state */
1545   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1546 
1547   /* Return function status */
1548   return HAL_OK;
1549 }
1550 
1551 /**
1552   * @brief  Starts the PWM signal generation in interrupt mode.
1553   * @param  htim TIM PWM handle
1554   * @param  Channel TIM Channel to be enabled
1555   *          This parameter can be one of the following values:
1556   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1557   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1558   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1559   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1560   * @retval HAL status
1561   */
HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1562 HAL_StatusTypeDef HAL_TIM_PWM_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1563 {
1564   HAL_StatusTypeDef status = HAL_OK;
1565   uint32_t tmpsmcr;
1566 
1567   /* Check the parameters */
1568   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1569 
1570   /* Check the TIM channel state */
1571   if (TIM_CHANNEL_STATE_GET(htim, Channel) != HAL_TIM_CHANNEL_STATE_READY)
1572   {
1573     return HAL_ERROR;
1574   }
1575 
1576   /* Set the TIM channel state */
1577   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1578 
1579   switch (Channel)
1580   {
1581     case TIM_CHANNEL_1:
1582     {
1583       /* Enable the TIM Capture/Compare 1 interrupt */
1584       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
1585       break;
1586     }
1587 
1588     case TIM_CHANNEL_2:
1589     {
1590       /* Enable the TIM Capture/Compare 2 interrupt */
1591       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
1592       break;
1593     }
1594 
1595     case TIM_CHANNEL_3:
1596     {
1597       /* Enable the TIM Capture/Compare 3 interrupt */
1598       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
1599       break;
1600     }
1601 
1602     case TIM_CHANNEL_4:
1603     {
1604       /* Enable the TIM Capture/Compare 4 interrupt */
1605       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
1606       break;
1607     }
1608 
1609     default:
1610       status = HAL_ERROR;
1611       break;
1612   }
1613 
1614   if (status == HAL_OK)
1615   {
1616     /* Enable the Capture compare channel */
1617     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1618 
1619     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1620     {
1621       /* Enable the main output */
1622       __HAL_TIM_MOE_ENABLE(htim);
1623     }
1624 
1625     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1626     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1627     {
1628       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1629       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1630       {
1631         __HAL_TIM_ENABLE(htim);
1632       }
1633     }
1634     else
1635     {
1636       __HAL_TIM_ENABLE(htim);
1637     }
1638   }
1639 
1640   /* Return function status */
1641   return status;
1642 }
1643 
1644 /**
1645   * @brief  Stops the PWM signal generation in interrupt mode.
1646   * @param  htim TIM PWM handle
1647   * @param  Channel TIM Channels to be disabled
1648   *          This parameter can be one of the following values:
1649   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1650   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1651   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1652   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1653   * @retval HAL status
1654   */
HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)1655 HAL_StatusTypeDef HAL_TIM_PWM_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
1656 {
1657   HAL_StatusTypeDef status = HAL_OK;
1658 
1659   /* Check the parameters */
1660   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1661 
1662   switch (Channel)
1663   {
1664     case TIM_CHANNEL_1:
1665     {
1666       /* Disable the TIM Capture/Compare 1 interrupt */
1667       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
1668       break;
1669     }
1670 
1671     case TIM_CHANNEL_2:
1672     {
1673       /* Disable the TIM Capture/Compare 2 interrupt */
1674       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
1675       break;
1676     }
1677 
1678     case TIM_CHANNEL_3:
1679     {
1680       /* Disable the TIM Capture/Compare 3 interrupt */
1681       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
1682       break;
1683     }
1684 
1685     case TIM_CHANNEL_4:
1686     {
1687       /* Disable the TIM Capture/Compare 4 interrupt */
1688       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
1689       break;
1690     }
1691 
1692     default:
1693       status = HAL_ERROR;
1694       break;
1695   }
1696 
1697   if (status == HAL_OK)
1698   {
1699     /* Disable the Capture compare channel */
1700     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1701 
1702     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1703     {
1704       /* Disable the Main Output */
1705       __HAL_TIM_MOE_DISABLE(htim);
1706     }
1707 
1708     /* Disable the Peripheral */
1709     __HAL_TIM_DISABLE(htim);
1710 
1711     /* Set the TIM channel state */
1712     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1713   }
1714 
1715   /* Return function status */
1716   return status;
1717 }
1718 
1719 /**
1720   * @brief  Starts the TIM PWM signal generation in DMA mode.
1721   * @param  htim TIM PWM handle
1722   * @param  Channel TIM Channels to be enabled
1723   *          This parameter can be one of the following values:
1724   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1725   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1726   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1727   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1728   * @param  pData The source Buffer address.
1729   * @param  Length The length of data to be transferred from memory to TIM peripheral
1730   * @retval HAL status
1731   */
HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,const uint32_t * pData,uint16_t Length)1732 HAL_StatusTypeDef HAL_TIM_PWM_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, const uint32_t *pData,
1733                                         uint16_t Length)
1734 {
1735   HAL_StatusTypeDef status = HAL_OK;
1736   uint32_t tmpsmcr;
1737 
1738   /* Check the parameters */
1739   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1740 
1741   /* Set the TIM channel state */
1742   if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_BUSY)
1743   {
1744     return HAL_BUSY;
1745   }
1746   else if (TIM_CHANNEL_STATE_GET(htim, Channel) == HAL_TIM_CHANNEL_STATE_READY)
1747   {
1748     if ((pData == NULL) || (Length == 0U))
1749     {
1750       return HAL_ERROR;
1751     }
1752     else
1753     {
1754       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
1755     }
1756   }
1757   else
1758   {
1759     return HAL_ERROR;
1760   }
1761 
1762   switch (Channel)
1763   {
1764     case TIM_CHANNEL_1:
1765     {
1766       /* Set the DMA compare callbacks */
1767       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
1768       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1769 
1770       /* Set the DMA error callback */
1771       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
1772 
1773       /* Enable the DMA channel */
1774       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)pData, (uint32_t)&htim->Instance->CCR1,
1775                            Length) != HAL_OK)
1776       {
1777         /* Return error status */
1778         return HAL_ERROR;
1779       }
1780 
1781       /* Enable the TIM Capture/Compare 1 DMA request */
1782       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
1783       break;
1784     }
1785 
1786     case TIM_CHANNEL_2:
1787     {
1788       /* Set the DMA compare callbacks */
1789       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
1790       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1791 
1792       /* Set the DMA error callback */
1793       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
1794 
1795       /* Enable the DMA channel */
1796       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)pData, (uint32_t)&htim->Instance->CCR2,
1797                            Length) != HAL_OK)
1798       {
1799         /* Return error status */
1800         return HAL_ERROR;
1801       }
1802       /* Enable the TIM Capture/Compare 2 DMA request */
1803       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
1804       break;
1805     }
1806 
1807     case TIM_CHANNEL_3:
1808     {
1809       /* Set the DMA compare callbacks */
1810       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
1811       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1812 
1813       /* Set the DMA error callback */
1814       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
1815 
1816       /* Enable the DMA channel */
1817       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)pData, (uint32_t)&htim->Instance->CCR3,
1818                            Length) != HAL_OK)
1819       {
1820         /* Return error status */
1821         return HAL_ERROR;
1822       }
1823       /* Enable the TIM Output Capture/Compare 3 request */
1824       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
1825       break;
1826     }
1827 
1828     case TIM_CHANNEL_4:
1829     {
1830       /* Set the DMA compare callbacks */
1831       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
1832       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
1833 
1834       /* Set the DMA error callback */
1835       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
1836 
1837       /* Enable the DMA channel */
1838       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)pData, (uint32_t)&htim->Instance->CCR4,
1839                            Length) != HAL_OK)
1840       {
1841         /* Return error status */
1842         return HAL_ERROR;
1843       }
1844       /* Enable the TIM Capture/Compare 4 DMA request */
1845       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
1846       break;
1847     }
1848 
1849     default:
1850       status = HAL_ERROR;
1851       break;
1852   }
1853 
1854   if (status == HAL_OK)
1855   {
1856     /* Enable the Capture compare channel */
1857     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
1858 
1859     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1860     {
1861       /* Enable the main output */
1862       __HAL_TIM_MOE_ENABLE(htim);
1863     }
1864 
1865     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
1866     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
1867     {
1868       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
1869       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
1870       {
1871         __HAL_TIM_ENABLE(htim);
1872       }
1873     }
1874     else
1875     {
1876       __HAL_TIM_ENABLE(htim);
1877     }
1878   }
1879 
1880   /* Return function status */
1881   return status;
1882 }
1883 
1884 /**
1885   * @brief  Stops the TIM PWM signal generation in DMA mode.
1886   * @param  htim TIM PWM handle
1887   * @param  Channel TIM Channels to be disabled
1888   *          This parameter can be one of the following values:
1889   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
1890   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
1891   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
1892   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
1893   * @retval HAL status
1894   */
HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)1895 HAL_StatusTypeDef HAL_TIM_PWM_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
1896 {
1897   HAL_StatusTypeDef status = HAL_OK;
1898 
1899   /* Check the parameters */
1900   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
1901 
1902   switch (Channel)
1903   {
1904     case TIM_CHANNEL_1:
1905     {
1906       /* Disable the TIM Capture/Compare 1 DMA request */
1907       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
1908       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
1909       break;
1910     }
1911 
1912     case TIM_CHANNEL_2:
1913     {
1914       /* Disable the TIM Capture/Compare 2 DMA request */
1915       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
1916       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
1917       break;
1918     }
1919 
1920     case TIM_CHANNEL_3:
1921     {
1922       /* Disable the TIM Capture/Compare 3 DMA request */
1923       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
1924       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
1925       break;
1926     }
1927 
1928     case TIM_CHANNEL_4:
1929     {
1930       /* Disable the TIM Capture/Compare 4 interrupt */
1931       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
1932       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
1933       break;
1934     }
1935 
1936     default:
1937       status = HAL_ERROR;
1938       break;
1939   }
1940 
1941   if (status == HAL_OK)
1942   {
1943     /* Disable the Capture compare channel */
1944     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
1945 
1946     if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
1947     {
1948       /* Disable the Main Output */
1949       __HAL_TIM_MOE_DISABLE(htim);
1950     }
1951 
1952     /* Disable the Peripheral */
1953     __HAL_TIM_DISABLE(htim);
1954 
1955     /* Set the TIM channel state */
1956     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
1957   }
1958 
1959   /* Return function status */
1960   return status;
1961 }
1962 
1963 /**
1964   * @}
1965   */
1966 
1967 /** @defgroup TIM_Exported_Functions_Group4 TIM Input Capture functions
1968   *  @brief    TIM Input Capture functions
1969   *
1970 @verbatim
1971   ==============================================================================
1972               ##### TIM Input Capture functions #####
1973   ==============================================================================
1974  [..]
1975    This section provides functions allowing to:
1976    (+) Initialize and configure the TIM Input Capture.
1977    (+) De-initialize the TIM Input Capture.
1978    (+) Start the TIM Input Capture.
1979    (+) Stop the TIM Input Capture.
1980    (+) Start the TIM Input Capture and enable interrupt.
1981    (+) Stop the TIM Input Capture and disable interrupt.
1982    (+) Start the TIM Input Capture and enable DMA transfer.
1983    (+) Stop the TIM Input Capture and disable DMA transfer.
1984 
1985 @endverbatim
1986   * @{
1987   */
1988 /**
1989   * @brief  Initializes the TIM Input Capture Time base according to the specified
1990   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
1991   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
1992   *         requires a timer reset to avoid unexpected direction
1993   *         due to DIR bit readonly in center aligned mode.
1994   *         Ex: call @ref HAL_TIM_IC_DeInit() before HAL_TIM_IC_Init()
1995   * @param  htim TIM Input Capture handle
1996   * @retval HAL status
1997   */
HAL_TIM_IC_Init(TIM_HandleTypeDef * htim)1998 HAL_StatusTypeDef HAL_TIM_IC_Init(TIM_HandleTypeDef *htim)
1999 {
2000   /* Check the TIM handle allocation */
2001   if (htim == NULL)
2002   {
2003     return HAL_ERROR;
2004   }
2005 
2006   /* Check the parameters */
2007   assert_param(IS_TIM_INSTANCE(htim->Instance));
2008   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2009   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2010   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2011   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2012 
2013   if (htim->State == HAL_TIM_STATE_RESET)
2014   {
2015     /* Allocate lock resource and initialize it */
2016     htim->Lock = HAL_UNLOCKED;
2017 
2018 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2019     /* Reset interrupt callbacks to legacy weak callbacks */
2020     TIM_ResetCallback(htim);
2021 
2022     if (htim->IC_MspInitCallback == NULL)
2023     {
2024       htim->IC_MspInitCallback = HAL_TIM_IC_MspInit;
2025     }
2026     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2027     htim->IC_MspInitCallback(htim);
2028 #else
2029     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2030     HAL_TIM_IC_MspInit(htim);
2031 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2032   }
2033 
2034   /* Set the TIM state */
2035   htim->State = HAL_TIM_STATE_BUSY;
2036 
2037   /* Init the base time for the input capture */
2038   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2039 
2040   /* Initialize the DMA burst operation state */
2041   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2042 
2043   /* Initialize the TIM channels state */
2044   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2045   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_READY);
2046 
2047   /* Initialize the TIM state*/
2048   htim->State = HAL_TIM_STATE_READY;
2049 
2050   return HAL_OK;
2051 }
2052 
2053 /**
2054   * @brief  DeInitializes the TIM peripheral
2055   * @param  htim TIM Input Capture handle
2056   * @retval HAL status
2057   */
HAL_TIM_IC_DeInit(TIM_HandleTypeDef * htim)2058 HAL_StatusTypeDef HAL_TIM_IC_DeInit(TIM_HandleTypeDef *htim)
2059 {
2060   /* Check the parameters */
2061   assert_param(IS_TIM_INSTANCE(htim->Instance));
2062 
2063   htim->State = HAL_TIM_STATE_BUSY;
2064 
2065   /* Disable the TIM Peripheral Clock */
2066   __HAL_TIM_DISABLE(htim);
2067 
2068 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2069   if (htim->IC_MspDeInitCallback == NULL)
2070   {
2071     htim->IC_MspDeInitCallback = HAL_TIM_IC_MspDeInit;
2072   }
2073   /* DeInit the low level hardware */
2074   htim->IC_MspDeInitCallback(htim);
2075 #else
2076   /* DeInit the low level hardware: GPIO, CLOCK, NVIC and DMA */
2077   HAL_TIM_IC_MspDeInit(htim);
2078 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2079 
2080   /* Change the DMA burst operation state */
2081   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2082 
2083   /* Change the TIM channels state */
2084   TIM_CHANNEL_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2085   TIM_CHANNEL_N_STATE_SET_ALL(htim, HAL_TIM_CHANNEL_STATE_RESET);
2086 
2087   /* Change TIM state */
2088   htim->State = HAL_TIM_STATE_RESET;
2089 
2090   /* Release Lock */
2091   __HAL_UNLOCK(htim);
2092 
2093   return HAL_OK;
2094 }
2095 
2096 /**
2097   * @brief  Initializes the TIM Input Capture MSP.
2098   * @param  htim TIM Input Capture handle
2099   * @retval None
2100   */
HAL_TIM_IC_MspInit(TIM_HandleTypeDef * htim)2101 __weak void HAL_TIM_IC_MspInit(TIM_HandleTypeDef *htim)
2102 {
2103   /* Prevent unused argument(s) compilation warning */
2104   UNUSED(htim);
2105 
2106   /* NOTE : This function should not be modified, when the callback is needed,
2107             the HAL_TIM_IC_MspInit could be implemented in the user file
2108    */
2109 }
2110 
2111 /**
2112   * @brief  DeInitializes TIM Input Capture MSP.
2113   * @param  htim TIM handle
2114   * @retval None
2115   */
HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef * htim)2116 __weak void HAL_TIM_IC_MspDeInit(TIM_HandleTypeDef *htim)
2117 {
2118   /* Prevent unused argument(s) compilation warning */
2119   UNUSED(htim);
2120 
2121   /* NOTE : This function should not be modified, when the callback is needed,
2122             the HAL_TIM_IC_MspDeInit could be implemented in the user file
2123    */
2124 }
2125 
2126 /**
2127   * @brief  Starts the TIM Input Capture measurement.
2128   * @param  htim TIM Input Capture handle
2129   * @param  Channel TIM Channels to be enabled
2130   *          This parameter can be one of the following values:
2131   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2132   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2133   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2134   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2135   * @retval HAL status
2136   */
HAL_TIM_IC_Start(TIM_HandleTypeDef * htim,uint32_t Channel)2137 HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
2138 {
2139   uint32_t tmpsmcr;
2140   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2141   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2142 
2143   /* Check the parameters */
2144   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2145 
2146   /* Check the TIM channel state */
2147   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2148       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2149   {
2150     return HAL_ERROR;
2151   }
2152 
2153   /* Set the TIM channel state */
2154   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2155   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2156 
2157   /* Enable the Input Capture channel */
2158   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2159 
2160   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2161   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2162   {
2163     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2164     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2165     {
2166       __HAL_TIM_ENABLE(htim);
2167     }
2168   }
2169   else
2170   {
2171     __HAL_TIM_ENABLE(htim);
2172   }
2173 
2174   /* Return function status */
2175   return HAL_OK;
2176 }
2177 
2178 /**
2179   * @brief  Stops the TIM Input Capture measurement.
2180   * @param  htim TIM Input Capture handle
2181   * @param  Channel TIM Channels to be disabled
2182   *          This parameter can be one of the following values:
2183   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2184   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2185   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2186   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2187   * @retval HAL status
2188   */
HAL_TIM_IC_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)2189 HAL_StatusTypeDef HAL_TIM_IC_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
2190 {
2191   /* Check the parameters */
2192   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2193 
2194   /* Disable the Input Capture channel */
2195   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2196 
2197   /* Disable the Peripheral */
2198   __HAL_TIM_DISABLE(htim);
2199 
2200   /* Set the TIM channel state */
2201   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2202   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2203 
2204   /* Return function status */
2205   return HAL_OK;
2206 }
2207 
2208 /**
2209   * @brief  Starts the TIM Input Capture measurement in interrupt mode.
2210   * @param  htim TIM Input Capture handle
2211   * @param  Channel TIM Channels to be enabled
2212   *          This parameter can be one of the following values:
2213   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2214   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2215   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2216   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2217   * @retval HAL status
2218   */
HAL_TIM_IC_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2219 HAL_StatusTypeDef HAL_TIM_IC_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2220 {
2221   HAL_StatusTypeDef status = HAL_OK;
2222   uint32_t tmpsmcr;
2223 
2224   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2225   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2226 
2227   /* Check the parameters */
2228   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2229 
2230   /* Check the TIM channel state */
2231   if ((channel_state != HAL_TIM_CHANNEL_STATE_READY)
2232       || (complementary_channel_state != HAL_TIM_CHANNEL_STATE_READY))
2233   {
2234     return HAL_ERROR;
2235   }
2236 
2237   /* Set the TIM channel state */
2238   TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2239   TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2240 
2241   switch (Channel)
2242   {
2243     case TIM_CHANNEL_1:
2244     {
2245       /* Enable the TIM Capture/Compare 1 interrupt */
2246       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2247       break;
2248     }
2249 
2250     case TIM_CHANNEL_2:
2251     {
2252       /* Enable the TIM Capture/Compare 2 interrupt */
2253       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2254       break;
2255     }
2256 
2257     case TIM_CHANNEL_3:
2258     {
2259       /* Enable the TIM Capture/Compare 3 interrupt */
2260       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC3);
2261       break;
2262     }
2263 
2264     case TIM_CHANNEL_4:
2265     {
2266       /* Enable the TIM Capture/Compare 4 interrupt */
2267       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC4);
2268       break;
2269     }
2270 
2271     default:
2272       status = HAL_ERROR;
2273       break;
2274   }
2275 
2276   if (status == HAL_OK)
2277   {
2278     /* Enable the Input Capture channel */
2279     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2280 
2281     /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2282     if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2283     {
2284       tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2285       if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2286       {
2287         __HAL_TIM_ENABLE(htim);
2288       }
2289     }
2290     else
2291     {
2292       __HAL_TIM_ENABLE(htim);
2293     }
2294   }
2295 
2296   /* Return function status */
2297   return status;
2298 }
2299 
2300 /**
2301   * @brief  Stops the TIM Input Capture measurement in interrupt mode.
2302   * @param  htim TIM Input Capture handle
2303   * @param  Channel TIM Channels to be disabled
2304   *          This parameter can be one of the following values:
2305   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2306   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2307   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2308   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2309   * @retval HAL status
2310   */
HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)2311 HAL_StatusTypeDef HAL_TIM_IC_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
2312 {
2313   HAL_StatusTypeDef status = HAL_OK;
2314 
2315   /* Check the parameters */
2316   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2317 
2318   switch (Channel)
2319   {
2320     case TIM_CHANNEL_1:
2321     {
2322       /* Disable the TIM Capture/Compare 1 interrupt */
2323       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2324       break;
2325     }
2326 
2327     case TIM_CHANNEL_2:
2328     {
2329       /* Disable the TIM Capture/Compare 2 interrupt */
2330       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2331       break;
2332     }
2333 
2334     case TIM_CHANNEL_3:
2335     {
2336       /* Disable the TIM Capture/Compare 3 interrupt */
2337       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC3);
2338       break;
2339     }
2340 
2341     case TIM_CHANNEL_4:
2342     {
2343       /* Disable the TIM Capture/Compare 4 interrupt */
2344       __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC4);
2345       break;
2346     }
2347 
2348     default:
2349       status = HAL_ERROR;
2350       break;
2351   }
2352 
2353   if (status == HAL_OK)
2354   {
2355     /* Disable the Input Capture channel */
2356     TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2357 
2358     /* Disable the Peripheral */
2359     __HAL_TIM_DISABLE(htim);
2360 
2361     /* Set the TIM channel state */
2362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2364   }
2365 
2366   /* Return function status */
2367   return status;
2368 }
2369 
2370 /**
2371   * @brief  Starts the TIM Input Capture measurement in DMA mode.
2372   * @param  htim TIM Input Capture handle
2373   * @param  Channel TIM Channels to be enabled
2374   *          This parameter can be one of the following values:
2375   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2376   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2377   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2378   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2379   * @param  pData The destination Buffer address.
2380   * @param  Length The length of data to be transferred from TIM peripheral to memory.
2381   * @retval HAL status
2382   */
HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData,uint16_t Length)2383 HAL_StatusTypeDef HAL_TIM_IC_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData, uint16_t Length)
2384 {
2385   HAL_StatusTypeDef status = HAL_OK;
2386   uint32_t tmpsmcr;
2387 
2388   HAL_TIM_ChannelStateTypeDef channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
2389   HAL_TIM_ChannelStateTypeDef complementary_channel_state = TIM_CHANNEL_N_STATE_GET(htim, Channel);
2390 
2391   /* Check the parameters */
2392   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2393   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2394 
2395   /* Set the TIM channel state */
2396   if ((channel_state == HAL_TIM_CHANNEL_STATE_BUSY)
2397       || (complementary_channel_state == HAL_TIM_CHANNEL_STATE_BUSY))
2398   {
2399     return HAL_BUSY;
2400   }
2401   else if ((channel_state == HAL_TIM_CHANNEL_STATE_READY)
2402            && (complementary_channel_state == HAL_TIM_CHANNEL_STATE_READY))
2403   {
2404     if ((pData == NULL) || (Length == 0U))
2405     {
2406       return HAL_ERROR;
2407     }
2408     else
2409     {
2410       TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2411       TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_BUSY);
2412     }
2413   }
2414   else
2415   {
2416     return HAL_ERROR;
2417   }
2418 
2419   /* Enable the Input Capture channel */
2420   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_ENABLE);
2421 
2422   switch (Channel)
2423   {
2424     case TIM_CHANNEL_1:
2425     {
2426       /* Set the DMA capture callbacks */
2427       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
2428       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2429 
2430       /* Set the DMA error callback */
2431       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
2432 
2433       /* Enable the DMA channel */
2434       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData,
2435                            Length) != HAL_OK)
2436       {
2437         /* Return error status */
2438         return HAL_ERROR;
2439       }
2440       /* Enable the TIM Capture/Compare 1 DMA request */
2441       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
2442       break;
2443     }
2444 
2445     case TIM_CHANNEL_2:
2446     {
2447       /* Set the DMA capture callbacks */
2448       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
2449       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2450 
2451       /* Set the DMA error callback */
2452       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
2453 
2454       /* Enable the DMA channel */
2455       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData,
2456                            Length) != HAL_OK)
2457       {
2458         /* Return error status */
2459         return HAL_ERROR;
2460       }
2461       /* Enable the TIM Capture/Compare 2  DMA request */
2462       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
2463       break;
2464     }
2465 
2466     case TIM_CHANNEL_3:
2467     {
2468       /* Set the DMA capture callbacks */
2469       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
2470       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2471 
2472       /* Set the DMA error callback */
2473       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
2474 
2475       /* Enable the DMA channel */
2476       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->CCR3, (uint32_t)pData,
2477                            Length) != HAL_OK)
2478       {
2479         /* Return error status */
2480         return HAL_ERROR;
2481       }
2482       /* Enable the TIM Capture/Compare 3  DMA request */
2483       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC3);
2484       break;
2485     }
2486 
2487     case TIM_CHANNEL_4:
2488     {
2489       /* Set the DMA capture callbacks */
2490       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
2491       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
2492 
2493       /* Set the DMA error callback */
2494       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
2495 
2496       /* Enable the DMA channel */
2497       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->CCR4, (uint32_t)pData,
2498                            Length) != HAL_OK)
2499       {
2500         /* Return error status */
2501         return HAL_ERROR;
2502       }
2503       /* Enable the TIM Capture/Compare 4  DMA request */
2504       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC4);
2505       break;
2506     }
2507 
2508     default:
2509       status = HAL_ERROR;
2510       break;
2511   }
2512 
2513   /* Enable the Peripheral, except in trigger mode where enable is automatically done with trigger */
2514   if (IS_TIM_SLAVE_INSTANCE(htim->Instance))
2515   {
2516     tmpsmcr = htim->Instance->SMCR & TIM_SMCR_SMS;
2517     if (!IS_TIM_SLAVEMODE_TRIGGER_ENABLED(tmpsmcr))
2518     {
2519       __HAL_TIM_ENABLE(htim);
2520     }
2521   }
2522   else
2523   {
2524     __HAL_TIM_ENABLE(htim);
2525   }
2526 
2527   /* Return function status */
2528   return status;
2529 }
2530 
2531 /**
2532   * @brief  Stops the TIM Input Capture measurement in DMA mode.
2533   * @param  htim TIM Input Capture handle
2534   * @param  Channel TIM Channels to be disabled
2535   *          This parameter can be one of the following values:
2536   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
2537   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
2538   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
2539   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
2540   * @retval HAL status
2541   */
HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)2542 HAL_StatusTypeDef HAL_TIM_IC_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
2543 {
2544   HAL_StatusTypeDef status = HAL_OK;
2545 
2546   /* Check the parameters */
2547   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
2548   assert_param(IS_TIM_DMA_CC_INSTANCE(htim->Instance));
2549 
2550   /* Disable the Input Capture channel */
2551   TIM_CCxChannelCmd(htim->Instance, Channel, TIM_CCx_DISABLE);
2552 
2553   switch (Channel)
2554   {
2555     case TIM_CHANNEL_1:
2556     {
2557       /* Disable the TIM Capture/Compare 1 DMA request */
2558       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
2559       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
2560       break;
2561     }
2562 
2563     case TIM_CHANNEL_2:
2564     {
2565       /* Disable the TIM Capture/Compare 2 DMA request */
2566       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
2567       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
2568       break;
2569     }
2570 
2571     case TIM_CHANNEL_3:
2572     {
2573       /* Disable the TIM Capture/Compare 3  DMA request */
2574       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC3);
2575       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
2576       break;
2577     }
2578 
2579     case TIM_CHANNEL_4:
2580     {
2581       /* Disable the TIM Capture/Compare 4  DMA request */
2582       __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC4);
2583       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
2584       break;
2585     }
2586 
2587     default:
2588       status = HAL_ERROR;
2589       break;
2590   }
2591 
2592   if (status == HAL_OK)
2593   {
2594     /* Disable the Peripheral */
2595     __HAL_TIM_DISABLE(htim);
2596 
2597     /* Set the TIM channel state */
2598     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2599     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
2600   }
2601 
2602   /* Return function status */
2603   return status;
2604 }
2605 /**
2606   * @}
2607   */
2608 
2609 /** @defgroup TIM_Exported_Functions_Group5 TIM One Pulse functions
2610   *  @brief    TIM One Pulse functions
2611   *
2612 @verbatim
2613   ==============================================================================
2614                         ##### TIM One Pulse functions #####
2615   ==============================================================================
2616   [..]
2617     This section provides functions allowing to:
2618     (+) Initialize and configure the TIM One Pulse.
2619     (+) De-initialize the TIM One Pulse.
2620     (+) Start the TIM One Pulse.
2621     (+) Stop the TIM One Pulse.
2622     (+) Start the TIM One Pulse and enable interrupt.
2623     (+) Stop the TIM One Pulse and disable interrupt.
2624     (+) Start the TIM One Pulse and enable DMA transfer.
2625     (+) Stop the TIM One Pulse and disable DMA transfer.
2626 
2627 @endverbatim
2628   * @{
2629   */
2630 /**
2631   * @brief  Initializes the TIM One Pulse Time Base according to the specified
2632   *         parameters in the TIM_HandleTypeDef and initializes the associated handle.
2633   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
2634   *         requires a timer reset to avoid unexpected direction
2635   *         due to DIR bit readonly in center aligned mode.
2636   *         Ex: call @ref HAL_TIM_OnePulse_DeInit() before HAL_TIM_OnePulse_Init()
2637   * @note   When the timer instance is initialized in One Pulse mode, timer
2638   *         channels 1 and channel 2 are reserved and cannot be used for other
2639   *         purpose.
2640   * @param  htim TIM One Pulse handle
2641   * @param  OnePulseMode Select the One pulse mode.
2642   *         This parameter can be one of the following values:
2643   *            @arg TIM_OPMODE_SINGLE: Only one pulse will be generated.
2644   *            @arg TIM_OPMODE_REPETITIVE: Repetitive pulses will be generated.
2645   * @retval HAL status
2646   */
HAL_TIM_OnePulse_Init(TIM_HandleTypeDef * htim,uint32_t OnePulseMode)2647 HAL_StatusTypeDef HAL_TIM_OnePulse_Init(TIM_HandleTypeDef *htim, uint32_t OnePulseMode)
2648 {
2649   /* Check the TIM handle allocation */
2650   if (htim == NULL)
2651   {
2652     return HAL_ERROR;
2653   }
2654 
2655   /* Check the parameters */
2656   assert_param(IS_TIM_INSTANCE(htim->Instance));
2657   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
2658   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
2659   assert_param(IS_TIM_OPM_MODE(OnePulseMode));
2660   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
2661   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
2662 
2663   if (htim->State == HAL_TIM_STATE_RESET)
2664   {
2665     /* Allocate lock resource and initialize it */
2666     htim->Lock = HAL_UNLOCKED;
2667 
2668 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2669     /* Reset interrupt callbacks to legacy weak callbacks */
2670     TIM_ResetCallback(htim);
2671 
2672     if (htim->OnePulse_MspInitCallback == NULL)
2673     {
2674       htim->OnePulse_MspInitCallback = HAL_TIM_OnePulse_MspInit;
2675     }
2676     /* Init the low level hardware : GPIO, CLOCK, NVIC */
2677     htim->OnePulse_MspInitCallback(htim);
2678 #else
2679     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
2680     HAL_TIM_OnePulse_MspInit(htim);
2681 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2682   }
2683 
2684   /* Set the TIM state */
2685   htim->State = HAL_TIM_STATE_BUSY;
2686 
2687   /* Configure the Time base in the One Pulse Mode */
2688   TIM_Base_SetConfig(htim->Instance, &htim->Init);
2689 
2690   /* Reset the OPM Bit */
2691   htim->Instance->CR1 &= ~TIM_CR1_OPM;
2692 
2693   /* Configure the OPM Mode */
2694   htim->Instance->CR1 |= OnePulseMode;
2695 
2696   /* Initialize the DMA burst operation state */
2697   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
2698 
2699   /* Initialize the TIM channels state */
2700   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2701   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2702   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2703   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2704 
2705   /* Initialize the TIM state*/
2706   htim->State = HAL_TIM_STATE_READY;
2707 
2708   return HAL_OK;
2709 }
2710 
2711 /**
2712   * @brief  DeInitializes the TIM One Pulse
2713   * @param  htim TIM One Pulse handle
2714   * @retval HAL status
2715   */
HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef * htim)2716 HAL_StatusTypeDef HAL_TIM_OnePulse_DeInit(TIM_HandleTypeDef *htim)
2717 {
2718   /* Check the parameters */
2719   assert_param(IS_TIM_INSTANCE(htim->Instance));
2720 
2721   htim->State = HAL_TIM_STATE_BUSY;
2722 
2723   /* Disable the TIM Peripheral Clock */
2724   __HAL_TIM_DISABLE(htim);
2725 
2726 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
2727   if (htim->OnePulse_MspDeInitCallback == NULL)
2728   {
2729     htim->OnePulse_MspDeInitCallback = HAL_TIM_OnePulse_MspDeInit;
2730   }
2731   /* DeInit the low level hardware */
2732   htim->OnePulse_MspDeInitCallback(htim);
2733 #else
2734   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
2735   HAL_TIM_OnePulse_MspDeInit(htim);
2736 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
2737 
2738   /* Change the DMA burst operation state */
2739   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
2740 
2741   /* Set the TIM channel state */
2742   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2743   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2744   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
2745   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
2746 
2747   /* Change TIM state */
2748   htim->State = HAL_TIM_STATE_RESET;
2749 
2750   /* Release Lock */
2751   __HAL_UNLOCK(htim);
2752 
2753   return HAL_OK;
2754 }
2755 
2756 /**
2757   * @brief  Initializes the TIM One Pulse MSP.
2758   * @param  htim TIM One Pulse handle
2759   * @retval None
2760   */
HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef * htim)2761 __weak void HAL_TIM_OnePulse_MspInit(TIM_HandleTypeDef *htim)
2762 {
2763   /* Prevent unused argument(s) compilation warning */
2764   UNUSED(htim);
2765 
2766   /* NOTE : This function should not be modified, when the callback is needed,
2767             the HAL_TIM_OnePulse_MspInit could be implemented in the user file
2768    */
2769 }
2770 
2771 /**
2772   * @brief  DeInitializes TIM One Pulse MSP.
2773   * @param  htim TIM One Pulse handle
2774   * @retval None
2775   */
HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef * htim)2776 __weak void HAL_TIM_OnePulse_MspDeInit(TIM_HandleTypeDef *htim)
2777 {
2778   /* Prevent unused argument(s) compilation warning */
2779   UNUSED(htim);
2780 
2781   /* NOTE : This function should not be modified, when the callback is needed,
2782             the HAL_TIM_OnePulse_MspDeInit could be implemented in the user file
2783    */
2784 }
2785 
2786 /**
2787   * @brief  Starts the TIM One Pulse signal generation.
2788   * @note Though OutputChannel parameter is deprecated and ignored by the function
2789   *        it has been kept to avoid HAL_TIM API compatibility break.
2790   * @note The pulse output channel is determined when calling
2791   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2792   * @param  htim TIM One Pulse handle
2793   * @param  OutputChannel See note above
2794   * @retval HAL status
2795   */
HAL_TIM_OnePulse_Start(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2796 HAL_StatusTypeDef HAL_TIM_OnePulse_Start(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2797 {
2798   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2799   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2800   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2801   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2802 
2803   /* Prevent unused argument(s) compilation warning */
2804   UNUSED(OutputChannel);
2805 
2806   /* Check the TIM channels state */
2807   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2808       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2809       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2810       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2811   {
2812     return HAL_ERROR;
2813   }
2814 
2815   /* Set the TIM channels state */
2816   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2817   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2818   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2819   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2820 
2821   /* Enable the Capture compare and the Input Capture channels
2822     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2823     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2824     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2825     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2826 
2827     No need to enable the counter, it's enabled automatically by hardware
2828     (the counter starts in response to a stimulus and generate a pulse */
2829 
2830   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2831   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2832 
2833   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2834   {
2835     /* Enable the main output */
2836     __HAL_TIM_MOE_ENABLE(htim);
2837   }
2838 
2839   /* Return function status */
2840   return HAL_OK;
2841 }
2842 
2843 /**
2844   * @brief  Stops the TIM One Pulse signal generation.
2845   * @note Though OutputChannel parameter is deprecated and ignored by the function
2846   *        it has been kept to avoid HAL_TIM API compatibility break.
2847   * @note The pulse output channel is determined when calling
2848   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2849   * @param  htim TIM One Pulse handle
2850   * @param  OutputChannel See note above
2851   * @retval HAL status
2852   */
HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2853 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2854 {
2855   /* Prevent unused argument(s) compilation warning */
2856   UNUSED(OutputChannel);
2857 
2858   /* Disable the Capture compare and the Input Capture channels
2859   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2860   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2861   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2862   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2863 
2864   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2865   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2866 
2867   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2868   {
2869     /* Disable the Main Output */
2870     __HAL_TIM_MOE_DISABLE(htim);
2871   }
2872 
2873   /* Disable the Peripheral */
2874   __HAL_TIM_DISABLE(htim);
2875 
2876   /* Set the TIM channels state */
2877   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2878   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2879   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2880   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2881 
2882   /* Return function status */
2883   return HAL_OK;
2884 }
2885 
2886 /**
2887   * @brief  Starts the TIM One Pulse signal generation in interrupt mode.
2888   * @note Though OutputChannel parameter is deprecated and ignored by the function
2889   *        it has been kept to avoid HAL_TIM API compatibility break.
2890   * @note The pulse output channel is determined when calling
2891   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2892   * @param  htim TIM One Pulse handle
2893   * @param  OutputChannel See note above
2894   * @retval HAL status
2895   */
HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2896 HAL_StatusTypeDef HAL_TIM_OnePulse_Start_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2897 {
2898   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
2899   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
2900   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
2901   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
2902 
2903   /* Prevent unused argument(s) compilation warning */
2904   UNUSED(OutputChannel);
2905 
2906   /* Check the TIM channels state */
2907   if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2908       || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
2909       || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
2910       || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
2911   {
2912     return HAL_ERROR;
2913   }
2914 
2915   /* Set the TIM channels state */
2916   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2917   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2918   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
2919   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
2920 
2921   /* Enable the Capture compare and the Input Capture channels
2922     (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2923     if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2924     if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2925     whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be enabled together
2926 
2927     No need to enable the counter, it's enabled automatically by hardware
2928     (the counter starts in response to a stimulus and generate a pulse */
2929 
2930   /* Enable the TIM Capture/Compare 1 interrupt */
2931   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
2932 
2933   /* Enable the TIM Capture/Compare 2 interrupt */
2934   __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
2935 
2936   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
2937   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
2938 
2939   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2940   {
2941     /* Enable the main output */
2942     __HAL_TIM_MOE_ENABLE(htim);
2943   }
2944 
2945   /* Return function status */
2946   return HAL_OK;
2947 }
2948 
2949 /**
2950   * @brief  Stops the TIM One Pulse signal generation in interrupt mode.
2951   * @note Though OutputChannel parameter is deprecated and ignored by the function
2952   *        it has been kept to avoid HAL_TIM API compatibility break.
2953   * @note The pulse output channel is determined when calling
2954   *       @ref HAL_TIM_OnePulse_ConfigChannel().
2955   * @param  htim TIM One Pulse handle
2956   * @param  OutputChannel See note above
2957   * @retval HAL status
2958   */
HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef * htim,uint32_t OutputChannel)2959 HAL_StatusTypeDef HAL_TIM_OnePulse_Stop_IT(TIM_HandleTypeDef *htim, uint32_t OutputChannel)
2960 {
2961   /* Prevent unused argument(s) compilation warning */
2962   UNUSED(OutputChannel);
2963 
2964   /* Disable the TIM Capture/Compare 1 interrupt */
2965   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
2966 
2967   /* Disable the TIM Capture/Compare 2 interrupt */
2968   __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
2969 
2970   /* Disable the Capture compare and the Input Capture channels
2971   (in the OPM Mode the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2)
2972   if TIM_CHANNEL_1 is used as output, the TIM_CHANNEL_2 will be used as input and
2973   if TIM_CHANNEL_1 is used as input, the TIM_CHANNEL_2 will be used as output
2974   whatever the combination, the TIM_CHANNEL_1 and TIM_CHANNEL_2 should be disabled together */
2975   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
2976   TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
2977 
2978   if (IS_TIM_BREAK_INSTANCE(htim->Instance) != RESET)
2979   {
2980     /* Disable the Main Output */
2981     __HAL_TIM_MOE_DISABLE(htim);
2982   }
2983 
2984   /* Disable the Peripheral */
2985   __HAL_TIM_DISABLE(htim);
2986 
2987   /* Set the TIM channels state */
2988   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2989   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2990   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
2991   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
2992 
2993   /* Return function status */
2994   return HAL_OK;
2995 }
2996 
2997 /**
2998   * @}
2999   */
3000 
3001 /** @defgroup TIM_Exported_Functions_Group6 TIM Encoder functions
3002   *  @brief    TIM Encoder functions
3003   *
3004 @verbatim
3005   ==============================================================================
3006                           ##### TIM Encoder functions #####
3007   ==============================================================================
3008   [..]
3009     This section provides functions allowing to:
3010     (+) Initialize and configure the TIM Encoder.
3011     (+) De-initialize the TIM Encoder.
3012     (+) Start the TIM Encoder.
3013     (+) Stop the TIM Encoder.
3014     (+) Start the TIM Encoder and enable interrupt.
3015     (+) Stop the TIM Encoder and disable interrupt.
3016     (+) Start the TIM Encoder and enable DMA transfer.
3017     (+) Stop the TIM Encoder and disable DMA transfer.
3018 
3019 @endverbatim
3020   * @{
3021   */
3022 /**
3023   * @brief  Initializes the TIM Encoder Interface and initialize the associated handle.
3024   * @note   Switching from Center Aligned counter mode to Edge counter mode (or reverse)
3025   *         requires a timer reset to avoid unexpected direction
3026   *         due to DIR bit readonly in center aligned mode.
3027   *         Ex: call @ref HAL_TIM_Encoder_DeInit() before HAL_TIM_Encoder_Init()
3028   * @note   Encoder mode and External clock mode 2 are not compatible and must not be selected together
3029   *         Ex: A call for @ref HAL_TIM_Encoder_Init will erase the settings of @ref HAL_TIM_ConfigClockSource
3030   *         using TIM_CLOCKSOURCE_ETRMODE2 and vice versa
3031   * @note   When the timer instance is initialized in Encoder mode, timer
3032   *         channels 1 and channel 2 are reserved and cannot be used for other
3033   *         purpose.
3034   * @param  htim TIM Encoder Interface handle
3035   * @param  sConfig TIM Encoder Interface configuration structure
3036   * @retval HAL status
3037   */
HAL_TIM_Encoder_Init(TIM_HandleTypeDef * htim,TIM_Encoder_InitTypeDef * sConfig)3038 HAL_StatusTypeDef HAL_TIM_Encoder_Init(TIM_HandleTypeDef *htim,  TIM_Encoder_InitTypeDef *sConfig)
3039 {
3040   uint32_t tmpsmcr;
3041   uint32_t tmpccmr1;
3042   uint32_t tmpccer;
3043 
3044   /* Check the TIM handle allocation */
3045   if (htim == NULL)
3046   {
3047     return HAL_ERROR;
3048   }
3049 
3050   /* Check the parameters */
3051   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3052   assert_param(IS_TIM_COUNTER_MODE(htim->Init.CounterMode));
3053   assert_param(IS_TIM_CLOCKDIVISION_DIV(htim->Init.ClockDivision));
3054   assert_param(IS_TIM_AUTORELOAD_PRELOAD(htim->Init.AutoReloadPreload));
3055   assert_param(IS_TIM_ENCODER_MODE(sConfig->EncoderMode));
3056   assert_param(IS_TIM_IC_SELECTION(sConfig->IC1Selection));
3057   assert_param(IS_TIM_IC_SELECTION(sConfig->IC2Selection));
3058   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC1Polarity));
3059   assert_param(IS_TIM_ENCODERINPUT_POLARITY(sConfig->IC2Polarity));
3060   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC1Prescaler));
3061   assert_param(IS_TIM_IC_PRESCALER(sConfig->IC2Prescaler));
3062   assert_param(IS_TIM_IC_FILTER(sConfig->IC1Filter));
3063   assert_param(IS_TIM_IC_FILTER(sConfig->IC2Filter));
3064   assert_param(IS_TIM_PERIOD(htim, htim->Init.Period));
3065 
3066   if (htim->State == HAL_TIM_STATE_RESET)
3067   {
3068     /* Allocate lock resource and initialize it */
3069     htim->Lock = HAL_UNLOCKED;
3070 
3071 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3072     /* Reset interrupt callbacks to legacy weak callbacks */
3073     TIM_ResetCallback(htim);
3074 
3075     if (htim->Encoder_MspInitCallback == NULL)
3076     {
3077       htim->Encoder_MspInitCallback = HAL_TIM_Encoder_MspInit;
3078     }
3079     /* Init the low level hardware : GPIO, CLOCK, NVIC */
3080     htim->Encoder_MspInitCallback(htim);
3081 #else
3082     /* Init the low level hardware : GPIO, CLOCK, NVIC and DMA */
3083     HAL_TIM_Encoder_MspInit(htim);
3084 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3085   }
3086 
3087   /* Set the TIM state */
3088   htim->State = HAL_TIM_STATE_BUSY;
3089 
3090   /* Reset the SMS and ECE bits */
3091   htim->Instance->SMCR &= ~(TIM_SMCR_SMS | TIM_SMCR_ECE);
3092 
3093   /* Configure the Time base in the Encoder Mode */
3094   TIM_Base_SetConfig(htim->Instance, &htim->Init);
3095 
3096   /* Get the TIMx SMCR register value */
3097   tmpsmcr = htim->Instance->SMCR;
3098 
3099   /* Get the TIMx CCMR1 register value */
3100   tmpccmr1 = htim->Instance->CCMR1;
3101 
3102   /* Get the TIMx CCER register value */
3103   tmpccer = htim->Instance->CCER;
3104 
3105   /* Set the encoder Mode */
3106   tmpsmcr |= sConfig->EncoderMode;
3107 
3108   /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3109   tmpccmr1 &= ~(TIM_CCMR1_CC1S | TIM_CCMR1_CC2S);
3110   tmpccmr1 |= (sConfig->IC1Selection | (sConfig->IC2Selection << 8U));
3111 
3112   /* Set the Capture Compare 1 and the Capture Compare 2 prescalers and filters */
3113   tmpccmr1 &= ~(TIM_CCMR1_IC1PSC | TIM_CCMR1_IC2PSC);
3114   tmpccmr1 &= ~(TIM_CCMR1_IC1F | TIM_CCMR1_IC2F);
3115   tmpccmr1 |= sConfig->IC1Prescaler | (sConfig->IC2Prescaler << 8U);
3116   tmpccmr1 |= (sConfig->IC1Filter << 4U) | (sConfig->IC2Filter << 12U);
3117 
3118   /* Set the TI1 and the TI2 Polarities */
3119   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC2P);
3120   tmpccer &= ~(TIM_CCER_CC1NP | TIM_CCER_CC2NP);
3121   tmpccer |= sConfig->IC1Polarity | (sConfig->IC2Polarity << 4U);
3122 
3123   /* Write to TIMx SMCR */
3124   htim->Instance->SMCR = tmpsmcr;
3125 
3126   /* Write to TIMx CCMR1 */
3127   htim->Instance->CCMR1 = tmpccmr1;
3128 
3129   /* Write to TIMx CCER */
3130   htim->Instance->CCER = tmpccer;
3131 
3132   /* Initialize the DMA burst operation state */
3133   htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
3134 
3135   /* Set the TIM channels state */
3136   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3137   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3138   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3139   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3140 
3141   /* Initialize the TIM state*/
3142   htim->State = HAL_TIM_STATE_READY;
3143 
3144   return HAL_OK;
3145 }
3146 
3147 
3148 /**
3149   * @brief  DeInitializes the TIM Encoder interface
3150   * @param  htim TIM Encoder Interface handle
3151   * @retval HAL status
3152   */
HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef * htim)3153 HAL_StatusTypeDef HAL_TIM_Encoder_DeInit(TIM_HandleTypeDef *htim)
3154 {
3155   /* Check the parameters */
3156   assert_param(IS_TIM_INSTANCE(htim->Instance));
3157 
3158   htim->State = HAL_TIM_STATE_BUSY;
3159 
3160   /* Disable the TIM Peripheral Clock */
3161   __HAL_TIM_DISABLE(htim);
3162 
3163 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3164   if (htim->Encoder_MspDeInitCallback == NULL)
3165   {
3166     htim->Encoder_MspDeInitCallback = HAL_TIM_Encoder_MspDeInit;
3167   }
3168   /* DeInit the low level hardware */
3169   htim->Encoder_MspDeInitCallback(htim);
3170 #else
3171   /* DeInit the low level hardware: GPIO, CLOCK, NVIC */
3172   HAL_TIM_Encoder_MspDeInit(htim);
3173 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3174 
3175   /* Change the DMA burst operation state */
3176   htim->DMABurstState = HAL_DMA_BURST_STATE_RESET;
3177 
3178   /* Set the TIM channels state */
3179   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3180   TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3181   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_RESET);
3182   TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_RESET);
3183 
3184   /* Change TIM state */
3185   htim->State = HAL_TIM_STATE_RESET;
3186 
3187   /* Release Lock */
3188   __HAL_UNLOCK(htim);
3189 
3190   return HAL_OK;
3191 }
3192 
3193 /**
3194   * @brief  Initializes the TIM Encoder Interface MSP.
3195   * @param  htim TIM Encoder Interface handle
3196   * @retval None
3197   */
HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef * htim)3198 __weak void HAL_TIM_Encoder_MspInit(TIM_HandleTypeDef *htim)
3199 {
3200   /* Prevent unused argument(s) compilation warning */
3201   UNUSED(htim);
3202 
3203   /* NOTE : This function should not be modified, when the callback is needed,
3204             the HAL_TIM_Encoder_MspInit could be implemented in the user file
3205    */
3206 }
3207 
3208 /**
3209   * @brief  DeInitializes TIM Encoder Interface MSP.
3210   * @param  htim TIM Encoder Interface handle
3211   * @retval None
3212   */
HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef * htim)3213 __weak void HAL_TIM_Encoder_MspDeInit(TIM_HandleTypeDef *htim)
3214 {
3215   /* Prevent unused argument(s) compilation warning */
3216   UNUSED(htim);
3217 
3218   /* NOTE : This function should not be modified, when the callback is needed,
3219             the HAL_TIM_Encoder_MspDeInit could be implemented in the user file
3220    */
3221 }
3222 
3223 /**
3224   * @brief  Starts the TIM Encoder Interface.
3225   * @param  htim TIM Encoder Interface handle
3226   * @param  Channel TIM Channels to be enabled
3227   *          This parameter can be one of the following values:
3228   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3229   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3230   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3231   * @retval HAL status
3232   */
HAL_TIM_Encoder_Start(TIM_HandleTypeDef * htim,uint32_t Channel)3233 HAL_StatusTypeDef HAL_TIM_Encoder_Start(TIM_HandleTypeDef *htim, uint32_t Channel)
3234 {
3235   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3236   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3237   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3238   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3239 
3240   /* Check the parameters */
3241   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3242 
3243   /* Set the TIM channel(s) state */
3244   if (Channel == TIM_CHANNEL_1)
3245   {
3246     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3247         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3248     {
3249       return HAL_ERROR;
3250     }
3251     else
3252     {
3253       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3254       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3255     }
3256   }
3257   else if (Channel == TIM_CHANNEL_2)
3258   {
3259     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3260         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3261     {
3262       return HAL_ERROR;
3263     }
3264     else
3265     {
3266       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3267       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3268     }
3269   }
3270   else
3271   {
3272     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3273         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3274         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3275         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3276     {
3277       return HAL_ERROR;
3278     }
3279     else
3280     {
3281       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3282       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3283       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3284       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3285     }
3286   }
3287 
3288   /* Enable the encoder interface channels */
3289   switch (Channel)
3290   {
3291     case TIM_CHANNEL_1:
3292     {
3293       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3294       break;
3295     }
3296 
3297     case TIM_CHANNEL_2:
3298     {
3299       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3300       break;
3301     }
3302 
3303     default :
3304     {
3305       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3306       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3307       break;
3308     }
3309   }
3310   /* Enable the Peripheral */
3311   __HAL_TIM_ENABLE(htim);
3312 
3313   /* Return function status */
3314   return HAL_OK;
3315 }
3316 
3317 /**
3318   * @brief  Stops the TIM Encoder Interface.
3319   * @param  htim TIM Encoder Interface handle
3320   * @param  Channel TIM Channels to be disabled
3321   *          This parameter can be one of the following values:
3322   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3323   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3324   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3325   * @retval HAL status
3326   */
HAL_TIM_Encoder_Stop(TIM_HandleTypeDef * htim,uint32_t Channel)3327 HAL_StatusTypeDef HAL_TIM_Encoder_Stop(TIM_HandleTypeDef *htim, uint32_t Channel)
3328 {
3329   /* Check the parameters */
3330   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3331 
3332   /* Disable the Input Capture channels 1 and 2
3333     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3334   switch (Channel)
3335   {
3336     case TIM_CHANNEL_1:
3337     {
3338       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3339       break;
3340     }
3341 
3342     case TIM_CHANNEL_2:
3343     {
3344       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3345       break;
3346     }
3347 
3348     default :
3349     {
3350       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3351       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3352       break;
3353     }
3354   }
3355 
3356   /* Disable the Peripheral */
3357   __HAL_TIM_DISABLE(htim);
3358 
3359   /* Set the TIM channel(s) state */
3360   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3361   {
3362     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3363     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3364   }
3365   else
3366   {
3367     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3368     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3369     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3370     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3371   }
3372 
3373   /* Return function status */
3374   return HAL_OK;
3375 }
3376 
3377 /**
3378   * @brief  Starts the TIM Encoder Interface in interrupt mode.
3379   * @param  htim TIM Encoder Interface handle
3380   * @param  Channel TIM Channels to be enabled
3381   *          This parameter can be one of the following values:
3382   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3383   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3384   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3385   * @retval HAL status
3386   */
HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3387 HAL_StatusTypeDef HAL_TIM_Encoder_Start_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3388 {
3389   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3390   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3391   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3392   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3393 
3394   /* Check the parameters */
3395   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3396 
3397   /* Set the TIM channel(s) state */
3398   if (Channel == TIM_CHANNEL_1)
3399   {
3400     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3401         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY))
3402     {
3403       return HAL_ERROR;
3404     }
3405     else
3406     {
3407       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3408       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3409     }
3410   }
3411   else if (Channel == TIM_CHANNEL_2)
3412   {
3413     if ((channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3414         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3415     {
3416       return HAL_ERROR;
3417     }
3418     else
3419     {
3420       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3421       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3422     }
3423   }
3424   else
3425   {
3426     if ((channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3427         || (channel_2_state != HAL_TIM_CHANNEL_STATE_READY)
3428         || (complementary_channel_1_state != HAL_TIM_CHANNEL_STATE_READY)
3429         || (complementary_channel_2_state != HAL_TIM_CHANNEL_STATE_READY))
3430     {
3431       return HAL_ERROR;
3432     }
3433     else
3434     {
3435       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3436       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3437       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3438       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3439     }
3440   }
3441 
3442   /* Enable the encoder interface channels */
3443   /* Enable the capture compare Interrupts 1 and/or 2 */
3444   switch (Channel)
3445   {
3446     case TIM_CHANNEL_1:
3447     {
3448       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3449       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3450       break;
3451     }
3452 
3453     case TIM_CHANNEL_2:
3454     {
3455       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3456       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3457       break;
3458     }
3459 
3460     default :
3461     {
3462       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3463       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3464       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC1);
3465       __HAL_TIM_ENABLE_IT(htim, TIM_IT_CC2);
3466       break;
3467     }
3468   }
3469 
3470   /* Enable the Peripheral */
3471   __HAL_TIM_ENABLE(htim);
3472 
3473   /* Return function status */
3474   return HAL_OK;
3475 }
3476 
3477 /**
3478   * @brief  Stops the TIM Encoder Interface in interrupt mode.
3479   * @param  htim TIM Encoder Interface handle
3480   * @param  Channel TIM Channels to be disabled
3481   *          This parameter can be one of the following values:
3482   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3483   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3484   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3485   * @retval HAL status
3486   */
HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef * htim,uint32_t Channel)3487 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_IT(TIM_HandleTypeDef *htim, uint32_t Channel)
3488 {
3489   /* Check the parameters */
3490   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3491 
3492   /* Disable the Input Capture channels 1 and 2
3493     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3494   if (Channel == TIM_CHANNEL_1)
3495   {
3496     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3497 
3498     /* Disable the capture compare Interrupts 1 */
3499     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3500   }
3501   else if (Channel == TIM_CHANNEL_2)
3502   {
3503     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3504 
3505     /* Disable the capture compare Interrupts 2 */
3506     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3507   }
3508   else
3509   {
3510     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3511     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3512 
3513     /* Disable the capture compare Interrupts 1 and 2 */
3514     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC1);
3515     __HAL_TIM_DISABLE_IT(htim, TIM_IT_CC2);
3516   }
3517 
3518   /* Disable the Peripheral */
3519   __HAL_TIM_DISABLE(htim);
3520 
3521   /* Set the TIM channel(s) state */
3522   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3523   {
3524     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3525     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3526   }
3527   else
3528   {
3529     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3530     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3531     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3532     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3533   }
3534 
3535   /* Return function status */
3536   return HAL_OK;
3537 }
3538 
3539 /**
3540   * @brief  Starts the TIM Encoder Interface in DMA mode.
3541   * @param  htim TIM Encoder Interface handle
3542   * @param  Channel TIM Channels to be enabled
3543   *          This parameter can be one of the following values:
3544   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3545   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3546   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3547   * @param  pData1 The destination Buffer address for IC1.
3548   * @param  pData2 The destination Buffer address for IC2.
3549   * @param  Length The length of data to be transferred from TIM peripheral to memory.
3550   * @retval HAL status
3551   */
HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef * htim,uint32_t Channel,uint32_t * pData1,uint32_t * pData2,uint16_t Length)3552 HAL_StatusTypeDef HAL_TIM_Encoder_Start_DMA(TIM_HandleTypeDef *htim, uint32_t Channel, uint32_t *pData1,
3553                                             uint32_t *pData2, uint16_t Length)
3554 {
3555   HAL_TIM_ChannelStateTypeDef channel_1_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_1);
3556   HAL_TIM_ChannelStateTypeDef channel_2_state = TIM_CHANNEL_STATE_GET(htim, TIM_CHANNEL_2);
3557   HAL_TIM_ChannelStateTypeDef complementary_channel_1_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_1);
3558   HAL_TIM_ChannelStateTypeDef complementary_channel_2_state = TIM_CHANNEL_N_STATE_GET(htim, TIM_CHANNEL_2);
3559 
3560   /* Check the parameters */
3561   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3562 
3563   /* Set the TIM channel(s) state */
3564   if (Channel == TIM_CHANNEL_1)
3565   {
3566     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3567         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY))
3568     {
3569       return HAL_BUSY;
3570     }
3571     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3572              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY))
3573     {
3574       if ((pData1 == NULL) || (Length == 0U))
3575       {
3576         return HAL_ERROR;
3577       }
3578       else
3579       {
3580         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3581         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3582       }
3583     }
3584     else
3585     {
3586       return HAL_ERROR;
3587     }
3588   }
3589   else if (Channel == TIM_CHANNEL_2)
3590   {
3591     if ((channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3592         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3593     {
3594       return HAL_BUSY;
3595     }
3596     else if ((channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3597              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3598     {
3599       if ((pData2 == NULL) || (Length == 0U))
3600       {
3601         return HAL_ERROR;
3602       }
3603       else
3604       {
3605         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3606         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3607       }
3608     }
3609     else
3610     {
3611       return HAL_ERROR;
3612     }
3613   }
3614   else
3615   {
3616     if ((channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3617         || (channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY)
3618         || (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_BUSY)
3619         || (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_BUSY))
3620     {
3621       return HAL_BUSY;
3622     }
3623     else if ((channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3624              && (channel_2_state == HAL_TIM_CHANNEL_STATE_READY)
3625              && (complementary_channel_1_state == HAL_TIM_CHANNEL_STATE_READY)
3626              && (complementary_channel_2_state == HAL_TIM_CHANNEL_STATE_READY))
3627     {
3628       if ((((pData1 == NULL) || (pData2 == NULL))) || (Length == 0U))
3629       {
3630         return HAL_ERROR;
3631       }
3632       else
3633       {
3634         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3635         TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3636         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_BUSY);
3637         TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_BUSY);
3638       }
3639     }
3640     else
3641     {
3642       return HAL_ERROR;
3643     }
3644   }
3645 
3646   switch (Channel)
3647   {
3648     case TIM_CHANNEL_1:
3649     {
3650       /* Set the DMA capture callbacks */
3651       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3652       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3653 
3654       /* Set the DMA error callback */
3655       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3656 
3657       /* Enable the DMA channel */
3658       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3659                            Length) != HAL_OK)
3660       {
3661         /* Return error status */
3662         return HAL_ERROR;
3663       }
3664       /* Enable the TIM Input Capture DMA request */
3665       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3666 
3667       /* Enable the Capture compare channel */
3668       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3669 
3670       /* Enable the Peripheral */
3671       __HAL_TIM_ENABLE(htim);
3672 
3673       break;
3674     }
3675 
3676     case TIM_CHANNEL_2:
3677     {
3678       /* Set the DMA capture callbacks */
3679       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3680       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3681 
3682       /* Set the DMA error callback */
3683       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError;
3684       /* Enable the DMA channel */
3685       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3686                            Length) != HAL_OK)
3687       {
3688         /* Return error status */
3689         return HAL_ERROR;
3690       }
3691       /* Enable the TIM Input Capture  DMA request */
3692       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3693 
3694       /* Enable the Capture compare channel */
3695       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3696 
3697       /* Enable the Peripheral */
3698       __HAL_TIM_ENABLE(htim);
3699 
3700       break;
3701     }
3702 
3703     default:
3704     {
3705       /* Set the DMA capture callbacks */
3706       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
3707       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3708 
3709       /* Set the DMA error callback */
3710       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
3711 
3712       /* Enable the DMA channel */
3713       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->CCR1, (uint32_t)pData1,
3714                            Length) != HAL_OK)
3715       {
3716         /* Return error status */
3717         return HAL_ERROR;
3718       }
3719 
3720       /* Set the DMA capture callbacks */
3721       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
3722       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
3723 
3724       /* Set the DMA error callback */
3725       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
3726 
3727       /* Enable the DMA channel */
3728       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->CCR2, (uint32_t)pData2,
3729                            Length) != HAL_OK)
3730       {
3731         /* Return error status */
3732         return HAL_ERROR;
3733       }
3734 
3735       /* Enable the TIM Input Capture  DMA request */
3736       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC1);
3737       /* Enable the TIM Input Capture  DMA request */
3738       __HAL_TIM_ENABLE_DMA(htim, TIM_DMA_CC2);
3739 
3740       /* Enable the Capture compare channel */
3741       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_ENABLE);
3742       TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_ENABLE);
3743 
3744       /* Enable the Peripheral */
3745       __HAL_TIM_ENABLE(htim);
3746 
3747       break;
3748     }
3749   }
3750 
3751   /* Return function status */
3752   return HAL_OK;
3753 }
3754 
3755 /**
3756   * @brief  Stops the TIM Encoder Interface in DMA mode.
3757   * @param  htim TIM Encoder Interface handle
3758   * @param  Channel TIM Channels to be enabled
3759   *          This parameter can be one of the following values:
3760   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
3761   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
3762   *            @arg TIM_CHANNEL_ALL: TIM Channel 1 and TIM Channel 2 are selected
3763   * @retval HAL status
3764   */
HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef * htim,uint32_t Channel)3765 HAL_StatusTypeDef HAL_TIM_Encoder_Stop_DMA(TIM_HandleTypeDef *htim, uint32_t Channel)
3766 {
3767   /* Check the parameters */
3768   assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(htim->Instance));
3769 
3770   /* Disable the Input Capture channels 1 and 2
3771     (in the EncoderInterface the two possible channels that can be used are TIM_CHANNEL_1 and TIM_CHANNEL_2) */
3772   if (Channel == TIM_CHANNEL_1)
3773   {
3774     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3775 
3776     /* Disable the capture compare DMA Request 1 */
3777     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3778     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3779   }
3780   else if (Channel == TIM_CHANNEL_2)
3781   {
3782     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3783 
3784     /* Disable the capture compare DMA Request 2 */
3785     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3786     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3787   }
3788   else
3789   {
3790     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_1, TIM_CCx_DISABLE);
3791     TIM_CCxChannelCmd(htim->Instance, TIM_CHANNEL_2, TIM_CCx_DISABLE);
3792 
3793     /* Disable the capture compare DMA Request 1 and 2 */
3794     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC1);
3795     __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_CC2);
3796     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
3797     (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
3798   }
3799 
3800   /* Disable the Peripheral */
3801   __HAL_TIM_DISABLE(htim);
3802 
3803   /* Set the TIM channel(s) state */
3804   if ((Channel == TIM_CHANNEL_1) || (Channel == TIM_CHANNEL_2))
3805   {
3806     TIM_CHANNEL_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3807     TIM_CHANNEL_N_STATE_SET(htim, Channel, HAL_TIM_CHANNEL_STATE_READY);
3808   }
3809   else
3810   {
3811     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3812     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3813     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
3814     TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
3815   }
3816 
3817   /* Return function status */
3818   return HAL_OK;
3819 }
3820 
3821 /**
3822   * @}
3823   */
3824 /** @defgroup TIM_Exported_Functions_Group7 TIM IRQ handler management
3825   *  @brief    TIM IRQ handler management
3826   *
3827 @verbatim
3828   ==============================================================================
3829                         ##### IRQ handler management #####
3830   ==============================================================================
3831   [..]
3832     This section provides Timer IRQ handler function.
3833 
3834 @endverbatim
3835   * @{
3836   */
3837 /**
3838   * @brief  This function handles TIM interrupts requests.
3839   * @param  htim TIM  handle
3840   * @retval None
3841   */
HAL_TIM_IRQHandler(TIM_HandleTypeDef * htim)3842 void HAL_TIM_IRQHandler(TIM_HandleTypeDef *htim)
3843 {
3844   /* Capture compare 1 event */
3845   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC1) != RESET)
3846   {
3847     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC1) != RESET)
3848     {
3849       {
3850         __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC1);
3851         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
3852 
3853         /* Input capture event */
3854         if ((htim->Instance->CCMR1 & TIM_CCMR1_CC1S) != 0x00U)
3855         {
3856 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3857           htim->IC_CaptureCallback(htim);
3858 #else
3859           HAL_TIM_IC_CaptureCallback(htim);
3860 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3861         }
3862         /* Output compare event */
3863         else
3864         {
3865 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3866           htim->OC_DelayElapsedCallback(htim);
3867           htim->PWM_PulseFinishedCallback(htim);
3868 #else
3869           HAL_TIM_OC_DelayElapsedCallback(htim);
3870           HAL_TIM_PWM_PulseFinishedCallback(htim);
3871 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3872         }
3873         htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3874       }
3875     }
3876   }
3877   /* Capture compare 2 event */
3878   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC2) != RESET)
3879   {
3880     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC2) != RESET)
3881     {
3882       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC2);
3883       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
3884       /* Input capture event */
3885       if ((htim->Instance->CCMR1 & TIM_CCMR1_CC2S) != 0x00U)
3886       {
3887 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3888         htim->IC_CaptureCallback(htim);
3889 #else
3890         HAL_TIM_IC_CaptureCallback(htim);
3891 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3892       }
3893       /* Output compare event */
3894       else
3895       {
3896 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3897         htim->OC_DelayElapsedCallback(htim);
3898         htim->PWM_PulseFinishedCallback(htim);
3899 #else
3900         HAL_TIM_OC_DelayElapsedCallback(htim);
3901         HAL_TIM_PWM_PulseFinishedCallback(htim);
3902 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3903       }
3904       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3905     }
3906   }
3907   /* Capture compare 3 event */
3908   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC3) != RESET)
3909   {
3910     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC3) != RESET)
3911     {
3912       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC3);
3913       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
3914       /* Input capture event */
3915       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC3S) != 0x00U)
3916       {
3917 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3918         htim->IC_CaptureCallback(htim);
3919 #else
3920         HAL_TIM_IC_CaptureCallback(htim);
3921 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3922       }
3923       /* Output compare event */
3924       else
3925       {
3926 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3927         htim->OC_DelayElapsedCallback(htim);
3928         htim->PWM_PulseFinishedCallback(htim);
3929 #else
3930         HAL_TIM_OC_DelayElapsedCallback(htim);
3931         HAL_TIM_PWM_PulseFinishedCallback(htim);
3932 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3933       }
3934       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3935     }
3936   }
3937   /* Capture compare 4 event */
3938   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_CC4) != RESET)
3939   {
3940     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_CC4) != RESET)
3941     {
3942       __HAL_TIM_CLEAR_IT(htim, TIM_IT_CC4);
3943       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
3944       /* Input capture event */
3945       if ((htim->Instance->CCMR2 & TIM_CCMR2_CC4S) != 0x00U)
3946       {
3947 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3948         htim->IC_CaptureCallback(htim);
3949 #else
3950         HAL_TIM_IC_CaptureCallback(htim);
3951 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3952       }
3953       /* Output compare event */
3954       else
3955       {
3956 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3957         htim->OC_DelayElapsedCallback(htim);
3958         htim->PWM_PulseFinishedCallback(htim);
3959 #else
3960         HAL_TIM_OC_DelayElapsedCallback(htim);
3961         HAL_TIM_PWM_PulseFinishedCallback(htim);
3962 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3963       }
3964       htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
3965     }
3966   }
3967   /* TIM Update event */
3968   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_UPDATE) != RESET)
3969   {
3970     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_UPDATE) != RESET)
3971     {
3972       __HAL_TIM_CLEAR_IT(htim, TIM_IT_UPDATE);
3973 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3974       htim->PeriodElapsedCallback(htim);
3975 #else
3976       HAL_TIM_PeriodElapsedCallback(htim);
3977 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3978     }
3979   }
3980   /* TIM Break input event */
3981   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK) != RESET)
3982   {
3983     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
3984     {
3985       __HAL_TIM_CLEAR_IT(htim, TIM_IT_BREAK);
3986 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
3987       htim->BreakCallback(htim);
3988 #else
3989       HAL_TIMEx_BreakCallback(htim);
3990 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
3991     }
3992   }
3993   /* TIM Break2 input event */
3994   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_BREAK2) != RESET)
3995   {
3996     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_BREAK) != RESET)
3997     {
3998       __HAL_TIM_CLEAR_FLAG(htim, TIM_FLAG_BREAK2);
3999 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4000       htim->Break2Callback(htim);
4001 #else
4002       HAL_TIMEx_Break2Callback(htim);
4003 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4004     }
4005   }
4006   /* TIM Trigger detection event */
4007   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_TRIGGER) != RESET)
4008   {
4009     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_TRIGGER) != RESET)
4010     {
4011       __HAL_TIM_CLEAR_IT(htim, TIM_IT_TRIGGER);
4012 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4013       htim->TriggerCallback(htim);
4014 #else
4015       HAL_TIM_TriggerCallback(htim);
4016 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4017     }
4018   }
4019   /* TIM commutation event */
4020   if (__HAL_TIM_GET_FLAG(htim, TIM_FLAG_COM) != RESET)
4021   {
4022     if (__HAL_TIM_GET_IT_SOURCE(htim, TIM_IT_COM) != RESET)
4023     {
4024       __HAL_TIM_CLEAR_IT(htim, TIM_FLAG_COM);
4025 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
4026       htim->CommutationCallback(htim);
4027 #else
4028       HAL_TIMEx_CommutCallback(htim);
4029 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
4030     }
4031   }
4032 }
4033 
4034 /**
4035   * @}
4036   */
4037 
4038 /** @defgroup TIM_Exported_Functions_Group8 TIM Peripheral Control functions
4039   *  @brief    TIM Peripheral Control functions
4040   *
4041 @verbatim
4042   ==============================================================================
4043                    ##### Peripheral Control functions #####
4044   ==============================================================================
4045  [..]
4046    This section provides functions allowing to:
4047       (+) Configure The Input Output channels for OC, PWM, IC or One Pulse mode.
4048       (+) Configure External Clock source.
4049       (+) Configure Complementary channels, break features and dead time.
4050       (+) Configure Master and the Slave synchronization.
4051       (+) Configure the DMA Burst Mode.
4052 
4053 @endverbatim
4054   * @{
4055   */
4056 
4057 /**
4058   * @brief  Initializes the TIM Output Compare Channels according to the specified
4059   *         parameters in the TIM_OC_InitTypeDef.
4060   * @param  htim TIM Output Compare handle
4061   * @param  sConfig TIM Output Compare configuration structure
4062   * @param  Channel TIM Channels to configure
4063   *          This parameter can be one of the following values:
4064   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4065   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4066   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4067   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4068   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
4069   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
4070   * @retval HAL status
4071   */
HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4072 HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel(TIM_HandleTypeDef *htim,
4073                                            const TIM_OC_InitTypeDef *sConfig,
4074                                            uint32_t Channel)
4075 {
4076   HAL_StatusTypeDef status = HAL_OK;
4077 
4078   /* Check the parameters */
4079   assert_param(IS_TIM_CHANNELS(Channel));
4080   assert_param(IS_TIM_OC_MODE(sConfig->OCMode));
4081   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4082 
4083   /* Process Locked */
4084   __HAL_LOCK(htim);
4085 
4086   switch (Channel)
4087   {
4088     case TIM_CHANNEL_1:
4089     {
4090       /* Check the parameters */
4091       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4092 
4093       /* Configure the TIM Channel 1 in Output Compare */
4094       TIM_OC1_SetConfig(htim->Instance, sConfig);
4095       break;
4096     }
4097 
4098     case TIM_CHANNEL_2:
4099     {
4100       /* Check the parameters */
4101       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4102 
4103       /* Configure the TIM Channel 2 in Output Compare */
4104       TIM_OC2_SetConfig(htim->Instance, sConfig);
4105       break;
4106     }
4107 
4108     case TIM_CHANNEL_3:
4109     {
4110       /* Check the parameters */
4111       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4112 
4113       /* Configure the TIM Channel 3 in Output Compare */
4114       TIM_OC3_SetConfig(htim->Instance, sConfig);
4115       break;
4116     }
4117 
4118     case TIM_CHANNEL_4:
4119     {
4120       /* Check the parameters */
4121       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4122 
4123       /* Configure the TIM Channel 4 in Output Compare */
4124       TIM_OC4_SetConfig(htim->Instance, sConfig);
4125       break;
4126     }
4127 
4128     case TIM_CHANNEL_5:
4129     {
4130       /* Check the parameters */
4131       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4132 
4133       /* Configure the TIM Channel 5 in Output Compare */
4134       TIM_OC5_SetConfig(htim->Instance, sConfig);
4135       break;
4136     }
4137 
4138     case TIM_CHANNEL_6:
4139     {
4140       /* Check the parameters */
4141       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4142 
4143       /* Configure the TIM Channel 6 in Output Compare */
4144       TIM_OC6_SetConfig(htim->Instance, sConfig);
4145       break;
4146     }
4147 
4148     default:
4149       status = HAL_ERROR;
4150       break;
4151   }
4152 
4153   __HAL_UNLOCK(htim);
4154 
4155   return status;
4156 }
4157 
4158 /**
4159   * @brief  Initializes the TIM Input Capture Channels according to the specified
4160   *         parameters in the TIM_IC_InitTypeDef.
4161   * @param  htim TIM IC handle
4162   * @param  sConfig TIM Input Capture configuration structure
4163   * @param  Channel TIM Channel to configure
4164   *          This parameter can be one of the following values:
4165   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4166   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4167   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4168   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4169   * @retval HAL status
4170   */
HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_IC_InitTypeDef * sConfig,uint32_t Channel)4171 HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel(TIM_HandleTypeDef *htim, const TIM_IC_InitTypeDef *sConfig, uint32_t Channel)
4172 {
4173   HAL_StatusTypeDef status = HAL_OK;
4174 
4175   /* Check the parameters */
4176   assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4177   assert_param(IS_TIM_IC_POLARITY(sConfig->ICPolarity));
4178   assert_param(IS_TIM_IC_SELECTION(sConfig->ICSelection));
4179   assert_param(IS_TIM_IC_PRESCALER(sConfig->ICPrescaler));
4180   assert_param(IS_TIM_IC_FILTER(sConfig->ICFilter));
4181 
4182   /* Process Locked */
4183   __HAL_LOCK(htim);
4184 
4185   if (Channel == TIM_CHANNEL_1)
4186   {
4187     /* TI1 Configuration */
4188     TIM_TI1_SetConfig(htim->Instance,
4189                       sConfig->ICPolarity,
4190                       sConfig->ICSelection,
4191                       sConfig->ICFilter);
4192 
4193     /* Reset the IC1PSC Bits */
4194     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4195 
4196     /* Set the IC1PSC value */
4197     htim->Instance->CCMR1 |= sConfig->ICPrescaler;
4198   }
4199   else if (Channel == TIM_CHANNEL_2)
4200   {
4201     /* TI2 Configuration */
4202     assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4203 
4204     TIM_TI2_SetConfig(htim->Instance,
4205                       sConfig->ICPolarity,
4206                       sConfig->ICSelection,
4207                       sConfig->ICFilter);
4208 
4209     /* Reset the IC2PSC Bits */
4210     htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4211 
4212     /* Set the IC2PSC value */
4213     htim->Instance->CCMR1 |= (sConfig->ICPrescaler << 8U);
4214   }
4215   else if (Channel == TIM_CHANNEL_3)
4216   {
4217     /* TI3 Configuration */
4218     assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4219 
4220     TIM_TI3_SetConfig(htim->Instance,
4221                       sConfig->ICPolarity,
4222                       sConfig->ICSelection,
4223                       sConfig->ICFilter);
4224 
4225     /* Reset the IC3PSC Bits */
4226     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC3PSC;
4227 
4228     /* Set the IC3PSC value */
4229     htim->Instance->CCMR2 |= sConfig->ICPrescaler;
4230   }
4231   else if (Channel == TIM_CHANNEL_4)
4232   {
4233     /* TI4 Configuration */
4234     assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4235 
4236     TIM_TI4_SetConfig(htim->Instance,
4237                       sConfig->ICPolarity,
4238                       sConfig->ICSelection,
4239                       sConfig->ICFilter);
4240 
4241     /* Reset the IC4PSC Bits */
4242     htim->Instance->CCMR2 &= ~TIM_CCMR2_IC4PSC;
4243 
4244     /* Set the IC4PSC value */
4245     htim->Instance->CCMR2 |= (sConfig->ICPrescaler << 8U);
4246   }
4247   else
4248   {
4249     status = HAL_ERROR;
4250   }
4251 
4252   __HAL_UNLOCK(htim);
4253 
4254   return status;
4255 }
4256 
4257 /**
4258   * @brief  Initializes the TIM PWM  channels according to the specified
4259   *         parameters in the TIM_OC_InitTypeDef.
4260   * @param  htim TIM PWM handle
4261   * @param  sConfig TIM PWM configuration structure
4262   * @param  Channel TIM Channels to be configured
4263   *          This parameter can be one of the following values:
4264   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4265   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4266   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
4267   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
4268   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
4269   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
4270   * @retval HAL status
4271   */
HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef * htim,const TIM_OC_InitTypeDef * sConfig,uint32_t Channel)4272 HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel(TIM_HandleTypeDef *htim,
4273                                             const TIM_OC_InitTypeDef *sConfig,
4274                                             uint32_t Channel)
4275 {
4276   HAL_StatusTypeDef status = HAL_OK;
4277 
4278   /* Check the parameters */
4279   assert_param(IS_TIM_CHANNELS(Channel));
4280   assert_param(IS_TIM_PWM_MODE(sConfig->OCMode));
4281   assert_param(IS_TIM_OC_POLARITY(sConfig->OCPolarity));
4282   assert_param(IS_TIM_FAST_STATE(sConfig->OCFastMode));
4283 
4284   /* Process Locked */
4285   __HAL_LOCK(htim);
4286 
4287   switch (Channel)
4288   {
4289     case TIM_CHANNEL_1:
4290     {
4291       /* Check the parameters */
4292       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4293 
4294       /* Configure the Channel 1 in PWM mode */
4295       TIM_OC1_SetConfig(htim->Instance, sConfig);
4296 
4297       /* Set the Preload enable bit for channel1 */
4298       htim->Instance->CCMR1 |= TIM_CCMR1_OC1PE;
4299 
4300       /* Configure the Output Fast mode */
4301       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC1FE;
4302       htim->Instance->CCMR1 |= sConfig->OCFastMode;
4303       break;
4304     }
4305 
4306     case TIM_CHANNEL_2:
4307     {
4308       /* Check the parameters */
4309       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4310 
4311       /* Configure the Channel 2 in PWM mode */
4312       TIM_OC2_SetConfig(htim->Instance, sConfig);
4313 
4314       /* Set the Preload enable bit for channel2 */
4315       htim->Instance->CCMR1 |= TIM_CCMR1_OC2PE;
4316 
4317       /* Configure the Output Fast mode */
4318       htim->Instance->CCMR1 &= ~TIM_CCMR1_OC2FE;
4319       htim->Instance->CCMR1 |= sConfig->OCFastMode << 8U;
4320       break;
4321     }
4322 
4323     case TIM_CHANNEL_3:
4324     {
4325       /* Check the parameters */
4326       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
4327 
4328       /* Configure the Channel 3 in PWM mode */
4329       TIM_OC3_SetConfig(htim->Instance, sConfig);
4330 
4331       /* Set the Preload enable bit for channel3 */
4332       htim->Instance->CCMR2 |= TIM_CCMR2_OC3PE;
4333 
4334       /* Configure the Output Fast mode */
4335       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC3FE;
4336       htim->Instance->CCMR2 |= sConfig->OCFastMode;
4337       break;
4338     }
4339 
4340     case TIM_CHANNEL_4:
4341     {
4342       /* Check the parameters */
4343       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
4344 
4345       /* Configure the Channel 4 in PWM mode */
4346       TIM_OC4_SetConfig(htim->Instance, sConfig);
4347 
4348       /* Set the Preload enable bit for channel4 */
4349       htim->Instance->CCMR2 |= TIM_CCMR2_OC4PE;
4350 
4351       /* Configure the Output Fast mode */
4352       htim->Instance->CCMR2 &= ~TIM_CCMR2_OC4FE;
4353       htim->Instance->CCMR2 |= sConfig->OCFastMode << 8U;
4354       break;
4355     }
4356 
4357     case TIM_CHANNEL_5:
4358     {
4359       /* Check the parameters */
4360       assert_param(IS_TIM_CC5_INSTANCE(htim->Instance));
4361 
4362       /* Configure the Channel 5 in PWM mode */
4363       TIM_OC5_SetConfig(htim->Instance, sConfig);
4364 
4365       /* Set the Preload enable bit for channel5*/
4366       htim->Instance->CCMR3 |= TIM_CCMR3_OC5PE;
4367 
4368       /* Configure the Output Fast mode */
4369       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC5FE;
4370       htim->Instance->CCMR3 |= sConfig->OCFastMode;
4371       break;
4372     }
4373 
4374     case TIM_CHANNEL_6:
4375     {
4376       /* Check the parameters */
4377       assert_param(IS_TIM_CC6_INSTANCE(htim->Instance));
4378 
4379       /* Configure the Channel 6 in PWM mode */
4380       TIM_OC6_SetConfig(htim->Instance, sConfig);
4381 
4382       /* Set the Preload enable bit for channel6 */
4383       htim->Instance->CCMR3 |= TIM_CCMR3_OC6PE;
4384 
4385       /* Configure the Output Fast mode */
4386       htim->Instance->CCMR3 &= ~TIM_CCMR3_OC6FE;
4387       htim->Instance->CCMR3 |= sConfig->OCFastMode << 8U;
4388       break;
4389     }
4390 
4391     default:
4392       status = HAL_ERROR;
4393       break;
4394   }
4395 
4396   __HAL_UNLOCK(htim);
4397 
4398   return status;
4399 }
4400 
4401 /**
4402   * @brief  Initializes the TIM One Pulse Channels according to the specified
4403   *         parameters in the TIM_OnePulse_InitTypeDef.
4404   * @param  htim TIM One Pulse handle
4405   * @param  sConfig TIM One Pulse configuration structure
4406   * @param  OutputChannel TIM output channel to configure
4407   *          This parameter can be one of the following values:
4408   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4409   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4410   * @param  InputChannel TIM input Channel to configure
4411   *          This parameter can be one of the following values:
4412   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
4413   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
4414   * @note  To output a waveform with a minimum delay user can enable the fast
4415   *        mode by calling the @ref __HAL_TIM_ENABLE_OCxFAST macro. Then CCx
4416   *        output is forced in response to the edge detection on TIx input,
4417   *        without taking in account the comparison.
4418   * @retval HAL status
4419   */
HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef * htim,TIM_OnePulse_InitTypeDef * sConfig,uint32_t OutputChannel,uint32_t InputChannel)4420 HAL_StatusTypeDef HAL_TIM_OnePulse_ConfigChannel(TIM_HandleTypeDef *htim,  TIM_OnePulse_InitTypeDef *sConfig,
4421                                                  uint32_t OutputChannel,  uint32_t InputChannel)
4422 {
4423   HAL_StatusTypeDef status = HAL_OK;
4424   TIM_OC_InitTypeDef temp1;
4425 
4426   /* Check the parameters */
4427   assert_param(IS_TIM_OPM_CHANNELS(OutputChannel));
4428   assert_param(IS_TIM_OPM_CHANNELS(InputChannel));
4429 
4430   if (OutputChannel != InputChannel)
4431   {
4432     /* Process Locked */
4433     __HAL_LOCK(htim);
4434 
4435     htim->State = HAL_TIM_STATE_BUSY;
4436 
4437     /* Extract the Output compare configuration from sConfig structure */
4438     temp1.OCMode = sConfig->OCMode;
4439     temp1.Pulse = sConfig->Pulse;
4440     temp1.OCPolarity = sConfig->OCPolarity;
4441     temp1.OCNPolarity = sConfig->OCNPolarity;
4442     temp1.OCIdleState = sConfig->OCIdleState;
4443     temp1.OCNIdleState = sConfig->OCNIdleState;
4444 
4445     switch (OutputChannel)
4446     {
4447       case TIM_CHANNEL_1:
4448       {
4449         assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4450 
4451         TIM_OC1_SetConfig(htim->Instance, &temp1);
4452         break;
4453       }
4454 
4455       case TIM_CHANNEL_2:
4456       {
4457         assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4458 
4459         TIM_OC2_SetConfig(htim->Instance, &temp1);
4460         break;
4461       }
4462 
4463       default:
4464         status = HAL_ERROR;
4465         break;
4466     }
4467 
4468     if (status == HAL_OK)
4469     {
4470       switch (InputChannel)
4471       {
4472         case TIM_CHANNEL_1:
4473         {
4474           assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
4475 
4476           TIM_TI1_SetConfig(htim->Instance, sConfig->ICPolarity,
4477                             sConfig->ICSelection, sConfig->ICFilter);
4478 
4479           /* Reset the IC1PSC Bits */
4480           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC1PSC;
4481 
4482           /* Select the Trigger source */
4483           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4484           htim->Instance->SMCR |= TIM_TS_TI1FP1;
4485 
4486           /* Select the Slave Mode */
4487           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4488           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4489           break;
4490         }
4491 
4492         case TIM_CHANNEL_2:
4493         {
4494           assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
4495 
4496           TIM_TI2_SetConfig(htim->Instance, sConfig->ICPolarity,
4497                             sConfig->ICSelection, sConfig->ICFilter);
4498 
4499           /* Reset the IC2PSC Bits */
4500           htim->Instance->CCMR1 &= ~TIM_CCMR1_IC2PSC;
4501 
4502           /* Select the Trigger source */
4503           htim->Instance->SMCR &= ~TIM_SMCR_TS;
4504           htim->Instance->SMCR |= TIM_TS_TI2FP2;
4505 
4506           /* Select the Slave Mode */
4507           htim->Instance->SMCR &= ~TIM_SMCR_SMS;
4508           htim->Instance->SMCR |= TIM_SLAVEMODE_TRIGGER;
4509           break;
4510         }
4511 
4512         default:
4513           status = HAL_ERROR;
4514           break;
4515       }
4516     }
4517 
4518     htim->State = HAL_TIM_STATE_READY;
4519 
4520     __HAL_UNLOCK(htim);
4521 
4522     return status;
4523   }
4524   else
4525   {
4526     return HAL_ERROR;
4527   }
4528 }
4529 
4530 /**
4531   * @brief  Configure the DMA Burst to transfer Data from the memory to the TIM peripheral
4532   * @param  htim TIM handle
4533   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data write
4534   *         This parameter can be one of the following values:
4535   *            @arg TIM_DMABASE_CR1
4536   *            @arg TIM_DMABASE_CR2
4537   *            @arg TIM_DMABASE_SMCR
4538   *            @arg TIM_DMABASE_DIER
4539   *            @arg TIM_DMABASE_SR
4540   *            @arg TIM_DMABASE_EGR
4541   *            @arg TIM_DMABASE_CCMR1
4542   *            @arg TIM_DMABASE_CCMR2
4543   *            @arg TIM_DMABASE_CCER
4544   *            @arg TIM_DMABASE_CNT
4545   *            @arg TIM_DMABASE_PSC
4546   *            @arg TIM_DMABASE_ARR
4547   *            @arg TIM_DMABASE_RCR
4548   *            @arg TIM_DMABASE_CCR1
4549   *            @arg TIM_DMABASE_CCR2
4550   *            @arg TIM_DMABASE_CCR3
4551   *            @arg TIM_DMABASE_CCR4
4552   *            @arg TIM_DMABASE_BDTR
4553   *            @arg TIM_DMABASE_OR1
4554   *            @arg TIM_DMABASE_CCMR3
4555   *            @arg TIM_DMABASE_CCR5
4556   *            @arg TIM_DMABASE_CCR6
4557   *            @arg TIM_DMABASE_AF1
4558   *            @arg TIM_DMABASE_AF2
4559   *            @arg TIM_DMABASE_TISEL
4560   * @param  BurstRequestSrc TIM DMA Request sources
4561   *         This parameter can be one of the following values:
4562   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4563   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4564   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4565   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4566   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4567   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4568   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4569   * @param  BurstBuffer The Buffer address.
4570   * @param  BurstLength DMA Burst length. This parameter can be one value
4571   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4572   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4573   * @retval HAL status
4574   */
HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength)4575 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4576                                               uint32_t BurstRequestSrc, const uint32_t *BurstBuffer, uint32_t  BurstLength)
4577 {
4578   HAL_StatusTypeDef status;
4579 
4580   status = HAL_TIM_DMABurst_MultiWriteStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4581                                             ((BurstLength) >> 8U) + 1U);
4582 
4583 
4584 
4585   return status;
4586 }
4587 
4588 /**
4589   * @brief  Configure the DMA Burst to transfer multiple Data from the memory to the TIM peripheral
4590   * @param  htim TIM handle
4591   * @param  BurstBaseAddress TIM Base address from where the DMA will start the Data write
4592   *         This parameter can be one of the following values:
4593   *            @arg TIM_DMABASE_CR1
4594   *            @arg TIM_DMABASE_CR2
4595   *            @arg TIM_DMABASE_SMCR
4596   *            @arg TIM_DMABASE_DIER
4597   *            @arg TIM_DMABASE_SR
4598   *            @arg TIM_DMABASE_EGR
4599   *            @arg TIM_DMABASE_CCMR1
4600   *            @arg TIM_DMABASE_CCMR2
4601   *            @arg TIM_DMABASE_CCER
4602   *            @arg TIM_DMABASE_CNT
4603   *            @arg TIM_DMABASE_PSC
4604   *            @arg TIM_DMABASE_ARR
4605   *            @arg TIM_DMABASE_RCR
4606   *            @arg TIM_DMABASE_CCR1
4607   *            @arg TIM_DMABASE_CCR2
4608   *            @arg TIM_DMABASE_CCR3
4609   *            @arg TIM_DMABASE_CCR4
4610   *            @arg TIM_DMABASE_BDTR
4611   *            @arg TIM_DMABASE_OR1
4612   *            @arg TIM_DMABASE_CCMR3
4613   *            @arg TIM_DMABASE_CCR5
4614   *            @arg TIM_DMABASE_CCR6
4615   *            @arg TIM_DMABASE_AF1
4616   *            @arg TIM_DMABASE_AF2
4617   *            @arg TIM_DMABASE_TISEL
4618   * @param  BurstRequestSrc TIM DMA Request sources
4619   *         This parameter can be one of the following values:
4620   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4621   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4622   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4623   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4624   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4625   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4626   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4627   * @param  BurstBuffer The Buffer address.
4628   * @param  BurstLength DMA Burst length. This parameter can be one value
4629   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4630   * @param  DataLength Data length. This parameter can be one value
4631   *         between 1 and 0xFFFF.
4632   * @retval HAL status
4633   */
HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,const uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4634 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiWriteStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4635                                                    uint32_t BurstRequestSrc, const uint32_t *BurstBuffer,
4636                                                    uint32_t  BurstLength,  uint32_t  DataLength)
4637 {
4638   HAL_StatusTypeDef status = HAL_OK;
4639 
4640   /* Check the parameters */
4641   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4642   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4643   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4644   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4645   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4646 
4647   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4648   {
4649     return HAL_BUSY;
4650   }
4651   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
4652   {
4653     if ((BurstBuffer == NULL) && (BurstLength > 0U))
4654     {
4655       return HAL_ERROR;
4656     }
4657     else
4658     {
4659       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
4660     }
4661   }
4662   else
4663   {
4664     /* nothing to do */
4665   }
4666 
4667   switch (BurstRequestSrc)
4668   {
4669     case TIM_DMA_UPDATE:
4670     {
4671       /* Set the DMA Period elapsed callbacks */
4672       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
4673       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
4674 
4675       /* Set the DMA error callback */
4676       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
4677 
4678       /* Enable the DMA channel */
4679       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)BurstBuffer,
4680                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4681       {
4682         /* Return error status */
4683         return HAL_ERROR;
4684       }
4685       break;
4686     }
4687     case TIM_DMA_CC1:
4688     {
4689       /* Set the DMA compare callbacks */
4690       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMADelayPulseCplt;
4691       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4692 
4693       /* Set the DMA error callback */
4694       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
4695 
4696       /* Enable the DMA channel */
4697       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)BurstBuffer,
4698                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4699       {
4700         /* Return error status */
4701         return HAL_ERROR;
4702       }
4703       break;
4704     }
4705     case TIM_DMA_CC2:
4706     {
4707       /* Set the DMA compare callbacks */
4708       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMADelayPulseCplt;
4709       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4710 
4711       /* Set the DMA error callback */
4712       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
4713 
4714       /* Enable the DMA channel */
4715       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)BurstBuffer,
4716                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4717       {
4718         /* Return error status */
4719         return HAL_ERROR;
4720       }
4721       break;
4722     }
4723     case TIM_DMA_CC3:
4724     {
4725       /* Set the DMA compare callbacks */
4726       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMADelayPulseCplt;
4727       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4728 
4729       /* Set the DMA error callback */
4730       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
4731 
4732       /* Enable the DMA channel */
4733       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)BurstBuffer,
4734                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4735       {
4736         /* Return error status */
4737         return HAL_ERROR;
4738       }
4739       break;
4740     }
4741     case TIM_DMA_CC4:
4742     {
4743       /* Set the DMA compare callbacks */
4744       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMADelayPulseCplt;
4745       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMADelayPulseHalfCplt;
4746 
4747       /* Set the DMA error callback */
4748       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
4749 
4750       /* Enable the DMA channel */
4751       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)BurstBuffer,
4752                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4753       {
4754         /* Return error status */
4755         return HAL_ERROR;
4756       }
4757       break;
4758     }
4759     case TIM_DMA_COM:
4760     {
4761       /* Set the DMA commutation callbacks */
4762       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
4763       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
4764 
4765       /* Set the DMA error callback */
4766       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
4767 
4768       /* Enable the DMA channel */
4769       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)BurstBuffer,
4770                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4771       {
4772         /* Return error status */
4773         return HAL_ERROR;
4774       }
4775       break;
4776     }
4777     case TIM_DMA_TRIGGER:
4778     {
4779       /* Set the DMA trigger callbacks */
4780       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
4781       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
4782 
4783       /* Set the DMA error callback */
4784       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
4785 
4786       /* Enable the DMA channel */
4787       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)BurstBuffer,
4788                            (uint32_t)&htim->Instance->DMAR, DataLength) != HAL_OK)
4789       {
4790         /* Return error status */
4791         return HAL_ERROR;
4792       }
4793       break;
4794     }
4795     default:
4796       status = HAL_ERROR;
4797       break;
4798   }
4799 
4800   if (status == HAL_OK)
4801   {
4802     /* Configure the DMA Burst Mode */
4803     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
4804     /* Enable the TIM DMA Request */
4805     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
4806   }
4807 
4808   /* Return function status */
4809   return status;
4810 }
4811 
4812 /**
4813   * @brief  Stops the TIM DMA Burst mode
4814   * @param  htim TIM handle
4815   * @param  BurstRequestSrc TIM DMA Request sources to disable
4816   * @retval HAL status
4817   */
HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)4818 HAL_StatusTypeDef HAL_TIM_DMABurst_WriteStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
4819 {
4820   HAL_StatusTypeDef status = HAL_OK;
4821 
4822   /* Check the parameters */
4823   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4824 
4825   /* Abort the DMA transfer (at least disable the DMA channel) */
4826   switch (BurstRequestSrc)
4827   {
4828     case TIM_DMA_UPDATE:
4829     {
4830       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
4831       break;
4832     }
4833     case TIM_DMA_CC1:
4834     {
4835       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
4836       break;
4837     }
4838     case TIM_DMA_CC2:
4839     {
4840       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
4841       break;
4842     }
4843     case TIM_DMA_CC3:
4844     {
4845       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
4846       break;
4847     }
4848     case TIM_DMA_CC4:
4849     {
4850       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
4851       break;
4852     }
4853     case TIM_DMA_COM:
4854     {
4855       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
4856       break;
4857     }
4858     case TIM_DMA_TRIGGER:
4859     {
4860       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
4861       break;
4862     }
4863     default:
4864       status = HAL_ERROR;
4865       break;
4866   }
4867 
4868   if (status == HAL_OK)
4869   {
4870     /* Disable the TIM Update DMA request */
4871     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
4872 
4873     /* Change the DMA burst operation state */
4874     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
4875   }
4876 
4877   /* Return function status */
4878   return status;
4879 }
4880 
4881 /**
4882   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4883   * @param  htim TIM handle
4884   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4885   *         This parameter can be one of the following values:
4886   *            @arg TIM_DMABASE_CR1
4887   *            @arg TIM_DMABASE_CR2
4888   *            @arg TIM_DMABASE_SMCR
4889   *            @arg TIM_DMABASE_DIER
4890   *            @arg TIM_DMABASE_SR
4891   *            @arg TIM_DMABASE_EGR
4892   *            @arg TIM_DMABASE_CCMR1
4893   *            @arg TIM_DMABASE_CCMR2
4894   *            @arg TIM_DMABASE_CCER
4895   *            @arg TIM_DMABASE_CNT
4896   *            @arg TIM_DMABASE_PSC
4897   *            @arg TIM_DMABASE_ARR
4898   *            @arg TIM_DMABASE_RCR
4899   *            @arg TIM_DMABASE_CCR1
4900   *            @arg TIM_DMABASE_CCR2
4901   *            @arg TIM_DMABASE_CCR3
4902   *            @arg TIM_DMABASE_CCR4
4903   *            @arg TIM_DMABASE_BDTR
4904   *            @arg TIM_DMABASE_OR1
4905   *            @arg TIM_DMABASE_CCMR3
4906   *            @arg TIM_DMABASE_CCR5
4907   *            @arg TIM_DMABASE_CCR6
4908   *            @arg TIM_DMABASE_AF1
4909   *            @arg TIM_DMABASE_AF2
4910   *            @arg TIM_DMABASE_TISEL
4911   * @param  BurstRequestSrc TIM DMA Request sources
4912   *         This parameter can be one of the following values:
4913   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4914   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4915   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4916   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4917   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4918   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4919   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4920   * @param  BurstBuffer The Buffer address.
4921   * @param  BurstLength DMA Burst length. This parameter can be one value
4922   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4923   * @note   This function should be used only when BurstLength is equal to DMA data transfer length.
4924   * @retval HAL status
4925   */
HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength)4926 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4927                                              uint32_t BurstRequestSrc, uint32_t  *BurstBuffer, uint32_t  BurstLength)
4928 {
4929   HAL_StatusTypeDef status;
4930 
4931   status = HAL_TIM_DMABurst_MultiReadStart(htim, BurstBaseAddress, BurstRequestSrc, BurstBuffer, BurstLength,
4932                                            ((BurstLength) >> 8U) + 1U);
4933 
4934 
4935   return status;
4936 }
4937 
4938 /**
4939   * @brief  Configure the DMA Burst to transfer Data from the TIM peripheral to the memory
4940   * @param  htim TIM handle
4941   * @param  BurstBaseAddress TIM Base address from where the DMA  will start the Data read
4942   *         This parameter can be one of the following values:
4943   *            @arg TIM_DMABASE_CR1
4944   *            @arg TIM_DMABASE_CR2
4945   *            @arg TIM_DMABASE_SMCR
4946   *            @arg TIM_DMABASE_DIER
4947   *            @arg TIM_DMABASE_SR
4948   *            @arg TIM_DMABASE_EGR
4949   *            @arg TIM_DMABASE_CCMR1
4950   *            @arg TIM_DMABASE_CCMR2
4951   *            @arg TIM_DMABASE_CCER
4952   *            @arg TIM_DMABASE_CNT
4953   *            @arg TIM_DMABASE_PSC
4954   *            @arg TIM_DMABASE_ARR
4955   *            @arg TIM_DMABASE_RCR
4956   *            @arg TIM_DMABASE_CCR1
4957   *            @arg TIM_DMABASE_CCR2
4958   *            @arg TIM_DMABASE_CCR3
4959   *            @arg TIM_DMABASE_CCR4
4960   *            @arg TIM_DMABASE_BDTR
4961   *            @arg TIM_DMABASE_OR1
4962   *            @arg TIM_DMABASE_CCMR3
4963   *            @arg TIM_DMABASE_CCR5
4964   *            @arg TIM_DMABASE_CCR6
4965   *            @arg TIM_DMABASE_AF1
4966   *            @arg TIM_DMABASE_AF2
4967   *            @arg TIM_DMABASE_TISEL
4968   * @param  BurstRequestSrc TIM DMA Request sources
4969   *         This parameter can be one of the following values:
4970   *            @arg TIM_DMA_UPDATE: TIM update Interrupt source
4971   *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
4972   *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
4973   *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
4974   *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
4975   *            @arg TIM_DMA_COM: TIM Commutation DMA source
4976   *            @arg TIM_DMA_TRIGGER: TIM Trigger DMA source
4977   * @param  BurstBuffer The Buffer address.
4978   * @param  BurstLength DMA Burst length. This parameter can be one value
4979   *         between: TIM_DMABURSTLENGTH_1TRANSFER and TIM_DMABURSTLENGTH_18TRANSFERS.
4980   * @param  DataLength Data length. This parameter can be one value
4981   *         between 1 and 0xFFFF.
4982   * @retval HAL status
4983   */
HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef * htim,uint32_t BurstBaseAddress,uint32_t BurstRequestSrc,uint32_t * BurstBuffer,uint32_t BurstLength,uint32_t DataLength)4984 HAL_StatusTypeDef HAL_TIM_DMABurst_MultiReadStart(TIM_HandleTypeDef *htim, uint32_t BurstBaseAddress,
4985                                                   uint32_t BurstRequestSrc, uint32_t  *BurstBuffer,
4986                                                   uint32_t  BurstLength, uint32_t  DataLength)
4987 {
4988   HAL_StatusTypeDef status = HAL_OK;
4989 
4990   /* Check the parameters */
4991   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
4992   assert_param(IS_TIM_DMA_BASE(BurstBaseAddress));
4993   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
4994   assert_param(IS_TIM_DMA_LENGTH(BurstLength));
4995   assert_param(IS_TIM_DMA_DATA_LENGTH(DataLength));
4996 
4997   if (htim->DMABurstState == HAL_DMA_BURST_STATE_BUSY)
4998   {
4999     return HAL_BUSY;
5000   }
5001   else if (htim->DMABurstState == HAL_DMA_BURST_STATE_READY)
5002   {
5003     if ((BurstBuffer == NULL) && (BurstLength > 0U))
5004     {
5005       return HAL_ERROR;
5006     }
5007     else
5008     {
5009       htim->DMABurstState = HAL_DMA_BURST_STATE_BUSY;
5010     }
5011   }
5012   else
5013   {
5014     /* nothing to do */
5015   }
5016   switch (BurstRequestSrc)
5017   {
5018     case TIM_DMA_UPDATE:
5019     {
5020       /* Set the DMA Period elapsed callbacks */
5021       htim->hdma[TIM_DMA_ID_UPDATE]->XferCpltCallback = TIM_DMAPeriodElapsedCplt;
5022       htim->hdma[TIM_DMA_ID_UPDATE]->XferHalfCpltCallback = TIM_DMAPeriodElapsedHalfCplt;
5023 
5024       /* Set the DMA error callback */
5025       htim->hdma[TIM_DMA_ID_UPDATE]->XferErrorCallback = TIM_DMAError ;
5026 
5027       /* Enable the DMA channel */
5028       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_UPDATE], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5029                            DataLength) != HAL_OK)
5030       {
5031         /* Return error status */
5032         return HAL_ERROR;
5033       }
5034       break;
5035     }
5036     case TIM_DMA_CC1:
5037     {
5038       /* Set the DMA capture callbacks */
5039       htim->hdma[TIM_DMA_ID_CC1]->XferCpltCallback = TIM_DMACaptureCplt;
5040       htim->hdma[TIM_DMA_ID_CC1]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5041 
5042       /* Set the DMA error callback */
5043       htim->hdma[TIM_DMA_ID_CC1]->XferErrorCallback = TIM_DMAError ;
5044 
5045       /* Enable the DMA channel */
5046       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC1], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5047                            DataLength) != HAL_OK)
5048       {
5049         /* Return error status */
5050         return HAL_ERROR;
5051       }
5052       break;
5053     }
5054     case TIM_DMA_CC2:
5055     {
5056       /* Set the DMA capture callbacks */
5057       htim->hdma[TIM_DMA_ID_CC2]->XferCpltCallback = TIM_DMACaptureCplt;
5058       htim->hdma[TIM_DMA_ID_CC2]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5059 
5060       /* Set the DMA error callback */
5061       htim->hdma[TIM_DMA_ID_CC2]->XferErrorCallback = TIM_DMAError ;
5062 
5063       /* Enable the DMA channel */
5064       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC2], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5065                            DataLength) != HAL_OK)
5066       {
5067         /* Return error status */
5068         return HAL_ERROR;
5069       }
5070       break;
5071     }
5072     case TIM_DMA_CC3:
5073     {
5074       /* Set the DMA capture callbacks */
5075       htim->hdma[TIM_DMA_ID_CC3]->XferCpltCallback = TIM_DMACaptureCplt;
5076       htim->hdma[TIM_DMA_ID_CC3]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5077 
5078       /* Set the DMA error callback */
5079       htim->hdma[TIM_DMA_ID_CC3]->XferErrorCallback = TIM_DMAError ;
5080 
5081       /* Enable the DMA channel */
5082       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC3], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5083                            DataLength) != HAL_OK)
5084       {
5085         /* Return error status */
5086         return HAL_ERROR;
5087       }
5088       break;
5089     }
5090     case TIM_DMA_CC4:
5091     {
5092       /* Set the DMA capture callbacks */
5093       htim->hdma[TIM_DMA_ID_CC4]->XferCpltCallback = TIM_DMACaptureCplt;
5094       htim->hdma[TIM_DMA_ID_CC4]->XferHalfCpltCallback = TIM_DMACaptureHalfCplt;
5095 
5096       /* Set the DMA error callback */
5097       htim->hdma[TIM_DMA_ID_CC4]->XferErrorCallback = TIM_DMAError ;
5098 
5099       /* Enable the DMA channel */
5100       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_CC4], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5101                            DataLength) != HAL_OK)
5102       {
5103         /* Return error status */
5104         return HAL_ERROR;
5105       }
5106       break;
5107     }
5108     case TIM_DMA_COM:
5109     {
5110       /* Set the DMA commutation callbacks */
5111       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferCpltCallback =  TIMEx_DMACommutationCplt;
5112       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferHalfCpltCallback =  TIMEx_DMACommutationHalfCplt;
5113 
5114       /* Set the DMA error callback */
5115       htim->hdma[TIM_DMA_ID_COMMUTATION]->XferErrorCallback = TIM_DMAError ;
5116 
5117       /* Enable the DMA channel */
5118       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_COMMUTATION], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5119                            DataLength) != HAL_OK)
5120       {
5121         /* Return error status */
5122         return HAL_ERROR;
5123       }
5124       break;
5125     }
5126     case TIM_DMA_TRIGGER:
5127     {
5128       /* Set the DMA trigger callbacks */
5129       htim->hdma[TIM_DMA_ID_TRIGGER]->XferCpltCallback = TIM_DMATriggerCplt;
5130       htim->hdma[TIM_DMA_ID_TRIGGER]->XferHalfCpltCallback = TIM_DMATriggerHalfCplt;
5131 
5132       /* Set the DMA error callback */
5133       htim->hdma[TIM_DMA_ID_TRIGGER]->XferErrorCallback = TIM_DMAError ;
5134 
5135       /* Enable the DMA channel */
5136       if (HAL_DMA_Start_IT(htim->hdma[TIM_DMA_ID_TRIGGER], (uint32_t)&htim->Instance->DMAR, (uint32_t)BurstBuffer,
5137                            DataLength) != HAL_OK)
5138       {
5139         /* Return error status */
5140         return HAL_ERROR;
5141       }
5142       break;
5143     }
5144     default:
5145       status = HAL_ERROR;
5146       break;
5147   }
5148 
5149   if (status == HAL_OK)
5150   {
5151     /* Configure the DMA Burst Mode */
5152     htim->Instance->DCR = (BurstBaseAddress | BurstLength);
5153 
5154     /* Enable the TIM DMA Request */
5155     __HAL_TIM_ENABLE_DMA(htim, BurstRequestSrc);
5156   }
5157 
5158   /* Return function status */
5159   return status;
5160 }
5161 
5162 /**
5163   * @brief  Stop the DMA burst reading
5164   * @param  htim TIM handle
5165   * @param  BurstRequestSrc TIM DMA Request sources to disable.
5166   * @retval HAL status
5167   */
HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef * htim,uint32_t BurstRequestSrc)5168 HAL_StatusTypeDef HAL_TIM_DMABurst_ReadStop(TIM_HandleTypeDef *htim, uint32_t BurstRequestSrc)
5169 {
5170   HAL_StatusTypeDef status = HAL_OK;
5171 
5172   /* Check the parameters */
5173   assert_param(IS_TIM_DMA_SOURCE(BurstRequestSrc));
5174 
5175   /* Abort the DMA transfer (at least disable the DMA channel) */
5176   switch (BurstRequestSrc)
5177   {
5178     case TIM_DMA_UPDATE:
5179     {
5180       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_UPDATE]);
5181       break;
5182     }
5183     case TIM_DMA_CC1:
5184     {
5185       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC1]);
5186       break;
5187     }
5188     case TIM_DMA_CC2:
5189     {
5190       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC2]);
5191       break;
5192     }
5193     case TIM_DMA_CC3:
5194     {
5195       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC3]);
5196       break;
5197     }
5198     case TIM_DMA_CC4:
5199     {
5200       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_CC4]);
5201       break;
5202     }
5203     case TIM_DMA_COM:
5204     {
5205       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_COMMUTATION]);
5206       break;
5207     }
5208     case TIM_DMA_TRIGGER:
5209     {
5210       (void)HAL_DMA_Abort_IT(htim->hdma[TIM_DMA_ID_TRIGGER]);
5211       break;
5212     }
5213     default:
5214       status = HAL_ERROR;
5215       break;
5216   }
5217 
5218   if (status == HAL_OK)
5219   {
5220     /* Disable the TIM Update DMA request */
5221     __HAL_TIM_DISABLE_DMA(htim, BurstRequestSrc);
5222 
5223     /* Change the DMA burst operation state */
5224     htim->DMABurstState = HAL_DMA_BURST_STATE_READY;
5225   }
5226 
5227   /* Return function status */
5228   return status;
5229 }
5230 
5231 /**
5232   * @brief  Generate a software event
5233   * @param  htim TIM handle
5234   * @param  EventSource specifies the event source.
5235   *          This parameter can be one of the following values:
5236   *            @arg TIM_EVENTSOURCE_UPDATE: Timer update Event source
5237   *            @arg TIM_EVENTSOURCE_CC1: Timer Capture Compare 1 Event source
5238   *            @arg TIM_EVENTSOURCE_CC2: Timer Capture Compare 2 Event source
5239   *            @arg TIM_EVENTSOURCE_CC3: Timer Capture Compare 3 Event source
5240   *            @arg TIM_EVENTSOURCE_CC4: Timer Capture Compare 4 Event source
5241   *            @arg TIM_EVENTSOURCE_COM: Timer COM event source
5242   *            @arg TIM_EVENTSOURCE_TRIGGER: Timer Trigger Event source
5243   *            @arg TIM_EVENTSOURCE_BREAK: Timer Break event source
5244   *            @arg TIM_EVENTSOURCE_BREAK2: Timer Break2 event source
5245   * @note   Basic timers can only generate an update event.
5246   * @note   TIM_EVENTSOURCE_COM is relevant only with advanced timer instances.
5247   * @note   TIM_EVENTSOURCE_BREAK and TIM_EVENTSOURCE_BREAK2 are relevant
5248   *         only for timer instances supporting break input(s).
5249   * @retval HAL status
5250   */
5251 
HAL_TIM_GenerateEvent(TIM_HandleTypeDef * htim,uint32_t EventSource)5252 HAL_StatusTypeDef HAL_TIM_GenerateEvent(TIM_HandleTypeDef *htim, uint32_t EventSource)
5253 {
5254   /* Check the parameters */
5255   assert_param(IS_TIM_INSTANCE(htim->Instance));
5256   assert_param(IS_TIM_EVENT_SOURCE(EventSource));
5257 
5258   /* Process Locked */
5259   __HAL_LOCK(htim);
5260 
5261   /* Change the TIM state */
5262   htim->State = HAL_TIM_STATE_BUSY;
5263 
5264   /* Set the event sources */
5265   htim->Instance->EGR = EventSource;
5266 
5267   /* Change the TIM state */
5268   htim->State = HAL_TIM_STATE_READY;
5269 
5270   __HAL_UNLOCK(htim);
5271 
5272   /* Return function status */
5273   return HAL_OK;
5274 }
5275 
5276 /**
5277   * @brief  Configures the OCRef clear feature
5278   * @param  htim TIM handle
5279   * @param  sClearInputConfig pointer to a TIM_ClearInputConfigTypeDef structure that
5280   *         contains the OCREF clear feature and parameters for the TIM peripheral.
5281   * @param  Channel specifies the TIM Channel
5282   *          This parameter can be one of the following values:
5283   *            @arg TIM_CHANNEL_1: TIM Channel 1
5284   *            @arg TIM_CHANNEL_2: TIM Channel 2
5285   *            @arg TIM_CHANNEL_3: TIM Channel 3
5286   *            @arg TIM_CHANNEL_4: TIM Channel 4
5287   *            @arg TIM_CHANNEL_5: TIM Channel 5
5288   *            @arg TIM_CHANNEL_6: TIM Channel 6
5289   * @retval HAL status
5290   */
HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef * htim,const TIM_ClearInputConfigTypeDef * sClearInputConfig,uint32_t Channel)5291 HAL_StatusTypeDef HAL_TIM_ConfigOCrefClear(TIM_HandleTypeDef *htim,
5292                                            const TIM_ClearInputConfigTypeDef *sClearInputConfig,
5293                                            uint32_t Channel)
5294 {
5295   HAL_StatusTypeDef status = HAL_OK;
5296 
5297   /* Check the parameters */
5298   assert_param(IS_TIM_OCXREF_CLEAR_INSTANCE(htim->Instance));
5299   assert_param(IS_TIM_CLEARINPUT_SOURCE(sClearInputConfig->ClearInputSource));
5300 
5301   /* Process Locked */
5302   __HAL_LOCK(htim);
5303 
5304   htim->State = HAL_TIM_STATE_BUSY;
5305 
5306   switch (sClearInputConfig->ClearInputSource)
5307   {
5308     case TIM_CLEARINPUTSOURCE_NONE:
5309     {
5310       /* Clear the OCREF clear selection bit and the the ETR Bits */
5311       CLEAR_BIT(htim->Instance->SMCR, (TIM_SMCR_OCCS | TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP));
5312 
5313       /* Clear TIMx_OR1_OCREF_CLR (reset value) */
5314       CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR);
5315       break;
5316     }
5317 #if defined(COMP1) || defined(COMP2) || defined(COMP3)
5318 #if defined(COMP1) && defined(COMP2)
5319     case TIM_CLEARINPUTSOURCE_COMP1:
5320     case TIM_CLEARINPUTSOURCE_COMP2:
5321 #endif /* COMP1 && COMP2 */
5322 #if defined(COMP3)
5323     case TIM_CLEARINPUTSOURCE_COMP3:
5324 #endif /* COMP3 */
5325     {
5326       /* Clear the OCREF clear selection bit */
5327       CLEAR_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5328 
5329       /* OCREF_CLR_INT is connected to COMPx output */
5330       MODIFY_REG(htim->Instance->OR1, TIMx_OR1_OCREF_CLR, sClearInputConfig->ClearInputSource);
5331       break;
5332     }
5333 #endif /* COMP1 || COMP2 || COMP3 */
5334 
5335     case TIM_CLEARINPUTSOURCE_ETR:
5336     {
5337       /* Check the parameters */
5338       assert_param(IS_TIM_CLEARINPUT_POLARITY(sClearInputConfig->ClearInputPolarity));
5339       assert_param(IS_TIM_CLEARINPUT_PRESCALER(sClearInputConfig->ClearInputPrescaler));
5340       assert_param(IS_TIM_CLEARINPUT_FILTER(sClearInputConfig->ClearInputFilter));
5341 
5342       /* When OCRef clear feature is used with ETR source, ETR prescaler must be off */
5343       if (sClearInputConfig->ClearInputPrescaler != TIM_CLEARINPUTPRESCALER_DIV1)
5344       {
5345         htim->State = HAL_TIM_STATE_READY;
5346         __HAL_UNLOCK(htim);
5347         return HAL_ERROR;
5348       }
5349 
5350       TIM_ETR_SetConfig(htim->Instance,
5351                         sClearInputConfig->ClearInputPrescaler,
5352                         sClearInputConfig->ClearInputPolarity,
5353                         sClearInputConfig->ClearInputFilter);
5354 
5355       /* Set the OCREF clear selection bit */
5356       SET_BIT(htim->Instance->SMCR, TIM_SMCR_OCCS);
5357 
5358       /* Clear TIMx_OR1_OCREF_CLR (reset value) */
5359       CLEAR_BIT(htim->Instance->OR1, TIMx_OR1_OCREF_CLR);
5360       break;
5361     }
5362 
5363     default:
5364       status = HAL_ERROR;
5365       break;
5366   }
5367 
5368   if (status == HAL_OK)
5369   {
5370     switch (Channel)
5371     {
5372       case TIM_CHANNEL_1:
5373       {
5374         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5375         {
5376           /* Enable the OCREF clear feature for Channel 1 */
5377           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5378         }
5379         else
5380         {
5381           /* Disable the OCREF clear feature for Channel 1 */
5382           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC1CE);
5383         }
5384         break;
5385       }
5386       case TIM_CHANNEL_2:
5387       {
5388         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5389         {
5390           /* Enable the OCREF clear feature for Channel 2 */
5391           SET_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5392         }
5393         else
5394         {
5395           /* Disable the OCREF clear feature for Channel 2 */
5396           CLEAR_BIT(htim->Instance->CCMR1, TIM_CCMR1_OC2CE);
5397         }
5398         break;
5399       }
5400       case TIM_CHANNEL_3:
5401       {
5402         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5403         {
5404           /* Enable the OCREF clear feature for Channel 3 */
5405           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5406         }
5407         else
5408         {
5409           /* Disable the OCREF clear feature for Channel 3 */
5410           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC3CE);
5411         }
5412         break;
5413       }
5414       case TIM_CHANNEL_4:
5415       {
5416         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5417         {
5418           /* Enable the OCREF clear feature for Channel 4 */
5419           SET_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5420         }
5421         else
5422         {
5423           /* Disable the OCREF clear feature for Channel 4 */
5424           CLEAR_BIT(htim->Instance->CCMR2, TIM_CCMR2_OC4CE);
5425         }
5426         break;
5427       }
5428       case TIM_CHANNEL_5:
5429       {
5430         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5431         {
5432           /* Enable the OCREF clear feature for Channel 5 */
5433           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5434         }
5435         else
5436         {
5437           /* Disable the OCREF clear feature for Channel 5 */
5438           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC5CE);
5439         }
5440         break;
5441       }
5442       case TIM_CHANNEL_6:
5443       {
5444         if (sClearInputConfig->ClearInputState != (uint32_t)DISABLE)
5445         {
5446           /* Enable the OCREF clear feature for Channel 6 */
5447           SET_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5448         }
5449         else
5450         {
5451           /* Disable the OCREF clear feature for Channel 6 */
5452           CLEAR_BIT(htim->Instance->CCMR3, TIM_CCMR3_OC6CE);
5453         }
5454         break;
5455       }
5456       default:
5457         break;
5458     }
5459   }
5460 
5461   htim->State = HAL_TIM_STATE_READY;
5462 
5463   __HAL_UNLOCK(htim);
5464 
5465   return status;
5466 }
5467 
5468 /**
5469   * @brief   Configures the clock source to be used
5470   * @param  htim TIM handle
5471   * @param  sClockSourceConfig pointer to a TIM_ClockConfigTypeDef structure that
5472   *         contains the clock source information for the TIM peripheral.
5473   * @retval HAL status
5474   */
HAL_TIM_ConfigClockSource(TIM_HandleTypeDef * htim,const TIM_ClockConfigTypeDef * sClockSourceConfig)5475 HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, const TIM_ClockConfigTypeDef *sClockSourceConfig)
5476 {
5477   HAL_StatusTypeDef status = HAL_OK;
5478   uint32_t tmpsmcr;
5479 
5480   /* Process Locked */
5481   __HAL_LOCK(htim);
5482 
5483   htim->State = HAL_TIM_STATE_BUSY;
5484 
5485   /* Check the parameters */
5486   assert_param(IS_TIM_CLOCKSOURCE(sClockSourceConfig->ClockSource));
5487 
5488   /* Reset the SMS, TS, ECE, ETPS and ETRF bits */
5489   tmpsmcr = htim->Instance->SMCR;
5490   tmpsmcr &= ~(TIM_SMCR_SMS | TIM_SMCR_TS);
5491   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
5492   htim->Instance->SMCR = tmpsmcr;
5493 
5494   switch (sClockSourceConfig->ClockSource)
5495   {
5496     case TIM_CLOCKSOURCE_INTERNAL:
5497     {
5498       assert_param(IS_TIM_INSTANCE(htim->Instance));
5499       break;
5500     }
5501 
5502     case TIM_CLOCKSOURCE_ETRMODE1:
5503     {
5504       /* Check whether or not the timer instance supports external trigger input mode 1 (ETRF)*/
5505       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
5506 
5507       /* Check ETR input conditioning related parameters */
5508       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5509       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5510       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5511 
5512       /* Configure the ETR Clock source */
5513       TIM_ETR_SetConfig(htim->Instance,
5514                         sClockSourceConfig->ClockPrescaler,
5515                         sClockSourceConfig->ClockPolarity,
5516                         sClockSourceConfig->ClockFilter);
5517 
5518       /* Select the External clock mode1 and the ETRF trigger */
5519       tmpsmcr = htim->Instance->SMCR;
5520       tmpsmcr |= (TIM_SLAVEMODE_EXTERNAL1 | TIM_CLOCKSOURCE_ETRMODE1);
5521       /* Write to TIMx SMCR */
5522       htim->Instance->SMCR = tmpsmcr;
5523       break;
5524     }
5525 
5526     case TIM_CLOCKSOURCE_ETRMODE2:
5527     {
5528       /* Check whether or not the timer instance supports external trigger input mode 2 (ETRF)*/
5529       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(htim->Instance));
5530 
5531       /* Check ETR input conditioning related parameters */
5532       assert_param(IS_TIM_CLOCKPRESCALER(sClockSourceConfig->ClockPrescaler));
5533       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5534       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5535 
5536       /* Configure the ETR Clock source */
5537       TIM_ETR_SetConfig(htim->Instance,
5538                         sClockSourceConfig->ClockPrescaler,
5539                         sClockSourceConfig->ClockPolarity,
5540                         sClockSourceConfig->ClockFilter);
5541       /* Enable the External clock mode2 */
5542       htim->Instance->SMCR |= TIM_SMCR_ECE;
5543       break;
5544     }
5545 
5546     case TIM_CLOCKSOURCE_TI1:
5547     {
5548       /* Check whether or not the timer instance supports external clock mode 1 */
5549       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5550 
5551       /* Check TI1 input conditioning related parameters */
5552       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5553       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5554 
5555       TIM_TI1_ConfigInputStage(htim->Instance,
5556                                sClockSourceConfig->ClockPolarity,
5557                                sClockSourceConfig->ClockFilter);
5558       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1);
5559       break;
5560     }
5561 
5562     case TIM_CLOCKSOURCE_TI2:
5563     {
5564       /* Check whether or not the timer instance supports external clock mode 1 (ETRF)*/
5565       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5566 
5567       /* Check TI2 input conditioning related parameters */
5568       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5569       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5570 
5571       TIM_TI2_ConfigInputStage(htim->Instance,
5572                                sClockSourceConfig->ClockPolarity,
5573                                sClockSourceConfig->ClockFilter);
5574       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI2);
5575       break;
5576     }
5577 
5578     case TIM_CLOCKSOURCE_TI1ED:
5579     {
5580       /* Check whether or not the timer instance supports external clock mode 1 */
5581       assert_param(IS_TIM_CLOCKSOURCE_TIX_INSTANCE(htim->Instance));
5582 
5583       /* Check TI1 input conditioning related parameters */
5584       assert_param(IS_TIM_CLOCKPOLARITY(sClockSourceConfig->ClockPolarity));
5585       assert_param(IS_TIM_CLOCKFILTER(sClockSourceConfig->ClockFilter));
5586 
5587       TIM_TI1_ConfigInputStage(htim->Instance,
5588                                sClockSourceConfig->ClockPolarity,
5589                                sClockSourceConfig->ClockFilter);
5590       TIM_ITRx_SetConfig(htim->Instance, TIM_CLOCKSOURCE_TI1ED);
5591       break;
5592     }
5593 
5594     case TIM_CLOCKSOURCE_ITR0:
5595     case TIM_CLOCKSOURCE_ITR1:
5596     case TIM_CLOCKSOURCE_ITR2:
5597     case TIM_CLOCKSOURCE_ITR3:
5598     {
5599       /* Check whether or not the timer instance supports internal trigger input */
5600       assert_param(IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(htim->Instance));
5601 
5602       TIM_ITRx_SetConfig(htim->Instance, sClockSourceConfig->ClockSource);
5603       break;
5604     }
5605 
5606     default:
5607       status = HAL_ERROR;
5608       break;
5609   }
5610   htim->State = HAL_TIM_STATE_READY;
5611 
5612   __HAL_UNLOCK(htim);
5613 
5614   return status;
5615 }
5616 
5617 /**
5618   * @brief  Selects the signal connected to the TI1 input: direct from CH1_input
5619   *         or a XOR combination between CH1_input, CH2_input & CH3_input
5620   * @param  htim TIM handle.
5621   * @param  TI1_Selection Indicate whether or not channel 1 is connected to the
5622   *         output of a XOR gate.
5623   *          This parameter can be one of the following values:
5624   *            @arg TIM_TI1SELECTION_CH1: The TIMx_CH1 pin is connected to TI1 input
5625   *            @arg TIM_TI1SELECTION_XORCOMBINATION: The TIMx_CH1, CH2 and CH3
5626   *            pins are connected to the TI1 input (XOR combination)
5627   * @retval HAL status
5628   */
HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef * htim,uint32_t TI1_Selection)5629 HAL_StatusTypeDef HAL_TIM_ConfigTI1Input(TIM_HandleTypeDef *htim, uint32_t TI1_Selection)
5630 {
5631   uint32_t tmpcr2;
5632 
5633   /* Check the parameters */
5634   assert_param(IS_TIM_XOR_INSTANCE(htim->Instance));
5635   assert_param(IS_TIM_TI1SELECTION(TI1_Selection));
5636 
5637   /* Get the TIMx CR2 register value */
5638   tmpcr2 = htim->Instance->CR2;
5639 
5640   /* Reset the TI1 selection */
5641   tmpcr2 &= ~TIM_CR2_TI1S;
5642 
5643   /* Set the TI1 selection */
5644   tmpcr2 |= TI1_Selection;
5645 
5646   /* Write to TIMxCR2 */
5647   htim->Instance->CR2 = tmpcr2;
5648 
5649   return HAL_OK;
5650 }
5651 
5652 /**
5653   * @brief  Configures the TIM in Slave mode
5654   * @param  htim TIM handle.
5655   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5656   *         contains the selected trigger (internal trigger input, filtered
5657   *         timer input or external trigger input) and the Slave mode
5658   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5659   * @retval HAL status
5660   */
HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5661 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro(TIM_HandleTypeDef *htim, const TIM_SlaveConfigTypeDef *sSlaveConfig)
5662 {
5663   /* Check the parameters */
5664   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5665   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5666   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5667 
5668   __HAL_LOCK(htim);
5669 
5670   htim->State = HAL_TIM_STATE_BUSY;
5671 
5672   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5673   {
5674     htim->State = HAL_TIM_STATE_READY;
5675     __HAL_UNLOCK(htim);
5676     return HAL_ERROR;
5677   }
5678 
5679   /* Disable Trigger Interrupt */
5680   __HAL_TIM_DISABLE_IT(htim, TIM_IT_TRIGGER);
5681 
5682   /* Disable Trigger DMA request */
5683   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5684 
5685   htim->State = HAL_TIM_STATE_READY;
5686 
5687   __HAL_UNLOCK(htim);
5688 
5689   return HAL_OK;
5690 }
5691 
5692 /**
5693   * @brief  Configures the TIM in Slave mode in interrupt mode
5694   * @param  htim TIM handle.
5695   * @param  sSlaveConfig pointer to a TIM_SlaveConfigTypeDef structure that
5696   *         contains the selected trigger (internal trigger input, filtered
5697   *         timer input or external trigger input) and the Slave mode
5698   *         (Disable, Reset, Gated, Trigger, External clock mode 1).
5699   * @retval HAL status
5700   */
HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)5701 HAL_StatusTypeDef HAL_TIM_SlaveConfigSynchro_IT(TIM_HandleTypeDef *htim,
5702                                                 const TIM_SlaveConfigTypeDef *sSlaveConfig)
5703 {
5704   /* Check the parameters */
5705   assert_param(IS_TIM_SLAVE_INSTANCE(htim->Instance));
5706   assert_param(IS_TIM_SLAVE_MODE(sSlaveConfig->SlaveMode));
5707   assert_param(IS_TIM_TRIGGER_SELECTION(sSlaveConfig->InputTrigger));
5708 
5709   __HAL_LOCK(htim);
5710 
5711   htim->State = HAL_TIM_STATE_BUSY;
5712 
5713   if (TIM_SlaveTimer_SetConfig(htim, sSlaveConfig) != HAL_OK)
5714   {
5715     htim->State = HAL_TIM_STATE_READY;
5716     __HAL_UNLOCK(htim);
5717     return HAL_ERROR;
5718   }
5719 
5720   /* Enable Trigger Interrupt */
5721   __HAL_TIM_ENABLE_IT(htim, TIM_IT_TRIGGER);
5722 
5723   /* Disable Trigger DMA request */
5724   __HAL_TIM_DISABLE_DMA(htim, TIM_DMA_TRIGGER);
5725 
5726   htim->State = HAL_TIM_STATE_READY;
5727 
5728   __HAL_UNLOCK(htim);
5729 
5730   return HAL_OK;
5731 }
5732 
5733 /**
5734   * @brief  Read the captured value from Capture Compare unit
5735   * @param  htim TIM handle.
5736   * @param  Channel TIM Channels to be enabled
5737   *          This parameter can be one of the following values:
5738   *            @arg TIM_CHANNEL_1: TIM Channel 1 selected
5739   *            @arg TIM_CHANNEL_2: TIM Channel 2 selected
5740   *            @arg TIM_CHANNEL_3: TIM Channel 3 selected
5741   *            @arg TIM_CHANNEL_4: TIM Channel 4 selected
5742   * @retval Captured value
5743   */
HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef * htim,uint32_t Channel)5744 uint32_t HAL_TIM_ReadCapturedValue(const TIM_HandleTypeDef *htim, uint32_t Channel)
5745 {
5746   uint32_t tmpreg = 0U;
5747 
5748   switch (Channel)
5749   {
5750     case TIM_CHANNEL_1:
5751     {
5752       /* Check the parameters */
5753       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
5754 
5755       /* Return the capture 1 value */
5756       tmpreg =  htim->Instance->CCR1;
5757 
5758       break;
5759     }
5760     case TIM_CHANNEL_2:
5761     {
5762       /* Check the parameters */
5763       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
5764 
5765       /* Return the capture 2 value */
5766       tmpreg =   htim->Instance->CCR2;
5767 
5768       break;
5769     }
5770 
5771     case TIM_CHANNEL_3:
5772     {
5773       /* Check the parameters */
5774       assert_param(IS_TIM_CC3_INSTANCE(htim->Instance));
5775 
5776       /* Return the capture 3 value */
5777       tmpreg =   htim->Instance->CCR3;
5778 
5779       break;
5780     }
5781 
5782     case TIM_CHANNEL_4:
5783     {
5784       /* Check the parameters */
5785       assert_param(IS_TIM_CC4_INSTANCE(htim->Instance));
5786 
5787       /* Return the capture 4 value */
5788       tmpreg =   htim->Instance->CCR4;
5789 
5790       break;
5791     }
5792 
5793     default:
5794       break;
5795   }
5796 
5797   return tmpreg;
5798 }
5799 
5800 /**
5801   * @}
5802   */
5803 
5804 /** @defgroup TIM_Exported_Functions_Group9 TIM Callbacks functions
5805   *  @brief    TIM Callbacks functions
5806   *
5807 @verbatim
5808   ==============================================================================
5809                         ##### TIM Callbacks functions #####
5810   ==============================================================================
5811  [..]
5812    This section provides TIM callback functions:
5813    (+) TIM Period elapsed callback
5814    (+) TIM Output Compare callback
5815    (+) TIM Input capture callback
5816    (+) TIM Trigger callback
5817    (+) TIM Error callback
5818 
5819 @endverbatim
5820   * @{
5821   */
5822 
5823 /**
5824   * @brief  Period elapsed callback in non-blocking mode
5825   * @param  htim TIM handle
5826   * @retval None
5827   */
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)5828 __weak void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
5829 {
5830   /* Prevent unused argument(s) compilation warning */
5831   UNUSED(htim);
5832 
5833   /* NOTE : This function should not be modified, when the callback is needed,
5834             the HAL_TIM_PeriodElapsedCallback could be implemented in the user file
5835    */
5836 }
5837 
5838 /**
5839   * @brief  Period elapsed half complete callback in non-blocking mode
5840   * @param  htim TIM handle
5841   * @retval None
5842   */
HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef * htim)5843 __weak void HAL_TIM_PeriodElapsedHalfCpltCallback(TIM_HandleTypeDef *htim)
5844 {
5845   /* Prevent unused argument(s) compilation warning */
5846   UNUSED(htim);
5847 
5848   /* NOTE : This function should not be modified, when the callback is needed,
5849             the HAL_TIM_PeriodElapsedHalfCpltCallback could be implemented in the user file
5850    */
5851 }
5852 
5853 /**
5854   * @brief  Output Compare callback in non-blocking mode
5855   * @param  htim TIM OC handle
5856   * @retval None
5857   */
HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef * htim)5858 __weak void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim)
5859 {
5860   /* Prevent unused argument(s) compilation warning */
5861   UNUSED(htim);
5862 
5863   /* NOTE : This function should not be modified, when the callback is needed,
5864             the HAL_TIM_OC_DelayElapsedCallback could be implemented in the user file
5865    */
5866 }
5867 
5868 /**
5869   * @brief  Input Capture callback in non-blocking mode
5870   * @param  htim TIM IC handle
5871   * @retval None
5872   */
HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef * htim)5873 __weak void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
5874 {
5875   /* Prevent unused argument(s) compilation warning */
5876   UNUSED(htim);
5877 
5878   /* NOTE : This function should not be modified, when the callback is needed,
5879             the HAL_TIM_IC_CaptureCallback could be implemented in the user file
5880    */
5881 }
5882 
5883 /**
5884   * @brief  Input Capture half complete callback in non-blocking mode
5885   * @param  htim TIM IC handle
5886   * @retval None
5887   */
HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef * htim)5888 __weak void HAL_TIM_IC_CaptureHalfCpltCallback(TIM_HandleTypeDef *htim)
5889 {
5890   /* Prevent unused argument(s) compilation warning */
5891   UNUSED(htim);
5892 
5893   /* NOTE : This function should not be modified, when the callback is needed,
5894             the HAL_TIM_IC_CaptureHalfCpltCallback could be implemented in the user file
5895    */
5896 }
5897 
5898 /**
5899   * @brief  PWM Pulse finished callback in non-blocking mode
5900   * @param  htim TIM handle
5901   * @retval None
5902   */
HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef * htim)5903 __weak void HAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef *htim)
5904 {
5905   /* Prevent unused argument(s) compilation warning */
5906   UNUSED(htim);
5907 
5908   /* NOTE : This function should not be modified, when the callback is needed,
5909             the HAL_TIM_PWM_PulseFinishedCallback could be implemented in the user file
5910    */
5911 }
5912 
5913 /**
5914   * @brief  PWM Pulse finished half complete callback in non-blocking mode
5915   * @param  htim TIM handle
5916   * @retval None
5917   */
HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef * htim)5918 __weak void HAL_TIM_PWM_PulseFinishedHalfCpltCallback(TIM_HandleTypeDef *htim)
5919 {
5920   /* Prevent unused argument(s) compilation warning */
5921   UNUSED(htim);
5922 
5923   /* NOTE : This function should not be modified, when the callback is needed,
5924             the HAL_TIM_PWM_PulseFinishedHalfCpltCallback could be implemented in the user file
5925    */
5926 }
5927 
5928 /**
5929   * @brief  Hall Trigger detection callback in non-blocking mode
5930   * @param  htim TIM handle
5931   * @retval None
5932   */
HAL_TIM_TriggerCallback(TIM_HandleTypeDef * htim)5933 __weak void HAL_TIM_TriggerCallback(TIM_HandleTypeDef *htim)
5934 {
5935   /* Prevent unused argument(s) compilation warning */
5936   UNUSED(htim);
5937 
5938   /* NOTE : This function should not be modified, when the callback is needed,
5939             the HAL_TIM_TriggerCallback could be implemented in the user file
5940    */
5941 }
5942 
5943 /**
5944   * @brief  Hall Trigger detection half complete callback in non-blocking mode
5945   * @param  htim TIM handle
5946   * @retval None
5947   */
HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef * htim)5948 __weak void HAL_TIM_TriggerHalfCpltCallback(TIM_HandleTypeDef *htim)
5949 {
5950   /* Prevent unused argument(s) compilation warning */
5951   UNUSED(htim);
5952 
5953   /* NOTE : This function should not be modified, when the callback is needed,
5954             the HAL_TIM_TriggerHalfCpltCallback could be implemented in the user file
5955    */
5956 }
5957 
5958 /**
5959   * @brief  Timer error callback in non-blocking mode
5960   * @param  htim TIM handle
5961   * @retval None
5962   */
HAL_TIM_ErrorCallback(TIM_HandleTypeDef * htim)5963 __weak void HAL_TIM_ErrorCallback(TIM_HandleTypeDef *htim)
5964 {
5965   /* Prevent unused argument(s) compilation warning */
5966   UNUSED(htim);
5967 
5968   /* NOTE : This function should not be modified, when the callback is needed,
5969             the HAL_TIM_ErrorCallback could be implemented in the user file
5970    */
5971 }
5972 
5973 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
5974 /**
5975   * @brief  Register a User TIM callback to be used instead of the weak predefined callback
5976   * @param htim tim handle
5977   * @param CallbackID ID of the callback to be registered
5978   *        This parameter can be one of the following values:
5979   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
5980   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
5981   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
5982   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
5983   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
5984   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
5985   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
5986   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
5987   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
5988   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
5989   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
5990   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
5991   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
5992   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
5993   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
5994   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
5995   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
5996   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
5997   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
5998   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
5999   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6000   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6001   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6002   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6003   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6004   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6005   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6006   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6007   *          @param pCallback pointer to the callback function
6008   *          @retval status
6009   */
HAL_TIM_RegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID,pTIM_CallbackTypeDef pCallback)6010 HAL_StatusTypeDef HAL_TIM_RegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID,
6011                                            pTIM_CallbackTypeDef pCallback)
6012 {
6013   HAL_StatusTypeDef status = HAL_OK;
6014 
6015   if (pCallback == NULL)
6016   {
6017     return HAL_ERROR;
6018   }
6019   /* Process locked */
6020   __HAL_LOCK(htim);
6021 
6022   if (htim->State == HAL_TIM_STATE_READY)
6023   {
6024     switch (CallbackID)
6025     {
6026       case HAL_TIM_BASE_MSPINIT_CB_ID :
6027         htim->Base_MspInitCallback                 = pCallback;
6028         break;
6029 
6030       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6031         htim->Base_MspDeInitCallback               = pCallback;
6032         break;
6033 
6034       case HAL_TIM_IC_MSPINIT_CB_ID :
6035         htim->IC_MspInitCallback                   = pCallback;
6036         break;
6037 
6038       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6039         htim->IC_MspDeInitCallback                 = pCallback;
6040         break;
6041 
6042       case HAL_TIM_OC_MSPINIT_CB_ID :
6043         htim->OC_MspInitCallback                   = pCallback;
6044         break;
6045 
6046       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6047         htim->OC_MspDeInitCallback                 = pCallback;
6048         break;
6049 
6050       case HAL_TIM_PWM_MSPINIT_CB_ID :
6051         htim->PWM_MspInitCallback                  = pCallback;
6052         break;
6053 
6054       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6055         htim->PWM_MspDeInitCallback                = pCallback;
6056         break;
6057 
6058       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6059         htim->OnePulse_MspInitCallback             = pCallback;
6060         break;
6061 
6062       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6063         htim->OnePulse_MspDeInitCallback           = pCallback;
6064         break;
6065 
6066       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6067         htim->Encoder_MspInitCallback              = pCallback;
6068         break;
6069 
6070       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6071         htim->Encoder_MspDeInitCallback            = pCallback;
6072         break;
6073 
6074       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6075         htim->HallSensor_MspInitCallback           = pCallback;
6076         break;
6077 
6078       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6079         htim->HallSensor_MspDeInitCallback         = pCallback;
6080         break;
6081 
6082       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6083         htim->PeriodElapsedCallback                = pCallback;
6084         break;
6085 
6086       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6087         htim->PeriodElapsedHalfCpltCallback        = pCallback;
6088         break;
6089 
6090       case HAL_TIM_TRIGGER_CB_ID :
6091         htim->TriggerCallback                      = pCallback;
6092         break;
6093 
6094       case HAL_TIM_TRIGGER_HALF_CB_ID :
6095         htim->TriggerHalfCpltCallback              = pCallback;
6096         break;
6097 
6098       case HAL_TIM_IC_CAPTURE_CB_ID :
6099         htim->IC_CaptureCallback                   = pCallback;
6100         break;
6101 
6102       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6103         htim->IC_CaptureHalfCpltCallback           = pCallback;
6104         break;
6105 
6106       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6107         htim->OC_DelayElapsedCallback              = pCallback;
6108         break;
6109 
6110       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6111         htim->PWM_PulseFinishedCallback            = pCallback;
6112         break;
6113 
6114       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6115         htim->PWM_PulseFinishedHalfCpltCallback    = pCallback;
6116         break;
6117 
6118       case HAL_TIM_ERROR_CB_ID :
6119         htim->ErrorCallback                        = pCallback;
6120         break;
6121 
6122       case HAL_TIM_COMMUTATION_CB_ID :
6123         htim->CommutationCallback                  = pCallback;
6124         break;
6125 
6126       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6127         htim->CommutationHalfCpltCallback          = pCallback;
6128         break;
6129 
6130       case HAL_TIM_BREAK_CB_ID :
6131         htim->BreakCallback                        = pCallback;
6132         break;
6133 
6134       case HAL_TIM_BREAK2_CB_ID :
6135         htim->Break2Callback                       = pCallback;
6136         break;
6137 
6138       default :
6139         /* Return error status */
6140         status = HAL_ERROR;
6141         break;
6142     }
6143   }
6144   else if (htim->State == HAL_TIM_STATE_RESET)
6145   {
6146     switch (CallbackID)
6147     {
6148       case HAL_TIM_BASE_MSPINIT_CB_ID :
6149         htim->Base_MspInitCallback         = pCallback;
6150         break;
6151 
6152       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6153         htim->Base_MspDeInitCallback       = pCallback;
6154         break;
6155 
6156       case HAL_TIM_IC_MSPINIT_CB_ID :
6157         htim->IC_MspInitCallback           = pCallback;
6158         break;
6159 
6160       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6161         htim->IC_MspDeInitCallback         = pCallback;
6162         break;
6163 
6164       case HAL_TIM_OC_MSPINIT_CB_ID :
6165         htim->OC_MspInitCallback           = pCallback;
6166         break;
6167 
6168       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6169         htim->OC_MspDeInitCallback         = pCallback;
6170         break;
6171 
6172       case HAL_TIM_PWM_MSPINIT_CB_ID :
6173         htim->PWM_MspInitCallback          = pCallback;
6174         break;
6175 
6176       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6177         htim->PWM_MspDeInitCallback        = pCallback;
6178         break;
6179 
6180       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6181         htim->OnePulse_MspInitCallback     = pCallback;
6182         break;
6183 
6184       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6185         htim->OnePulse_MspDeInitCallback   = pCallback;
6186         break;
6187 
6188       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6189         htim->Encoder_MspInitCallback      = pCallback;
6190         break;
6191 
6192       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6193         htim->Encoder_MspDeInitCallback    = pCallback;
6194         break;
6195 
6196       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6197         htim->HallSensor_MspInitCallback   = pCallback;
6198         break;
6199 
6200       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6201         htim->HallSensor_MspDeInitCallback = pCallback;
6202         break;
6203 
6204       default :
6205         /* Return error status */
6206         status = HAL_ERROR;
6207         break;
6208     }
6209   }
6210   else
6211   {
6212     /* Return error status */
6213     status = HAL_ERROR;
6214   }
6215 
6216   /* Release Lock */
6217   __HAL_UNLOCK(htim);
6218 
6219   return status;
6220 }
6221 
6222 /**
6223   * @brief  Unregister a TIM callback
6224   *         TIM callback is redirected to the weak predefined callback
6225   * @param htim tim handle
6226   * @param CallbackID ID of the callback to be unregistered
6227   *        This parameter can be one of the following values:
6228   *          @arg @ref HAL_TIM_BASE_MSPINIT_CB_ID Base MspInit Callback ID
6229   *          @arg @ref HAL_TIM_BASE_MSPDEINIT_CB_ID Base MspDeInit Callback ID
6230   *          @arg @ref HAL_TIM_IC_MSPINIT_CB_ID IC MspInit Callback ID
6231   *          @arg @ref HAL_TIM_IC_MSPDEINIT_CB_ID IC MspDeInit Callback ID
6232   *          @arg @ref HAL_TIM_OC_MSPINIT_CB_ID OC MspInit Callback ID
6233   *          @arg @ref HAL_TIM_OC_MSPDEINIT_CB_ID OC MspDeInit Callback ID
6234   *          @arg @ref HAL_TIM_PWM_MSPINIT_CB_ID PWM MspInit Callback ID
6235   *          @arg @ref HAL_TIM_PWM_MSPDEINIT_CB_ID PWM MspDeInit Callback ID
6236   *          @arg @ref HAL_TIM_ONE_PULSE_MSPINIT_CB_ID One Pulse MspInit Callback ID
6237   *          @arg @ref HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID One Pulse MspDeInit Callback ID
6238   *          @arg @ref HAL_TIM_ENCODER_MSPINIT_CB_ID Encoder MspInit Callback ID
6239   *          @arg @ref HAL_TIM_ENCODER_MSPDEINIT_CB_ID Encoder MspDeInit Callback ID
6240   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID Hall Sensor MspInit Callback ID
6241   *          @arg @ref HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID Hall Sensor MspDeInit Callback ID
6242   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_CB_ID Period Elapsed Callback ID
6243   *          @arg @ref HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID Period Elapsed half complete Callback ID
6244   *          @arg @ref HAL_TIM_TRIGGER_CB_ID Trigger Callback ID
6245   *          @arg @ref HAL_TIM_TRIGGER_HALF_CB_ID Trigger half complete Callback ID
6246   *          @arg @ref HAL_TIM_IC_CAPTURE_CB_ID Input Capture Callback ID
6247   *          @arg @ref HAL_TIM_IC_CAPTURE_HALF_CB_ID Input Capture half complete Callback ID
6248   *          @arg @ref HAL_TIM_OC_DELAY_ELAPSED_CB_ID Output Compare Delay Elapsed Callback ID
6249   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_CB_ID PWM Pulse Finished Callback ID
6250   *          @arg @ref HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID PWM Pulse Finished half complete Callback ID
6251   *          @arg @ref HAL_TIM_ERROR_CB_ID Error Callback ID
6252   *          @arg @ref HAL_TIM_COMMUTATION_CB_ID Commutation Callback ID
6253   *          @arg @ref HAL_TIM_COMMUTATION_HALF_CB_ID Commutation half complete Callback ID
6254   *          @arg @ref HAL_TIM_BREAK_CB_ID Break Callback ID
6255   *          @arg @ref HAL_TIM_BREAK2_CB_ID Break2 Callback ID
6256   *          @retval status
6257   */
HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef * htim,HAL_TIM_CallbackIDTypeDef CallbackID)6258 HAL_StatusTypeDef HAL_TIM_UnRegisterCallback(TIM_HandleTypeDef *htim, HAL_TIM_CallbackIDTypeDef CallbackID)
6259 {
6260   HAL_StatusTypeDef status = HAL_OK;
6261 
6262   /* Process locked */
6263   __HAL_LOCK(htim);
6264 
6265   if (htim->State == HAL_TIM_STATE_READY)
6266   {
6267     switch (CallbackID)
6268     {
6269       case HAL_TIM_BASE_MSPINIT_CB_ID :
6270         /* Legacy weak Base MspInit Callback */
6271         htim->Base_MspInitCallback              = HAL_TIM_Base_MspInit;
6272         break;
6273 
6274       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6275         /* Legacy weak Base Msp DeInit Callback */
6276         htim->Base_MspDeInitCallback            = HAL_TIM_Base_MspDeInit;
6277         break;
6278 
6279       case HAL_TIM_IC_MSPINIT_CB_ID :
6280         /* Legacy weak IC Msp Init Callback */
6281         htim->IC_MspInitCallback                = HAL_TIM_IC_MspInit;
6282         break;
6283 
6284       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6285         /* Legacy weak IC Msp DeInit Callback */
6286         htim->IC_MspDeInitCallback              = HAL_TIM_IC_MspDeInit;
6287         break;
6288 
6289       case HAL_TIM_OC_MSPINIT_CB_ID :
6290         /* Legacy weak OC Msp Init Callback */
6291         htim->OC_MspInitCallback                = HAL_TIM_OC_MspInit;
6292         break;
6293 
6294       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6295         /* Legacy weak OC Msp DeInit Callback */
6296         htim->OC_MspDeInitCallback              = HAL_TIM_OC_MspDeInit;
6297         break;
6298 
6299       case HAL_TIM_PWM_MSPINIT_CB_ID :
6300         /* Legacy weak PWM Msp Init Callback */
6301         htim->PWM_MspInitCallback               = HAL_TIM_PWM_MspInit;
6302         break;
6303 
6304       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6305         /* Legacy weak PWM Msp DeInit Callback */
6306         htim->PWM_MspDeInitCallback             = HAL_TIM_PWM_MspDeInit;
6307         break;
6308 
6309       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6310         /* Legacy weak One Pulse Msp Init Callback */
6311         htim->OnePulse_MspInitCallback          = HAL_TIM_OnePulse_MspInit;
6312         break;
6313 
6314       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6315         /* Legacy weak One Pulse Msp DeInit Callback */
6316         htim->OnePulse_MspDeInitCallback        = HAL_TIM_OnePulse_MspDeInit;
6317         break;
6318 
6319       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6320         /* Legacy weak Encoder Msp Init Callback */
6321         htim->Encoder_MspInitCallback           = HAL_TIM_Encoder_MspInit;
6322         break;
6323 
6324       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6325         /* Legacy weak Encoder Msp DeInit Callback */
6326         htim->Encoder_MspDeInitCallback         = HAL_TIM_Encoder_MspDeInit;
6327         break;
6328 
6329       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6330         /* Legacy weak Hall Sensor Msp Init Callback */
6331         htim->HallSensor_MspInitCallback        = HAL_TIMEx_HallSensor_MspInit;
6332         break;
6333 
6334       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6335         /* Legacy weak Hall Sensor Msp DeInit Callback */
6336         htim->HallSensor_MspDeInitCallback      = HAL_TIMEx_HallSensor_MspDeInit;
6337         break;
6338 
6339       case HAL_TIM_PERIOD_ELAPSED_CB_ID :
6340         /* Legacy weak Period Elapsed Callback */
6341         htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
6342         break;
6343 
6344       case HAL_TIM_PERIOD_ELAPSED_HALF_CB_ID :
6345         /* Legacy weak Period Elapsed half complete Callback */
6346         htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
6347         break;
6348 
6349       case HAL_TIM_TRIGGER_CB_ID :
6350         /* Legacy weak Trigger Callback */
6351         htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
6352         break;
6353 
6354       case HAL_TIM_TRIGGER_HALF_CB_ID :
6355         /* Legacy weak Trigger half complete Callback */
6356         htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
6357         break;
6358 
6359       case HAL_TIM_IC_CAPTURE_CB_ID :
6360         /* Legacy weak IC Capture Callback */
6361         htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
6362         break;
6363 
6364       case HAL_TIM_IC_CAPTURE_HALF_CB_ID :
6365         /* Legacy weak IC Capture half complete Callback */
6366         htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
6367         break;
6368 
6369       case HAL_TIM_OC_DELAY_ELAPSED_CB_ID :
6370         /* Legacy weak OC Delay Elapsed Callback */
6371         htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
6372         break;
6373 
6374       case HAL_TIM_PWM_PULSE_FINISHED_CB_ID :
6375         /* Legacy weak PWM Pulse Finished Callback */
6376         htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
6377         break;
6378 
6379       case HAL_TIM_PWM_PULSE_FINISHED_HALF_CB_ID :
6380         /* Legacy weak PWM Pulse Finished half complete Callback */
6381         htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
6382         break;
6383 
6384       case HAL_TIM_ERROR_CB_ID :
6385         /* Legacy weak Error Callback */
6386         htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
6387         break;
6388 
6389       case HAL_TIM_COMMUTATION_CB_ID :
6390         /* Legacy weak Commutation Callback */
6391         htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
6392         break;
6393 
6394       case HAL_TIM_COMMUTATION_HALF_CB_ID :
6395         /* Legacy weak Commutation half complete Callback */
6396         htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
6397         break;
6398 
6399       case HAL_TIM_BREAK_CB_ID :
6400         /* Legacy weak Break Callback */
6401         htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
6402         break;
6403 
6404       case HAL_TIM_BREAK2_CB_ID :
6405         /* Legacy weak Break2 Callback */
6406         htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
6407         break;
6408 
6409       default :
6410         /* Return error status */
6411         status = HAL_ERROR;
6412         break;
6413     }
6414   }
6415   else if (htim->State == HAL_TIM_STATE_RESET)
6416   {
6417     switch (CallbackID)
6418     {
6419       case HAL_TIM_BASE_MSPINIT_CB_ID :
6420         /* Legacy weak Base MspInit Callback */
6421         htim->Base_MspInitCallback         = HAL_TIM_Base_MspInit;
6422         break;
6423 
6424       case HAL_TIM_BASE_MSPDEINIT_CB_ID :
6425         /* Legacy weak Base Msp DeInit Callback */
6426         htim->Base_MspDeInitCallback       = HAL_TIM_Base_MspDeInit;
6427         break;
6428 
6429       case HAL_TIM_IC_MSPINIT_CB_ID :
6430         /* Legacy weak IC Msp Init Callback */
6431         htim->IC_MspInitCallback           = HAL_TIM_IC_MspInit;
6432         break;
6433 
6434       case HAL_TIM_IC_MSPDEINIT_CB_ID :
6435         /* Legacy weak IC Msp DeInit Callback */
6436         htim->IC_MspDeInitCallback         = HAL_TIM_IC_MspDeInit;
6437         break;
6438 
6439       case HAL_TIM_OC_MSPINIT_CB_ID :
6440         /* Legacy weak OC Msp Init Callback */
6441         htim->OC_MspInitCallback           = HAL_TIM_OC_MspInit;
6442         break;
6443 
6444       case HAL_TIM_OC_MSPDEINIT_CB_ID :
6445         /* Legacy weak OC Msp DeInit Callback */
6446         htim->OC_MspDeInitCallback         = HAL_TIM_OC_MspDeInit;
6447         break;
6448 
6449       case HAL_TIM_PWM_MSPINIT_CB_ID :
6450         /* Legacy weak PWM Msp Init Callback */
6451         htim->PWM_MspInitCallback          = HAL_TIM_PWM_MspInit;
6452         break;
6453 
6454       case HAL_TIM_PWM_MSPDEINIT_CB_ID :
6455         /* Legacy weak PWM Msp DeInit Callback */
6456         htim->PWM_MspDeInitCallback        = HAL_TIM_PWM_MspDeInit;
6457         break;
6458 
6459       case HAL_TIM_ONE_PULSE_MSPINIT_CB_ID :
6460         /* Legacy weak One Pulse Msp Init Callback */
6461         htim->OnePulse_MspInitCallback     = HAL_TIM_OnePulse_MspInit;
6462         break;
6463 
6464       case HAL_TIM_ONE_PULSE_MSPDEINIT_CB_ID :
6465         /* Legacy weak One Pulse Msp DeInit Callback */
6466         htim->OnePulse_MspDeInitCallback   = HAL_TIM_OnePulse_MspDeInit;
6467         break;
6468 
6469       case HAL_TIM_ENCODER_MSPINIT_CB_ID :
6470         /* Legacy weak Encoder Msp Init Callback */
6471         htim->Encoder_MspInitCallback      = HAL_TIM_Encoder_MspInit;
6472         break;
6473 
6474       case HAL_TIM_ENCODER_MSPDEINIT_CB_ID :
6475         /* Legacy weak Encoder Msp DeInit Callback */
6476         htim->Encoder_MspDeInitCallback    = HAL_TIM_Encoder_MspDeInit;
6477         break;
6478 
6479       case HAL_TIM_HALL_SENSOR_MSPINIT_CB_ID :
6480         /* Legacy weak Hall Sensor Msp Init Callback */
6481         htim->HallSensor_MspInitCallback   = HAL_TIMEx_HallSensor_MspInit;
6482         break;
6483 
6484       case HAL_TIM_HALL_SENSOR_MSPDEINIT_CB_ID :
6485         /* Legacy weak Hall Sensor Msp DeInit Callback */
6486         htim->HallSensor_MspDeInitCallback = HAL_TIMEx_HallSensor_MspDeInit;
6487         break;
6488 
6489       default :
6490         /* Return error status */
6491         status = HAL_ERROR;
6492         break;
6493     }
6494   }
6495   else
6496   {
6497     /* Return error status */
6498     status = HAL_ERROR;
6499   }
6500 
6501   /* Release Lock */
6502   __HAL_UNLOCK(htim);
6503 
6504   return status;
6505 }
6506 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6507 
6508 /**
6509   * @}
6510   */
6511 
6512 /** @defgroup TIM_Exported_Functions_Group10 TIM Peripheral State functions
6513   *  @brief   TIM Peripheral State functions
6514   *
6515 @verbatim
6516   ==============================================================================
6517                         ##### Peripheral State functions #####
6518   ==============================================================================
6519     [..]
6520     This subsection permits to get in run-time the status of the peripheral
6521     and the data flow.
6522 
6523 @endverbatim
6524   * @{
6525   */
6526 
6527 /**
6528   * @brief  Return the TIM Base handle state.
6529   * @param  htim TIM Base handle
6530   * @retval HAL state
6531   */
HAL_TIM_Base_GetState(const TIM_HandleTypeDef * htim)6532 HAL_TIM_StateTypeDef HAL_TIM_Base_GetState(const TIM_HandleTypeDef *htim)
6533 {
6534   return htim->State;
6535 }
6536 
6537 /**
6538   * @brief  Return the TIM OC handle state.
6539   * @param  htim TIM Output Compare handle
6540   * @retval HAL state
6541   */
HAL_TIM_OC_GetState(const TIM_HandleTypeDef * htim)6542 HAL_TIM_StateTypeDef HAL_TIM_OC_GetState(const TIM_HandleTypeDef *htim)
6543 {
6544   return htim->State;
6545 }
6546 
6547 /**
6548   * @brief  Return the TIM PWM handle state.
6549   * @param  htim TIM handle
6550   * @retval HAL state
6551   */
HAL_TIM_PWM_GetState(const TIM_HandleTypeDef * htim)6552 HAL_TIM_StateTypeDef HAL_TIM_PWM_GetState(const TIM_HandleTypeDef *htim)
6553 {
6554   return htim->State;
6555 }
6556 
6557 /**
6558   * @brief  Return the TIM Input Capture handle state.
6559   * @param  htim TIM IC handle
6560   * @retval HAL state
6561   */
HAL_TIM_IC_GetState(const TIM_HandleTypeDef * htim)6562 HAL_TIM_StateTypeDef HAL_TIM_IC_GetState(const TIM_HandleTypeDef *htim)
6563 {
6564   return htim->State;
6565 }
6566 
6567 /**
6568   * @brief  Return the TIM One Pulse Mode handle state.
6569   * @param  htim TIM OPM handle
6570   * @retval HAL state
6571   */
HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef * htim)6572 HAL_TIM_StateTypeDef HAL_TIM_OnePulse_GetState(const TIM_HandleTypeDef *htim)
6573 {
6574   return htim->State;
6575 }
6576 
6577 /**
6578   * @brief  Return the TIM Encoder Mode handle state.
6579   * @param  htim TIM Encoder Interface handle
6580   * @retval HAL state
6581   */
HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef * htim)6582 HAL_TIM_StateTypeDef HAL_TIM_Encoder_GetState(const TIM_HandleTypeDef *htim)
6583 {
6584   return htim->State;
6585 }
6586 
6587 /**
6588   * @brief  Return the TIM Encoder Mode handle state.
6589   * @param  htim TIM handle
6590   * @retval Active channel
6591   */
HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef * htim)6592 HAL_TIM_ActiveChannel HAL_TIM_GetActiveChannel(const TIM_HandleTypeDef *htim)
6593 {
6594   return htim->Channel;
6595 }
6596 
6597 /**
6598   * @brief  Return actual state of the TIM channel.
6599   * @param  htim TIM handle
6600   * @param  Channel TIM Channel
6601   *          This parameter can be one of the following values:
6602   *            @arg TIM_CHANNEL_1: TIM Channel 1
6603   *            @arg TIM_CHANNEL_2: TIM Channel 2
6604   *            @arg TIM_CHANNEL_3: TIM Channel 3
6605   *            @arg TIM_CHANNEL_4: TIM Channel 4
6606   *            @arg TIM_CHANNEL_5: TIM Channel 5
6607   *            @arg TIM_CHANNEL_6: TIM Channel 6
6608   * @retval TIM Channel state
6609   */
HAL_TIM_GetChannelState(const TIM_HandleTypeDef * htim,uint32_t Channel)6610 HAL_TIM_ChannelStateTypeDef HAL_TIM_GetChannelState(const TIM_HandleTypeDef *htim,  uint32_t Channel)
6611 {
6612   HAL_TIM_ChannelStateTypeDef channel_state;
6613 
6614   /* Check the parameters */
6615   assert_param(IS_TIM_CCX_INSTANCE(htim->Instance, Channel));
6616 
6617   channel_state = TIM_CHANNEL_STATE_GET(htim, Channel);
6618 
6619   return channel_state;
6620 }
6621 
6622 /**
6623   * @brief  Return actual state of a DMA burst operation.
6624   * @param  htim TIM handle
6625   * @retval DMA burst state
6626   */
HAL_TIM_DMABurstState(const TIM_HandleTypeDef * htim)6627 HAL_TIM_DMABurstStateTypeDef HAL_TIM_DMABurstState(const TIM_HandleTypeDef *htim)
6628 {
6629   /* Check the parameters */
6630   assert_param(IS_TIM_DMABURST_INSTANCE(htim->Instance));
6631 
6632   return htim->DMABurstState;
6633 }
6634 
6635 /**
6636   * @}
6637   */
6638 
6639 /**
6640   * @}
6641   */
6642 
6643 /** @defgroup TIM_Private_Functions TIM Private Functions
6644   * @{
6645   */
6646 
6647 /**
6648   * @brief  TIM DMA error callback
6649   * @param  hdma pointer to DMA handle.
6650   * @retval None
6651   */
TIM_DMAError(DMA_HandleTypeDef * hdma)6652 void TIM_DMAError(DMA_HandleTypeDef *hdma)
6653 {
6654   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6655 
6656   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6657   {
6658     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6659     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6660   }
6661   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6662   {
6663     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6664     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6665   }
6666   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6667   {
6668     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6669     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6670   }
6671   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6672   {
6673     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6674     TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6675   }
6676   else
6677   {
6678     htim->State = HAL_TIM_STATE_READY;
6679   }
6680 
6681 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6682   htim->ErrorCallback(htim);
6683 #else
6684   HAL_TIM_ErrorCallback(htim);
6685 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6686 
6687   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6688 }
6689 
6690 /**
6691   * @brief  TIM DMA Delay Pulse complete callback.
6692   * @param  hdma pointer to DMA handle.
6693   * @retval None
6694   */
TIM_DMADelayPulseCplt(DMA_HandleTypeDef * hdma)6695 static void TIM_DMADelayPulseCplt(DMA_HandleTypeDef *hdma)
6696 {
6697   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6698 
6699   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6700   {
6701     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6702 
6703     if (hdma->Init.Mode == DMA_NORMAL)
6704     {
6705       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6706     }
6707   }
6708   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6709   {
6710     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6711 
6712     if (hdma->Init.Mode == DMA_NORMAL)
6713     {
6714       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6715     }
6716   }
6717   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6718   {
6719     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6720 
6721     if (hdma->Init.Mode == DMA_NORMAL)
6722     {
6723       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6724     }
6725   }
6726   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6727   {
6728     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6729 
6730     if (hdma->Init.Mode == DMA_NORMAL)
6731     {
6732       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6733     }
6734   }
6735   else
6736   {
6737     /* nothing to do */
6738   }
6739 
6740 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6741   htim->PWM_PulseFinishedCallback(htim);
6742 #else
6743   HAL_TIM_PWM_PulseFinishedCallback(htim);
6744 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6745 
6746   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6747 }
6748 
6749 /**
6750   * @brief  TIM DMA Delay Pulse half complete callback.
6751   * @param  hdma pointer to DMA handle.
6752   * @retval None
6753   */
TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef * hdma)6754 void TIM_DMADelayPulseHalfCplt(DMA_HandleTypeDef *hdma)
6755 {
6756   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6757 
6758   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6759   {
6760     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6761   }
6762   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6763   {
6764     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6765   }
6766   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6767   {
6768     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6769   }
6770   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6771   {
6772     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6773   }
6774   else
6775   {
6776     /* nothing to do */
6777   }
6778 
6779 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6780   htim->PWM_PulseFinishedHalfCpltCallback(htim);
6781 #else
6782   HAL_TIM_PWM_PulseFinishedHalfCpltCallback(htim);
6783 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6784 
6785   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6786 }
6787 
6788 /**
6789   * @brief  TIM DMA Capture complete callback.
6790   * @param  hdma pointer to DMA handle.
6791   * @retval None
6792   */
TIM_DMACaptureCplt(DMA_HandleTypeDef * hdma)6793 void TIM_DMACaptureCplt(DMA_HandleTypeDef *hdma)
6794 {
6795   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6796 
6797   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6798   {
6799     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6800 
6801     if (hdma->Init.Mode == DMA_NORMAL)
6802     {
6803       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6804       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_1, HAL_TIM_CHANNEL_STATE_READY);
6805     }
6806   }
6807   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6808   {
6809     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6810 
6811     if (hdma->Init.Mode == DMA_NORMAL)
6812     {
6813       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6814       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_2, HAL_TIM_CHANNEL_STATE_READY);
6815     }
6816   }
6817   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6818   {
6819     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6820 
6821     if (hdma->Init.Mode == DMA_NORMAL)
6822     {
6823       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6824       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_3, HAL_TIM_CHANNEL_STATE_READY);
6825     }
6826   }
6827   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6828   {
6829     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6830 
6831     if (hdma->Init.Mode == DMA_NORMAL)
6832     {
6833       TIM_CHANNEL_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6834       TIM_CHANNEL_N_STATE_SET(htim, TIM_CHANNEL_4, HAL_TIM_CHANNEL_STATE_READY);
6835     }
6836   }
6837   else
6838   {
6839     /* nothing to do */
6840   }
6841 
6842 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6843   htim->IC_CaptureCallback(htim);
6844 #else
6845   HAL_TIM_IC_CaptureCallback(htim);
6846 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6847 
6848   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6849 }
6850 
6851 /**
6852   * @brief  TIM DMA Capture half complete callback.
6853   * @param  hdma pointer to DMA handle.
6854   * @retval None
6855   */
TIM_DMACaptureHalfCplt(DMA_HandleTypeDef * hdma)6856 void TIM_DMACaptureHalfCplt(DMA_HandleTypeDef *hdma)
6857 {
6858   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6859 
6860   if (hdma == htim->hdma[TIM_DMA_ID_CC1])
6861   {
6862     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_1;
6863   }
6864   else if (hdma == htim->hdma[TIM_DMA_ID_CC2])
6865   {
6866     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_2;
6867   }
6868   else if (hdma == htim->hdma[TIM_DMA_ID_CC3])
6869   {
6870     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_3;
6871   }
6872   else if (hdma == htim->hdma[TIM_DMA_ID_CC4])
6873   {
6874     htim->Channel = HAL_TIM_ACTIVE_CHANNEL_4;
6875   }
6876   else
6877   {
6878     /* nothing to do */
6879   }
6880 
6881 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6882   htim->IC_CaptureHalfCpltCallback(htim);
6883 #else
6884   HAL_TIM_IC_CaptureHalfCpltCallback(htim);
6885 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6886 
6887   htim->Channel = HAL_TIM_ACTIVE_CHANNEL_CLEARED;
6888 }
6889 
6890 /**
6891   * @brief  TIM DMA Period Elapse complete callback.
6892   * @param  hdma pointer to DMA handle.
6893   * @retval None
6894   */
TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef * hdma)6895 static void TIM_DMAPeriodElapsedCplt(DMA_HandleTypeDef *hdma)
6896 {
6897   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6898 
6899   if (htim->hdma[TIM_DMA_ID_UPDATE]->Init.Mode == DMA_NORMAL)
6900   {
6901     htim->State = HAL_TIM_STATE_READY;
6902   }
6903 
6904 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6905   htim->PeriodElapsedCallback(htim);
6906 #else
6907   HAL_TIM_PeriodElapsedCallback(htim);
6908 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6909 }
6910 
6911 /**
6912   * @brief  TIM DMA Period Elapse half complete callback.
6913   * @param  hdma pointer to DMA handle.
6914   * @retval None
6915   */
TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef * hdma)6916 static void TIM_DMAPeriodElapsedHalfCplt(DMA_HandleTypeDef *hdma)
6917 {
6918   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6919 
6920 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6921   htim->PeriodElapsedHalfCpltCallback(htim);
6922 #else
6923   HAL_TIM_PeriodElapsedHalfCpltCallback(htim);
6924 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6925 }
6926 
6927 /**
6928   * @brief  TIM DMA Trigger callback.
6929   * @param  hdma pointer to DMA handle.
6930   * @retval None
6931   */
TIM_DMATriggerCplt(DMA_HandleTypeDef * hdma)6932 static void TIM_DMATriggerCplt(DMA_HandleTypeDef *hdma)
6933 {
6934   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6935 
6936   if (htim->hdma[TIM_DMA_ID_TRIGGER]->Init.Mode == DMA_NORMAL)
6937   {
6938     htim->State = HAL_TIM_STATE_READY;
6939   }
6940 
6941 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6942   htim->TriggerCallback(htim);
6943 #else
6944   HAL_TIM_TriggerCallback(htim);
6945 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6946 }
6947 
6948 /**
6949   * @brief  TIM DMA Trigger half complete callback.
6950   * @param  hdma pointer to DMA handle.
6951   * @retval None
6952   */
TIM_DMATriggerHalfCplt(DMA_HandleTypeDef * hdma)6953 static void TIM_DMATriggerHalfCplt(DMA_HandleTypeDef *hdma)
6954 {
6955   TIM_HandleTypeDef *htim = (TIM_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
6956 
6957 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
6958   htim->TriggerHalfCpltCallback(htim);
6959 #else
6960   HAL_TIM_TriggerHalfCpltCallback(htim);
6961 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
6962 }
6963 
6964 /**
6965   * @brief  Time Base configuration
6966   * @param  TIMx TIM peripheral
6967   * @param  Structure TIM Base configuration structure
6968   * @retval None
6969   */
TIM_Base_SetConfig(TIM_TypeDef * TIMx,const TIM_Base_InitTypeDef * Structure)6970 void TIM_Base_SetConfig(TIM_TypeDef *TIMx, const TIM_Base_InitTypeDef *Structure)
6971 {
6972   uint32_t tmpcr1;
6973   tmpcr1 = TIMx->CR1;
6974 
6975   /* Set TIM Time Base Unit parameters ---------------------------------------*/
6976   if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
6977   {
6978     /* Select the Counter Mode */
6979     tmpcr1 &= ~(TIM_CR1_DIR | TIM_CR1_CMS);
6980     tmpcr1 |= Structure->CounterMode;
6981   }
6982 
6983   if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
6984   {
6985     /* Set the clock division */
6986     tmpcr1 &= ~TIM_CR1_CKD;
6987     tmpcr1 |= (uint32_t)Structure->ClockDivision;
6988   }
6989 
6990   /* Set the auto-reload preload */
6991   MODIFY_REG(tmpcr1, TIM_CR1_ARPE, Structure->AutoReloadPreload);
6992 
6993   TIMx->CR1 = tmpcr1;
6994 
6995   /* Set the Autoreload value */
6996   TIMx->ARR = (uint32_t)Structure->Period ;
6997 
6998   /* Set the Prescaler value */
6999   TIMx->PSC = Structure->Prescaler;
7000 
7001   if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
7002   {
7003     /* Set the Repetition Counter value */
7004     TIMx->RCR = Structure->RepetitionCounter;
7005   }
7006 
7007   /* Generate an update event to reload the Prescaler
7008      and the repetition counter (only for advanced timer) value immediately */
7009   TIMx->EGR = TIM_EGR_UG;
7010 }
7011 
7012 /**
7013   * @brief  Timer Output Compare 1 configuration
7014   * @param  TIMx to select the TIM peripheral
7015   * @param  OC_Config The output configuration structure
7016   * @retval None
7017   */
TIM_OC1_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7018 static void TIM_OC1_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7019 {
7020   uint32_t tmpccmrx;
7021   uint32_t tmpccer;
7022   uint32_t tmpcr2;
7023 
7024   /* Disable the Channel 1: Reset the CC1E Bit */
7025   TIMx->CCER &= ~TIM_CCER_CC1E;
7026 
7027   /* Get the TIMx CCER register value */
7028   tmpccer = TIMx->CCER;
7029   /* Get the TIMx CR2 register value */
7030   tmpcr2 =  TIMx->CR2;
7031 
7032   /* Get the TIMx CCMR1 register value */
7033   tmpccmrx = TIMx->CCMR1;
7034 
7035   /* Reset the Output Compare Mode Bits */
7036   tmpccmrx &= ~TIM_CCMR1_OC1M;
7037   tmpccmrx &= ~TIM_CCMR1_CC1S;
7038   /* Select the Output Compare Mode */
7039   tmpccmrx |= OC_Config->OCMode;
7040 
7041   /* Reset the Output Polarity level */
7042   tmpccer &= ~TIM_CCER_CC1P;
7043   /* Set the Output Compare Polarity */
7044   tmpccer |= OC_Config->OCPolarity;
7045 
7046   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_1))
7047   {
7048     /* Check parameters */
7049     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7050 
7051     /* Reset the Output N Polarity level */
7052     tmpccer &= ~TIM_CCER_CC1NP;
7053     /* Set the Output N Polarity */
7054     tmpccer |= OC_Config->OCNPolarity;
7055     /* Reset the Output N State */
7056     tmpccer &= ~TIM_CCER_CC1NE;
7057   }
7058 
7059   if (IS_TIM_BREAK_INSTANCE(TIMx))
7060   {
7061     /* Check parameters */
7062     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7063     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7064 
7065     /* Reset the Output Compare and Output Compare N IDLE State */
7066     tmpcr2 &= ~TIM_CR2_OIS1;
7067     tmpcr2 &= ~TIM_CR2_OIS1N;
7068     /* Set the Output Idle state */
7069     tmpcr2 |= OC_Config->OCIdleState;
7070     /* Set the Output N Idle state */
7071     tmpcr2 |= OC_Config->OCNIdleState;
7072   }
7073 
7074   /* Write to TIMx CR2 */
7075   TIMx->CR2 = tmpcr2;
7076 
7077   /* Write to TIMx CCMR1 */
7078   TIMx->CCMR1 = tmpccmrx;
7079 
7080   /* Set the Capture Compare Register value */
7081   TIMx->CCR1 = OC_Config->Pulse;
7082 
7083   /* Write to TIMx CCER */
7084   TIMx->CCER = tmpccer;
7085 }
7086 
7087 /**
7088   * @brief  Timer Output Compare 2 configuration
7089   * @param  TIMx to select the TIM peripheral
7090   * @param  OC_Config The output configuration structure
7091   * @retval None
7092   */
TIM_OC2_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7093 void TIM_OC2_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7094 {
7095   uint32_t tmpccmrx;
7096   uint32_t tmpccer;
7097   uint32_t tmpcr2;
7098 
7099   /* Disable the Channel 2: Reset the CC2E Bit */
7100   TIMx->CCER &= ~TIM_CCER_CC2E;
7101 
7102   /* Get the TIMx CCER register value */
7103   tmpccer = TIMx->CCER;
7104   /* Get the TIMx CR2 register value */
7105   tmpcr2 =  TIMx->CR2;
7106 
7107   /* Get the TIMx CCMR1 register value */
7108   tmpccmrx = TIMx->CCMR1;
7109 
7110   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7111   tmpccmrx &= ~TIM_CCMR1_OC2M;
7112   tmpccmrx &= ~TIM_CCMR1_CC2S;
7113 
7114   /* Select the Output Compare Mode */
7115   tmpccmrx |= (OC_Config->OCMode << 8U);
7116 
7117   /* Reset the Output Polarity level */
7118   tmpccer &= ~TIM_CCER_CC2P;
7119   /* Set the Output Compare Polarity */
7120   tmpccer |= (OC_Config->OCPolarity << 4U);
7121 
7122   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_2))
7123   {
7124     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7125 
7126     /* Reset the Output N Polarity level */
7127     tmpccer &= ~TIM_CCER_CC2NP;
7128     /* Set the Output N Polarity */
7129     tmpccer |= (OC_Config->OCNPolarity << 4U);
7130     /* Reset the Output N State */
7131     tmpccer &= ~TIM_CCER_CC2NE;
7132 
7133   }
7134 
7135   if (IS_TIM_BREAK_INSTANCE(TIMx))
7136   {
7137     /* Check parameters */
7138     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7139     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7140 
7141     /* Reset the Output Compare and Output Compare N IDLE State */
7142     tmpcr2 &= ~TIM_CR2_OIS2;
7143     tmpcr2 &= ~TIM_CR2_OIS2N;
7144     /* Set the Output Idle state */
7145     tmpcr2 |= (OC_Config->OCIdleState << 2U);
7146     /* Set the Output N Idle state */
7147     tmpcr2 |= (OC_Config->OCNIdleState << 2U);
7148   }
7149 
7150   /* Write to TIMx CR2 */
7151   TIMx->CR2 = tmpcr2;
7152 
7153   /* Write to TIMx CCMR1 */
7154   TIMx->CCMR1 = tmpccmrx;
7155 
7156   /* Set the Capture Compare Register value */
7157   TIMx->CCR2 = OC_Config->Pulse;
7158 
7159   /* Write to TIMx CCER */
7160   TIMx->CCER = tmpccer;
7161 }
7162 
7163 /**
7164   * @brief  Timer Output Compare 3 configuration
7165   * @param  TIMx to select the TIM peripheral
7166   * @param  OC_Config The output configuration structure
7167   * @retval None
7168   */
TIM_OC3_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7169 static void TIM_OC3_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7170 {
7171   uint32_t tmpccmrx;
7172   uint32_t tmpccer;
7173   uint32_t tmpcr2;
7174 
7175   /* Disable the Channel 3: Reset the CC2E Bit */
7176   TIMx->CCER &= ~TIM_CCER_CC3E;
7177 
7178   /* Get the TIMx CCER register value */
7179   tmpccer = TIMx->CCER;
7180   /* Get the TIMx CR2 register value */
7181   tmpcr2 =  TIMx->CR2;
7182 
7183   /* Get the TIMx CCMR2 register value */
7184   tmpccmrx = TIMx->CCMR2;
7185 
7186   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7187   tmpccmrx &= ~TIM_CCMR2_OC3M;
7188   tmpccmrx &= ~TIM_CCMR2_CC3S;
7189   /* Select the Output Compare Mode */
7190   tmpccmrx |= OC_Config->OCMode;
7191 
7192   /* Reset the Output Polarity level */
7193   tmpccer &= ~TIM_CCER_CC3P;
7194   /* Set the Output Compare Polarity */
7195   tmpccer |= (OC_Config->OCPolarity << 8U);
7196 
7197   if (IS_TIM_CCXN_INSTANCE(TIMx, TIM_CHANNEL_3))
7198   {
7199     assert_param(IS_TIM_OCN_POLARITY(OC_Config->OCNPolarity));
7200 
7201     /* Reset the Output N Polarity level */
7202     tmpccer &= ~TIM_CCER_CC3NP;
7203     /* Set the Output N Polarity */
7204     tmpccer |= (OC_Config->OCNPolarity << 8U);
7205     /* Reset the Output N State */
7206     tmpccer &= ~TIM_CCER_CC3NE;
7207   }
7208 
7209   if (IS_TIM_BREAK_INSTANCE(TIMx))
7210   {
7211     /* Check parameters */
7212     assert_param(IS_TIM_OCNIDLE_STATE(OC_Config->OCNIdleState));
7213     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7214 
7215     /* Reset the Output Compare and Output Compare N IDLE State */
7216     tmpcr2 &= ~TIM_CR2_OIS3;
7217     tmpcr2 &= ~TIM_CR2_OIS3N;
7218     /* Set the Output Idle state */
7219     tmpcr2 |= (OC_Config->OCIdleState << 4U);
7220     /* Set the Output N Idle state */
7221     tmpcr2 |= (OC_Config->OCNIdleState << 4U);
7222   }
7223 
7224   /* Write to TIMx CR2 */
7225   TIMx->CR2 = tmpcr2;
7226 
7227   /* Write to TIMx CCMR2 */
7228   TIMx->CCMR2 = tmpccmrx;
7229 
7230   /* Set the Capture Compare Register value */
7231   TIMx->CCR3 = OC_Config->Pulse;
7232 
7233   /* Write to TIMx CCER */
7234   TIMx->CCER = tmpccer;
7235 }
7236 
7237 /**
7238   * @brief  Timer Output Compare 4 configuration
7239   * @param  TIMx to select the TIM peripheral
7240   * @param  OC_Config The output configuration structure
7241   * @retval None
7242   */
TIM_OC4_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7243 static void TIM_OC4_SetConfig(TIM_TypeDef *TIMx, const TIM_OC_InitTypeDef *OC_Config)
7244 {
7245   uint32_t tmpccmrx;
7246   uint32_t tmpccer;
7247   uint32_t tmpcr2;
7248 
7249   /* Disable the Channel 4: Reset the CC4E Bit */
7250   TIMx->CCER &= ~TIM_CCER_CC4E;
7251 
7252   /* Get the TIMx CCER register value */
7253   tmpccer = TIMx->CCER;
7254   /* Get the TIMx CR2 register value */
7255   tmpcr2 =  TIMx->CR2;
7256 
7257   /* Get the TIMx CCMR2 register value */
7258   tmpccmrx = TIMx->CCMR2;
7259 
7260   /* Reset the Output Compare mode and Capture/Compare selection Bits */
7261   tmpccmrx &= ~TIM_CCMR2_OC4M;
7262   tmpccmrx &= ~TIM_CCMR2_CC4S;
7263 
7264   /* Select the Output Compare Mode */
7265   tmpccmrx |= (OC_Config->OCMode << 8U);
7266 
7267   /* Reset the Output Polarity level */
7268   tmpccer &= ~TIM_CCER_CC4P;
7269   /* Set the Output Compare Polarity */
7270   tmpccer |= (OC_Config->OCPolarity << 12U);
7271 
7272   if (IS_TIM_BREAK_INSTANCE(TIMx))
7273   {
7274     /* Check parameters */
7275     assert_param(IS_TIM_OCIDLE_STATE(OC_Config->OCIdleState));
7276 
7277     /* Reset the Output Compare IDLE State */
7278     tmpcr2 &= ~TIM_CR2_OIS4;
7279 
7280     /* Set the Output Idle state */
7281     tmpcr2 |= (OC_Config->OCIdleState << 6U);
7282   }
7283 
7284   /* Write to TIMx CR2 */
7285   TIMx->CR2 = tmpcr2;
7286 
7287   /* Write to TIMx CCMR2 */
7288   TIMx->CCMR2 = tmpccmrx;
7289 
7290   /* Set the Capture Compare Register value */
7291   TIMx->CCR4 = OC_Config->Pulse;
7292 
7293   /* Write to TIMx CCER */
7294   TIMx->CCER = tmpccer;
7295 }
7296 
7297 /**
7298   * @brief  Timer Output Compare 5 configuration
7299   * @param  TIMx to select the TIM peripheral
7300   * @param  OC_Config The output configuration structure
7301   * @retval None
7302   */
TIM_OC5_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7303 static void TIM_OC5_SetConfig(TIM_TypeDef *TIMx,
7304                               const TIM_OC_InitTypeDef *OC_Config)
7305 {
7306   uint32_t tmpccmrx;
7307   uint32_t tmpccer;
7308   uint32_t tmpcr2;
7309 
7310   /* Disable the output: Reset the CCxE Bit */
7311   TIMx->CCER &= ~TIM_CCER_CC5E;
7312 
7313   /* Get the TIMx CCER register value */
7314   tmpccer = TIMx->CCER;
7315   /* Get the TIMx CR2 register value */
7316   tmpcr2 =  TIMx->CR2;
7317   /* Get the TIMx CCMR1 register value */
7318   tmpccmrx = TIMx->CCMR3;
7319 
7320   /* Reset the Output Compare Mode Bits */
7321   tmpccmrx &= ~(TIM_CCMR3_OC5M);
7322   /* Select the Output Compare Mode */
7323   tmpccmrx |= OC_Config->OCMode;
7324 
7325   /* Reset the Output Polarity level */
7326   tmpccer &= ~TIM_CCER_CC5P;
7327   /* Set the Output Compare Polarity */
7328   tmpccer |= (OC_Config->OCPolarity << 16U);
7329 
7330   if (IS_TIM_BREAK_INSTANCE(TIMx))
7331   {
7332     /* Reset the Output Compare IDLE State */
7333     tmpcr2 &= ~TIM_CR2_OIS5;
7334     /* Set the Output Idle state */
7335     tmpcr2 |= (OC_Config->OCIdleState << 8U);
7336   }
7337   /* Write to TIMx CR2 */
7338   TIMx->CR2 = tmpcr2;
7339 
7340   /* Write to TIMx CCMR3 */
7341   TIMx->CCMR3 = tmpccmrx;
7342 
7343   /* Set the Capture Compare Register value */
7344   TIMx->CCR5 = OC_Config->Pulse;
7345 
7346   /* Write to TIMx CCER */
7347   TIMx->CCER = tmpccer;
7348 }
7349 
7350 /**
7351   * @brief  Timer Output Compare 6 configuration
7352   * @param  TIMx to select the TIM peripheral
7353   * @param  OC_Config The output configuration structure
7354   * @retval None
7355   */
TIM_OC6_SetConfig(TIM_TypeDef * TIMx,const TIM_OC_InitTypeDef * OC_Config)7356 static void TIM_OC6_SetConfig(TIM_TypeDef *TIMx,
7357                               const TIM_OC_InitTypeDef *OC_Config)
7358 {
7359   uint32_t tmpccmrx;
7360   uint32_t tmpccer;
7361   uint32_t tmpcr2;
7362 
7363   /* Disable the output: Reset the CCxE Bit */
7364   TIMx->CCER &= ~TIM_CCER_CC6E;
7365 
7366   /* Get the TIMx CCER register value */
7367   tmpccer = TIMx->CCER;
7368   /* Get the TIMx CR2 register value */
7369   tmpcr2 =  TIMx->CR2;
7370   /* Get the TIMx CCMR1 register value */
7371   tmpccmrx = TIMx->CCMR3;
7372 
7373   /* Reset the Output Compare Mode Bits */
7374   tmpccmrx &= ~(TIM_CCMR3_OC6M);
7375   /* Select the Output Compare Mode */
7376   tmpccmrx |= (OC_Config->OCMode << 8U);
7377 
7378   /* Reset the Output Polarity level */
7379   tmpccer &= (uint32_t)~TIM_CCER_CC6P;
7380   /* Set the Output Compare Polarity */
7381   tmpccer |= (OC_Config->OCPolarity << 20U);
7382 
7383   if (IS_TIM_BREAK_INSTANCE(TIMx))
7384   {
7385     /* Reset the Output Compare IDLE State */
7386     tmpcr2 &= ~TIM_CR2_OIS6;
7387     /* Set the Output Idle state */
7388     tmpcr2 |= (OC_Config->OCIdleState << 10U);
7389   }
7390 
7391   /* Write to TIMx CR2 */
7392   TIMx->CR2 = tmpcr2;
7393 
7394   /* Write to TIMx CCMR3 */
7395   TIMx->CCMR3 = tmpccmrx;
7396 
7397   /* Set the Capture Compare Register value */
7398   TIMx->CCR6 = OC_Config->Pulse;
7399 
7400   /* Write to TIMx CCER */
7401   TIMx->CCER = tmpccer;
7402 }
7403 
7404 /**
7405   * @brief  Slave Timer configuration function
7406   * @param  htim TIM handle
7407   * @param  sSlaveConfig Slave timer configuration
7408   * @retval None
7409   */
TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef * htim,const TIM_SlaveConfigTypeDef * sSlaveConfig)7410 static HAL_StatusTypeDef TIM_SlaveTimer_SetConfig(TIM_HandleTypeDef *htim,
7411                                                   const TIM_SlaveConfigTypeDef *sSlaveConfig)
7412 {
7413   HAL_StatusTypeDef status = HAL_OK;
7414   uint32_t tmpsmcr;
7415   uint32_t tmpccmr1;
7416   uint32_t tmpccer;
7417 
7418   /* Get the TIMx SMCR register value */
7419   tmpsmcr = htim->Instance->SMCR;
7420 
7421   /* Reset the Trigger Selection Bits */
7422   tmpsmcr &= ~TIM_SMCR_TS;
7423   /* Set the Input Trigger source */
7424   tmpsmcr |= sSlaveConfig->InputTrigger;
7425 
7426   /* Reset the slave mode Bits */
7427   tmpsmcr &= ~TIM_SMCR_SMS;
7428   /* Set the slave mode */
7429   tmpsmcr |= sSlaveConfig->SlaveMode;
7430 
7431   /* Write to TIMx SMCR */
7432   htim->Instance->SMCR = tmpsmcr;
7433 
7434   /* Configure the trigger prescaler, filter, and polarity */
7435   switch (sSlaveConfig->InputTrigger)
7436   {
7437     case TIM_TS_ETRF:
7438     {
7439       /* Check the parameters */
7440       assert_param(IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(htim->Instance));
7441       assert_param(IS_TIM_TRIGGERPRESCALER(sSlaveConfig->TriggerPrescaler));
7442       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7443       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7444       /* Configure the ETR Trigger source */
7445       TIM_ETR_SetConfig(htim->Instance,
7446                         sSlaveConfig->TriggerPrescaler,
7447                         sSlaveConfig->TriggerPolarity,
7448                         sSlaveConfig->TriggerFilter);
7449       break;
7450     }
7451 
7452     case TIM_TS_TI1F_ED:
7453     {
7454       /* Check the parameters */
7455       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7456       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7457 
7458       if (sSlaveConfig->SlaveMode == TIM_SLAVEMODE_GATED)
7459       {
7460         return HAL_ERROR;
7461       }
7462 
7463       /* Disable the Channel 1: Reset the CC1E Bit */
7464       tmpccer = htim->Instance->CCER;
7465       htim->Instance->CCER &= ~TIM_CCER_CC1E;
7466       tmpccmr1 = htim->Instance->CCMR1;
7467 
7468       /* Set the filter */
7469       tmpccmr1 &= ~TIM_CCMR1_IC1F;
7470       tmpccmr1 |= ((sSlaveConfig->TriggerFilter) << 4U);
7471 
7472       /* Write to TIMx CCMR1 and CCER registers */
7473       htim->Instance->CCMR1 = tmpccmr1;
7474       htim->Instance->CCER = tmpccer;
7475       break;
7476     }
7477 
7478     case TIM_TS_TI1FP1:
7479     {
7480       /* Check the parameters */
7481       assert_param(IS_TIM_CC1_INSTANCE(htim->Instance));
7482       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7483       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7484 
7485       /* Configure TI1 Filter and Polarity */
7486       TIM_TI1_ConfigInputStage(htim->Instance,
7487                                sSlaveConfig->TriggerPolarity,
7488                                sSlaveConfig->TriggerFilter);
7489       break;
7490     }
7491 
7492     case TIM_TS_TI2FP2:
7493     {
7494       /* Check the parameters */
7495       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7496       assert_param(IS_TIM_TRIGGERPOLARITY(sSlaveConfig->TriggerPolarity));
7497       assert_param(IS_TIM_TRIGGERFILTER(sSlaveConfig->TriggerFilter));
7498 
7499       /* Configure TI2 Filter and Polarity */
7500       TIM_TI2_ConfigInputStage(htim->Instance,
7501                                sSlaveConfig->TriggerPolarity,
7502                                sSlaveConfig->TriggerFilter);
7503       break;
7504     }
7505 
7506     case TIM_TS_ITR0:
7507     case TIM_TS_ITR1:
7508     case TIM_TS_ITR2:
7509     case TIM_TS_ITR3:
7510     {
7511       /* Check the parameter */
7512       assert_param(IS_TIM_CC2_INSTANCE(htim->Instance));
7513       break;
7514     }
7515 
7516     default:
7517       status = HAL_ERROR;
7518       break;
7519   }
7520 
7521   return status;
7522 }
7523 
7524 /**
7525   * @brief  Configure the TI1 as Input.
7526   * @param  TIMx to select the TIM peripheral.
7527   * @param  TIM_ICPolarity The Input Polarity.
7528   *          This parameter can be one of the following values:
7529   *            @arg TIM_ICPOLARITY_RISING
7530   *            @arg TIM_ICPOLARITY_FALLING
7531   *            @arg TIM_ICPOLARITY_BOTHEDGE
7532   * @param  TIM_ICSelection specifies the input to be used.
7533   *          This parameter can be one of the following values:
7534   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 1 is selected to be connected to IC1.
7535   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 1 is selected to be connected to IC2.
7536   *            @arg TIM_ICSELECTION_TRC: TIM Input 1 is selected to be connected to TRC.
7537   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7538   *          This parameter must be a value between 0x00 and 0x0F.
7539   * @retval None
7540   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI2FP1
7541   *       (on channel2 path) is used as the input signal. Therefore CCMR1 must be
7542   *        protected against un-initialized filter and polarity values.
7543   */
TIM_TI1_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7544 void TIM_TI1_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7545                        uint32_t TIM_ICFilter)
7546 {
7547   uint32_t tmpccmr1;
7548   uint32_t tmpccer;
7549 
7550   /* Disable the Channel 1: Reset the CC1E Bit */
7551   TIMx->CCER &= ~TIM_CCER_CC1E;
7552   tmpccmr1 = TIMx->CCMR1;
7553   tmpccer = TIMx->CCER;
7554 
7555   /* Select the Input */
7556   if (IS_TIM_CC2_INSTANCE(TIMx) != RESET)
7557   {
7558     tmpccmr1 &= ~TIM_CCMR1_CC1S;
7559     tmpccmr1 |= TIM_ICSelection;
7560   }
7561   else
7562   {
7563     tmpccmr1 |= TIM_CCMR1_CC1S_0;
7564   }
7565 
7566   /* Set the filter */
7567   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7568   tmpccmr1 |= ((TIM_ICFilter << 4U) & TIM_CCMR1_IC1F);
7569 
7570   /* Select the Polarity and set the CC1E Bit */
7571   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7572   tmpccer |= (TIM_ICPolarity & (TIM_CCER_CC1P | TIM_CCER_CC1NP));
7573 
7574   /* Write to TIMx CCMR1 and CCER registers */
7575   TIMx->CCMR1 = tmpccmr1;
7576   TIMx->CCER = tmpccer;
7577 }
7578 
7579 /**
7580   * @brief  Configure the Polarity and Filter for TI1.
7581   * @param  TIMx to select the TIM peripheral.
7582   * @param  TIM_ICPolarity The Input Polarity.
7583   *          This parameter can be one of the following values:
7584   *            @arg TIM_ICPOLARITY_RISING
7585   *            @arg TIM_ICPOLARITY_FALLING
7586   *            @arg TIM_ICPOLARITY_BOTHEDGE
7587   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7588   *          This parameter must be a value between 0x00 and 0x0F.
7589   * @retval None
7590   */
TIM_TI1_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7591 static void TIM_TI1_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7592 {
7593   uint32_t tmpccmr1;
7594   uint32_t tmpccer;
7595 
7596   /* Disable the Channel 1: Reset the CC1E Bit */
7597   tmpccer = TIMx->CCER;
7598   TIMx->CCER &= ~TIM_CCER_CC1E;
7599   tmpccmr1 = TIMx->CCMR1;
7600 
7601   /* Set the filter */
7602   tmpccmr1 &= ~TIM_CCMR1_IC1F;
7603   tmpccmr1 |= (TIM_ICFilter << 4U);
7604 
7605   /* Select the Polarity and set the CC1E Bit */
7606   tmpccer &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
7607   tmpccer |= TIM_ICPolarity;
7608 
7609   /* Write to TIMx CCMR1 and CCER registers */
7610   TIMx->CCMR1 = tmpccmr1;
7611   TIMx->CCER = tmpccer;
7612 }
7613 
7614 /**
7615   * @brief  Configure the TI2 as Input.
7616   * @param  TIMx to select the TIM peripheral
7617   * @param  TIM_ICPolarity The Input Polarity.
7618   *          This parameter can be one of the following values:
7619   *            @arg TIM_ICPOLARITY_RISING
7620   *            @arg TIM_ICPOLARITY_FALLING
7621   *            @arg TIM_ICPOLARITY_BOTHEDGE
7622   * @param  TIM_ICSelection specifies the input to be used.
7623   *          This parameter can be one of the following values:
7624   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 2 is selected to be connected to IC2.
7625   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 2 is selected to be connected to IC1.
7626   *            @arg TIM_ICSELECTION_TRC: TIM Input 2 is selected to be connected to TRC.
7627   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7628   *          This parameter must be a value between 0x00 and 0x0F.
7629   * @retval None
7630   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI1FP2
7631   *       (on channel1 path) is used as the input signal. Therefore CCMR1 must be
7632   *        protected against un-initialized filter and polarity values.
7633   */
TIM_TI2_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7634 static void TIM_TI2_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7635                               uint32_t TIM_ICFilter)
7636 {
7637   uint32_t tmpccmr1;
7638   uint32_t tmpccer;
7639 
7640   /* Disable the Channel 2: Reset the CC2E Bit */
7641   TIMx->CCER &= ~TIM_CCER_CC2E;
7642   tmpccmr1 = TIMx->CCMR1;
7643   tmpccer = TIMx->CCER;
7644 
7645   /* Select the Input */
7646   tmpccmr1 &= ~TIM_CCMR1_CC2S;
7647   tmpccmr1 |= (TIM_ICSelection << 8U);
7648 
7649   /* Set the filter */
7650   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7651   tmpccmr1 |= ((TIM_ICFilter << 12U) & TIM_CCMR1_IC2F);
7652 
7653   /* Select the Polarity and set the CC2E Bit */
7654   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7655   tmpccer |= ((TIM_ICPolarity << 4U) & (TIM_CCER_CC2P | TIM_CCER_CC2NP));
7656 
7657   /* Write to TIMx CCMR1 and CCER registers */
7658   TIMx->CCMR1 = tmpccmr1 ;
7659   TIMx->CCER = tmpccer;
7660 }
7661 
7662 /**
7663   * @brief  Configure the Polarity and Filter for TI2.
7664   * @param  TIMx to select the TIM peripheral.
7665   * @param  TIM_ICPolarity The Input Polarity.
7666   *          This parameter can be one of the following values:
7667   *            @arg TIM_ICPOLARITY_RISING
7668   *            @arg TIM_ICPOLARITY_FALLING
7669   *            @arg TIM_ICPOLARITY_BOTHEDGE
7670   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7671   *          This parameter must be a value between 0x00 and 0x0F.
7672   * @retval None
7673   */
TIM_TI2_ConfigInputStage(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICFilter)7674 static void TIM_TI2_ConfigInputStage(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICFilter)
7675 {
7676   uint32_t tmpccmr1;
7677   uint32_t tmpccer;
7678 
7679   /* Disable the Channel 2: Reset the CC2E Bit */
7680   TIMx->CCER &= ~TIM_CCER_CC2E;
7681   tmpccmr1 = TIMx->CCMR1;
7682   tmpccer = TIMx->CCER;
7683 
7684   /* Set the filter */
7685   tmpccmr1 &= ~TIM_CCMR1_IC2F;
7686   tmpccmr1 |= (TIM_ICFilter << 12U);
7687 
7688   /* Select the Polarity and set the CC2E Bit */
7689   tmpccer &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
7690   tmpccer |= (TIM_ICPolarity << 4U);
7691 
7692   /* Write to TIMx CCMR1 and CCER registers */
7693   TIMx->CCMR1 = tmpccmr1 ;
7694   TIMx->CCER = tmpccer;
7695 }
7696 
7697 /**
7698   * @brief  Configure the TI3 as Input.
7699   * @param  TIMx to select the TIM peripheral
7700   * @param  TIM_ICPolarity The Input Polarity.
7701   *          This parameter can be one of the following values:
7702   *            @arg TIM_ICPOLARITY_RISING
7703   *            @arg TIM_ICPOLARITY_FALLING
7704   *            @arg TIM_ICPOLARITY_BOTHEDGE
7705   * @param  TIM_ICSelection specifies the input to be used.
7706   *          This parameter can be one of the following values:
7707   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 3 is selected to be connected to IC3.
7708   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 3 is selected to be connected to IC4.
7709   *            @arg TIM_ICSELECTION_TRC: TIM Input 3 is selected to be connected to TRC.
7710   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7711   *          This parameter must be a value between 0x00 and 0x0F.
7712   * @retval None
7713   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI3FP4
7714   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7715   *        protected against un-initialized filter and polarity values.
7716   */
TIM_TI3_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7717 static void TIM_TI3_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7718                               uint32_t TIM_ICFilter)
7719 {
7720   uint32_t tmpccmr2;
7721   uint32_t tmpccer;
7722 
7723   /* Disable the Channel 3: Reset the CC3E Bit */
7724   TIMx->CCER &= ~TIM_CCER_CC3E;
7725   tmpccmr2 = TIMx->CCMR2;
7726   tmpccer = TIMx->CCER;
7727 
7728   /* Select the Input */
7729   tmpccmr2 &= ~TIM_CCMR2_CC3S;
7730   tmpccmr2 |= TIM_ICSelection;
7731 
7732   /* Set the filter */
7733   tmpccmr2 &= ~TIM_CCMR2_IC3F;
7734   tmpccmr2 |= ((TIM_ICFilter << 4U) & TIM_CCMR2_IC3F);
7735 
7736   /* Select the Polarity and set the CC3E Bit */
7737   tmpccer &= ~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
7738   tmpccer |= ((TIM_ICPolarity << 8U) & (TIM_CCER_CC3P | TIM_CCER_CC3NP));
7739 
7740   /* Write to TIMx CCMR2 and CCER registers */
7741   TIMx->CCMR2 = tmpccmr2;
7742   TIMx->CCER = tmpccer;
7743 }
7744 
7745 /**
7746   * @brief  Configure the TI4 as Input.
7747   * @param  TIMx to select the TIM peripheral
7748   * @param  TIM_ICPolarity The Input Polarity.
7749   *          This parameter can be one of the following values:
7750   *            @arg TIM_ICPOLARITY_RISING
7751   *            @arg TIM_ICPOLARITY_FALLING
7752   *            @arg TIM_ICPOLARITY_BOTHEDGE
7753   * @param  TIM_ICSelection specifies the input to be used.
7754   *          This parameter can be one of the following values:
7755   *            @arg TIM_ICSELECTION_DIRECTTI: TIM Input 4 is selected to be connected to IC4.
7756   *            @arg TIM_ICSELECTION_INDIRECTTI: TIM Input 4 is selected to be connected to IC3.
7757   *            @arg TIM_ICSELECTION_TRC: TIM Input 4 is selected to be connected to TRC.
7758   * @param  TIM_ICFilter Specifies the Input Capture Filter.
7759   *          This parameter must be a value between 0x00 and 0x0F.
7760   * @note TIM_ICFilter and TIM_ICPolarity are not used in INDIRECT mode as TI4FP3
7761   *       (on channel1 path) is used as the input signal. Therefore CCMR2 must be
7762   *        protected against un-initialized filter and polarity values.
7763   * @retval None
7764   */
TIM_TI4_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ICPolarity,uint32_t TIM_ICSelection,uint32_t TIM_ICFilter)7765 static void TIM_TI4_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ICPolarity, uint32_t TIM_ICSelection,
7766                               uint32_t TIM_ICFilter)
7767 {
7768   uint32_t tmpccmr2;
7769   uint32_t tmpccer;
7770 
7771   /* Disable the Channel 4: Reset the CC4E Bit */
7772   TIMx->CCER &= ~TIM_CCER_CC4E;
7773   tmpccmr2 = TIMx->CCMR2;
7774   tmpccer = TIMx->CCER;
7775 
7776   /* Select the Input */
7777   tmpccmr2 &= ~TIM_CCMR2_CC4S;
7778   tmpccmr2 |= (TIM_ICSelection << 8U);
7779 
7780   /* Set the filter */
7781   tmpccmr2 &= ~TIM_CCMR2_IC4F;
7782   tmpccmr2 |= ((TIM_ICFilter << 12U) & TIM_CCMR2_IC4F);
7783 
7784   /* Select the Polarity and set the CC4E Bit */
7785   tmpccer &= ~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
7786   tmpccer |= ((TIM_ICPolarity << 12U) & (TIM_CCER_CC4P | TIM_CCER_CC4NP));
7787 
7788   /* Write to TIMx CCMR2 and CCER registers */
7789   TIMx->CCMR2 = tmpccmr2;
7790   TIMx->CCER = tmpccer ;
7791 }
7792 
7793 /**
7794   * @brief  Selects the Input Trigger source
7795   * @param  TIMx to select the TIM peripheral
7796   * @param  InputTriggerSource The Input Trigger source.
7797   *          This parameter can be one of the following values:
7798   *            @arg TIM_TS_ITR0: Internal Trigger 0
7799   *            @arg TIM_TS_ITR1: Internal Trigger 1
7800   *            @arg TIM_TS_ITR2: Internal Trigger 2
7801   *            @arg TIM_TS_ITR3: Internal Trigger 3
7802   *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
7803   *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
7804   *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
7805   *            @arg TIM_TS_ETRF: External Trigger input
7806   * @retval None
7807   */
TIM_ITRx_SetConfig(TIM_TypeDef * TIMx,uint32_t InputTriggerSource)7808 static void TIM_ITRx_SetConfig(TIM_TypeDef *TIMx, uint32_t InputTriggerSource)
7809 {
7810   uint32_t tmpsmcr;
7811 
7812   /* Get the TIMx SMCR register value */
7813   tmpsmcr = TIMx->SMCR;
7814   /* Reset the TS Bits */
7815   tmpsmcr &= ~TIM_SMCR_TS;
7816   /* Set the Input Trigger source and the slave mode*/
7817   tmpsmcr |= (InputTriggerSource | TIM_SLAVEMODE_EXTERNAL1);
7818   /* Write to TIMx SMCR */
7819   TIMx->SMCR = tmpsmcr;
7820 }
7821 /**
7822   * @brief  Configures the TIMx External Trigger (ETR).
7823   * @param  TIMx to select the TIM peripheral
7824   * @param  TIM_ExtTRGPrescaler The external Trigger Prescaler.
7825   *          This parameter can be one of the following values:
7826   *            @arg TIM_ETRPRESCALER_DIV1: ETRP Prescaler OFF.
7827   *            @arg TIM_ETRPRESCALER_DIV2: ETRP frequency divided by 2.
7828   *            @arg TIM_ETRPRESCALER_DIV4: ETRP frequency divided by 4.
7829   *            @arg TIM_ETRPRESCALER_DIV8: ETRP frequency divided by 8.
7830   * @param  TIM_ExtTRGPolarity The external Trigger Polarity.
7831   *          This parameter can be one of the following values:
7832   *            @arg TIM_ETRPOLARITY_INVERTED: active low or falling edge active.
7833   *            @arg TIM_ETRPOLARITY_NONINVERTED: active high or rising edge active.
7834   * @param  ExtTRGFilter External Trigger Filter.
7835   *          This parameter must be a value between 0x00 and 0x0F
7836   * @retval None
7837   */
TIM_ETR_SetConfig(TIM_TypeDef * TIMx,uint32_t TIM_ExtTRGPrescaler,uint32_t TIM_ExtTRGPolarity,uint32_t ExtTRGFilter)7838 void TIM_ETR_SetConfig(TIM_TypeDef *TIMx, uint32_t TIM_ExtTRGPrescaler,
7839                        uint32_t TIM_ExtTRGPolarity, uint32_t ExtTRGFilter)
7840 {
7841   uint32_t tmpsmcr;
7842 
7843   tmpsmcr = TIMx->SMCR;
7844 
7845   /* Reset the ETR Bits */
7846   tmpsmcr &= ~(TIM_SMCR_ETF | TIM_SMCR_ETPS | TIM_SMCR_ECE | TIM_SMCR_ETP);
7847 
7848   /* Set the Prescaler, the Filter value and the Polarity */
7849   tmpsmcr |= (uint32_t)(TIM_ExtTRGPrescaler | (TIM_ExtTRGPolarity | (ExtTRGFilter << 8U)));
7850 
7851   /* Write to TIMx SMCR */
7852   TIMx->SMCR = tmpsmcr;
7853 }
7854 
7855 /**
7856   * @brief  Enables or disables the TIM Capture Compare Channel x.
7857   * @param  TIMx to select the TIM peripheral
7858   * @param  Channel specifies the TIM Channel
7859   *          This parameter can be one of the following values:
7860   *            @arg TIM_CHANNEL_1: TIM Channel 1
7861   *            @arg TIM_CHANNEL_2: TIM Channel 2
7862   *            @arg TIM_CHANNEL_3: TIM Channel 3
7863   *            @arg TIM_CHANNEL_4: TIM Channel 4
7864   *            @arg TIM_CHANNEL_5: TIM Channel 5 selected
7865   *            @arg TIM_CHANNEL_6: TIM Channel 6 selected
7866   * @param  ChannelState specifies the TIM Channel CCxE bit new state.
7867   *          This parameter can be: TIM_CCx_ENABLE or TIM_CCx_DISABLE.
7868   * @retval None
7869   */
TIM_CCxChannelCmd(TIM_TypeDef * TIMx,uint32_t Channel,uint32_t ChannelState)7870 void TIM_CCxChannelCmd(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ChannelState)
7871 {
7872   uint32_t tmp;
7873 
7874   /* Check the parameters */
7875   assert_param(IS_TIM_CC1_INSTANCE(TIMx));
7876   assert_param(IS_TIM_CHANNELS(Channel));
7877 
7878   tmp = TIM_CCER_CC1E << (Channel & 0x1FU); /* 0x1FU = 31 bits max shift */
7879 
7880   /* Reset the CCxE Bit */
7881   TIMx->CCER &= ~tmp;
7882 
7883   /* Set or reset the CCxE Bit */
7884   TIMx->CCER |= (uint32_t)(ChannelState << (Channel & 0x1FU)); /* 0x1FU = 31 bits max shift */
7885 }
7886 
7887 #if (USE_HAL_TIM_REGISTER_CALLBACKS == 1)
7888 /**
7889   * @brief  Reset interrupt callbacks to the legacy weak callbacks.
7890   * @param  htim pointer to a TIM_HandleTypeDef structure that contains
7891   *                the configuration information for TIM module.
7892   * @retval None
7893   */
TIM_ResetCallback(TIM_HandleTypeDef * htim)7894 void TIM_ResetCallback(TIM_HandleTypeDef *htim)
7895 {
7896   /* Reset the TIM callback to the legacy weak callbacks */
7897   htim->PeriodElapsedCallback             = HAL_TIM_PeriodElapsedCallback;
7898   htim->PeriodElapsedHalfCpltCallback     = HAL_TIM_PeriodElapsedHalfCpltCallback;
7899   htim->TriggerCallback                   = HAL_TIM_TriggerCallback;
7900   htim->TriggerHalfCpltCallback           = HAL_TIM_TriggerHalfCpltCallback;
7901   htim->IC_CaptureCallback                = HAL_TIM_IC_CaptureCallback;
7902   htim->IC_CaptureHalfCpltCallback        = HAL_TIM_IC_CaptureHalfCpltCallback;
7903   htim->OC_DelayElapsedCallback           = HAL_TIM_OC_DelayElapsedCallback;
7904   htim->PWM_PulseFinishedCallback         = HAL_TIM_PWM_PulseFinishedCallback;
7905   htim->PWM_PulseFinishedHalfCpltCallback = HAL_TIM_PWM_PulseFinishedHalfCpltCallback;
7906   htim->ErrorCallback                     = HAL_TIM_ErrorCallback;
7907   htim->CommutationCallback               = HAL_TIMEx_CommutCallback;
7908   htim->CommutationHalfCpltCallback       = HAL_TIMEx_CommutHalfCpltCallback;
7909   htim->BreakCallback                     = HAL_TIMEx_BreakCallback;
7910   htim->Break2Callback                    = HAL_TIMEx_Break2Callback;
7911 }
7912 #endif /* USE_HAL_TIM_REGISTER_CALLBACKS */
7913 
7914 /**
7915   * @}
7916   */
7917 
7918 #endif /* HAL_TIM_MODULE_ENABLED */
7919 /**
7920   * @}
7921   */
7922 
7923 /**
7924   * @}
7925   */
7926