1 /**
2   ******************************************************************************
3   * @file    stm32u5xx_hal_rtc.c
4   * @author  MCD Application Team
5   * @brief   RTC HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the Real-Time Clock (RTC) peripheral:
8   *           + Initialization/de-initialization functions
9   *           + Calendar (Time and Date) configuration
10   *           + Alarms (Alarm A and Alarm B) configuration
11   *           + WakeUp Timer configuration
12   *           + TimeStamp configuration
13   *           + Tampers configuration
14   *           + Backup Data Registers configuration
15   *           + RTC Tamper and TimeStamp Pins Selection
16   *           + Interrupts and flags management
17   *
18   ******************************************************************************
19   * @attention
20   *
21   * Copyright (c) 2021 STMicroelectronics.
22   * All rights reserved.
23   *
24   * This software is licensed under terms that can be found in the LICENSE file
25   * in the root directory of this software component.
26   * If no LICENSE file comes with this software, it is provided AS-IS.
27   *
28   ******************************************************************************
29   @verbatim
30  ===============================================================================
31                           ##### RTC Operating Condition #####
32  ===============================================================================
33   [..] The real-time clock (RTC) and the RTC backup registers can be powered
34        from the VBAT voltage when the main VDD supply is powered off.
35        To retain the content of the RTC backup registers and supply the RTC
36        when VDD is turned off, VBAT pin can be connected to an optional
37        standby voltage supplied by a battery or by another source.
38 
39                    ##### Backup Domain Reset #####
40  ===============================================================================
41   [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
42        to their reset values.
43        A backup domain reset is generated when one of the following events occurs:
44     (#) Software reset, triggered by setting the BDRST bit in the
45         RCC Backup domain control register (RCC_BDCR).
46     (#) VDD or VBAT power on, if both supplies have previously been powered off.
47     (#) Tamper detection event resets all data backup registers.
48 
49                    ##### Backup Domain Access #####
50   ==================================================================
51   [..] After reset, the backup domain (RTC registers and RTC backup data registers)
52        is protected against possible unwanted write accesses.
53   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
54     (+) Enable the Power Controller (PWR) APB1 interface clock using the
55         __HAL_RCC_PWR_CLK_ENABLE() function.
56     (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
57     (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
58     (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
59 
60   [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
61     (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
62         PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
63     (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
64 
65                   ##### How to use RTC Driver #####
66  ===================================================================
67   [..]
68     (+) Enable the RTC domain access (see description in the section above).
69     (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
70         format using the HAL_RTC_Init() function.
71 
72   *** Time and Date configuration ***
73   ===================================
74   [..]
75     (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
76         and HAL_RTC_SetDate() functions.
77     (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
78 
79   *** Alarm configuration ***
80   ===========================
81   [..]
82     (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
83             You can also configure the RTC Alarm with interrupt mode using the
84             HAL_RTC_SetAlarm_IT() function.
85     (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
86 
87                   ##### RTC and low power modes #####
88   ==================================================================
89   [..] The MCU can be woken up from a low power mode by an RTC alternate
90        function.
91   [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
92        RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
93        These RTC alternate functions can wake up the system from the Stop and
94        Standby low power modes.
95   [..] The system can also wake up from low power modes without depending
96        on an external interrupt (Auto-wakeup mode), by using the RTC alarm
97        or the RTC wakeup events.
98   [..] The RTC provides a programmable time base for waking up from the
99        Stop or Standby mode at regular intervals.
100        Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
101        is LSE or LSI.
102 
103   *** Callback registration ***
104   =============================================
105   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
106   not defined, the callback registration feature is not available and all callbacks
107   are set to the corresponding weak functions. This is the recommended configuration
108   in order to optimize memory/code consumption footprint/performances.
109 
110   The compilation define  USE_RTC_REGISTER_CALLBACKS when set to 1
111   allows the user to configure dynamically the driver callbacks.
112   Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback.
113 
114   Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks:
115     (+) AlarmAEventCallback             : RTC Alarm A Event callback.
116     (+) AlarmBEventCallback             : RTC Alarm B Event callback.
117     (+) TimeStampEventCallback          : RTC TimeStamp Event callback.
118     (+) WakeUpTimerEventCallback        : RTC WakeUpTimer Event callback.
119     (+) SSRUEventCallback               : RTC SSRU Event callback.
120     (+) Tamper1EventCallback            : RTC Tamper 1 Event callback.
121     (+) Tamper2EventCallback            : RTC Tamper 2 Event callback.
122     (+) Tamper3EventCallback            : RTC Tamper 3 Event callback.
123     (+) Tamper4EventCallback            : RTC Tamper 4 Event callback.
124     (+) Tamper5EventCallback            : RTC Tamper 5 Event callback.
125     (+) Tamper6EventCallback            : RTC Tamper 6 Event callback.
126     (+) Tamper7EventCallback            : RTC Tamper 7 Event callback.
127     (+) Tamper8EventCallback            : RTC Tamper 8 Event callback.
128     (+) InternalTamper1EventCallback    : RTC InternalTamper 1 Event callback.
129     (+) InternalTamper2EventCallback    : RTC InternalTamper 2 Event callback.
130     (+) InternalTamper3EventCallback    : RTC InternalTamper 3 Event callback.
131     (+) InternalTamper5EventCallback    : RTC InternalTamper 5 Event callback.
132     (+) InternalTamper6EventCallback    : RTC InternalTamper 6 Event callback.
133     (+) InternalTamper7EventCallback    : RTC InternalTamper 7 Event callback.
134     (+) InternalTamper8EventCallback    : RTC InternalTamper 8 Event callback.
135     (+) InternalTamper9EventCallback    : RTC InternalTamper 9 Event callback.
136     (+) InternalTamper11EventCallback   : RTC InternalTamper 11 Event callback.
137     (+) InternalTamper12EventCallback   : RTC InternalTamper 12 Event callback.
138     (+) InternalTamper13EventCallback   : RTC InternalTamper 13 Event callback.
139     (+) MspInitCallback                 : RTC MspInit callback.
140     (+) MspDeInitCallback               : RTC MspDeInit callback.
141   This function takes as parameters the HAL peripheral handle, the Callback ID
142   and a pointer to the user callback function.
143 
144   Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default
145   weak function.
146   @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
147   and the Callback ID.
148   This function allows to reset following callbacks:
149     (+) AlarmAEventCallback             : RTC Alarm A Event callback.
150     (+) AlarmBEventCallback             : RTC Alarm B Event callback.
151     (+) TimeStampEventCallback          : RTC TimeStamp Event callback.
152     (+) WakeUpTimerEventCallback        : RTC WakeUpTimer Event callback.
153     (+) SSRUEventCallback               : RTC SSRU Event callback.
154     (+) Tamper1EventCallback            : RTC Tamper 1 Event callback.
155     (+) Tamper2EventCallback            : RTC Tamper 2 Event callback.
156     (+) Tamper3EventCallback            : RTC Tamper 3 Event callback.
157     (+) Tamper4EventCallback            : RTC Tamper 4 Event callback.
158     (+) Tamper5EventCallback            : RTC Tamper 5 Event callback.
159     (+) Tamper6EventCallback            : RTC Tamper 6 Event callback.
160     (+) Tamper7EventCallback            : RTC Tamper 7 Event callback.
161     (+) Tamper8EventCallback            : RTC Tamper 8 Event callback.
162     (+) InternalTamper1EventCallback    : RTC InternalTamper 1 Event callback.
163     (+) InternalTamper2EventCallback    : RTC InternalTamper 2 Event callback.
164     (+) InternalTamper3EventCallback    : RTC InternalTamper 3 Event callback.
165     (+) InternalTamper5EventCallback    : RTC InternalTamper 5 Event callback.
166     (+) InternalTamper6EventCallback    : RTC InternalTamper 6 Event callback.
167     (+) InternalTamper7EventCallback    : RTC InternalTamper 7 Event callback.
168     (+) InternalTamper8EventCallback    : RTC InternalTamper 8 Event callback.
169     (+) InternalTamper9EventCallback    : RTC InternalTamper 9 Event callback.
170     (+) InternalTamper11EventCallback   : RTC InternalTamper 11 Event callback.
171     (+) InternalTamper12EventCallback   : RTC InternalTamper 12 Event callback.
172     (+) InternalTamper13EventCallback   : RTC InternalTamper 13 Event callback.
173     (+) MspInitCallback                 : RTC MspInit callback.
174     (+) MspDeInitCallback               : RTC MspDeInit callback.
175 
176   By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
177   all callbacks are set to the corresponding weak functions :
178   examples @ref AlarmAEventCallback(), @ref TimeStampEventCallback().
179   Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
180   in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null
181   (not registered beforehand).
182   If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit()
183   keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
184 
185   Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
186   Exception done MspInit/MspDeInit that can be registered/unregistered
187   in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
188   thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
189   In that case first register the MspInit/MspDeInit user callbacks
190   using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit()
191   or @ref HAL_RTC_Init() function.
192 
193   When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
194   not defined, the callback registration feature is not available and all callbacks
195   are set to the corresponding weak functions.
196 
197   @endverbatim
198   ******************************************************************************
199   */
200 
201 /* Includes ------------------------------------------------------------------*/
202 #include "stm32u5xx_hal.h"
203 
204 /** @addtogroup STM32U5xx_HAL_Driver
205   * @{
206   */
207 
208 
209 /** @addtogroup RTC
210   * @brief RTC HAL module driver
211   * @{
212   */
213 
214 #ifdef HAL_RTC_MODULE_ENABLED
215 
216 /* Private typedef -----------------------------------------------------------*/
217 /* Private define ------------------------------------------------------------*/
218 /* Private macro -------------------------------------------------------------*/
219 /* Private variables ---------------------------------------------------------*/
220 /* Private function prototypes -----------------------------------------------*/
221 /* Exported functions --------------------------------------------------------*/
222 
223 /** @addtogroup RTC_Exported_Functions
224   * @{
225   */
226 
227 /** @addtogroup RTC_Exported_Functions_Group1
228   *  @brief    Initialization and Configuration functions
229   *
230 @verbatim
231  ===============================================================================
232               ##### Initialization and de-initialization functions #####
233  ===============================================================================
234    [..] This section provides functions allowing to initialize and configure the
235          RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
236          RTC registers Write protection, enter and exit the RTC initialization mode,
237          RTC registers synchronization check and reference clock detection enable.
238          (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
239              It is split into 2 programmable prescalers to minimize power consumption.
240              (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
241              (++) When both prescalers are used, it is recommended to configure the
242                  asynchronous prescaler to a high value to minimize power consumption.
243          (#) All RTC registers are Write protected. Writing to the RTC registers
244              is enabled by writing a key into the Write Protection register, RTC_WPR.
245          (#) To configure the RTC Calendar, user application should enter
246              initialization mode. In this mode, the calendar counter is stopped
247              and its value can be updated. When the initialization sequence is
248              complete, the calendar restarts counting after 4 RTCCLK cycles.
249          (#) To read the calendar through the shadow registers after Calendar
250              initialization, calendar update or after wakeup from low power modes
251              the software must first clear the RSF flag. The software must then
252              wait until it is set again before reading the calendar, which means
253              that the calendar registers have been correctly copied into the
254              RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
255              implements the above software sequence (RSF clear and RSF check).
256 
257 @endverbatim
258   * @{
259   */
260 
261 /**
262   * @brief  Initialize the RTC peripheral
263   * @param  hrtc RTC handle
264   * @retval HAL status
265   */
HAL_RTC_Init(RTC_HandleTypeDef * hrtc)266 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
267 {
268   HAL_StatusTypeDef status = HAL_ERROR;
269 
270   /* Check the RTC peripheral state */
271   if (hrtc != NULL)
272   {
273     /* Check the parameters */
274     assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
275     assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
276     assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
277     assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
278     assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
279     assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
280     assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
281     assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
282     assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
283     assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
284     assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
285 
286 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
287     if (hrtc->State == HAL_RTC_STATE_RESET)
288     {
289       /* Allocate lock resource and initialize it */
290       hrtc->Lock = HAL_UNLOCKED;
291       /* Legacy weak AlarmAEventCallback      */
292       hrtc->AlarmAEventCallback          = HAL_RTC_AlarmAEventCallback;
293       /* Legacy weak AlarmBEventCallback      */
294       hrtc->AlarmBEventCallback          = HAL_RTCEx_AlarmBEventCallback;
295       /* Legacy weak TimeStampEventCallback   */
296       hrtc->TimeStampEventCallback       = HAL_RTCEx_TimeStampEventCallback;
297       /* Legacy weak WakeUpTimerEventCallback */
298       hrtc->WakeUpTimerEventCallback     = HAL_RTCEx_WakeUpTimerEventCallback;
299       /* Legacy weak SSRUEventCallback */
300       hrtc->SSRUEventCallback            = HAL_RTCEx_SSRUEventCallback;
301       /* Legacy weak Tamper1EventCallback     */
302       hrtc->Tamper1EventCallback         = HAL_RTCEx_Tamper1EventCallback;
303       /* Legacy weak Tamper2EventCallback     */
304       hrtc->Tamper2EventCallback         = HAL_RTCEx_Tamper2EventCallback;
305       /* Legacy weak Tamper3EventCallback     */
306       hrtc->Tamper3EventCallback         = HAL_RTCEx_Tamper3EventCallback;
307       /* Legacy weak Tamper4EventCallback     */
308       hrtc->Tamper4EventCallback         = HAL_RTCEx_Tamper4EventCallback;
309       /* Legacy weak Tamper5EventCallback     */
310       hrtc->Tamper5EventCallback         = HAL_RTCEx_Tamper5EventCallback;
311       /* Legacy weak Tamper6EventCallback     */
312       hrtc->Tamper6EventCallback         = HAL_RTCEx_Tamper6EventCallback;
313       /* Legacy weak Tamper7EventCallback     */
314       hrtc->Tamper7EventCallback         = HAL_RTCEx_Tamper7EventCallback;
315       /* Legacy weak Tamper8EventCallback     */
316       hrtc->Tamper8EventCallback         = HAL_RTCEx_Tamper8EventCallback;
317       /* Legacy weak InternalTamper1EventCallback */
318       hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback;
319       /* Legacy weak InternalTamper2EventCallback */
320       hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback;
321       /* Legacy weak InternalTamper3EventCallback */
322       hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback;
323       /* Legacy weak InternalTamper5EventCallback */
324       hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback;
325       /* Legacy weak InternalTamper6EventCallback */
326       hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback;
327       /* Legacy weak InternalTamper7EventCallback */
328       hrtc->InternalTamper7EventCallback = HAL_RTCEx_InternalTamper7EventCallback;
329       /* Legacy weak InternalTamper8EventCallback */
330       hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback;
331       /* Legacy weak InternalTamper9EventCallback */
332       hrtc->InternalTamper9EventCallback = HAL_RTCEx_InternalTamper9EventCallback;
333       /* Legacy weak InternalTamper11EventCallback */
334       hrtc->InternalTamper11EventCallback = HAL_RTCEx_InternalTamper11EventCallback;
335       /* Legacy weak InternalTamper12EventCallback */
336       hrtc->InternalTamper12EventCallback = HAL_RTCEx_InternalTamper12EventCallback;
337       /* Legacy weak InternalTamper13EventCallback */
338       hrtc->InternalTamper13EventCallback = HAL_RTCEx_InternalTamper13EventCallback;
339       if (hrtc->MspInitCallback == NULL)
340       {
341         hrtc->MspInitCallback = HAL_RTC_MspInit;
342       }
343       /* Init the low level hardware */
344       hrtc->MspInitCallback(hrtc);
345 
346       if (hrtc->MspDeInitCallback == NULL)
347       {
348         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
349       }
350     }
351 #else
352     if (hrtc->State == HAL_RTC_STATE_RESET)
353     {
354       /* Allocate lock resource and initialize it */
355       hrtc->Lock = HAL_UNLOCKED;
356 
357       /* Initialize RTC MSP */
358       HAL_RTC_MspInit(hrtc);
359     }
360 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
361 
362     /* Set RTC state */
363     hrtc->State = HAL_RTC_STATE_BUSY;
364 
365     /* Check if the calendar has been not initialized */
366     if (__HAL_RTC_IS_CALENDAR_INITIALIZED(hrtc) == 0U)
367     {
368       /* Disable the write protection for RTC registers */
369       __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
370 
371       /* Enter Initialization mode */
372       status = RTC_EnterInitMode(hrtc);
373       if (status == HAL_OK)
374       {
375         /* Clear RTC_CR FMT, OSEL and POL Bits */
376         CLEAR_BIT(RTC->CR, (RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE));
377         /* Set RTC_CR register */
378         SET_BIT(RTC->CR, (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity));
379 
380         /* Configure the RTC PRER */
381         WRITE_REG(RTC->PRER, ((hrtc->Init.SynchPrediv) | (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos)));
382 
383         /* Configure the Binary mode */
384         MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
385 
386         /* Exit Initialization mode */
387         status = RTC_ExitInitMode(hrtc);
388         if (status == HAL_OK)
389         {
390           MODIFY_REG(RTC->CR, \
391                      RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN, \
392                      hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
393         }
394       }
395 
396       /* Enable the write protection for RTC registers */
397       __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
398     }
399     else
400     {
401       /* Calendar is already initialized */
402       /* Set flag to OK */
403       status = HAL_OK;
404     }
405 
406     if (status == HAL_OK)
407     {
408       /* Change RTC state */
409       hrtc->State = HAL_RTC_STATE_READY;
410     }
411   }
412 
413   return status;
414 }
415 
416 /**
417   * @brief  DeInitialize the RTC peripheral.
418   * @note   This function does not reset the RTC Backup Data registers.
419   * @param  hrtc RTC handle
420   * @retval HAL status
421   */
HAL_RTC_DeInit(RTC_HandleTypeDef * hrtc)422 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
423 {
424   HAL_StatusTypeDef status;
425 
426   /* Set RTC state */
427   hrtc->State = HAL_RTC_STATE_BUSY;
428 
429   /* Disable the write protection for RTC registers */
430   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
431 
432   /* Enter Initialization mode */
433   status = RTC_EnterInitMode(hrtc);
434   if (status == HAL_OK)
435   {
436     /* Reset all RTC CR register bits */
437     CLEAR_REG(RTC->CR);
438     WRITE_REG(RTC->DR, (uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
439     CLEAR_REG(RTC->TR);
440     WRITE_REG(RTC->WUTR, RTC_WUTR_WUT);
441     WRITE_REG(RTC->PRER, ((uint32_t)(RTC_PRER_PREDIV_A | 0xFFU)));
442     CLEAR_REG(RTC->ALRMAR);
443     CLEAR_REG(RTC->ALRMBR);
444     CLEAR_REG(RTC->SHIFTR);
445     CLEAR_REG(RTC->CALR);
446     CLEAR_REG(RTC->ALRMASSR);
447     CLEAR_REG(RTC->ALRMBSSR);
448     WRITE_REG(RTC->SCR, RTC_SCR_CITSF | RTC_SCR_CTSOVF | RTC_SCR_CTSF | RTC_SCR_CWUTF | RTC_SCR_CALRBF | \
449               RTC_SCR_CALRAF);
450 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
451     WRITE_REG(RTC->SECCFGR, (RTC_SECCFGR_SEC | RTC_SECCFGR_INITSEC | RTC_SECCFGR_CALSEC | RTC_SECCFGR_TSSEC \
452                              | RTC_SECCFGR_WUTSEC | RTC_SECCFGR_ALRBSEC | RTC_SECCFGR_ALRASEC));
453 #endif /* (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
454     CLEAR_REG(RTC->PRIVCFGR);
455 
456     /* Exit initialization mode */
457     status = RTC_ExitInitMode(hrtc);
458     if (status == HAL_OK)
459     {
460       /* Reset TAMP registers */
461       WRITE_REG(TAMP->CR1, RTC_INT_TAMPER_ALL);
462       CLEAR_REG(TAMP->CR2);
463       CLEAR_REG(TAMP->CR3);
464       CLEAR_REG(TAMP->FLTCR);
465       WRITE_REG(TAMP->ATCR1, TAMP_ATCR1_ATCKSEL);
466       CLEAR_REG(TAMP->ATOR);
467       CLEAR_REG(TAMP->ATCR2);
468 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
469       WRITE_REG(TAMP->SECCFGR, TAMP_SECCFGR_TAMPSEC);
470 #endif /* (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
471       CLEAR_REG(TAMP->PRIVCFGR);
472     }
473   }
474 
475   /* Enable the write protection for RTC registers */
476   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
477 
478   if (status == HAL_OK)
479   {
480 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
481     if (hrtc->MspDeInitCallback == NULL)
482     {
483       hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
484     }
485 
486     /* DeInit the low level hardware: CLOCK, NVIC.*/
487     hrtc->MspDeInitCallback(hrtc);
488 
489 #else
490     /* De-Initialize RTC MSP */
491     HAL_RTC_MspDeInit(hrtc);
492 #endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
493 
494     hrtc->State = HAL_RTC_STATE_RESET;
495   }
496 
497   /* Release Lock */
498   __HAL_UNLOCK(hrtc);
499 
500   return status;
501 }
502 
503 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
504 /**
505   * @brief  Register a User RTC Callback
506   *         To be used instead of the weak predefined callback
507   * @param  hrtc RTC handle
508   * @param  CallbackID ID of the callback to be registered
509   *         This parameter can be one of the following values:
510   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID             Alarm A Event Callback ID
511   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID             Alarm B Event Callback ID
512   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID           TimeStamp Event Callback ID
513   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID         WakeUp Timer Event Callback ID
514   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID             Tamper 1 Callback ID
515   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID             Tamper 2 Callback ID
516   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID             Tamper 3 Callback ID
517   *          @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID             Tamper 4 Callback ID
518   *          @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID             Tamper 5 Callback ID
519   *          @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID             Tamper 6 Callback ID
520   *          @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID             Tamper 7 Callback ID
521   *          @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID             Tamper 8 Callback ID
522   *          @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID    Internal Tamper 1 Callback ID
523   *          @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID    Internal Tamper 2 Callback ID
524   *          @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID    Internal Tamper 3 Callback ID
525   *          @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID    Internal Tamper 5 Callback ID
526   *          @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID    Internal Tamper 6 Callback ID
527   *          @arg @ref HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID    Internal Tamper 7 Callback ID
528   *          @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID    Internal Tamper 8 Callback ID
529   *          @arg @ref HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID    Internal Tamper 9 Callback ID
530   *          @arg @ref HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID   Internal Tamper 11 Callback ID
531   *          @arg @ref HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID   Internal Tamper 12 Callback ID
532   *          @arg @ref HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID   Internal Tamper 13 Callback ID
533   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                   Msp Init callback ID
534   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID                 Msp DeInit callback ID
535   * @param  pCallback pointer to the Callback function
536   * @retval HAL status
537   */
HAL_RTC_RegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID,pRTC_CallbackTypeDef pCallback)538 HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID,
539                                            pRTC_CallbackTypeDef pCallback)
540 {
541   HAL_StatusTypeDef status = HAL_OK;
542 
543   if (pCallback == NULL)
544   {
545     return HAL_ERROR;
546   }
547 
548   /* Process locked */
549   __HAL_LOCK(hrtc);
550 
551   if (HAL_RTC_STATE_READY == hrtc->State)
552   {
553     switch (CallbackID)
554     {
555       case HAL_RTC_ALARM_A_EVENT_CB_ID :
556         hrtc->AlarmAEventCallback = pCallback;
557         break;
558 
559       case HAL_RTC_ALARM_B_EVENT_CB_ID :
560         hrtc->AlarmBEventCallback = pCallback;
561         break;
562 
563       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
564         hrtc->TimeStampEventCallback = pCallback;
565         break;
566 
567       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
568         hrtc->WakeUpTimerEventCallback = pCallback;
569         break;
570 
571       case HAL_RTC_SSRU_EVENT_CB_ID :
572         hrtc->SSRUEventCallback = pCallback;
573         break;
574 
575       case HAL_RTC_TAMPER1_EVENT_CB_ID :
576         hrtc->Tamper1EventCallback = pCallback;
577         break;
578 
579       case HAL_RTC_TAMPER2_EVENT_CB_ID :
580         hrtc->Tamper2EventCallback = pCallback;
581         break;
582 
583       case HAL_RTC_TAMPER3_EVENT_CB_ID :
584         hrtc->Tamper3EventCallback = pCallback;
585         break;
586 
587       case HAL_RTC_TAMPER4_EVENT_CB_ID :
588         hrtc->Tamper4EventCallback = pCallback;
589         break;
590 
591       case HAL_RTC_TAMPER5_EVENT_CB_ID :
592         hrtc->Tamper5EventCallback = pCallback;
593         break;
594 
595       case HAL_RTC_TAMPER6_EVENT_CB_ID :
596         hrtc->Tamper6EventCallback = pCallback;
597         break;
598 
599       case HAL_RTC_TAMPER7_EVENT_CB_ID :
600         hrtc->Tamper7EventCallback = pCallback;
601         break;
602 
603       case HAL_RTC_TAMPER8_EVENT_CB_ID :
604         hrtc->Tamper8EventCallback = pCallback;
605         break;
606 
607       case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
608         hrtc->InternalTamper1EventCallback = pCallback;
609         break;
610 
611       case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
612         hrtc->InternalTamper2EventCallback = pCallback;
613         break;
614 
615       case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
616         hrtc->InternalTamper3EventCallback = pCallback;
617         break;
618 
619       case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
620         hrtc->InternalTamper5EventCallback = pCallback;
621         break;
622 
623       case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
624         hrtc->InternalTamper6EventCallback = pCallback;
625         break;
626 
627       case HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID :
628         hrtc->InternalTamper7EventCallback = pCallback;
629         break;
630 
631       case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
632         hrtc->InternalTamper8EventCallback = pCallback;
633         break;
634 
635       case HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID :
636         hrtc->InternalTamper9EventCallback = pCallback;
637         break;
638 
639       case HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID :
640         hrtc->InternalTamper11EventCallback = pCallback;
641         break;
642 
643       case HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID :
644         hrtc->InternalTamper12EventCallback = pCallback;
645         break;
646 
647       case HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID :
648         hrtc->InternalTamper13EventCallback = pCallback;
649         break;
650       case HAL_RTC_MSPINIT_CB_ID :
651         hrtc->MspInitCallback = pCallback;
652         break;
653 
654       case HAL_RTC_MSPDEINIT_CB_ID :
655         hrtc->MspDeInitCallback = pCallback;
656         break;
657 
658       default :
659         /* Return error status */
660         status =  HAL_ERROR;
661         break;
662     }
663   }
664   else if (HAL_RTC_STATE_RESET == hrtc->State)
665   {
666     switch (CallbackID)
667     {
668       case HAL_RTC_MSPINIT_CB_ID :
669         hrtc->MspInitCallback = pCallback;
670         break;
671 
672       case HAL_RTC_MSPDEINIT_CB_ID :
673         hrtc->MspDeInitCallback = pCallback;
674         break;
675 
676       default :
677         /* Return error status */
678         status =  HAL_ERROR;
679         break;
680     }
681   }
682   else
683   {
684     /* Return error status */
685     status =  HAL_ERROR;
686   }
687 
688   /* Release Lock */
689   __HAL_UNLOCK(hrtc);
690 
691   return status;
692 }
693 
694 /**
695   * @brief  Unregister an RTC Callback
696   *         RTC callback is redirected to the weak predefined callback
697   * @param  hrtc RTC handle
698   * @param  CallbackID ID of the callback to be unregistered
699   *         This parameter can be one of the following values:
700   *         This parameter can be one of the following values:
701   *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID              Alarm A Event Callback ID
702   *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID              Alarm B Event Callback ID
703   *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID            TimeStamp Event Callback ID
704   *          @arg @ref HAL_RTC_SSRU_EVENT_CB_ID                 SSRU Callback ID
705   *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID          WakeUp Timer Event Callback ID
706   *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID              Tamper 1 Callback ID
707   *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID              Tamper 2 Callback ID
708   *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID              Tamper 3 Callback ID
709   *          @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID              Tamper 4 Callback ID
710   *          @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID              Tamper 5 Callback ID
711   *          @arg @ref HAL_RTC_TAMPER6_EVENT_CB_ID              Tamper 6 Callback ID
712   *          @arg @ref HAL_RTC_TAMPER7_EVENT_CB_ID              Tamper 7 Callback ID
713   *          @arg @ref HAL_RTC_TAMPER8_EVENT_CB_ID              Tamper 8 Callback ID
714   *          @arg @ref HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID     Internal Tamper 1 Callback ID
715   *          @arg @ref HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID     Internal Tamper 2 Callback ID
716   *          @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID     Internal Tamper 3 Callback ID
717   *          @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID     Internal Tamper 5 Callback ID
718   *          @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID     Internal Tamper 6 Callback ID
719   *          @arg @ref HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID     Internal Tamper 7 Callback ID
720   *          @arg @ref HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID     Internal Tamper 8 Callback ID
721   *          @arg @ref HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID     Internal Tamper 9 Callback ID
722   *          @arg @ref HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID    Internal Tamper 11 Callback ID
723   *          @arg @ref HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID    Internal Tamper 12 Callback ID
724   *          @arg @ref HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID    Internal Tamper 13 Callback ID
725   *          @arg @ref HAL_RTC_MSPINIT_CB_ID                    Msp Init callback ID
726   *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID                  Msp DeInit callback ID
727   * @retval HAL status
728   */
HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef * hrtc,HAL_RTC_CallbackIDTypeDef CallbackID)729 HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
730 {
731   HAL_StatusTypeDef status = HAL_OK;
732 
733   /* Process locked */
734   __HAL_LOCK(hrtc);
735 
736   if (HAL_RTC_STATE_READY == hrtc->State)
737   {
738     switch (CallbackID)
739     {
740       case HAL_RTC_ALARM_A_EVENT_CB_ID :
741         /* Legacy weak AlarmAEventCallback */
742         hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;
743         break;
744 
745       case HAL_RTC_ALARM_B_EVENT_CB_ID :
746         /* Legacy weak AlarmBEventCallback */
747         hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;
748         break;
749 
750       case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
751         /* Legacy weak TimeStampEventCallback */
752         hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;
753         break;
754 
755       case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
756         /* Legacy weak WakeUpTimerEventCallback */
757         hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback;
758         break;
759 
760       case HAL_RTC_SSRU_EVENT_CB_ID :
761         /* Legacy weak SSRUEventCallback */
762         hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback;
763         break;
764 
765       case HAL_RTC_TAMPER1_EVENT_CB_ID :
766         /* Legacy weak Tamper1EventCallback */
767         hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;
768         break;
769 
770       case HAL_RTC_TAMPER2_EVENT_CB_ID :
771         /* Legacy weak Tamper2EventCallback */
772         hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;
773         break;
774 
775       case HAL_RTC_TAMPER3_EVENT_CB_ID :
776         /* Legacy weak Tamper3EventCallback */
777         hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;
778         break;
779 
780       case HAL_RTC_TAMPER4_EVENT_CB_ID :
781         /* Legacy weak Tamper4EventCallback */
782         hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback;
783         break;
784 
785       case HAL_RTC_TAMPER5_EVENT_CB_ID :
786         /* Legacy weak Tamper5EventCallback */
787         hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback;
788         break;
789 
790       case HAL_RTC_TAMPER6_EVENT_CB_ID :
791         /* Legacy weak Tamper6EventCallback */
792         hrtc->Tamper6EventCallback = HAL_RTCEx_Tamper6EventCallback;
793         break;
794 
795       case HAL_RTC_TAMPER7_EVENT_CB_ID :
796         /* Legacy weak Tamper7EventCallback */
797         hrtc->Tamper7EventCallback = HAL_RTCEx_Tamper7EventCallback;
798         break;
799 
800       case HAL_RTC_TAMPER8_EVENT_CB_ID :
801         /* Legacy weak Tamper8EventCallback */
802         hrtc->Tamper8EventCallback = HAL_RTCEx_Tamper8EventCallback;
803         break;
804 
805       case HAL_RTC_INTERNAL_TAMPER1_EVENT_CB_ID :
806         /* Legacy weak InternalTamper1EventCallback */
807         hrtc->InternalTamper1EventCallback = HAL_RTCEx_InternalTamper1EventCallback;
808         break;
809 
810       case HAL_RTC_INTERNAL_TAMPER2_EVENT_CB_ID :
811         /* Legacy weak InternalTamper2EventCallback */
812         hrtc->InternalTamper2EventCallback = HAL_RTCEx_InternalTamper2EventCallback;
813         break;
814 
815       case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
816         /* Legacy weak InternalTamper3EventCallback */
817         hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback;
818         break;
819 
820       case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
821         /* Legacy weak InternalTamper5EventCallback */
822         hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback;
823         break;
824 
825       case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
826         /* Legacy weak InternalTamper6EventCallback */
827         hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback;
828         break;
829 
830       case HAL_RTC_INTERNAL_TAMPER7_EVENT_CB_ID :
831         /* Legacy weak InternalTamper7EventCallback */
832         hrtc->InternalTamper7EventCallback = HAL_RTCEx_InternalTamper7EventCallback;
833         break;
834 
835       case HAL_RTC_INTERNAL_TAMPER8_EVENT_CB_ID :
836         /* Legacy weak InternalTamper8EventCallback */
837         hrtc->InternalTamper8EventCallback = HAL_RTCEx_InternalTamper8EventCallback;
838         break;
839 
840       case HAL_RTC_INTERNAL_TAMPER9_EVENT_CB_ID :
841         /* Legacy weak InternalTamper9EventCallback */
842         hrtc->InternalTamper9EventCallback = HAL_RTCEx_InternalTamper9EventCallback;
843         break;
844 
845       case HAL_RTC_INTERNAL_TAMPER11_EVENT_CB_ID :
846         /* Legacy weak InternalTamper11EventCallback */
847         hrtc->InternalTamper11EventCallback = HAL_RTCEx_InternalTamper11EventCallback;
848         break;
849 
850       case HAL_RTC_INTERNAL_TAMPER12_EVENT_CB_ID :
851         /* Legacy weak InternalTamper12EventCallback */
852         hrtc->InternalTamper12EventCallback = HAL_RTCEx_InternalTamper12EventCallback;
853         break;
854 
855       case HAL_RTC_INTERNAL_TAMPER13_EVENT_CB_ID :
856         /* Legacy weak InternalTamper13EventCallback */
857         hrtc->InternalTamper13EventCallback = HAL_RTCEx_InternalTamper13EventCallback;
858         break;
859       case HAL_RTC_MSPINIT_CB_ID :
860         hrtc->MspInitCallback = HAL_RTC_MspInit;
861         break;
862 
863       case HAL_RTC_MSPDEINIT_CB_ID :
864         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
865         break;
866 
867       default :
868         /* Return error status */
869         status =  HAL_ERROR;
870         break;
871     }
872   }
873   else if (HAL_RTC_STATE_RESET == hrtc->State)
874   {
875     switch (CallbackID)
876     {
877       case HAL_RTC_MSPINIT_CB_ID :
878         hrtc->MspInitCallback = HAL_RTC_MspInit;
879         break;
880 
881       case HAL_RTC_MSPDEINIT_CB_ID :
882         hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
883         break;
884 
885       default :
886         /* Return error status */
887         status =  HAL_ERROR;
888         break;
889     }
890   }
891   else
892   {
893     /* Return error status */
894     status =  HAL_ERROR;
895   }
896 
897   /* Release Lock */
898   __HAL_UNLOCK(hrtc);
899 
900   return status;
901 }
902 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
903 
904 /**
905   * @brief  Initialize the RTC MSP.
906   * @param  hrtc RTC handle
907   * @retval None
908   */
HAL_RTC_MspInit(RTC_HandleTypeDef * hrtc)909 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
910 {
911   /* Prevent unused argument(s) compilation warning */
912   UNUSED(hrtc);
913 
914   /* NOTE : This function should not be modified, when the callback is needed,
915             the HAL_RTC_MspInit could be implemented in the user file
916    */
917 }
918 
919 /**
920   * @brief  DeInitialize the RTC MSP.
921   * @param  hrtc RTC handle
922   * @retval None
923   */
HAL_RTC_MspDeInit(RTC_HandleTypeDef * hrtc)924 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
925 {
926   /* Prevent unused argument(s) compilation warning */
927   UNUSED(hrtc);
928 
929   /* NOTE : This function should not be modified, when the callback is needed,
930             the HAL_RTC_MspDeInit could be implemented in the user file
931    */
932 }
933 
934 /**
935   * @}
936   */
937 
938 /** @addtogroup RTC_Exported_Functions_Group2
939   *  @brief   RTC Time and Date functions
940   *
941 @verbatim
942  ===============================================================================
943                  ##### RTC Time and Date functions #####
944  ===============================================================================
945 
946  [..] This section provides functions allowing to configure Time and Date features
947 
948 @endverbatim
949   * @{
950   */
951 
952 /**
953   * @brief  Set RTC current time.
954   * @param  hrtc RTC handle
955   * @param  sTime Pointer to Time structure
956   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically
957   *          reset to 0xFFFFFFFF
958   *          else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to the
959   *          A 7-bit async prescaler (RTC_PRER_PREDIV_A)
960   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
961   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
962   *          else this parameter can be one of the following values
963   *             @arg RTC_FORMAT_BIN: Binary format
964   *             @arg RTC_FORMAT_BCD: BCD format
965   * @retval HAL status
966   */
HAL_RTC_SetTime(RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)967 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
968 {
969   uint32_t tmpreg;
970   HAL_StatusTypeDef status;
971 
972 #ifdef USE_FULL_ASSERT
973   /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration. */
974   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
975   {
976     /* Check the parameters */
977     assert_param(IS_RTC_FORMAT(Format));
978   }
979 #endif /* USE_FULL_ASSERT */
980 
981   /* Process Locked */
982   __HAL_LOCK(hrtc);
983 
984   hrtc->State = HAL_RTC_STATE_BUSY;
985 
986   /* Disable the write protection for RTC registers */
987   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
988 
989   /* Enter Initialization mode */
990   status = RTC_EnterInitMode(hrtc);
991   if (status == HAL_OK)
992   {
993     /* Check Binary mode ((32-bit free-running counter) */
994     if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
995     {
996       if (Format == RTC_FORMAT_BIN)
997       {
998         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
999         {
1000           assert_param(IS_RTC_HOUR12(sTime->Hours));
1001           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1002         }
1003         else
1004         {
1005           sTime->TimeFormat = 0x00U;
1006           assert_param(IS_RTC_HOUR24(sTime->Hours));
1007         }
1008         assert_param(IS_RTC_MINUTES(sTime->Minutes));
1009         assert_param(IS_RTC_SECONDS(sTime->Seconds));
1010 
1011         tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
1012                             ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1013                             ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
1014                             (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
1015       }
1016       else
1017       {
1018         if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1019         {
1020           assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
1021           assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
1022         }
1023         else
1024         {
1025           sTime->TimeFormat = 0x00U;
1026           assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
1027         }
1028         assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
1029         assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
1030         tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
1031                   ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
1032                   ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
1033                   ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
1034       }
1035 
1036       /* Set the RTC_TR register */
1037       WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
1038 
1039       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
1040       CLEAR_BIT(RTC->CR, RTC_CR_BKP);
1041 
1042       /* This interface is deprecated. To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions */
1043       SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation));
1044     }
1045 
1046     /* Exit Initialization mode */
1047     status = RTC_ExitInitMode(hrtc);
1048   }
1049 
1050   /* Enable the write protection for RTC registers */
1051   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1052 
1053   if (status == HAL_OK)
1054   {
1055     hrtc->State = HAL_RTC_STATE_READY;
1056   }
1057 
1058   /* Process Unlocked */
1059   __HAL_UNLOCK(hrtc);
1060 
1061   return status;
1062 }
1063 
1064 /**
1065   * @brief  Daylight Saving Time, Add one hour to the calendar in one single operation
1066   *         without going through the initialization procedure.
1067   * @param  hrtc RTC handle
1068   * @retval None
1069   */
HAL_RTC_DST_Add1Hour(const RTC_HandleTypeDef * hrtc)1070 void HAL_RTC_DST_Add1Hour(const RTC_HandleTypeDef *hrtc)
1071 {
1072   UNUSED(hrtc);
1073   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1074   SET_BIT(RTC->CR, RTC_CR_ADD1H);
1075   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1076 }
1077 
1078 /**
1079   * @brief  Daylight Saving Time, Subtract one hour from the calendar in one
1080   *         single operation without going through the initialization procedure.
1081   * @param  hrtc RTC handle
1082   * @retval None
1083   */
HAL_RTC_DST_Sub1Hour(const RTC_HandleTypeDef * hrtc)1084 void HAL_RTC_DST_Sub1Hour(const RTC_HandleTypeDef *hrtc)
1085 {
1086   UNUSED(hrtc);
1087   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1088   SET_BIT(RTC->CR, RTC_CR_SUB1H);
1089   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1090 }
1091 
1092 /**
1093   * @brief  Daylight Saving Time, Set the store operation bit.
1094   * @note   It can be used by the software in order to memorize the DST status.
1095   * @param  hrtc RTC handle
1096   * @retval None
1097   */
HAL_RTC_DST_SetStoreOperation(const RTC_HandleTypeDef * hrtc)1098 void HAL_RTC_DST_SetStoreOperation(const RTC_HandleTypeDef *hrtc)
1099 {
1100   UNUSED(hrtc);
1101   SET_BIT(RTC->CR, RTC_CR_BKP);
1102 }
1103 
1104 /**
1105   * @brief  Daylight Saving Time, Clear the store operation bit.
1106   * @param  hrtc RTC handle
1107   * @retval None
1108   */
HAL_RTC_DST_ClearStoreOperation(const RTC_HandleTypeDef * hrtc)1109 void HAL_RTC_DST_ClearStoreOperation(const RTC_HandleTypeDef *hrtc)
1110 {
1111   UNUSED(hrtc);
1112   CLEAR_BIT(RTC->CR, RTC_CR_BKP);
1113 }
1114 
1115 /**
1116   * @brief  Daylight Saving Time, Read the store operation bit.
1117   * @param  hrtc RTC handle
1118   * @retval operation see RTC_StoreOperation_Definitions
1119   */
HAL_RTC_DST_ReadStoreOperation(const RTC_HandleTypeDef * hrtc)1120 uint32_t HAL_RTC_DST_ReadStoreOperation(const RTC_HandleTypeDef *hrtc)
1121 {
1122   UNUSED(hrtc);
1123   return READ_BIT(RTC->CR, RTC_CR_BKP);
1124 }
1125 
1126 /**
1127   * @brief  Get RTC current time.
1128   * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
1129   *        value in second fraction ratio with time unit following generic formula:
1130   *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
1131   *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
1132   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1133   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1134   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
1135   *        to ensure consistency between the time and date values.
1136   * @param  hrtc RTC handle
1137   * @param  sTime
1138   *          if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
1139   *          else
1140   *             Pointer to Time structure with Hours, Minutes and Seconds fields returned
1141   *               with input format (BIN or BCD), also SubSeconds field returning the
1142   *               RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
1143   *               factor to be used for second fraction ratio computation.
1144   * @param  Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
1145   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1146   *          else this parameter can be one of the following values:
1147   *            @arg RTC_FORMAT_BIN: Binary format
1148   *            @arg RTC_FORMAT_BCD: BCD format
1149   * @retval HAL status
1150   */
HAL_RTC_GetTime(const RTC_HandleTypeDef * hrtc,RTC_TimeTypeDef * sTime,uint32_t Format)1151 HAL_StatusTypeDef HAL_RTC_GetTime(const RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
1152 {
1153   uint32_t tmpreg;
1154 
1155   UNUSED(hrtc);
1156   /* Get subseconds structure field from the corresponding register */
1157   sTime->SubSeconds = READ_REG(RTC->SSR);
1158 
1159 
1160   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
1161   {
1162     /* Check the parameters */
1163     assert_param(IS_RTC_FORMAT(Format));
1164 
1165     /* Get SecondFraction structure field from the corresponding register field */
1166     sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
1167 
1168     /* Get the TR register */
1169     tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
1170 
1171     /* Fill the structure fields with the read parameters */
1172     sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
1173     sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
1174     sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
1175     sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
1176 
1177     /* Check the input parameters format */
1178     if (Format == RTC_FORMAT_BIN)
1179     {
1180       /* Convert the time structure parameters to Binary format */
1181       sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
1182       sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
1183       sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
1184     }
1185   }
1186   else
1187   {
1188     /* Initialize structure fields */
1189     sTime->Hours = 0U;
1190     sTime->Minutes = 0U;
1191     sTime->Seconds = 0U;
1192     sTime->TimeFormat = 0U;
1193     sTime->SecondFraction = 0U;
1194   }
1195 
1196   return HAL_OK;
1197 }
1198 
1199 /**
1200   * @brief  Set RTC current date.
1201   * @param  hrtc RTC handle
1202   * @param  sDate Pointer to date structure
1203   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1204   *          This parameter can be one of the following values:
1205   *            @arg RTC_FORMAT_BIN: Binary format
1206   *            @arg RTC_FORMAT_BCD: BCD format
1207   * @retval HAL status
1208   */
HAL_RTC_SetDate(RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1209 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1210 {
1211   uint32_t datetmpreg;
1212   HAL_StatusTypeDef status;
1213 
1214   /* Check the parameters */
1215   assert_param(IS_RTC_FORMAT(Format));
1216 
1217   /* Process Locked */
1218   __HAL_LOCK(hrtc);
1219 
1220   hrtc->State = HAL_RTC_STATE_BUSY;
1221 
1222   if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
1223   {
1224     sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
1225   }
1226 
1227   assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
1228 
1229   if (Format == RTC_FORMAT_BIN)
1230   {
1231     assert_param(IS_RTC_YEAR(sDate->Year));
1232     assert_param(IS_RTC_MONTH(sDate->Month));
1233     assert_param(IS_RTC_DATE(sDate->Date));
1234 
1235     datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
1236                   ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
1237                   ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
1238                   ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
1239   }
1240   else
1241   {
1242     assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
1243     assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
1244     assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
1245 
1246     datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
1247                   (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
1248                   (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
1249                   (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
1250   }
1251 
1252   /* Disable the write protection for RTC registers */
1253   __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1254 
1255   /* Enter Initialization mode */
1256   status = RTC_EnterInitMode(hrtc);
1257   if (status == HAL_OK)
1258   {
1259     /* Set the RTC_DR register */
1260     WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
1261 
1262     /* Exit Initialization mode */
1263     status = RTC_ExitInitMode(hrtc);
1264   }
1265 
1266   /* Enable the write protection for RTC registers */
1267   __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1268 
1269   if (status == HAL_OK)
1270   {
1271     hrtc->State = HAL_RTC_STATE_READY ;
1272   }
1273 
1274   /* Process Unlocked */
1275   __HAL_UNLOCK(hrtc);
1276 
1277   return status;
1278 }
1279 
1280 /**
1281   * @brief  Get RTC current date.
1282   * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1283   *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
1284   *        Reading RTC current time locks the values in calendar shadow registers until Current date is read.
1285   * @param  hrtc RTC handle
1286   * @param  sDate Pointer to Date structure
1287   * @param  Format Format of sDate->Year, sDate->Month and sDate->Weekday.
1288   *          This parameter can be one of the following values:
1289   *            @arg RTC_FORMAT_BIN: Binary format
1290   *            @arg RTC_FORMAT_BCD: BCD format
1291   * @retval HAL status
1292   */
HAL_RTC_GetDate(const RTC_HandleTypeDef * hrtc,RTC_DateTypeDef * sDate,uint32_t Format)1293 HAL_StatusTypeDef HAL_RTC_GetDate(const RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
1294 {
1295   uint32_t datetmpreg;
1296 
1297   UNUSED(hrtc);
1298   /* Check the parameters */
1299   assert_param(IS_RTC_FORMAT(Format));
1300 
1301   /* Get the DR register */
1302   datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
1303 
1304   /* Fill the structure fields with the read parameters */
1305   sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
1306   sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
1307   sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
1308   sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
1309 
1310   /* Check the input parameters format */
1311   if (Format == RTC_FORMAT_BIN)
1312   {
1313     /* Convert the date structure parameters to Binary format */
1314     sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
1315     sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1316     sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1317   }
1318   return HAL_OK;
1319 }
1320 
1321 /**
1322   * @}
1323   */
1324 
1325 /** @addtogroup RTC_Exported_Functions_Group3
1326   *  @brief   RTC Alarm functions
1327   *
1328 @verbatim
1329  ===============================================================================
1330                  ##### RTC Alarm functions #####
1331  ===============================================================================
1332 
1333  [..] This section provides functions allowing to configure Alarm feature
1334 
1335 @endverbatim
1336   * @{
1337   */
1338 /**
1339   * @brief  Set the specified RTC Alarm.
1340   * @param  hrtc RTC handle
1341   * @param  sAlarm Pointer to Alarm structure
1342   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1343   *             sAlarm->AlarmTime.SubSeconds
1344   *             sAlarm->AlarmSubSecondMask
1345   *             sAlarm->BinaryAutoClr
1346   * @param  Format of the entered parameters.
1347   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1348   *          else this parameter can be one of the following values
1349   *             @arg RTC_FORMAT_BIN: Binary format
1350   *             @arg RTC_FORMAT_BCD: BCD format
1351   * @retval HAL status
1352   */
HAL_RTC_SetAlarm(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1353 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1354 {
1355   uint32_t tmpreg = 0;
1356   uint32_t binaryMode;
1357 
1358   /* Process Locked */
1359   __HAL_LOCK(hrtc);
1360 
1361   hrtc->State = HAL_RTC_STATE_BUSY;
1362 
1363 #ifdef  USE_FULL_ASSERT
1364   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
1365   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1366   {
1367     assert_param(IS_RTC_FORMAT(Format));
1368     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1369     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1370     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1371     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1372     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1373   }
1374   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1375   {
1376     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1377     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1378   }
1379   else /* RTC_BINARY_MIX */
1380   {
1381     assert_param(IS_RTC_FORMAT(Format));
1382     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1383     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1384     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1385     /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items
1386        + the upper SSR bits */
1387     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <=
1388                  (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1389   }
1390 #endif /* USE_FULL_ASSERT */
1391 
1392   /* Get Binary mode (32-bit free-running counter configuration) */
1393   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1394 
1395   if (binaryMode != RTC_BINARY_ONLY)
1396   {
1397     if (Format == RTC_FORMAT_BIN)
1398     {
1399       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1400       {
1401         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1402         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1403       }
1404       else
1405       {
1406         sAlarm->AlarmTime.TimeFormat = 0x00U;
1407         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1408       }
1409       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1410       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1411 
1412       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1413       {
1414         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1415       }
1416       else
1417       {
1418         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1419       }
1420       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1421                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1422                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1423                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1424                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1425                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1426                 ((uint32_t)sAlarm->AlarmMask));
1427     }
1428     else /* format BCD */
1429     {
1430       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1431       {
1432         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1433         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1434       }
1435       else
1436       {
1437         sAlarm->AlarmTime.TimeFormat = 0x00U;
1438         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1439       }
1440 
1441       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1442       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1443 
1444 #ifdef  USE_FULL_ASSERT
1445       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1446       {
1447         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1448       }
1449       else
1450       {
1451         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1452       }
1453 
1454 #endif /* USE_FULL_ASSERT */
1455       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1456                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1457                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1458                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1459                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1460                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1461                 ((uint32_t)sAlarm->AlarmMask));
1462     }
1463   }
1464 
1465 
1466   /* Configure the Alarm register */
1467   if (sAlarm->Alarm == RTC_ALARM_A)
1468   {
1469     /* Disable the Alarm A interrupt */
1470     /* In case of interrupt mode is used, the interrupt source must disabled */
1471     CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
1472     /* Clear flag alarm A */
1473     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1474 
1475     if (binaryMode == RTC_BINARY_ONLY)
1476     {
1477       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1478     }
1479     else
1480     {
1481       WRITE_REG(RTC->ALRMAR, tmpreg);
1482       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1483     }
1484 
1485     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1486 
1487     if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1488     {
1489       /* Configure the  Alarm A output clear */
1490       SET_BIT(RTC->CR, RTC_CR_ALRAOCLR);
1491     }
1492     else
1493     {
1494       /* Disable the  Alarm A  output clear */
1495       CLEAR_BIT(RTC->CR, RTC_CR_ALRAOCLR);
1496     }
1497     /* Configure the Alarm state: Enable Alarm */
1498     SET_BIT(RTC->CR, RTC_CR_ALRAE);
1499   }
1500   else
1501   {
1502     /* Disable the Alarm B interrupt */
1503     /* In case of interrupt mode is used, the interrupt source must disabled */
1504     CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
1505     /* Clear flag alarm B */
1506     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1507 
1508     if (binaryMode == RTC_BINARY_ONLY)
1509     {
1510       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1511     }
1512     else
1513     {
1514       WRITE_REG(RTC->ALRMBR, tmpreg);
1515       WRITE_REG(RTC->ALRMBSSR,  sAlarm->AlarmSubSecondMask);
1516     }
1517 
1518     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1519     if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1520     {
1521       /* Configure the  Alarm B output clear */
1522       SET_BIT(RTC->CR, RTC_CR_ALRBOCLR);
1523     }
1524     else
1525     {
1526       /* Disable the  Alarm B output clear */
1527       CLEAR_BIT(RTC->CR, RTC_CR_ALRBOCLR);
1528     }
1529     /* Configure the Alarm state: Enable Alarm */
1530     SET_BIT(RTC->CR, RTC_CR_ALRBE);
1531   }
1532 
1533 
1534   /* Change RTC state */
1535   hrtc->State = HAL_RTC_STATE_READY;
1536 
1537   /* Process Unlocked */
1538   __HAL_UNLOCK(hrtc);
1539 
1540   return HAL_OK;
1541 }
1542 
1543 /**
1544   * @brief  Set the specified RTC Alarm with Interrupt.
1545   * @param  hrtc RTC handle
1546   * @param  sAlarm Pointer to Alarm structure
1547   *          if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
1548   *             sAlarm->AlarmTime.SubSeconds
1549   *             sAlarm->AlarmSubSecondMask
1550   *             sAlarm->BinaryAutoClr
1551   * @param  Format Specifies the format of the entered parameters.
1552   *          if Binary mode is RTC_BINARY_ONLY, this parameter is not used
1553   *          else this parameter can be one of the following values
1554   *             @arg RTC_FORMAT_BIN: Binary format
1555   *             @arg RTC_FORMAT_BCD: BCD format
1556   * @retval HAL status
1557   */
HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Format)1558 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
1559 {
1560   uint32_t tmpreg = 0;
1561   uint32_t binaryMode;
1562 
1563   /* Process Locked */
1564   __HAL_LOCK(hrtc);
1565 
1566   hrtc->State = HAL_RTC_STATE_BUSY;
1567 
1568 #ifdef  USE_FULL_ASSERT
1569   /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
1570   if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
1571   {
1572     assert_param(IS_RTC_FORMAT(Format));
1573     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1574     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1575     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1576     assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
1577     assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1578   }
1579   else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
1580   {
1581     assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
1582     assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
1583   }
1584   else /* RTC_BINARY_MIX */
1585   {
1586     assert_param(IS_RTC_FORMAT(Format));
1587     assert_param(IS_RTC_ALARM(sAlarm->Alarm));
1588     assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
1589     assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
1590     /* In Binary Mix Mode, the RTC can not generate an alarm on a match
1591      involving all calendar items + the upper SSR bits */
1592     assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <=
1593                  (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
1594   }
1595 #endif /* USE_FULL_ASSERT */
1596 
1597   /* Get Binary mode (32-bit free-running counter configuration) */
1598   binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
1599 
1600   if (binaryMode != RTC_BINARY_ONLY)
1601   {
1602     if (Format == RTC_FORMAT_BIN)
1603     {
1604       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1605       {
1606         assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
1607         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1608       }
1609       else
1610       {
1611         sAlarm->AlarmTime.TimeFormat = 0x00U;
1612         assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
1613       }
1614       assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
1615       assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1616 
1617       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1618       {
1619         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
1620       }
1621       else
1622       {
1623         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
1624       }
1625       tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1626                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1627                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1628                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1629                 ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1630                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1631                 ((uint32_t)sAlarm->AlarmMask));
1632     }
1633     else /* Format BCD */
1634     {
1635       if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
1636       {
1637         assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1638         assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1639       }
1640       else
1641       {
1642         sAlarm->AlarmTime.TimeFormat = 0x00U;
1643         assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1644       }
1645 
1646       assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1647       assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1648 
1649 #ifdef  USE_FULL_ASSERT
1650       if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
1651       {
1652         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1653       }
1654       else
1655       {
1656         assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1657       }
1658 
1659 #endif /* USE_FULL_ASSERT */
1660       tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
1661                 ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
1662                 ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
1663                 ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
1664                 ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
1665                 ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1666                 ((uint32_t)sAlarm->AlarmMask));
1667 
1668     }
1669   }
1670 
1671 
1672   /* Configure the Alarm registers */
1673   if (sAlarm->Alarm == RTC_ALARM_A)
1674   {
1675     /* Disable the Alarm A interrupt */
1676     CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1677     /* Clear flag alarm A */
1678     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1679 
1680     if (binaryMode == RTC_BINARY_ONLY)
1681     {
1682       RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
1683     }
1684     else
1685     {
1686       WRITE_REG(RTC->ALRMAR, tmpreg);
1687       WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
1688     }
1689 
1690     WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
1691 
1692     if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1693     {
1694       /* Configure the  Alarm A output clear */
1695       SET_BIT(RTC->CR, RTC_CR_ALRAOCLR);
1696     }
1697     else
1698     {
1699       /* Disable the  Alarm A output clear*/
1700       CLEAR_BIT(RTC->CR, RTC_CR_ALRAOCLR);
1701     }
1702 
1703     /* Configure the Alarm interrupt */
1704     SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1705   }
1706   else
1707   {
1708     /* Disable the Alarm B interrupt */
1709     CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1710     /* Clear flag alarm B */
1711     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1712 
1713     if (binaryMode == RTC_BINARY_ONLY)
1714     {
1715       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
1716     }
1717     else
1718     {
1719       WRITE_REG(RTC->ALRMBR, tmpreg);
1720       WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
1721     }
1722 
1723     WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
1724 
1725     if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
1726     {
1727       /* Configure the  Alarm B Output clear */
1728       SET_BIT(RTC->CR, RTC_CR_ALRBOCLR);
1729     }
1730     else
1731     {
1732       /* Disable the  Alarm B Output clear */
1733       CLEAR_BIT(RTC->CR, RTC_CR_ALRBOCLR);
1734     }
1735 
1736     /* Configure the Alarm interrupt */
1737     SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1738   }
1739 
1740 
1741 
1742   hrtc->State = HAL_RTC_STATE_READY;
1743 
1744   /* Process Unlocked */
1745   __HAL_UNLOCK(hrtc);
1746 
1747   return HAL_OK;
1748 }
1749 
1750 /**
1751   * @brief  Deactivate the specified RTC Alarm.
1752   * @param  hrtc RTC handle
1753   * @param  Alarm Specifies the Alarm.
1754   *          This parameter can be one of the following values:
1755   *            @arg RTC_ALARM_A:  AlarmA
1756   *            @arg RTC_ALARM_B:  AlarmB
1757   * @retval HAL status
1758   */
HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef * hrtc,uint32_t Alarm)1759 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1760 {
1761   /* Check the parameters */
1762   assert_param(IS_RTC_ALARM(Alarm));
1763 
1764   /* Process Locked */
1765   __HAL_LOCK(hrtc);
1766 
1767   hrtc->State = HAL_RTC_STATE_BUSY;
1768 
1769 
1770   /* In case of interrupt mode is used, the interrupt source must disabled */
1771   if (Alarm == RTC_ALARM_A)
1772   {
1773     CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
1774     /* AlarmA, Clear SSCLR */
1775     CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
1776   }
1777   else
1778   {
1779     CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
1780     /* AlarmB, Clear SSCLR */
1781     CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMBSSR_SSCLR);
1782   }
1783 
1784 
1785   hrtc->State = HAL_RTC_STATE_READY;
1786 
1787   /* Process Unlocked */
1788   __HAL_UNLOCK(hrtc);
1789 
1790   return HAL_OK;
1791 }
1792 
1793 /**
1794   * @brief  Get the RTC Alarm value and masks.
1795   * @param  hrtc RTC handle
1796   * @param  sAlarm Pointer to Date structure
1797   * @param  Alarm Specifies the Alarm.
1798   *          This parameter can be one of the following values:
1799   *             @arg RTC_ALARM_A: AlarmA
1800   *             @arg RTC_ALARM_B: AlarmB
1801   * @param  Format Specifies the format of the entered parameters.
1802   *          This parameter can be one of the following values:
1803   *             @arg RTC_FORMAT_BIN: Binary format
1804   *             @arg RTC_FORMAT_BCD: BCD format
1805   * @retval HAL status
1806   */
HAL_RTC_GetAlarm(const RTC_HandleTypeDef * hrtc,RTC_AlarmTypeDef * sAlarm,uint32_t Alarm,uint32_t Format)1807 HAL_StatusTypeDef HAL_RTC_GetAlarm(const RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm,
1808                                    uint32_t Format)
1809 {
1810   uint32_t tmpreg;
1811   uint32_t subsecondtmpreg;
1812 
1813   UNUSED(hrtc);
1814   /* Check the parameters */
1815   assert_param(IS_RTC_FORMAT(Format));
1816   assert_param(IS_RTC_ALARM(Alarm));
1817 
1818   if (Alarm == RTC_ALARM_A)
1819   {
1820     /* AlarmA */
1821     sAlarm->Alarm = RTC_ALARM_A;
1822 
1823     tmpreg = READ_REG(RTC->ALRMAR);
1824     subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMASSR) & RTC_ALRMASSR_SS);
1825 
1826     /* Fill the structure with the read parameters */
1827     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
1828     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
1829     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
1830     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
1831     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1832     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
1833     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
1834     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1835   }
1836   else
1837   {
1838     sAlarm->Alarm = RTC_ALARM_B;
1839 
1840     tmpreg = READ_REG(RTC->ALRMBR);
1841     subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMBSSR) & RTC_ALRMBSSR_SS);
1842 
1843     /* Fill the structure with the read parameters */
1844     sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
1845     sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
1846     sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
1847     sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
1848     sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
1849     sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
1850     sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
1851     sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1852   }
1853 
1854   if (Format == RTC_FORMAT_BIN)
1855   {
1856     sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
1857     sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
1858     sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
1859     sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1860   }
1861 
1862   return HAL_OK;
1863 }
1864 
1865 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
1866 /**
1867   * @brief  Handle Alarm secure interrupt request.
1868   * @param  hrtc RTC handle
1869   * @retval None
1870   */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1871 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1872 {
1873   /* Get interrupt status */
1874   uint32_t tmp = READ_REG(RTC->SMISR);
1875 
1876   if ((tmp & RTC_SMISR_ALRAMF) != 0U)
1877   {
1878     /* Clear the AlarmA interrupt pending bit */
1879     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1880 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1881     /* Call Compare Match registered Callback */
1882     hrtc->AlarmAEventCallback(hrtc);
1883 #else
1884     HAL_RTC_AlarmAEventCallback(hrtc);
1885 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1886   }
1887 
1888   if ((tmp & RTC_SMISR_ALRBMF) != 0U)
1889   {
1890     /* Clear the AlarmB interrupt pending bit */
1891     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1892 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1893     /* Call Compare Match registered Callback */
1894     hrtc->AlarmBEventCallback(hrtc);
1895 #else
1896     HAL_RTCEx_AlarmBEventCallback(hrtc);
1897 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1898 
1899   }
1900 
1901   /* Change RTC state */
1902   hrtc->State = HAL_RTC_STATE_READY;
1903 }
1904 
1905 #else /* #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
1906 
1907 /**
1908   * @brief  Handle Alarm non-secure interrupt request.
1909   * @note   Alarm non-secure is available in non-secure driver.
1910   * @param  hrtc RTC handle
1911   * @retval None
1912   */
HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef * hrtc)1913 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
1914 {
1915   /* Get interrupt status */
1916   uint32_t tmp = READ_REG(RTC->MISR);
1917 
1918   if ((tmp & RTC_MISR_ALRAMF) != 0U)
1919   {
1920     /* Clear the AlarmA interrupt pending bit */
1921     WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1922 
1923 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1924     /* Call Compare Match registered Callback */
1925     hrtc->AlarmAEventCallback(hrtc);
1926 #else
1927     HAL_RTC_AlarmAEventCallback(hrtc);
1928 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1929   }
1930 
1931   if ((tmp & RTC_MISR_ALRBMF) != 0U)
1932   {
1933     /* Clear the AlarmB interrupt pending bit */
1934     WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
1935 #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
1936     /* Call Compare Match registered Callback */
1937     hrtc->AlarmBEventCallback(hrtc);
1938 #else
1939     HAL_RTCEx_AlarmBEventCallback(hrtc);
1940 #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
1941   }
1942 
1943   /* Change RTC state */
1944   hrtc->State = HAL_RTC_STATE_READY;
1945 }
1946 #endif /* #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */
1947 
1948 /**
1949   * @brief  Alarm A secure secure callback.
1950   * @param  hrtc RTC handle
1951   * @retval None
1952   */
HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef * hrtc)1953 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1954 {
1955   /* Prevent unused argument(s) compilation warning */
1956   UNUSED(hrtc);
1957 
1958   /* NOTE : This function should not be modified, when the secure secure callback is needed,
1959             the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1960    */
1961 }
1962 
1963 /**
1964   * @brief  Handle AlarmA Polling request.
1965   * @param  hrtc RTC handle
1966   * @param  Timeout Timeout duration
1967   * @retval HAL status
1968   */
HAL_RTC_PollForAlarmAEvent(const RTC_HandleTypeDef * hrtc,uint32_t Timeout)1969 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(const RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1970 {
1971   /* Prevent unused argument(s) compilation warning */
1972   UNUSED(hrtc);
1973 
1974   uint32_t tickstart = HAL_GetTick();
1975 
1976   while (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U)
1977   {
1978     if (Timeout != HAL_MAX_DELAY)
1979     {
1980       if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1981       {
1982         /* New check to avoid false timeout detection in case of preemption */
1983         if (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U)
1984         {
1985           return HAL_TIMEOUT;
1986         }
1987         else
1988         {
1989           break;
1990         }
1991       }
1992     }
1993   }
1994 
1995   /* Clear the Alarm interrupt pending bit */
1996   WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
1997 
1998   return HAL_OK;
1999 }
2000 
2001 /**
2002   * @}
2003   */
2004 
2005 /** @addtogroup RTC_Exported_Functions_Group4
2006   *  @brief   Peripheral Control functions
2007   *
2008 @verbatim
2009  ===============================================================================
2010                      ##### Peripheral Control functions #####
2011  ===============================================================================
2012     [..]
2013     This subsection provides functions allowing to
2014       (+) Wait for RTC Time and Date Synchronization
2015 
2016 @endverbatim
2017   * @{
2018   */
2019 
2020 /**
2021   * @brief  Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
2022   *         synchronized with RTC APB clock.
2023   * @note   The RTC Resynchronization mode is write protected, use the
2024   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2025   * @note   To read the calendar through the shadow registers after Calendar
2026   *         initialization, calendar update or after wakeup from low power modes
2027   *         the software must first clear the RSF flag.
2028   *         The software must then wait until it is set again before reading
2029   *         the calendar, which means that the calendar registers have been
2030   *         correctly copied into the RTC_TR and RTC_DR shadow registers.
2031   * @param  hrtc RTC handle
2032   * @retval HAL status
2033   */
HAL_RTC_WaitForSynchro(RTC_HandleTypeDef * hrtc)2034 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
2035 {
2036   uint32_t tickstart;
2037 
2038   /* Clear RSF flag */
2039   CLEAR_BIT(RTC->ICSR, RTC_ICSR_RSF);
2040 
2041   tickstart = HAL_GetTick();
2042 
2043   /* Wait the registers to be synchronised */
2044   while (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U)
2045   {
2046     if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
2047     {
2048       /* New check to avoid false timeout detection in case of preemption */
2049       if (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U)
2050       {
2051         /* Change RTC state */
2052         hrtc->State = HAL_RTC_STATE_TIMEOUT;
2053         return HAL_TIMEOUT;
2054       }
2055       else
2056       {
2057         break;
2058       }
2059     }
2060   }
2061 
2062   return HAL_OK;
2063 }
2064 
2065 /**
2066   * @}
2067   */
2068 
2069 /** @addtogroup RTC_Exported_Functions_Group5
2070   *  @brief   Peripheral State functions
2071   *
2072 @verbatim
2073  ===============================================================================
2074                      ##### Peripheral State functions #####
2075  ===============================================================================
2076     [..]
2077     This subsection provides functions allowing to
2078       (+) Get RTC state
2079 
2080 @endverbatim
2081   * @{
2082   */
2083 /**
2084   * @brief  Return the RTC handle state.
2085   * @param  hrtc RTC handle
2086   * @retval HAL state
2087   */
HAL_RTC_GetState(const RTC_HandleTypeDef * hrtc)2088 HAL_RTCStateTypeDef HAL_RTC_GetState(const RTC_HandleTypeDef *hrtc)
2089 {
2090   /* Return RTC handle state */
2091   return hrtc->State;
2092 }
2093 
2094 /**
2095   * @}
2096   */
2097 /**
2098   * @}
2099   */
2100 
2101 /** @addtogroup RTC_Private_Functions
2102   * @{
2103   */
2104 /**
2105   * @brief  Enter the RTC Initialization mode.
2106   * @note   The RTC Initialization mode is write protected, use the
2107   *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
2108   * @param  hrtc RTC handle
2109   * @retval HAL status
2110   */
RTC_EnterInitMode(RTC_HandleTypeDef * hrtc)2111 HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
2112 {
2113   uint32_t tickstart;
2114   HAL_StatusTypeDef status = HAL_OK;
2115 
2116   /* Check if the Initialization mode is set */
2117   if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
2118   {
2119     /* Set the Initialization mode */
2120     SET_BIT(RTC->ICSR, RTC_ICSR_INIT);
2121 
2122     tickstart = HAL_GetTick();
2123     /* Wait till RTC is in INIT state and if Time out is reached exit */
2124     while ((READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U) && (status != HAL_TIMEOUT))
2125     {
2126       if ((HAL_GetTick()  - tickstart) > RTC_TIMEOUT_VALUE)
2127       {
2128         /* New check to avoid false timeout detection in case of preemption */
2129         if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
2130         {
2131           status = HAL_TIMEOUT;
2132 
2133           /* Change RTC state */
2134           hrtc->State = HAL_RTC_STATE_TIMEOUT;
2135         }
2136         else
2137         {
2138           break;
2139         }
2140       }
2141     }
2142   }
2143 
2144   return status;
2145 }
2146 
2147 /**
2148   * @brief  Exit the RTC Initialization mode.
2149   * @param  hrtc RTC handle
2150   * @retval HAL status
2151   */
RTC_ExitInitMode(RTC_HandleTypeDef * hrtc)2152 HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
2153 {
2154   HAL_StatusTypeDef status = HAL_OK;
2155 
2156   /* Exit Initialization mode */
2157   CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
2158 
2159   /* If CR_BYPSHAD bit = 0, wait for synchro */
2160   if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
2161   {
2162     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2163     {
2164       hrtc->State = HAL_RTC_STATE_TIMEOUT;
2165       status = HAL_TIMEOUT;
2166     }
2167   }
2168   else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry. */
2169   {
2170     /* Clear BYPSHAD bit */
2171     CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
2172     if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
2173     {
2174       hrtc->State = HAL_RTC_STATE_TIMEOUT;
2175       status = HAL_TIMEOUT;
2176     }
2177     /* Restore BYPSHAD bit */
2178     SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
2179   }
2180   return status;
2181 }
2182 
2183 /**
2184   * @brief  Convert a 2 digit decimal to BCD format.
2185   * @param  Value Byte to be converted
2186   * @retval Converted byte
2187   */
RTC_ByteToBcd2(uint8_t Value)2188 uint8_t RTC_ByteToBcd2(uint8_t Value)
2189 {
2190   uint32_t bcdhigh = 0U;
2191   uint8_t tmp_Value = Value;
2192 
2193   while (tmp_Value >= 10U)
2194   {
2195     bcdhigh++;
2196     tmp_Value -= 10U;
2197   }
2198 
2199   return ((uint8_t)(bcdhigh << 4U) | tmp_Value);
2200 }
2201 
2202 /**
2203   * @brief  Convert from 2 digit BCD to Binary.
2204   * @param  Value BCD value to be converted
2205   * @retval Converted word
2206   */
RTC_Bcd2ToByte(uint8_t Value)2207 uint8_t RTC_Bcd2ToByte(uint8_t Value)
2208 {
2209   uint32_t tmp;
2210   tmp = (((uint32_t)Value & 0xF0U) >> 4) * 10U;
2211   return (uint8_t)(tmp + ((uint32_t)Value & 0x0FU));
2212 }
2213 
2214 /**
2215   * @}
2216   */
2217 
2218 #endif /* HAL_RTC_MODULE_ENABLED */
2219 /**
2220   * @}
2221   */
2222 
2223 /**
2224   * @}
2225   */
2226