1 /**
2   ******************************************************************************
3   * @file    stm32u5xx_hal_hash.c
4   * @author  MCD Application Team
5   * @brief   HASH HAL module driver.
6   *          This file provides firmware functions to manage the following
7   *          functionalities of the HASH peripheral:
8   *           + Initialization and de-initialization methods
9   *           + HASH or HMAC processing in polling mode
10   *           + HASH or HMAC processing in interrupt mode
11   *           + HASH or HMAC processing in DMA mode
12   *           + Peripheral State methods
13   *           + HASH or HMAC processing suspension/resumption
14   *
15   ******************************************************************************
16   * @attention
17   *
18   * Copyright (c) 2021 STMicroelectronics.
19   * All rights reserved.
20   *
21   * This software is licensed under terms that can be found in the LICENSE file
22   * in the root directory of this software component.
23   * If no LICENSE file comes with this software, it is provided AS-IS.
24   *
25   ******************************************************************************
26   @verbatim
27  ===============================================================================
28                      ##### How to use this driver #####
29  ===============================================================================
30     [..]
31     The HASH HAL driver can be used as follows:
32 
33     (#)Initialize the HASH low level resources by implementing the HAL_HASH_MspInit():
34         (##) Enable the HASH interface clock using __HASH_CLK_ENABLE()
35         (##) When resorting to interrupt-based APIs (e.g. HAL_HASH_xxx_Start_IT())
36             (+++) Configure the HASH interrupt priority using HAL_NVIC_SetPriority()
37             (+++) Enable the HASH IRQ handler using HAL_NVIC_EnableIRQ()
38             (+++) In HASH IRQ handler, call HAL_HASH_IRQHandler() API
39         (##) When resorting to DMA-based APIs  (e.g. HAL_HASH_xxx_Start_DMA())
40             (+++) Enable the DMAx interface clock using
41                    __DMAx_CLK_ENABLE()
42             (+++) Configure and enable one DMA channel to manage data transfer from
43                 memory to peripheral (input channel). Managing data transfer from
44                 peripheral to memory can be performed only using CPU.
45             (+++) Associate the initialized DMA handle to the HASH DMA handle
46                 using  __HAL_LINKDMA()
47             (+++) Configure the priority and enable the NVIC for the transfer complete
48                 interrupt on the DMA channel: use
49                  HAL_NVIC_SetPriority() and
50                  HAL_NVIC_EnableIRQ()
51 
52     (#)Initialize the HASH HAL using HAL_HASH_Init(). This function:
53         (##) resorts to HAL_HASH_MspInit() for low-level initialization,
54         (##) configures the data type: 1-bit, 8-bit, 16-bit or 32-bit.
55 
56     (#)Three processing schemes are available:
57         (##) Polling mode: processing APIs are blocking functions
58              i.e. they process the data and wait till the digest computation is finished,
59              e.g. HAL_HASH_xxx_Start() for HASH or HAL_HMAC_xxx_Start() for HMAC
60         (##) Interrupt mode: processing APIs are not blocking functions
61                 i.e. they process the data under interrupt,
62                 e.g. HAL_HASH_xxx_Start_IT() for HASH or HAL_HMAC_xxx_Start_IT() for HMAC
63         (##) DMA mode: processing APIs are not blocking functions and the CPU is
64              not used for data transfer i.e. the data transfer is ensured by DMA,
65                 e.g. HAL_HASH_xxx_Start_DMA() for HASH or HAL_HMAC_xxx_Start_DMA()
66                 for HMAC. Note that in DMA mode, a call to HAL_HASH_xxx_Finish()
67                 is then required to retrieve the digest.
68 
69     (#)When the processing function is called after HAL_HASH_Init(), the HASH peripheral is
70        initialized and processes the buffer fed in input. When the input data have all been
71        fed to the Peripheral, the digest computation can start.
72 
73     (#)Multi-buffer processing is possible in polling, interrupt and DMA modes.
74         (##) In polling mode, only multi-buffer HASH processing is possible.
75              API HAL_HASH_xxx_Accumulate() must be called for each input buffer, except for the last one.
76              User must resort to HAL_HASH_xxx_Accumulate_End() to enter the last one and retrieve as
77              well the computed digest.
78 
79         (##) In interrupt mode, API HAL_HASH_xxx_Accumulate_IT() must be called for each input buffer,
80              except for the last one.
81              User must resort to HAL_HASH_xxx_Accumulate_End_IT() to enter the last one and retrieve as
82              well the computed digest.
83 
84         (##) In DMA mode, multi-buffer HASH and HMAC processing are possible.
85               (+++) HASH processing: once initialization is done, MDMAT bit must be set
86                through __HAL_HASH_SET_MDMAT() macro.
87              From that point, each buffer can be fed to the Peripheral through HAL_HASH_xxx_Start_DMA() API.
88              Before entering the last buffer, reset the MDMAT bit with __HAL_HASH_RESET_MDMAT()
89              macro then wrap-up the HASH processing in feeding the last input buffer through the
90              same API HAL_HASH_xxx_Start_DMA(). The digest can then be retrieved with a call to
91              API HAL_HASH_xxx_Finish().
92              (+++) HMAC processing (requires to resort to extended functions):
93              after initialization, the key and the first input buffer are entered
94              in the Peripheral with the API HAL_HMACEx_xxx_Step1_2_DMA(). This carries out HMAC step 1 and
95              starts step 2.
96              The following buffers are next entered with the API  HAL_HMACEx_xxx_Step2_DMA(). At this
97              point, the HMAC processing is still carrying out step 2.
98              Then, step 2 for the last input buffer and step 3 are carried out by a single call
99              to HAL_HMACEx_xxx_Step2_3_DMA().
100 
101              The digest can finally be retrieved with a call to API HAL_HASH_xxx_Finish().
102 
103 
104     (#)Context swapping.
105         (##) Two APIs are available to suspend HASH or HMAC processing:
106              (+++) HAL_HASH_SwFeed_ProcessSuspend() when data are entered by software (polling or IT mode),
107              (+++) HAL_HASH_DMAFeed_ProcessSuspend() when data are entered by DMA.
108 
109         (##) When HASH or HMAC processing is suspended, HAL_HASH_ContextSaving() allows
110             to save in memory the Peripheral context. This context can be restored afterwards
111             to resume the HASH processing thanks to HAL_HASH_ContextRestoring().
112 
113         (##) Once the HASH Peripheral has been restored to the same configuration as that at suspension
114              time, processing can be restarted with the same API call (same API, same handle,
115              same parameters) as done before the suspension. Relevant parameters to restart at
116              the proper location are internally saved in the HASH handle.
117 
118     (#)Call HAL_HASH_DeInit() to deinitialize the HASH peripheral.
119 
120      *** Remarks on message length ***
121      ===================================
122      [..]
123       (#) HAL in interruption mode (interruptions driven)
124 
125         (##)Due to HASH peripheral hardware design, the peripheral interruption is triggered every 64 bytes.
126         This is why, for driver implementation simplicity's sake, user is requested to enter a message the
127         length of which is a multiple of 4 bytes.
128 
129         (##) When the message length (in bytes) is not a multiple of words, a specific field exists in HASH_STR
130         to specify which bits to discard at the end of the complete message to process only the message bits
131         and not extra bits.
132 
133         (##) If user needs to perform a hash computation of a large input buffer that is spread around various places
134         in memory and where each piece of this input buffer is not necessarily a multiple of 4 bytes in size, it becomes
135         necessary to use a temporary buffer to format the data accordingly before feeding them to the Peripheral.
136         It is advised to the user to
137        (+++) achieve the first formatting operation by software then enter the data
138        (+++) while the Peripheral is processing the first input set, carry out the second formatting
139         operation by software, to be ready when DINIS occurs.
140        (+++) repeat step 2 until the whole message is processed.
141 
142      [..]
143       (#) HAL in DMA mode
144 
145         (##) Again, due to hardware design, the DMA transfer to feed the data can only be done on a word-basis.
146         The same field described above in HASH_STR is used to specify which bits to discard at the end of the
147         DMA transfer to process only the message bits and not extra bits. Due to hardware implementation,
148         this is possible only at the end of the complete message. When several DMA transfers are needed to
149         enter the message, this is not applicable at the end of the intermediary transfers.
150 
151         (##) Similarly to the interruption-driven mode, it is suggested to the user to format the consecutive
152         chunks of data by software while the DMA transfer and processing is on-going for the first parts of
153         the message. Due to the 32-bit alignment required for the DMA transfer, it is underlined that the
154         software formatting operation is more complex than in the IT mode.
155 
156      *** Callback registration ***
157      ===================================
158      [..]
159       (#) The compilation define  USE_HAL_HASH_REGISTER_CALLBACKS when set to 1
160           allows the user to configure dynamically the driver callbacks.
161           Use function HAL_HASH_RegisterCallback() to register a user callback.
162 
163       (#) Function HAL_HASH_RegisterCallback() allows to register following callbacks:
164             (+) InCpltCallback    : callback for input completion.
165             (+) DgstCpltCallback  : callback for digest computation completion.
166             (+) ErrorCallback     : callback for error.
167             (+) MspInitCallback   : HASH MspInit.
168             (+) MspDeInitCallback : HASH MspDeInit.
169           This function takes as parameters the HAL peripheral handle, the Callback ID
170           and a pointer to the user callback function.
171 
172       (#) Use function HAL_HASH_UnRegisterCallback() to reset a callback to the default
173           weak (surcharged) function.
174           HAL_HASH_UnRegisterCallback() takes as parameters the HAL peripheral handle,
175           and the Callback ID.
176           This function allows to reset following callbacks:
177             (+) InCpltCallback    : callback for input completion.
178             (+) DgstCpltCallback  : callback for digest computation completion.
179             (+) ErrorCallback     : callback for error.
180             (+) MspInitCallback   : HASH MspInit.
181             (+) MspDeInitCallback : HASH MspDeInit.
182 
183       (#) By default, after the HAL_HASH_Init and if the state is HAL_HASH_STATE_RESET
184           all callbacks are reset to the corresponding legacy weak (surcharged) functions:
185           examples HAL_HASH_InCpltCallback(), HAL_HASH_DgstCpltCallback()
186           Exception done for MspInit and MspDeInit callbacks that are respectively
187           reset to the legacy weak (surcharged) functions in the HAL_HASH_Init
188           and HAL_HASH_DeInit only when these callbacks are null (not registered beforehand)
189           If not, MspInit or MspDeInit are not null, the HAL_HASH_Init and HAL_HASH_DeInit
190           keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
191 
192           Callbacks can be registered/unregistered in READY state only.
193           Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
194           in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
195           during the Init/DeInit.
196           In that case first register the MspInit/MspDeInit user callbacks
197           using HAL_HASH_RegisterCallback before calling HAL_HASH_DeInit
198           or HAL_HASH_Init function.
199 
200           When The compilation define USE_HAL_HASH_REGISTER_CALLBACKS is set to 0 or
201           not defined, the callback registering feature is not available
202           and weak (surcharged) callbacks are used.
203 
204   @endverbatim
205   ******************************************************************************
206   */
207 
208 /* Includes ------------------------------------------------------------------*/
209 #include "stm32u5xx_hal.h"
210 
211 
212 /** @addtogroup STM32U5xx_HAL_Driver
213   * @{
214   */
215 #if defined (HASH)
216 
217 /** @defgroup HASH  HASH
218   * @brief HASH HAL module driver.
219   * @{
220   */
221 
222 #ifdef HAL_HASH_MODULE_ENABLED
223 
224 /* Private typedef -----------------------------------------------------------*/
225 /* Private define ------------------------------------------------------------*/
226 /** @defgroup HASH_Private_Constants HASH Private Constants
227   * @{
228   */
229 
230 /** @defgroup HASH_Digest_Calculation_Status HASH Digest Calculation Status
231   * @{
232   */
233 #define HASH_DIGEST_CALCULATION_NOT_STARTED       ((uint32_t)0x00000000U) /*!< DCAL not set after input data written in DIN register */
234 #define HASH_DIGEST_CALCULATION_STARTED           ((uint32_t)0x00000001U) /*!< DCAL set after input data written in DIN register     */
235 /**
236   * @}
237   */
238 
239 /** @defgroup HASH_Number_Of_CSR_Registers HASH Number of Context Swap Registers
240   * @{
241   */
242 #define HASH_NUMBER_OF_CSR_REGISTERS              54U     /*!< Number of Context Swap Registers */
243 /**
244   * @}
245   */
246 
247 /** @defgroup HASH_TimeOut_Value HASH TimeOut Value
248   * @{
249   */
250 #define HASH_TIMEOUTVALUE                         1000U   /*!< Time-out value  */
251 /**
252   * @}
253   */
254 
255 /** @defgroup HASH_DMA_Suspension_Words_Limit HASH DMA suspension words limit
256   * @{
257   */
258 #define HASH_DMA_SUSPENSION_WORDS_LIMIT             20U   /*!< Number of words below which DMA suspension is aborted */
259 /**
260   * @}
261   */
262 
263 /**
264   * @}
265   */
266 
267 /* Private macro -------------------------------------------------------------*/
268 /* Private variables ---------------------------------------------------------*/
269 /* Private function prototypes -----------------------------------------------*/
270 /** @defgroup HASH_Private_Functions HASH Private Functions
271   * @{
272   */
273 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma);
274 static void HASH_DMAError(DMA_HandleTypeDef *hdma);
275 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size);
276 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
277                                                      uint32_t Timeout);
278 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size);
279 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash);
280 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash);
281 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout);
282 /**
283   * @}
284   */
285 
286 /** @defgroup HASH_Exported_Functions HASH Exported Functions
287   * @{
288   */
289 
290 /** @defgroup HASH_Exported_Functions_Group1 Initialization and de-initialization functions
291   *  @brief    Initialization, configuration and call-back functions.
292   *
293 @verbatim
294  ===============================================================================
295               ##### Initialization and de-initialization functions #####
296  ===============================================================================
297     [..]  This section provides functions allowing to:
298       (+) Initialize the HASH according to the specified parameters
299           in the HASH_InitTypeDef and create the associated handle
300       (+) DeInitialize the HASH peripheral
301       (+) Initialize the HASH MCU Specific Package (MSP)
302       (+) DeInitialize the HASH MSP
303 
304     [..]  This section provides as well call back functions definitions for user
305           code to manage:
306       (+) Input data transfer to Peripheral completion
307       (+) Calculated digest retrieval completion
308       (+) Error management
309 
310 
311 
312 @endverbatim
313   * @{
314   */
315 
316 /**
317   * @brief  Initialize the HASH according to the specified parameters in the
318             HASH_HandleTypeDef and create the associated handle.
319   * @note   Only MDMAT and DATATYPE bits of HASH Peripheral are set by HAL_HASH_Init(),
320   *         other configuration bits are set by HASH or HMAC processing APIs.
321   * @note   MDMAT bit is systematically reset by HAL_HASH_Init(). To set it for
322   *         multi-buffer HASH processing, user needs to resort to
323   *         __HAL_HASH_SET_MDMAT() macro. For HMAC multi-buffer processing, the
324   *         relevant APIs manage themselves the MDMAT bit.
325   * @param  hhash HASH handle
326   * @retval HAL status
327   */
HAL_HASH_Init(HASH_HandleTypeDef * hhash)328 HAL_StatusTypeDef HAL_HASH_Init(HASH_HandleTypeDef *hhash)
329 {
330   /* Check the hash handle allocation */
331   if (hhash == NULL)
332   {
333     return HAL_ERROR;
334   }
335 
336   /* Check the parameters */
337   assert_param(IS_HASH_DATATYPE(hhash->Init.DataType));
338 
339 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
340   if (hhash->State == HAL_HASH_STATE_RESET)
341   {
342     /* Allocate lock resource and initialize it */
343     hhash->Lock = HAL_UNLOCKED;
344 
345     /* Reset Callback pointers in HAL_HASH_STATE_RESET only */
346     hhash->InCpltCallback =  HAL_HASH_InCpltCallback;     /* Legacy weak (surcharged) input completion callback */
347     hhash->DgstCpltCallback =  HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
348                                                              completion callback */
349     hhash->ErrorCallback =  HAL_HASH_ErrorCallback;       /* Legacy weak (surcharged) error callback */
350     if (hhash->MspInitCallback == NULL)
351     {
352       hhash->MspInitCallback = HAL_HASH_MspInit;
353     }
354 
355     /* Init the low level hardware */
356     hhash->MspInitCallback(hhash);
357   }
358 #else
359   if (hhash->State == HAL_HASH_STATE_RESET)
360   {
361     /* Allocate lock resource and initialize it */
362     hhash->Lock = HAL_UNLOCKED;
363 
364     /* Init the low level hardware */
365     HAL_HASH_MspInit(hhash);
366   }
367 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
368 
369   /* Change the HASH state */
370   hhash->State = HAL_HASH_STATE_BUSY;
371 
372   /* Reset HashInCount, HashITCounter, HashBuffSize and NbWordsAlreadyPushed */
373   hhash->HashInCount = 0;
374   hhash->HashBuffSize = 0;
375   hhash->HashITCounter = 0;
376   hhash->NbWordsAlreadyPushed = 0;
377   /* Reset digest calculation bridle (MDMAT bit control) */
378   hhash->DigestCalculationDisable = RESET;
379   /* Set phase to READY */
380   hhash->Phase = HAL_HASH_PHASE_READY;
381   /* Reset suspension request flag */
382   hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
383 
384   /* Set the data type bit */
385   MODIFY_REG(HASH->CR, HASH_CR_DATATYPE, hhash->Init.DataType);
386   /* Reset MDMAT bit */
387   __HAL_HASH_RESET_MDMAT();
388   /* Reset HASH handle status */
389   hhash->Status = HAL_OK;
390 
391   /* Set the HASH state to Ready */
392   hhash->State = HAL_HASH_STATE_READY;
393 
394   /* Initialise the error code */
395   hhash->ErrorCode = HAL_HASH_ERROR_NONE;
396 
397   /* Return function status */
398   return HAL_OK;
399 }
400 
401 /**
402   * @brief  DeInitialize the HASH peripheral.
403   * @param  hhash HASH handle.
404   * @retval HAL status
405   */
HAL_HASH_DeInit(HASH_HandleTypeDef * hhash)406 HAL_StatusTypeDef HAL_HASH_DeInit(HASH_HandleTypeDef *hhash)
407 {
408   /* Check the HASH handle allocation */
409   if (hhash == NULL)
410   {
411     return HAL_ERROR;
412   }
413 
414   /* Change the HASH state */
415   hhash->State = HAL_HASH_STATE_BUSY;
416 
417   /* Set the default HASH phase */
418   hhash->Phase = HAL_HASH_PHASE_READY;
419 
420   /* Reset HashInCount, HashITCounter and HashBuffSize */
421   hhash->HashInCount = 0;
422   hhash->HashBuffSize = 0;
423   hhash->HashITCounter = 0;
424   /* Reset digest calculation bridle (MDMAT bit control) */
425   hhash->DigestCalculationDisable = RESET;
426 
427 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
428   if (hhash->MspDeInitCallback == NULL)
429   {
430     hhash->MspDeInitCallback = HAL_HASH_MspDeInit;
431   }
432 
433   /* DeInit the low level hardware */
434   hhash->MspDeInitCallback(hhash);
435 #else
436   /* DeInit the low level hardware: CLOCK, NVIC */
437   HAL_HASH_MspDeInit(hhash);
438 #endif /* (USE_HAL_HASH_REGISTER_CALLBACKS) */
439 
440 
441   /* Reset HASH handle status */
442   hhash->Status = HAL_OK;
443 
444   /* Set the HASH state to Ready */
445   hhash->State = HAL_HASH_STATE_RESET;
446 
447   /* Initialise the error code */
448   hhash->ErrorCode = HAL_HASH_ERROR_NONE;
449 
450   /* Reset multi buffers accumulation flag */
451   hhash->Accumulation = 0U;
452 
453   /* Return function status */
454   return HAL_OK;
455 }
456 
457 /**
458   * @brief  Initialize the HASH MSP.
459   * @param  hhash HASH handle.
460   * @retval None
461   */
HAL_HASH_MspInit(HASH_HandleTypeDef * hhash)462 __weak void HAL_HASH_MspInit(HASH_HandleTypeDef *hhash)
463 {
464   /* Prevent unused argument(s) compilation warning */
465   UNUSED(hhash);
466 
467   /* NOTE : This function should not be modified; when the callback is needed,
468             HAL_HASH_MspInit() can be implemented in the user file.
469    */
470 }
471 
472 /**
473   * @brief  DeInitialize the HASH MSP.
474   * @param  hhash HASH handle.
475   * @retval None
476   */
HAL_HASH_MspDeInit(HASH_HandleTypeDef * hhash)477 __weak void HAL_HASH_MspDeInit(HASH_HandleTypeDef *hhash)
478 {
479   /* Prevent unused argument(s) compilation warning */
480   UNUSED(hhash);
481 
482   /* NOTE : This function should not be modified; when the callback is needed,
483             HAL_HASH_MspDeInit() can be implemented in the user file.
484    */
485 }
486 
487 /**
488   * @brief  Input data transfer complete call back.
489   * @note   HAL_HASH_InCpltCallback() is called when the complete input message
490   *         has been fed to the Peripheral. This API is invoked only when input data are
491   *         entered under interruption or through DMA.
492   * @note   In case of HASH or HMAC multi-buffer DMA feeding case (MDMAT bit set),
493   *         HAL_HASH_InCpltCallback() is called at the end of each buffer feeding
494   *         to the Peripheral.
495   * @param  hhash HASH handle.
496   * @retval None
497   */
HAL_HASH_InCpltCallback(HASH_HandleTypeDef * hhash)498 __weak void HAL_HASH_InCpltCallback(HASH_HandleTypeDef *hhash)
499 {
500   /* Prevent unused argument(s) compilation warning */
501   UNUSED(hhash);
502 
503   /* NOTE : This function should not be modified; when the callback is needed,
504             HAL_HASH_InCpltCallback() can be implemented in the user file.
505    */
506 }
507 
508 /**
509   * @brief  Digest computation complete call back.
510   * @note   HAL_HASH_DgstCpltCallback() is used under interruption, is not
511   *         relevant with DMA.
512   * @param  hhash HASH handle.
513   * @retval None
514   */
HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef * hhash)515 __weak void HAL_HASH_DgstCpltCallback(HASH_HandleTypeDef *hhash)
516 {
517   /* Prevent unused argument(s) compilation warning */
518   UNUSED(hhash);
519 
520   /* NOTE : This function should not be modified; when the callback is needed,
521             HAL_HASH_DgstCpltCallback() can be implemented in the user file.
522    */
523 }
524 
525 /**
526   * @brief  Error callback.
527   * @note   Code user can resort to hhash->Status (HAL_ERROR, HAL_TIMEOUT,...)
528   *         to retrieve the error type.
529   * @param  hhash HASH handle.
530   * @retval None
531   */
HAL_HASH_ErrorCallback(HASH_HandleTypeDef * hhash)532 __weak void HAL_HASH_ErrorCallback(HASH_HandleTypeDef *hhash)
533 {
534   /* Prevent unused argument(s) compilation warning */
535   UNUSED(hhash);
536 
537   /* NOTE : This function should not be modified; when the callback is needed,
538             HAL_HASH_ErrorCallback() can be implemented in the user file.
539    */
540 }
541 
542 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
543 /**
544   * @brief  Register a User HASH Callback
545   *         To be used instead of the weak (surcharged) predefined callback
546   * @param hhash HASH handle
547   * @param CallbackID ID of the callback to be registered
548   *        This parameter can be one of the following values:
549   *          @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
550   *          @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
551   *          @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
552   *          @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
553   *          @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
554   * @param pCallback pointer to the Callback function
555   * @retval status
556   */
HAL_HASH_RegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID,pHASH_CallbackTypeDef pCallback)557 HAL_StatusTypeDef HAL_HASH_RegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID,
558                                             pHASH_CallbackTypeDef pCallback)
559 {
560   HAL_StatusTypeDef status = HAL_OK;
561 
562   if (pCallback == NULL)
563   {
564     /* Update the error code */
565     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
566     return HAL_ERROR;
567   }
568   /* Process locked */
569   __HAL_LOCK(hhash);
570 
571   if (HAL_HASH_STATE_READY == hhash->State)
572   {
573     switch (CallbackID)
574     {
575       case HAL_HASH_INPUTCPLT_CB_ID :
576         hhash->InCpltCallback = pCallback;
577         break;
578 
579       case HAL_HASH_DGSTCPLT_CB_ID :
580         hhash->DgstCpltCallback = pCallback;
581         break;
582 
583       case HAL_HASH_ERROR_CB_ID :
584         hhash->ErrorCallback = pCallback;
585         break;
586 
587       case HAL_HASH_MSPINIT_CB_ID :
588         hhash->MspInitCallback = pCallback;
589         break;
590 
591       case HAL_HASH_MSPDEINIT_CB_ID :
592         hhash->MspDeInitCallback = pCallback;
593         break;
594 
595       default :
596         /* Update the error code */
597         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
598         /* update return status */
599         status =  HAL_ERROR;
600         break;
601     }
602   }
603   else if (HAL_HASH_STATE_RESET == hhash->State)
604   {
605     switch (CallbackID)
606     {
607       case HAL_HASH_MSPINIT_CB_ID :
608         hhash->MspInitCallback = pCallback;
609         break;
610 
611       case HAL_HASH_MSPDEINIT_CB_ID :
612         hhash->MspDeInitCallback = pCallback;
613         break;
614 
615       default :
616         /* Update the error code */
617         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
618         /* update return status */
619         status =  HAL_ERROR;
620         break;
621     }
622   }
623   else
624   {
625     /* Update the error code */
626     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
627     /* update return status */
628     status =  HAL_ERROR;
629   }
630 
631   /* Release Lock */
632   __HAL_UNLOCK(hhash);
633   return status;
634 }
635 
636 /**
637   * @brief  Unregister a HASH Callback
638   *         HASH Callback is redirected to the weak (surcharged) predefined callback
639   * @param hhash HASH handle
640   * @param CallbackID ID of the callback to be unregistered
641   *        This parameter can be one of the following values:
642   *          @arg @ref HAL_HASH_INPUTCPLT_CB_ID HASH input completion Callback ID
643   *          @arg @ref HAL_HASH_DGSTCPLT_CB_ID HASH digest computation completion Callback ID
644   *          @arg @ref HAL_HASH_ERROR_CB_ID HASH error Callback ID
645   *          @arg @ref HAL_HASH_MSPINIT_CB_ID HASH MspInit callback ID
646   *          @arg @ref HAL_HASH_MSPDEINIT_CB_ID HASH MspDeInit callback ID
647   * @retval status
648   */
HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef * hhash,HAL_HASH_CallbackIDTypeDef CallbackID)649 HAL_StatusTypeDef HAL_HASH_UnRegisterCallback(HASH_HandleTypeDef *hhash, HAL_HASH_CallbackIDTypeDef CallbackID)
650 {
651   HAL_StatusTypeDef status = HAL_OK;
652 
653   /* Process locked */
654   __HAL_LOCK(hhash);
655 
656   if (HAL_HASH_STATE_READY == hhash->State)
657   {
658     switch (CallbackID)
659     {
660       case HAL_HASH_INPUTCPLT_CB_ID :
661         hhash->InCpltCallback = HAL_HASH_InCpltCallback;     /* Legacy weak (surcharged) input completion callback */
662         break;
663 
664       case HAL_HASH_DGSTCPLT_CB_ID :
665         hhash->DgstCpltCallback = HAL_HASH_DgstCpltCallback; /* Legacy weak (surcharged) digest computation
666                                                                 completion callback */
667         break;
668 
669       case HAL_HASH_ERROR_CB_ID :
670         hhash->ErrorCallback = HAL_HASH_ErrorCallback;       /* Legacy weak (surcharged) error callback */
671         break;
672 
673       case HAL_HASH_MSPINIT_CB_ID :
674         hhash->MspInitCallback = HAL_HASH_MspInit;           /* Legacy weak (surcharged) Msp Init */
675         break;
676 
677       case HAL_HASH_MSPDEINIT_CB_ID :
678         hhash->MspDeInitCallback = HAL_HASH_MspDeInit;       /* Legacy weak (surcharged) Msp DeInit */
679         break;
680 
681       default :
682         /* Update the error code */
683         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
684         /* update return status */
685         status =  HAL_ERROR;
686         break;
687     }
688   }
689   else if (HAL_HASH_STATE_RESET == hhash->State)
690   {
691     switch (CallbackID)
692     {
693       case HAL_HASH_MSPINIT_CB_ID :
694         hhash->MspInitCallback = HAL_HASH_MspInit;           /* Legacy weak (surcharged) Msp Init */
695         break;
696 
697       case HAL_HASH_MSPDEINIT_CB_ID :
698         hhash->MspDeInitCallback = HAL_HASH_MspDeInit;       /* Legacy weak (surcharged) Msp DeInit */
699         break;
700 
701       default :
702         /* Update the error code */
703         hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
704         /* update return status */
705         status =  HAL_ERROR;
706         break;
707     }
708   }
709   else
710   {
711     /* Update the error code */
712     hhash->ErrorCode |= HAL_HASH_ERROR_INVALID_CALLBACK;
713     /* update return status */
714     status =  HAL_ERROR;
715   }
716 
717   /* Release Lock */
718   __HAL_UNLOCK(hhash);
719   return status;
720 }
721 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
722 
723 /**
724   * @}
725   */
726 
727 /** @defgroup HASH_Exported_Functions_Group2 HASH processing functions in polling mode
728   *  @brief   HASH processing functions using polling mode.
729   *
730 @verbatim
731  ===============================================================================
732                  ##### Polling mode HASH processing functions #####
733  ===============================================================================
734     [..]  This section provides functions allowing to calculate in polling mode
735           the hash value using one of the following algorithms:
736       (+) MD5
737          (++) HAL_HASH_MD5_Start()
738          (++) HAL_HASH_MD5_Accmlt()
739          (++) HAL_HASH_MD5_Accmlt_End()
740       (+) SHA1
741          (++) HAL_HASH_SHA1_Start()
742          (++) HAL_HASH_SHA1_Accmlt()
743          (++) HAL_HASH_SHA1_Accmlt_End()
744 
745     [..] For a single buffer to be hashed, user can resort to HAL_HASH_xxx_Start().
746 
747     [..]  In case of multi-buffer HASH processing (a single digest is computed while
748           several buffers are fed to the Peripheral), the user can resort to successive calls
749           to HAL_HASH_xxx_Accumulate() and wrap-up the digest computation by a call
750           to HAL_HASH_xxx_Accumulate_End().
751 
752 @endverbatim
753   * @{
754   */
755 
756 /**
757   * @brief  Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
758   *         read the computed digest.
759   * @note   Digest is available in pOutBuffer.
760   * @param  hhash HASH handle.
761   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
762   * @param  Size length of the input buffer in bytes.
763   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
764   * @param  Timeout Timeout value
765   * @retval HAL status
766   */
HAL_HASH_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)767 HAL_StatusTypeDef HAL_HASH_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
768                                      uint32_t Timeout)
769 {
770   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
771 }
772 
773 /**
774   * @brief  If not already done, initialize the HASH peripheral in MD5 mode then
775   *         processes pInBuffer.
776   * @note   Consecutive calls to HAL_HASH_MD5_Accmlt() can be used to feed
777   *         several input buffers back-to-back to the Peripheral that will yield a single
778   *         HASH signature once all buffers have been entered. Wrap-up of input
779   *         buffers feeding and retrieval of digest is done by a call to
780   *         HAL_HASH_MD5_Accmlt_End().
781   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
782   *         the Peripheral has already been initialized.
783   * @note   Digest is not retrieved by this API, user must resort to HAL_HASH_MD5_Accmlt_End()
784   *         to read it, feeding at the same time the last input buffer to the Peripheral.
785   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
786   *         HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End() is able
787   *         to manage the ending buffer with a length in bytes not a multiple of 4.
788   * @param  hhash HASH handle.
789   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
790   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
791   * @retval HAL status
792   */
HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)793 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
794 {
795   return  HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
796 }
797 
798 /**
799   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt() API.
800   * @note   Digest is available in pOutBuffer.
801   * @param  hhash HASH handle.
802   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
803   * @param  Size length of the input buffer in bytes.
804   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
805   * @param  Timeout Timeout value
806   * @retval HAL status
807   */
HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)808 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
809                                           uint8_t *pOutBuffer, uint32_t Timeout)
810 {
811   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
812 }
813 
814 /**
815   * @brief  Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
816   *         read the computed digest.
817   * @note   Digest is available in pOutBuffer.
818   * @param  hhash HASH handle.
819   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
820   * @param  Size length of the input buffer in bytes.
821   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
822   * @param  Timeout Timeout value
823   * @retval HAL status
824   */
HAL_HASH_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)825 HAL_StatusTypeDef HAL_HASH_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
826                                       uint32_t Timeout)
827 {
828   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
829 }
830 
831 /**
832   * @brief  If not already done, initialize the HASH peripheral in SHA1 mode then
833   *         processes pInBuffer.
834   * @note   Consecutive calls to HAL_HASH_SHA1_Accmlt() can be used to feed
835   *         several input buffers back-to-back to the Peripheral that will yield a single
836   *         HASH signature once all buffers have been entered. Wrap-up of input
837   *         buffers feeding and retrieval of digest is done by a call to
838   *         HAL_HASH_SHA1_Accmlt_End().
839   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
840   *         the Peripheral has already been initialized.
841   * @note   Digest is not retrieved by this API, user must resort to HAL_HASH_SHA1_Accmlt_End()
842   *         to read it, feeding at the same time the last input buffer to the Peripheral.
843   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
844   *         HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End() is able
845   *         to manage the ending buffer with a length in bytes not a multiple of 4.
846   * @param  hhash HASH handle.
847   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
848   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
849   * @retval HAL status
850   */
HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)851 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
852 {
853   return  HASH_Accumulate(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
854 }
855 
856 /**
857   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt() API.
858   * @note   Digest is available in pOutBuffer.
859   * @param  hhash HASH handle.
860   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
861   * @param  Size length of the input buffer in bytes.
862   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
863   * @param  Timeout Timeout value
864   * @retval HAL status
865   */
HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)866 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
867                                            uint8_t *pOutBuffer, uint32_t Timeout)
868 {
869   return HASH_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
870 }
871 
872 /**
873   * @}
874   */
875 
876 /** @defgroup HASH_Exported_Functions_Group3 HASH processing functions in interrupt mode
877   *  @brief   HASH processing functions using interrupt mode.
878   *
879 @verbatim
880  ===============================================================================
881                  ##### Interruption mode HASH processing functions #####
882  ===============================================================================
883     [..]  This section provides functions allowing to calculate in interrupt mode
884           the hash value using one of the following algorithms:
885       (+) MD5
886          (++) HAL_HASH_MD5_Start_IT()
887          (++) HAL_HASH_MD5_Accmlt_IT()
888          (++) HAL_HASH_MD5_Accmlt_End_IT()
889       (+) SHA1
890          (++) HAL_HASH_SHA1_Start_IT()
891          (++) HAL_HASH_SHA1_Accmlt_IT()
892          (++) HAL_HASH_SHA1_Accmlt_End_IT()
893 
894     [..]  API HAL_HASH_IRQHandler() manages each HASH interruption.
895 
896     [..] Note that HAL_HASH_IRQHandler() manages as well HASH Peripheral interruptions when in
897          HMAC processing mode.
898 
899 
900 @endverbatim
901   * @{
902   */
903 
904 /**
905   * @brief  Initialize the HASH peripheral in MD5 mode, next process pInBuffer then
906   *         read the computed digest in interruption mode.
907   * @note   Digest is available in pOutBuffer.
908   * @param  hhash HASH handle.
909   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
910   * @param  Size length of the input buffer in bytes.
911   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
912   * @retval HAL status
913   */
HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)914 HAL_StatusTypeDef HAL_HASH_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
915                                         uint8_t *pOutBuffer)
916 {
917   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
918 }
919 
920 /**
921   * @brief  If not already done, initialize the HASH peripheral in MD5 mode then
922   *         processes pInBuffer in interruption mode.
923   * @note   Consecutive calls to HAL_HASH_MD5_Accmlt_IT() can be used to feed
924   *         several input buffers back-to-back to the Peripheral that will yield a single
925   *         HASH signature once all buffers have been entered. Wrap-up of input
926   *         buffers feeding and retrieval of digest is done by a call to
927   *         HAL_HASH_MD5_Accmlt_End_IT().
928   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
929   *         the Peripheral has already been initialized.
930   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
931   *         HASH digest computation is corrupted. Only HAL_HASH_MD5_Accmlt_End_IT() is able
932   *         to manage the ending buffer with a length in bytes not a multiple of 4.
933   * @param  hhash HASH handle.
934   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
935   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
936   * @retval HAL status
937   */
HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)938 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
939 {
940   return  HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
941 }
942 
943 /**
944   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_MD5_Accmlt_IT() API.
945   * @note   Digest is available in pOutBuffer.
946   * @param  hhash HASH handle.
947   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
948   * @param  Size length of the input buffer in bytes.
949   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
950   * @retval HAL status
951   */
HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)952 HAL_StatusTypeDef HAL_HASH_MD5_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
953                                              uint8_t *pOutBuffer)
954 {
955   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
956 }
957 
958 /**
959   * @brief  Initialize the HASH peripheral in SHA1 mode, next process pInBuffer then
960   *         read the computed digest in interruption mode.
961   * @note   Digest is available in pOutBuffer.
962   * @param  hhash HASH handle.
963   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
964   * @param  Size length of the input buffer in bytes.
965   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
966   * @retval HAL status
967   */
HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)968 HAL_StatusTypeDef HAL_HASH_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
969                                          uint8_t *pOutBuffer)
970 {
971   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
972 }
973 
974 
975 /**
976   * @brief  If not already done, initialize the HASH peripheral in SHA1 mode then
977   *         processes pInBuffer in interruption mode.
978   * @note   Consecutive calls to HAL_HASH_SHA1_Accmlt_IT() can be used to feed
979   *         several input buffers back-to-back to the Peripheral that will yield a single
980   *         HASH signature once all buffers have been entered. Wrap-up of input
981   *         buffers feeding and retrieval of digest is done by a call to
982   *         HAL_HASH_SHA1_Accmlt_End_IT().
983   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
984   *         the Peripheral has already been initialized.
985   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
986   *         HASH digest computation is corrupted. Only HAL_HASH_SHA1_Accmlt_End_IT() is able
987   *         to manage the ending buffer with a length in bytes not a multiple of 4.
988   * @param  hhash HASH handle.
989   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
990   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
991   * @retval HAL status
992   */
HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)993 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
994 {
995   return  HASH_Accumulate_IT(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
996 }
997 
998 /**
999   * @brief  End computation of a single HASH signature after several calls to HAL_HASH_SHA1_Accmlt_IT() API.
1000   * @note   Digest is available in pOutBuffer.
1001   * @param  hhash HASH handle.
1002   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1003   * @param  Size length of the input buffer in bytes.
1004   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1005   * @retval HAL status
1006   */
HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1007 HAL_StatusTypeDef HAL_HASH_SHA1_Accmlt_End_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1008                                               uint8_t *pOutBuffer)
1009 {
1010   return HASH_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1011 }
1012 
1013 /**
1014   * @brief Handle HASH interrupt request.
1015   * @param hhash HASH handle.
1016   * @note  HAL_HASH_IRQHandler() handles interrupts in HMAC processing as well.
1017   * @note  In case of error reported during the HASH interruption processing,
1018   *        HAL_HASH_ErrorCallback() API is called so that user code can
1019   *        manage the error. The error type is available in hhash->Status field.
1020   * @retval None
1021   */
HAL_HASH_IRQHandler(HASH_HandleTypeDef * hhash)1022 void HAL_HASH_IRQHandler(HASH_HandleTypeDef *hhash)
1023 {
1024   hhash->Status = HASH_IT(hhash);
1025   if (hhash->Status != HAL_OK)
1026   {
1027     hhash->ErrorCode |= HAL_HASH_ERROR_IT;
1028 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1029     hhash->ErrorCallback(hhash);
1030 #else
1031     HAL_HASH_ErrorCallback(hhash);
1032 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1033     /* After error handling by code user, reset HASH handle HAL status */
1034     hhash->Status = HAL_OK;
1035   }
1036 }
1037 
1038 /**
1039   * @}
1040   */
1041 
1042 /** @defgroup HASH_Exported_Functions_Group4 HASH processing functions in DMA mode
1043   *  @brief   HASH processing functions using DMA mode.
1044   *
1045 @verbatim
1046  ===============================================================================
1047                     ##### DMA mode HASH processing functions #####
1048  ===============================================================================
1049     [..]  This section provides functions allowing to calculate in DMA mode
1050           the hash value using one of the following algorithms:
1051       (+) MD5
1052          (++) HAL_HASH_MD5_Start_DMA()
1053          (++) HAL_HASH_MD5_Finish()
1054       (+) SHA1
1055          (++) HAL_HASH_SHA1_Start_DMA()
1056          (++) HAL_HASH_SHA1_Finish()
1057 
1058     [..]  When resorting to DMA mode to enter the data in the Peripheral, user must resort
1059           to  HAL_HASH_xxx_Start_DMA() then read the resulting digest with
1060           HAL_HASH_xxx_Finish().
1061     [..]  In case of multi-buffer HASH processing, MDMAT bit must first be set before
1062           the successive calls to HAL_HASH_xxx_Start_DMA(). Then, MDMAT bit needs to be
1063           reset before the last call to HAL_HASH_xxx_Start_DMA(). Digest is finally
1064           retrieved thanks to HAL_HASH_xxx_Finish().
1065 
1066 @endverbatim
1067   * @{
1068   */
1069 
1070 /**
1071   * @brief  Initialize the HASH peripheral in MD5 mode then initiate a DMA transfer
1072   *         to feed the input buffer to the Peripheral.
1073   * @note   Once the DMA transfer is finished, HAL_HASH_MD5_Finish() API must
1074   *         be called to retrieve the computed digest.
1075   * @param  hhash HASH handle.
1076   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1077   * @param  Size length of the input buffer in bytes.
1078   * @retval HAL status
1079   */
HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1080 HAL_StatusTypeDef HAL_HASH_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1081 {
1082   return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1083 }
1084 
1085 /**
1086   * @brief  Return the computed digest in MD5 mode.
1087   * @note   The API waits for DCIS to be set then reads the computed digest.
1088   * @note   HAL_HASH_MD5_Finish() can be used as well to retrieve the digest in
1089   *         HMAC MD5 mode.
1090   * @param  hhash HASH handle.
1091   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1092   * @param  Timeout Timeout value.
1093   * @retval HAL status
1094   */
HAL_HASH_MD5_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1095 HAL_StatusTypeDef HAL_HASH_MD5_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1096 {
1097   return HASH_Finish(hhash, pOutBuffer, Timeout);
1098 }
1099 
1100 /**
1101   * @brief  Initialize the HASH peripheral in SHA1 mode then initiate a DMA transfer
1102   *         to feed the input buffer to the Peripheral.
1103   * @note   Once the DMA transfer is finished, HAL_HASH_SHA1_Finish() API must
1104   *         be called to retrieve the computed digest.
1105   * @param  hhash HASH handle.
1106   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1107   * @param  Size length of the input buffer in bytes.
1108   * @retval HAL status
1109   */
HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1110 HAL_StatusTypeDef HAL_HASH_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1111 {
1112   return HASH_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1113 }
1114 
1115 
1116 /**
1117   * @brief  Return the computed digest in SHA1 mode.
1118   * @note   The API waits for DCIS to be set then reads the computed digest.
1119   * @note   HAL_HASH_SHA1_Finish() can be used as well to retrieve the digest in
1120   *         HMAC SHA1 mode.
1121   * @param  hhash HASH handle.
1122   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1123   * @param  Timeout Timeout value.
1124   * @retval HAL status
1125   */
HAL_HASH_SHA1_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)1126 HAL_StatusTypeDef HAL_HASH_SHA1_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
1127 {
1128   return HASH_Finish(hhash, pOutBuffer, Timeout);
1129 }
1130 
1131 /**
1132   * @}
1133   */
1134 
1135 /** @defgroup HASH_Exported_Functions_Group5 HMAC processing functions in polling mode
1136   *  @brief   HMAC processing functions using polling mode.
1137   *
1138 @verbatim
1139  ===============================================================================
1140                  ##### Polling mode HMAC processing functions #####
1141  ===============================================================================
1142     [..]  This section provides functions allowing to calculate in polling mode
1143           the HMAC value using one of the following algorithms:
1144       (+) MD5
1145          (++) HAL_HMAC_MD5_Start()
1146       (+) SHA1
1147          (++) HAL_HMAC_SHA1_Start()
1148 
1149 
1150 @endverbatim
1151   * @{
1152   */
1153 
1154 /**
1155   * @brief  Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1156   *         read the computed digest.
1157   * @note   Digest is available in pOutBuffer.
1158   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1159   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1160   * @param  hhash HASH handle.
1161   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1162   * @param  Size length of the input buffer in bytes.
1163   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1164   * @param  Timeout Timeout value.
1165   * @retval HAL status
1166   */
HAL_HMAC_MD5_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1167 HAL_StatusTypeDef HAL_HMAC_MD5_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1168                                      uint32_t Timeout)
1169 {
1170   return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_MD5);
1171 }
1172 
1173 /**
1174   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1175   *         read the computed digest.
1176   * @note   Digest is available in pOutBuffer.
1177   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1178   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1179   * @param  hhash HASH handle.
1180   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1181   * @param  Size length of the input buffer in bytes.
1182   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1183   * @param  Timeout Timeout value.
1184   * @retval HAL status
1185   */
HAL_HMAC_SHA1_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout)1186 HAL_StatusTypeDef HAL_HMAC_SHA1_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
1187                                       uint32_t Timeout)
1188 {
1189   return HMAC_Start(hhash, pInBuffer, Size, pOutBuffer, Timeout, HASH_ALGOSELECTION_SHA1);
1190 }
1191 
1192 /**
1193   * @}
1194   */
1195 
1196 
1197 /** @defgroup HASH_Exported_Functions_Group6 HMAC processing functions in interrupt mode
1198   *  @brief   HMAC processing functions using interrupt mode.
1199   *
1200 @verbatim
1201  ===============================================================================
1202                  ##### Interrupt mode HMAC processing functions #####
1203  ===============================================================================
1204     [..]  This section provides functions allowing to calculate in interrupt mode
1205           the HMAC value using one of the following algorithms:
1206       (+) MD5
1207          (++) HAL_HMAC_MD5_Start_IT()
1208       (+) SHA1
1209          (++) HAL_HMAC_SHA1_Start_IT()
1210 
1211 @endverbatim
1212   * @{
1213   */
1214 
1215 
1216 /**
1217   * @brief  Initialize the HASH peripheral in HMAC MD5 mode, next process pInBuffer then
1218   *         read the computed digest in interrupt mode.
1219   * @note   Digest is available in pOutBuffer.
1220   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1221   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1222   * @param  hhash HASH handle.
1223   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1224   * @param  Size length of the input buffer in bytes.
1225   * @param  pOutBuffer pointer to the computed digest. Digest size is 16 bytes.
1226   * @retval HAL status
1227   */
HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1228 HAL_StatusTypeDef HAL_HMAC_MD5_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1229                                         uint8_t *pOutBuffer)
1230 {
1231   return  HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_MD5);
1232 }
1233 
1234 /**
1235   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode, next process pInBuffer then
1236   *         read the computed digest in interrupt mode.
1237   * @note   Digest is available in pOutBuffer.
1238   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1239   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1240   * @param  hhash HASH handle.
1241   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1242   * @param  Size length of the input buffer in bytes.
1243   * @param  pOutBuffer pointer to the computed digest. Digest size is 20 bytes.
1244   * @retval HAL status
1245   */
HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer)1246 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size,
1247                                          uint8_t *pOutBuffer)
1248 {
1249   return  HMAC_Start_IT(hhash, pInBuffer, Size, pOutBuffer, HASH_ALGOSELECTION_SHA1);
1250 }
1251 
1252 /**
1253   * @}
1254   */
1255 
1256 
1257 
1258 /** @defgroup HASH_Exported_Functions_Group7 HMAC processing functions in DMA mode
1259   *  @brief   HMAC processing functions using DMA modes.
1260   *
1261 @verbatim
1262  ===============================================================================
1263                  ##### DMA mode HMAC processing functions #####
1264  ===============================================================================
1265     [..]  This section provides functions allowing to calculate in DMA mode
1266           the HMAC value using one of the following algorithms:
1267       (+) MD5
1268          (++) HAL_HMAC_MD5_Start_DMA()
1269       (+) SHA1
1270          (++) HAL_HMAC_SHA1_Start_DMA()
1271 
1272     [..]  When resorting to DMA mode to enter the data in the Peripheral for HMAC processing,
1273           user must resort to  HAL_HMAC_xxx_Start_DMA() then read the resulting digest
1274           with HAL_HASH_xxx_Finish().
1275 
1276 @endverbatim
1277   * @{
1278   */
1279 
1280 
1281 /**
1282   * @brief  Initialize the HASH peripheral in HMAC MD5 mode then initiate the required
1283   *         DMA transfers to feed the key and the input buffer to the Peripheral.
1284   * @note   Once the DMA transfers are finished (indicated by hhash->State set back
1285   *         to HAL_HASH_STATE_READY), HAL_HASH_MD5_Finish() API must be called to retrieve
1286   *         the computed digest.
1287   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1288   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1289   * @note   If MDMAT bit is set before calling this function (multi-buffer
1290   *          HASH processing case), the input buffer size (in bytes) must be
1291   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
1292   *          For the processing of the last buffer of the thread, MDMAT bit must
1293   *          be reset and the buffer length (in bytes) doesn't have to be a
1294   *          multiple of 4.
1295   * @param  hhash HASH handle.
1296   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1297   * @param  Size length of the input buffer in bytes.
1298   * @retval HAL status
1299   */
HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1300 HAL_StatusTypeDef HAL_HMAC_MD5_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1301 {
1302   return  HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_MD5);
1303 }
1304 
1305 
1306 /**
1307   * @brief  Initialize the HASH peripheral in HMAC SHA1 mode then initiate the required
1308   *         DMA transfers to feed the key and the input buffer to the Peripheral.
1309   * @note   Once the DMA transfers are finished (indicated by hhash->State set back
1310   *         to HAL_HASH_STATE_READY), HAL_HASH_SHA1_Finish() API must be called to retrieve
1311   *         the computed digest.
1312   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
1313   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
1314   * @note   If MDMAT bit is set before calling this function (multi-buffer
1315   *          HASH processing case), the input buffer size (in bytes) must be
1316   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
1317   *          For the processing of the last buffer of the thread, MDMAT bit must
1318   *          be reset and the buffer length (in bytes) doesn't have to be a
1319   *          multiple of 4.
1320   * @param  hhash HASH handle.
1321   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
1322   * @param  Size length of the input buffer in bytes.
1323   * @retval HAL status
1324   */
HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1325 HAL_StatusTypeDef HAL_HMAC_SHA1_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1326 {
1327   return  HMAC_Start_DMA(hhash, pInBuffer, Size, HASH_ALGOSELECTION_SHA1);
1328 }
1329 
1330 /**
1331   * @}
1332   */
1333 
1334 /** @defgroup HASH_Exported_Functions_Group8 Peripheral states functions
1335   *  @brief   Peripheral State functions.
1336   *
1337 @verbatim
1338  ===============================================================================
1339                       ##### Peripheral State methods #####
1340  ===============================================================================
1341     [..]
1342     This section permits to get in run-time the state and the peripheral handle
1343     status of the peripheral:
1344       (+) HAL_HASH_GetState()
1345       (+) HAL_HASH_GetStatus()
1346 
1347     [..]
1348     Additionally, this subsection provides functions allowing to save and restore
1349     the HASH or HMAC processing context in case of calculation suspension:
1350       (+) HAL_HASH_ContextSaving()
1351       (+) HAL_HASH_ContextRestoring()
1352 
1353     [..]
1354     This subsection provides functions allowing to suspend the HASH processing
1355       (+) when input are fed to the Peripheral by software
1356           (++) HAL_HASH_SwFeed_ProcessSuspend()
1357       (+) when input are fed to the Peripheral by DMA
1358           (++) HAL_HASH_DMAFeed_ProcessSuspend()
1359 
1360 
1361 
1362 @endverbatim
1363   * @{
1364   */
1365 
1366 /**
1367   * @brief  Return the HASH handle state.
1368   * @note   The API yields the current state of the handle (BUSY, READY,...).
1369   * @param  hhash HASH handle.
1370   * @retval HAL HASH state
1371   */
HAL_HASH_GetState(HASH_HandleTypeDef * hhash)1372 HAL_HASH_StateTypeDef HAL_HASH_GetState(HASH_HandleTypeDef *hhash)
1373 {
1374   return hhash->State;
1375 }
1376 
1377 
1378 /**
1379   * @brief Return the HASH HAL status.
1380   * @note  The API yields the HAL status of the handle: it is the result of the
1381   *        latest HASH processing and allows to report any issue (e.g. HAL_TIMEOUT).
1382   * @param  hhash HASH handle.
1383   * @retval HAL status
1384   */
HAL_HASH_GetStatus(HASH_HandleTypeDef * hhash)1385 HAL_StatusTypeDef HAL_HASH_GetStatus(HASH_HandleTypeDef *hhash)
1386 {
1387   return hhash->Status;
1388 }
1389 
1390 /**
1391   * @brief  Save the HASH context in case of processing suspension.
1392   * @param  hhash HASH handle.
1393   * @param  pMemBuffer pointer to the memory buffer where the HASH context
1394   *         is saved.
1395   * @note   The IMR, STR, CR then all the CSR registers are saved
1396   *         in that order. Only the r/w bits are read to be restored later on.
1397   * @note   By default, all the context swap registers (there are
1398   *         HASH_NUMBER_OF_CSR_REGISTERS of those) are saved.
1399   * @note   pMemBuffer points to a buffer allocated by the user. The buffer size
1400   *         must be at least (HASH_NUMBER_OF_CSR_REGISTERS + 3) * 4 uint8 long.
1401   * @retval None
1402   */
HAL_HASH_ContextSaving(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1403 void HAL_HASH_ContextSaving(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1404 {
1405   uint32_t mem_ptr = (uint32_t)pMemBuffer;
1406   uint32_t csr_ptr = (uint32_t)HASH->CSR;
1407   uint32_t i;
1408 
1409   /* Prevent unused argument(s) compilation warning */
1410   UNUSED(hhash);
1411 
1412   /* Save IMR register content */
1413   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->IMR, HASH_IT_DINI | HASH_IT_DCI);
1414   mem_ptr += 4U;
1415   /* Save STR register content */
1416   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->STR, HASH_STR_NBLW);
1417   mem_ptr += 4U;
1418   /* Save CR register content */
1419   *(uint32_t *)(mem_ptr) = READ_BIT(HASH->CR, HASH_CR_DMAE | HASH_CR_DATATYPE | HASH_CR_MODE | HASH_CR_ALGO |
1420                                     HASH_CR_LKEY | HASH_CR_MDMAT);
1421   mem_ptr += 4U;
1422   /* By default, save all CSRs registers */
1423   for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1424   {
1425     *(uint32_t *)(mem_ptr) = *(uint32_t *)(csr_ptr);
1426     mem_ptr += 4U;
1427     csr_ptr += 4U;
1428   }
1429 }
1430 
1431 
1432 /**
1433   * @brief  Restore the HASH context in case of processing resumption.
1434   * @param  hhash HASH handle.
1435   * @param  pMemBuffer pointer to the memory buffer where the HASH context
1436   *         is stored.
1437   * @note   The IMR, STR, CR then all the CSR registers are restored
1438   *         in that order. Only the r/w bits are restored.
1439   * @note   By default, all the context swap registers (HASH_NUMBER_OF_CSR_REGISTERS
1440   *         of those) are restored (all of them have been saved by default
1441   *         beforehand).
1442   * @retval None
1443   */
HAL_HASH_ContextRestoring(HASH_HandleTypeDef * hhash,uint8_t * pMemBuffer)1444 void HAL_HASH_ContextRestoring(HASH_HandleTypeDef *hhash, uint8_t *pMemBuffer)
1445 {
1446   uint32_t mem_ptr = (uint32_t)pMemBuffer;
1447   uint32_t csr_ptr = (uint32_t)HASH->CSR;
1448   uint32_t i;
1449 
1450   /* Prevent unused argument(s) compilation warning */
1451   UNUSED(hhash);
1452 
1453   /* Restore IMR register content */
1454   WRITE_REG(HASH->IMR, (*(uint32_t *)(mem_ptr)));
1455   mem_ptr += 4U;
1456   /* Restore STR register content */
1457   WRITE_REG(HASH->STR, (*(uint32_t *)(mem_ptr)));
1458   mem_ptr += 4U;
1459   /* Restore CR register content */
1460   WRITE_REG(HASH->CR, (*(uint32_t *)(mem_ptr)));
1461   mem_ptr += 4U;
1462 
1463   /* Reset the HASH processor before restoring the Context
1464   Swap Registers (CSR) */
1465   __HAL_HASH_INIT();
1466 
1467   /* By default, restore all CSR registers */
1468   for (i = HASH_NUMBER_OF_CSR_REGISTERS; i > 0U; i--)
1469   {
1470     WRITE_REG((*(uint32_t *)(csr_ptr)), (*(uint32_t *)(mem_ptr)));
1471     mem_ptr += 4U;
1472     csr_ptr += 4U;
1473   }
1474 }
1475 
1476 
1477 /**
1478   * @brief  Initiate HASH processing suspension when in polling or interruption mode.
1479   * @param  hhash HASH handle.
1480   * @note   Set the handle field SuspendRequest to the appropriate value so that
1481   *         the on-going HASH processing is suspended as soon as the required
1482   *         conditions are met. Note that the actual suspension is carried out
1483   *         by the functions HASH_WriteData() in polling mode and HASH_IT() in
1484   *         interruption mode.
1485   * @retval None
1486   */
HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1487 void HAL_HASH_SwFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1488 {
1489   /* Set Handle Suspend Request field */
1490   hhash->SuspendRequest = HAL_HASH_SUSPEND;
1491 }
1492 
1493 /**
1494   * @brief  Suspend the HASH processing when in DMA mode.
1495   * @param  hhash HASH handle.
1496   * @note   When suspension attempt occurs at the very end of a DMA transfer and
1497   *         all the data have already been entered in the Peripheral, hhash->State is
1498   *         set to HAL_HASH_STATE_READY and the API returns HAL_ERROR. It is
1499   *         recommended to wrap-up the processing in reading the digest as usual.
1500   * @retval HAL status
1501   */
HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef * hhash)1502 HAL_StatusTypeDef HAL_HASH_DMAFeed_ProcessSuspend(HASH_HandleTypeDef *hhash)
1503 {
1504   uint32_t tmp_remaining_DMATransferSize_inWords;
1505   uint32_t tmp_initial_DMATransferSize_inWords;
1506 
1507   if (hhash->State == HAL_HASH_STATE_READY)
1508   {
1509     return HAL_ERROR;
1510   }
1511   else
1512   {
1513 
1514     /* Make sure there is enough time to suspend the processing */
1515     /* DMA3 used, DMA_CBR1_BNDT in bytes*/
1516     tmp_remaining_DMATransferSize_inWords = ((((DMA_Channel_TypeDef *)hhash->hdmain->Instance)->CBR1) \
1517                                              & DMA_CBR1_BNDT) / 4U;
1518 
1519     if (tmp_remaining_DMATransferSize_inWords <= HASH_DMA_SUSPENSION_WORDS_LIMIT)
1520     {
1521       /* No suspension attempted since almost to the end of the transferred data. */
1522       /* Best option for user code is to wrap up low priority message hashing     */
1523       return HAL_ERROR;
1524     }
1525     /* Clear the DMAE bit to disable the DMA interface */
1526     CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1527 
1528     /* Wait until the last DMA transfer is complete (DMAS = 0 in the HASH_SR register) */
1529     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DMAS, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1530     {
1531       return HAL_TIMEOUT;
1532     }
1533 
1534     /* At this point, DMA interface is disabled and no transfer is on-going */
1535     /* Retrieve from the DMA handle how many words remain to be written */
1536     /* DMA3 used, DMA_CBR1_BNDT in bytes, DMA_CSR_FIFOL in words */
1537     tmp_remaining_DMATransferSize_inWords = ((((DMA_Channel_TypeDef *)hhash->hdmain->Instance)->CBR1) \
1538                                              & DMA_CBR1_BNDT) / 4U;
1539     tmp_remaining_DMATransferSize_inWords += ((((DMA_Channel_TypeDef *)hhash->hdmain->Instance)->CSR) \
1540                                               & DMA_CSR_FIFOL) >> DMA_CSR_FIFOL_Pos;
1541 
1542     /* Disable DMA channel */
1543     /* Note that the Abort function will
1544       - Clear the transfer error flags
1545       - Unlock
1546       - Set the State
1547     */
1548     if (HAL_DMA_Abort(hhash->hdmain) != HAL_OK)
1549     {
1550       return HAL_ERROR;
1551     }
1552 
1553     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS) != RESET)
1554     {
1555       return HAL_ERROR;
1556     }
1557 
1558     /* Wait until the hash processor is ready (no block is being processed), that is wait for DINIS=1 in HASH_SR */
1559     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DINIS, RESET, HASH_TIMEOUTVALUE) != HAL_OK)
1560     {
1561       return HAL_TIMEOUT;
1562     }
1563 
1564     if (tmp_remaining_DMATransferSize_inWords == 0U)
1565     {
1566       /* All the DMA transfer is actually done. Suspension occurred at the very end
1567          of the transfer. Either the digest computation is about to start (HASH case)
1568          or processing is about to move from one step to another (HMAC case).
1569          In both cases, the processing can't be suspended at this point. It is
1570          safer to
1571          - retrieve the low priority block digest before starting the high
1572            priority block processing (HASH case)
1573          - re-attempt a new suspension (HMAC case)
1574          */
1575       return HAL_ERROR;
1576     }
1577     else
1578     {
1579 
1580       /* Compute how many words were supposed to be transferred by DMA */
1581       tmp_initial_DMATransferSize_inWords = (((hhash->HashInCount % 4U) != 0U) ? \
1582                                              ((hhash->HashInCount + 3U) / 4U) : (hhash->HashInCount / 4U));
1583       /* Accordingly, update the input pointer that points at the next word to be
1584          transferred to the Peripheral by DMA */
1585       hhash->pHashInBuffPtr +=  4U * (tmp_initial_DMATransferSize_inWords - tmp_remaining_DMATransferSize_inWords) ;
1586 
1587       /* And store in HashInCount the remaining size to transfer (in bytes) */
1588       hhash->HashInCount = 4U * tmp_remaining_DMATransferSize_inWords;
1589 
1590     }
1591 
1592     /* Set State as suspended */
1593     hhash->State = HAL_HASH_STATE_SUSPENDED;
1594 
1595     return HAL_OK;
1596 
1597   }
1598 }
1599 
1600 /**
1601   * @brief  Return the HASH handle error code.
1602   * @param  hhash pointer to a HASH_HandleTypeDef structure.
1603   * @retval HASH Error Code
1604   */
HAL_HASH_GetError(HASH_HandleTypeDef * hhash)1605 uint32_t HAL_HASH_GetError(HASH_HandleTypeDef *hhash)
1606 {
1607   /* Return HASH Error Code */
1608   return hhash->ErrorCode;
1609 }
1610 /**
1611   * @}
1612   */
1613 
1614 
1615 /**
1616   * @}
1617   */
1618 
1619 /** @defgroup HASH_Private_Functions HASH Private Functions
1620   * @{
1621   */
1622 
1623 /**
1624   * @brief DMA HASH Input Data transfer completion callback.
1625   * @param hdma DMA handle.
1626   * @note  In case of HMAC processing, HASH_DMAXferCplt() initiates
1627   *        the next DMA transfer for the following HMAC step.
1628   * @retval None
1629   */
HASH_DMAXferCplt(DMA_HandleTypeDef * hdma)1630 static void HASH_DMAXferCplt(DMA_HandleTypeDef *hdma)
1631 {
1632   HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1633   uint32_t inputaddr;
1634   uint32_t buffersize;
1635   HAL_StatusTypeDef status = HAL_OK;
1636 
1637   if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1638   {
1639 
1640     /* Disable the DMA transfer */
1641     CLEAR_BIT(HASH->CR, HASH_CR_DMAE);
1642 
1643     if (READ_BIT(HASH->CR, HASH_CR_MODE) == 0U)
1644     {
1645       /* If no HMAC processing, input data transfer is now over */
1646 
1647       /* Change the HASH state to ready */
1648       hhash->State = HAL_HASH_STATE_READY;
1649 
1650       /* Call Input data transfer complete call back */
1651 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1652       hhash->InCpltCallback(hhash);
1653 #else
1654       HAL_HASH_InCpltCallback(hhash);
1655 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1656 
1657     }
1658     else
1659     {
1660       /* HMAC processing: depending on the current HMAC step and whether or
1661       not multi-buffer processing is on-going, the next step is initiated
1662       and MDMAT bit is set.  */
1663 
1664 
1665       if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
1666       {
1667         /* This is the end of HMAC processing */
1668 
1669         /* Change the HASH state to ready */
1670         hhash->State = HAL_HASH_STATE_READY;
1671 
1672         /* Call Input data transfer complete call back
1673         (note that the last DMA transfer was that of the key
1674         for the outer HASH operation). */
1675 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1676         hhash->InCpltCallback(hhash);
1677 #else
1678         HAL_HASH_InCpltCallback(hhash);
1679 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1680 
1681         return;
1682       }
1683       else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
1684       {
1685         inputaddr = (uint32_t)hhash->pHashMsgBuffPtr;     /* DMA transfer start address */
1686         buffersize = hhash->HashBuffSize;                 /* DMA transfer size (in bytes) */
1687         hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;        /* Move phase from Step 1 to Step 2 */
1688 
1689         /* In case of suspension request, save the new starting parameters */
1690         hhash->HashInCount = hhash->HashBuffSize;         /* Initial DMA transfer size (in bytes) */
1691         hhash->pHashInBuffPtr  = hhash->pHashMsgBuffPtr ; /* DMA transfer start address           */
1692 
1693         hhash->NbWordsAlreadyPushed = 0U;                  /* Reset number of words already pushed */
1694         /* Check whether or not digest calculation must be disabled (in case of multi-buffer HMAC processing) */
1695         if (hhash->DigestCalculationDisable != RESET)
1696         {
1697           /* Digest calculation is disabled: Step 2 must start with MDMAT bit set,
1698           no digest calculation will be triggered at the end of the input buffer feeding to the Peripheral */
1699           __HAL_HASH_SET_MDMAT();
1700         }
1701       }
1702       else  /*case (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)*/
1703       {
1704         if (hhash->DigestCalculationDisable != RESET)
1705         {
1706           /* No automatic move to Step 3 as a new message buffer will be fed to the Peripheral
1707           (case of multi-buffer HMAC processing):
1708           DCAL must not be set.
1709           Phase remains in Step 2, MDMAT remains set at this point.
1710           Change the HASH state to ready and call Input data transfer complete call back. */
1711           hhash->State = HAL_HASH_STATE_READY;
1712 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1713           hhash->InCpltCallback(hhash);
1714 #else
1715           HAL_HASH_InCpltCallback(hhash);
1716 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1717           return ;
1718         }
1719         else
1720         {
1721           /* Digest calculation is not disabled (case of single buffer input or last buffer
1722           of multi-buffer HMAC processing) */
1723           inputaddr = (uint32_t)hhash->Init.pKey;       /* DMA transfer start address */
1724           buffersize = hhash->Init.KeySize;             /* DMA transfer size (in bytes) */
1725           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;    /* Move phase from Step 2 to Step 3 */
1726           /* In case of suspension request, save the new starting parameters */
1727           hhash->HashInCount = hhash->Init.KeySize;     /* Initial size for second DMA transfer (input data) */
1728           hhash->pHashInBuffPtr  = hhash->Init.pKey ;   /* address passed to DMA, now entering data message */
1729 
1730           hhash->NbWordsAlreadyPushed = 0U;              /* Reset number of words already pushed */
1731         }
1732       }
1733 
1734       /* Configure the Number of valid bits in last word of the message */
1735       __HAL_HASH_SET_NBVALIDBITS(buffersize);
1736 
1737       /* Set the HASH DMA transfer completion call back */
1738       hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
1739 
1740       /* Enable the DMA In DMA channel */
1741       if ((hhash->hdmain->Mode & DMA_LINKEDLIST) == DMA_LINKEDLIST)
1742       {
1743         if ((hhash->hdmain->LinkedListQueue != NULL) && (hhash->hdmain->LinkedListQueue->Head != NULL))
1744         {
1745           /* Set DMA data size */
1746           hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CBR1_DEFAULT_OFFSET]\
1747             = (((buffersize % 4U) != 0U) ? (buffersize + (4U - (buffersize % 4U))) : (buffersize));
1748           /* Set DMA source address */
1749           hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CSAR_DEFAULT_OFFSET] = inputaddr;
1750           /* Set DMA destination address */
1751           hhash->hdmain->LinkedListQueue->Head->\
1752           LinkRegisters[NODE_CDAR_DEFAULT_OFFSET] = (uint32_t)&HASH->DIN;
1753 
1754           status = HAL_DMAEx_List_Start_IT(hhash->hdmain);
1755         }
1756         else
1757         {
1758           /* Update HASH state machine to error */
1759           hhash->State = HAL_HASH_STATE_ERROR;
1760         }
1761       }
1762       else
1763       {
1764         status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
1765                                   (((buffersize % 4U) != 0U) ? (buffersize + (4U - (buffersize % 4U))) : (buffersize)));
1766       }
1767 
1768       if (status != HAL_OK)
1769       {
1770         /* Update HASH state machine to error */
1771         hhash->State = HAL_HASH_STATE_ERROR;
1772       }
1773 
1774       /* Enable DMA requests */
1775       SET_BIT(HASH->CR, HASH_CR_DMAE);
1776 
1777       /* Return function status */
1778       if (status != HAL_OK)
1779       {
1780         /* Update HASH state machine to error */
1781         hhash->State = HAL_HASH_STATE_ERROR;
1782       }
1783       else
1784       {
1785         /* Change HASH state */
1786         hhash->State = HAL_HASH_STATE_BUSY;
1787       }
1788     }
1789   }
1790 
1791   return;
1792 }
1793 
1794 /**
1795   * @brief DMA HASH communication error callback.
1796   * @param hdma DMA handle.
1797   * @note  HASH_DMAError() callback invokes HAL_HASH_ErrorCallback() that
1798   *        can contain user code to manage the error.
1799   * @retval None
1800   */
HASH_DMAError(DMA_HandleTypeDef * hdma)1801 static void HASH_DMAError(DMA_HandleTypeDef *hdma)
1802 {
1803   HASH_HandleTypeDef *hhash = (HASH_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
1804 
1805   if (hhash->State != HAL_HASH_STATE_SUSPENDED)
1806   {
1807     hhash->ErrorCode |= HAL_HASH_ERROR_DMA;
1808     /* Set HASH state to ready to prevent any blocking issue in user code
1809        present in HAL_HASH_ErrorCallback() */
1810     hhash->State = HAL_HASH_STATE_READY;
1811     /* Set HASH handle status to error */
1812     hhash->Status = HAL_ERROR;
1813 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
1814     hhash->ErrorCallback(hhash);
1815 #else
1816     HAL_HASH_ErrorCallback(hhash);
1817 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
1818     /* After error handling by code user, reset HASH handle HAL status */
1819     hhash->Status = HAL_OK;
1820 
1821   }
1822 }
1823 
1824 /**
1825   * @brief  Feed the input buffer to the HASH Peripheral.
1826   * @param  hhash HASH handle.
1827   * @param  pInBuffer pointer to input buffer.
1828   * @param  Size the size of input buffer in bytes.
1829   * @note   HASH_WriteData() regularly reads hhash->SuspendRequest to check whether
1830   *         or not the HASH processing must be suspended. If this is the case, the
1831   *         processing is suspended when possible and the Peripheral feeding point reached at
1832   *         suspension time is stored in the handle for resumption later on.
1833   * @retval HAL status
1834   */
HASH_WriteData(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size)1835 static HAL_StatusTypeDef HASH_WriteData(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size)
1836 {
1837   uint32_t buffercounter;
1838   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
1839 
1840   for (buffercounter = 0U; buffercounter < Size; buffercounter += 4U)
1841   {
1842     /* Write input data 4 bytes at a time */
1843     HASH->DIN = *(uint32_t *)inputaddr;
1844     inputaddr += 4U;
1845 
1846     /* If the suspension flag has been raised and if the processing is not about
1847     to end, suspend processing */
1848     if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter + 4U) < Size))
1849     {
1850       /* wait for flag BUSY not set before  Wait for DINIS = 1*/
1851       if (buffercounter >= 64U)
1852       {
1853         if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
1854         {
1855           return HAL_TIMEOUT;
1856         }
1857       }
1858       /* Wait for DINIS = 1, which occurs when 16 32-bit locations are free
1859       in the input buffer */
1860       if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
1861       {
1862         /* Reset SuspendRequest */
1863         hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
1864 
1865         /* Depending whether the key or the input data were fed to the Peripheral, the feeding point
1866         reached at suspension time is not saved in the same handle fields */
1867         if ((hhash->Phase == HAL_HASH_PHASE_PROCESS) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2))
1868         {
1869           /* Save current reading and writing locations of Input and Output buffers */
1870           hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
1871           /* Save the number of bytes that remain to be processed at this point */
1872           hhash->HashInCount    =  Size - (buffercounter + 4U);
1873         }
1874         else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
1875         {
1876           /* Save current reading and writing locations of Input and Output buffers */
1877           hhash->pHashKeyBuffPtr  = (uint8_t *)inputaddr;
1878           /* Save the number of bytes that remain to be processed at this point */
1879           hhash->HashKeyCount  =  Size - (buffercounter + 4U);
1880         }
1881         else
1882         {
1883           /* Unexpected phase: unlock process and report error */
1884           hhash->State = HAL_HASH_STATE_READY;
1885           __HAL_UNLOCK(hhash);
1886           return HAL_ERROR;
1887         }
1888 
1889         /* Set the HASH state to Suspended and exit to stop entering data */
1890         hhash->State = HAL_HASH_STATE_SUSPENDED;
1891 
1892         return HAL_OK;
1893       } /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))  */
1894     } /* if ((hhash->SuspendRequest == HAL_HASH_SUSPEND) && ((buffercounter+4) < Size)) */
1895   }   /* for(buffercounter = 0; buffercounter < Size; buffercounter+=4)                 */
1896 
1897   /* At this point, all the data have been entered to the Peripheral: exit */
1898   return  HAL_OK;
1899 }
1900 
1901 /**
1902   * @brief  Retrieve the message digest.
1903   * @param  pMsgDigest pointer to the computed digest.
1904   * @param  Size message digest size in bytes.
1905   * @retval None
1906   */
HASH_GetDigest(uint8_t * pMsgDigest,uint8_t Size)1907 static void HASH_GetDigest(uint8_t *pMsgDigest, uint8_t Size)
1908 {
1909   uint32_t msgdigest = (uint32_t)pMsgDigest;
1910 
1911   switch (Size)
1912   {
1913     /* Read the message digest */
1914     case 16:  /* MD5 */
1915       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1916       msgdigest += 4U;
1917       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1918       msgdigest += 4U;
1919       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1920       msgdigest += 4U;
1921       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1922       break;
1923     case 20:  /* SHA1 */
1924       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1925       msgdigest += 4U;
1926       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1927       msgdigest += 4U;
1928       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1929       msgdigest += 4U;
1930       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1931       msgdigest += 4U;
1932       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1933       break;
1934     case 28:  /* SHA224 */
1935       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1936       msgdigest += 4U;
1937       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1938       msgdigest += 4U;
1939       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1940       msgdigest += 4U;
1941       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1942       msgdigest += 4U;
1943       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1944       msgdigest += 4U;
1945       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1946       msgdigest += 4U;
1947       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1948       break;
1949     case 32:   /* SHA256 */
1950       *(uint32_t *)(msgdigest) = __REV(HASH->HR[0]);
1951       msgdigest += 4U;
1952       *(uint32_t *)(msgdigest) = __REV(HASH->HR[1]);
1953       msgdigest += 4U;
1954       *(uint32_t *)(msgdigest) = __REV(HASH->HR[2]);
1955       msgdigest += 4U;
1956       *(uint32_t *)(msgdigest) = __REV(HASH->HR[3]);
1957       msgdigest += 4U;
1958       *(uint32_t *)(msgdigest) = __REV(HASH->HR[4]);
1959       msgdigest += 4U;
1960       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[5]);
1961       msgdigest += 4U;
1962       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[6]);
1963       msgdigest += 4U;
1964       *(uint32_t *)(msgdigest) = __REV(HASH_DIGEST->HR[7]);
1965       break;
1966     default:
1967       break;
1968   }
1969 }
1970 
1971 
1972 
1973 /**
1974   * @brief  Handle HASH processing Timeout.
1975   * @param  hhash HASH handle.
1976   * @param  Flag specifies the HASH flag to check.
1977   * @param  Status the Flag status (SET or RESET).
1978   * @param  Timeout Timeout duration.
1979   * @retval HAL status
1980   */
HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef * hhash,uint32_t Flag,FlagStatus Status,uint32_t Timeout)1981 static HAL_StatusTypeDef HASH_WaitOnFlagUntilTimeout(HASH_HandleTypeDef *hhash, uint32_t Flag, FlagStatus Status,
1982                                                      uint32_t Timeout)
1983 {
1984   uint32_t tickstart = HAL_GetTick();
1985 
1986   /* Wait until flag is set */
1987   if (Status == RESET)
1988   {
1989     while (__HAL_HASH_GET_FLAG(Flag) == RESET)
1990     {
1991       /* Check for the Timeout */
1992       if (Timeout != HAL_MAX_DELAY)
1993       {
1994         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
1995         {
1996           /* Set State to Ready to be able to restart later on */
1997           hhash->State  = HAL_HASH_STATE_READY;
1998           /* Store time out issue in handle status */
1999           hhash->Status = HAL_TIMEOUT;
2000 
2001           /* Process Unlocked */
2002           __HAL_UNLOCK(hhash);
2003 
2004           return HAL_TIMEOUT;
2005         }
2006       }
2007     }
2008   }
2009   else
2010   {
2011     while (__HAL_HASH_GET_FLAG(Flag) != RESET)
2012     {
2013       /* Check for the Timeout */
2014       if (Timeout != HAL_MAX_DELAY)
2015       {
2016         if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
2017         {
2018           /* Set State to Ready to be able to restart later on */
2019           hhash->State  = HAL_HASH_STATE_READY;
2020           /* Store time out issue in handle status */
2021           hhash->Status = HAL_TIMEOUT;
2022 
2023           /* Process Unlocked */
2024           __HAL_UNLOCK(hhash);
2025 
2026           return HAL_TIMEOUT;
2027         }
2028       }
2029     }
2030   }
2031   return HAL_OK;
2032 }
2033 
2034 
2035 /**
2036   * @brief  HASH processing in interruption mode.
2037   * @param  hhash HASH handle.
2038   * @note   HASH_IT() regularly reads hhash->SuspendRequest to check whether
2039   *         or not the HASH processing must be suspended. If this is the case, the
2040   *         processing is suspended when possible and the Peripheral feeding point reached at
2041   *         suspension time is stored in the handle for resumption later on.
2042   * @retval HAL status
2043   */
HASH_IT(HASH_HandleTypeDef * hhash)2044 static HAL_StatusTypeDef HASH_IT(HASH_HandleTypeDef *hhash)
2045 {
2046   if (hhash->State == HAL_HASH_STATE_BUSY)
2047   {
2048     /* ITCounter must not be equal to 0 at this point. Report an error if this is the case. */
2049     if (hhash->HashITCounter == 0U)
2050     {
2051       /* Disable Interrupts */
2052       __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2053       /* HASH state set back to Ready to prevent any issue in user code
2054          present in HAL_HASH_ErrorCallback() */
2055       hhash->State = HAL_HASH_STATE_READY;
2056       return HAL_ERROR;
2057     }
2058     else if (hhash->HashITCounter == 1U)
2059     {
2060       /* This is the first call to HASH_IT, the first input data are about to be
2061          entered in the Peripheral. A specific processing is carried out at this point to
2062          start-up the processing. */
2063       hhash->HashITCounter = 2U;
2064     }
2065     else
2066     {
2067       /* Cruise speed reached, HashITCounter remains equal to 3 until the end of
2068         the HASH processing or the end of the current step for HMAC processing. */
2069       hhash->HashITCounter = 3U;
2070     }
2071 
2072     /* If digest is ready */
2073     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DCIS))
2074     {
2075       /* Read the digest */
2076       HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2077 
2078       /* Disable Interrupts */
2079       __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2080       /* Change the HASH state */
2081       hhash->State = HAL_HASH_STATE_READY;
2082       /* Reset HASH state machine */
2083       hhash->Phase = HAL_HASH_PHASE_READY;
2084       /* Call digest computation complete call back */
2085 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2086       hhash->DgstCpltCallback(hhash);
2087 #else
2088       HAL_HASH_DgstCpltCallback(hhash);
2089 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2090 
2091       return HAL_OK;
2092     }
2093 
2094     /* If Peripheral ready to accept new data */
2095     if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2096     {
2097 
2098       /* If the suspension flag has been raised and if the processing is not about
2099          to end, suspend processing */
2100       if ((hhash->HashInCount != 0U) && (hhash->SuspendRequest == HAL_HASH_SUSPEND))
2101       {
2102         /* Disable Interrupts */
2103         __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2104 
2105         /* Reset SuspendRequest */
2106         hhash->SuspendRequest = HAL_HASH_SUSPEND_NONE;
2107 
2108         /* Change the HASH state */
2109         hhash->State = HAL_HASH_STATE_SUSPENDED;
2110 
2111         return HAL_OK;
2112       }
2113 
2114       /* Enter input data in the Peripheral through HASH_Write_Block_Data() call and
2115         check whether the digest calculation has been triggered */
2116       if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED)
2117       {
2118         /* Call Input data transfer complete call back
2119            (called at the end of each step for HMAC) */
2120 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2121         hhash->InCpltCallback(hhash);
2122 #else
2123         HAL_HASH_InCpltCallback(hhash);
2124 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2125 
2126         if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2127         {
2128           /* Wait until Peripheral is not busy anymore */
2129           if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2130           {
2131             /* Disable Interrupts */
2132             __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2133             return HAL_TIMEOUT;
2134           }
2135           /* Initialization start for HMAC STEP 2 */
2136           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;        /* Move phase from Step 1 to Step 2 */
2137           __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);  /* Set NBLW for the input message */
2138           hhash->HashInCount = hhash->HashBuffSize;         /* Set the input data size (in bytes) */
2139           hhash->pHashInBuffPtr = hhash->pHashMsgBuffPtr;   /* Set the input data address */
2140           hhash->HashITCounter = 1;                         /* Set ITCounter to 1 to indicate the start
2141                                                                of a new phase */
2142           __HAL_HASH_ENABLE_IT(HASH_IT_DINI);               /* Enable IT (was disabled in HASH_Write_Block_Data) */
2143         }
2144         else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2145         {
2146           /* Wait until Peripheral is not busy anymore */
2147           if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, HASH_TIMEOUTVALUE) != HAL_OK)
2148           {
2149             /* Disable Interrupts */
2150             __HAL_HASH_DISABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2151             return HAL_TIMEOUT;
2152           }
2153           /* Initialization start for HMAC STEP 3 */
2154           hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;         /* Move phase from Step 2 to Step 3 */
2155           __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);   /* Set NBLW for the key */
2156           hhash->HashInCount = hhash->Init.KeySize;          /* Set the key size (in bytes) */
2157           hhash->pHashInBuffPtr = hhash->Init.pKey;          /* Set the key address */
2158           hhash->HashITCounter = 1;                          /* Set ITCounter to 1 to indicate the start
2159                                                                 of a new phase */
2160           __HAL_HASH_ENABLE_IT(HASH_IT_DINI);                /* Enable IT (was disabled in HASH_Write_Block_Data) */
2161         }
2162         else
2163         {
2164           /* Nothing to do */
2165         }
2166       } /* if (HASH_Write_Block_Data(hhash) == HASH_DIGEST_CALCULATION_STARTED) */
2167     }  /* if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))*/
2168 
2169     /* Return function status */
2170     return HAL_OK;
2171   }
2172   else
2173   {
2174     return HAL_BUSY;
2175   }
2176 }
2177 
2178 
2179 /**
2180   * @brief  Write a block of data in HASH Peripheral in interruption mode.
2181   * @param  hhash HASH handle.
2182   * @note   HASH_Write_Block_Data() is called under interruption by HASH_IT().
2183   * @retval HAL status
2184   */
HASH_Write_Block_Data(HASH_HandleTypeDef * hhash)2185 static uint32_t HASH_Write_Block_Data(HASH_HandleTypeDef *hhash)
2186 {
2187   uint32_t inputaddr;
2188   uint32_t buffercounter;
2189   uint32_t inputcounter;
2190   uint32_t ret = HASH_DIGEST_CALCULATION_NOT_STARTED;
2191 
2192   /* If there are more than 64 bytes remaining to be entered */
2193   if (hhash->HashInCount > 64U)
2194   {
2195     inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2196     /* Write the Input block in the Data IN register
2197       (16 32-bit words, or 64 bytes are entered) */
2198     for (buffercounter = 0U; buffercounter < 64U; buffercounter += 4U)
2199     {
2200       HASH->DIN = *(uint32_t *)inputaddr;
2201       inputaddr += 4U;
2202     }
2203     /* If this is the start of input data entering, an additional word
2204       must be entered to start up the HASH processing */
2205     if (hhash->HashITCounter == 2U)
2206     {
2207       HASH->DIN = *(uint32_t *)inputaddr;
2208       if (hhash->HashInCount >= 68U)
2209       {
2210         /* There are still data waiting to be entered in the Peripheral.
2211            Decrement buffer counter and set pointer to the proper
2212            memory location for the next data entering round. */
2213         hhash->HashInCount -= 68U;
2214         hhash->pHashInBuffPtr += 68U;
2215       }
2216       else
2217       {
2218         /* All the input buffer has been fed to the HW. */
2219         hhash->HashInCount = 0U;
2220       }
2221     }
2222     else
2223     {
2224       /* 64 bytes have been entered and there are still some remaining:
2225          Decrement buffer counter and set pointer to the proper
2226         memory location for the next data entering round.*/
2227       hhash->HashInCount -= 64U;
2228       hhash->pHashInBuffPtr += 64U;
2229     }
2230   }
2231   else
2232   {
2233     /* 64 or less bytes remain to be entered. This is the last
2234       data entering round. */
2235 
2236     /* Get the buffer address */
2237     inputaddr = (uint32_t)hhash->pHashInBuffPtr;
2238     /* Get the buffer counter */
2239     inputcounter = hhash->HashInCount;
2240     /* Disable Interrupts */
2241     __HAL_HASH_DISABLE_IT(HASH_IT_DINI);
2242 
2243     /* Write the Input block in the Data IN register */
2244     for (buffercounter = 0U; buffercounter < ((inputcounter + 3U) / 4U); buffercounter++)
2245     {
2246       HASH->DIN = *(uint32_t *)inputaddr;
2247       inputaddr += 4U;
2248     }
2249 
2250     if (hhash->Accumulation == 1U)
2251     {
2252       /* Field accumulation is set, API only feeds data to the Peripheral and under interruption.
2253          The digest computation will be started when the last buffer data are entered. */
2254 
2255       /* Reset multi buffers accumulation flag */
2256       hhash->Accumulation = 0U;
2257       /* Change the HASH state */
2258       hhash->State = HAL_HASH_STATE_READY;
2259       /* Call Input data transfer complete call back */
2260 #if (USE_HAL_HASH_REGISTER_CALLBACKS == 1)
2261       hhash->InCpltCallback(hhash);
2262 #else
2263       HAL_HASH_InCpltCallback(hhash);
2264 #endif /* USE_HAL_HASH_REGISTER_CALLBACKS */
2265     }
2266     else
2267     {
2268       /* Start the Digest calculation */
2269       __HAL_HASH_START_DIGEST();
2270       /* Return indication that digest calculation has started:
2271          this return value triggers the call to Input data transfer
2272          complete call back as well as the proper transition from
2273          one step to another in HMAC mode. */
2274       ret = HASH_DIGEST_CALCULATION_STARTED;
2275     }
2276     /* Reset buffer counter */
2277     hhash->HashInCount = 0;
2278   }
2279 
2280   /* Return whether or digest calculation has started */
2281   return ret;
2282 }
2283 
2284 /**
2285   * @brief  HMAC processing in polling mode.
2286   * @param  hhash HASH handle.
2287   * @param  Timeout Timeout value.
2288   * @retval HAL status
2289   */
HMAC_Processing(HASH_HandleTypeDef * hhash,uint32_t Timeout)2290 static HAL_StatusTypeDef HMAC_Processing(HASH_HandleTypeDef *hhash, uint32_t Timeout)
2291 {
2292   /* Ensure first that Phase is correct */
2293   if ((hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_1) && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_2)
2294       && (hhash->Phase != HAL_HASH_PHASE_HMAC_STEP_3))
2295   {
2296     /* Change the HASH state */
2297     hhash->State = HAL_HASH_STATE_READY;
2298 
2299     /* Process Unlock */
2300     __HAL_UNLOCK(hhash);
2301 
2302     /* Return function status */
2303     return HAL_ERROR;
2304   }
2305 
2306   /* HMAC Step 1 processing */
2307   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1)
2308   {
2309     /************************** STEP 1 ******************************************/
2310     /* Configure the Number of valid bits in last word of the message */
2311     __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2312 
2313     /* Write input buffer in Data register */
2314     hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2315     if (hhash->Status != HAL_OK)
2316     {
2317       return hhash->Status;
2318     }
2319 
2320     /* Check whether or not key entering process has been suspended */
2321     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2322     {
2323       /* Process Unlocked */
2324       __HAL_UNLOCK(hhash);
2325 
2326       /* Stop right there and return function status */
2327       return HAL_OK;
2328     }
2329 
2330     /* No processing suspension at this point: set DCAL bit. */
2331     __HAL_HASH_START_DIGEST();
2332 
2333     /* Wait for BUSY flag to be cleared */
2334     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2335     {
2336       return HAL_TIMEOUT;
2337     }
2338 
2339     /* Move from Step 1 to Step 2 */
2340     hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_2;
2341 
2342   }
2343 
2344   /* HMAC Step 2 processing.
2345      After phase check, HMAC_Processing() may
2346      - directly start up from this point in resumption case
2347        if the same Step 2 processing was suspended previously
2348     - or fall through from the Step 1 processing carried out hereabove */
2349   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
2350   {
2351     /************************** STEP 2 ******************************************/
2352     /* Configure the Number of valid bits in last word of the message */
2353     __HAL_HASH_SET_NBVALIDBITS(hhash->HashBuffSize);
2354 
2355     /* Write input buffer in Data register */
2356     hhash->Status = HASH_WriteData(hhash, hhash->pHashInBuffPtr, hhash->HashInCount);
2357     if (hhash->Status != HAL_OK)
2358     {
2359       return hhash->Status;
2360     }
2361 
2362     /* Check whether or not data entering process has been suspended */
2363     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2364     {
2365       /* Process Unlocked */
2366       __HAL_UNLOCK(hhash);
2367 
2368       /* Stop right there and return function status */
2369       return HAL_OK;
2370     }
2371 
2372     /* No processing suspension at this point: set DCAL bit. */
2373     __HAL_HASH_START_DIGEST();
2374 
2375     /* Wait for BUSY flag to be cleared */
2376     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_BUSY, SET, Timeout) != HAL_OK)
2377     {
2378       return HAL_TIMEOUT;
2379     }
2380 
2381     /* Move from Step 2 to Step 3 */
2382     hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_3;
2383     /* In case Step 1 phase was suspended then resumed,
2384        set again Key input buffers and size before moving to
2385        next step */
2386     hhash->pHashKeyBuffPtr = hhash->Init.pKey;
2387     hhash->HashKeyCount    = hhash->Init.KeySize;
2388   }
2389 
2390 
2391   /* HMAC Step 3 processing.
2392       After phase check, HMAC_Processing() may
2393       - directly start up from this point in resumption case
2394         if the same Step 3 processing was suspended previously
2395      - or fall through from the Step 2 processing carried out hereabove */
2396   if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3)
2397   {
2398     /************************** STEP 3 ******************************************/
2399     /* Configure the Number of valid bits in last word of the message */
2400     __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
2401 
2402     /* Write input buffer in Data register */
2403     hhash->Status = HASH_WriteData(hhash, hhash->pHashKeyBuffPtr, hhash->HashKeyCount);
2404     if (hhash->Status != HAL_OK)
2405     {
2406       return hhash->Status;
2407     }
2408 
2409     /* Check whether or not key entering process has been suspended */
2410     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2411     {
2412       /* Process Unlocked */
2413       __HAL_UNLOCK(hhash);
2414 
2415       /* Stop right there and return function status */
2416       return HAL_OK;
2417     }
2418 
2419     /* No processing suspension at this point: start the Digest calculation. */
2420     __HAL_HASH_START_DIGEST();
2421 
2422     /* Wait for DCIS flag to be set */
2423     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2424     {
2425       return HAL_TIMEOUT;
2426     }
2427 
2428     /* Read the message digest */
2429     HASH_GetDigest(hhash->pHashOutBuffPtr, HASH_DIGEST_LENGTH());
2430 
2431     /* Reset HASH state machine */
2432     hhash->Phase = HAL_HASH_PHASE_READY;
2433   }
2434 
2435   /* Change the HASH state */
2436   hhash->State = HAL_HASH_STATE_READY;
2437 
2438   /* Process Unlock */
2439   __HAL_UNLOCK(hhash);
2440 
2441   /* Return function status */
2442   return HAL_OK;
2443 }
2444 
2445 
2446 /**
2447   * @brief  Initialize the HASH peripheral, next process pInBuffer then
2448   *         read the computed digest.
2449   * @note   Digest is available in pOutBuffer.
2450   * @param  hhash HASH handle.
2451   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2452   * @param  Size length of the input buffer in bytes.
2453   * @param  pOutBuffer pointer to the computed digest.
2454   * @param  Timeout Timeout value.
2455   * @param  Algorithm HASH algorithm.
2456   * @retval HAL status
2457   */
HASH_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)2458 HAL_StatusTypeDef HASH_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2459                              uint32_t Timeout, uint32_t Algorithm)
2460 {
2461   uint8_t *pInBuffer_tmp;  /* input data address, input parameter of HASH_WriteData()         */
2462   uint32_t Size_tmp; /* input data size (in bytes), input parameter of HASH_WriteData() */
2463   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2464 
2465 
2466   /* Initiate HASH processing in case of start or resumption */
2467   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2468   {
2469     /* Check input parameters */
2470     if ((pInBuffer == NULL) || (pOutBuffer == NULL))
2471     {
2472       hhash->State = HAL_HASH_STATE_READY;
2473       return  HAL_ERROR;
2474     }
2475 
2476     /* Process Locked */
2477     __HAL_LOCK(hhash);
2478 
2479     /* Check if initialization phase has not been already performed */
2480     if (hhash->Phase == HAL_HASH_PHASE_READY)
2481     {
2482       /* Change the HASH state */
2483       hhash->State = HAL_HASH_STATE_BUSY;
2484 
2485       /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2486       MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2487 
2488       /* Configure the number of valid bits in last word of the message */
2489       __HAL_HASH_SET_NBVALIDBITS(Size);
2490 
2491       /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2492       input parameters of HASH_WriteData() */
2493       pInBuffer_tmp = pInBuffer;   /* pInBuffer_tmp is set to the input data address */
2494       Size_tmp = Size;             /* Size_tmp contains the input data size in bytes */
2495 
2496       /* Set the phase */
2497       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2498     }
2499     else if (hhash->Phase == HAL_HASH_PHASE_PROCESS)
2500     {
2501       /* if the Peripheral has already been initialized, two cases are possible */
2502 
2503       /* Process resumption time ... */
2504       if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2505       {
2506         /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2507         to the API input parameters but to those saved beforehand by HASH_WriteData()
2508         when the processing was suspended */
2509         pInBuffer_tmp = hhash->pHashInBuffPtr;
2510         Size_tmp = hhash->HashInCount;
2511       }
2512       /* ... or multi-buffer HASH processing end */
2513       else
2514       {
2515         /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2516         input parameters of HASH_WriteData() */
2517         pInBuffer_tmp = pInBuffer;
2518         Size_tmp = Size;
2519         /* Configure the number of valid bits in last word of the message */
2520         __HAL_HASH_SET_NBVALIDBITS(Size);
2521       }
2522       /* Change the HASH state */
2523       hhash->State = HAL_HASH_STATE_BUSY;
2524     }
2525     else
2526     {
2527       /* Phase error */
2528       hhash->State = HAL_HASH_STATE_READY;
2529 
2530       /* Process Unlocked */
2531       __HAL_UNLOCK(hhash);
2532 
2533       /* Return function status */
2534       return HAL_ERROR;
2535     }
2536 
2537 
2538     /* Write input buffer in Data register */
2539     hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2540     if (hhash->Status != HAL_OK)
2541     {
2542       return hhash->Status;
2543     }
2544 
2545     /* If the process has not been suspended, carry on to digest calculation */
2546     if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2547     {
2548       /* Start the Digest calculation */
2549       __HAL_HASH_START_DIGEST();
2550 
2551       /* Wait for DCIS flag to be set */
2552       if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
2553       {
2554         return HAL_TIMEOUT;
2555       }
2556 
2557       /* Read the message digest */
2558       HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
2559 
2560       /* Change the HASH state */
2561       hhash->State = HAL_HASH_STATE_READY;
2562 
2563       /* Reset HASH state machine */
2564       hhash->Phase = HAL_HASH_PHASE_READY;
2565 
2566     }
2567 
2568     /* Process Unlocked */
2569     __HAL_UNLOCK(hhash);
2570 
2571     /* Return function status */
2572     return HAL_OK;
2573 
2574   }
2575   else
2576   {
2577     return HAL_BUSY;
2578   }
2579 }
2580 
2581 
2582 /**
2583   * @brief  If not already done, initialize the HASH peripheral then
2584   *         processes pInBuffer.
2585   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
2586   *         the Peripheral has already been initialized.
2587   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2588   *         HASH digest computation is corrupted.
2589   * @param  hhash HASH handle.
2590   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2591   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
2592   * @param  Algorithm HASH algorithm.
2593   * @retval HAL status
2594   */
HASH_Accumulate(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2595 HAL_StatusTypeDef HASH_Accumulate(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2596 {
2597   uint8_t *pInBuffer_tmp;   /* input data address, input parameter of HASH_WriteData()         */
2598   uint32_t Size_tmp;  /* input data size (in bytes), input parameter of HASH_WriteData() */
2599   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2600 
2601   /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2602   if ((Size % 4U) != 0U)
2603   {
2604     return  HAL_ERROR;
2605   }
2606 
2607   /* Initiate HASH processing in case of start or resumption */
2608   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2609   {
2610     /* Check input parameters */
2611     if ((pInBuffer == NULL) || (Size == 0U))
2612     {
2613       hhash->State = HAL_HASH_STATE_READY;
2614       return  HAL_ERROR;
2615     }
2616 
2617     /* Process Locked */
2618     __HAL_LOCK(hhash);
2619 
2620     /* If resuming the HASH processing */
2621     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2622     {
2623       /* Change the HASH state */
2624       hhash->State = HAL_HASH_STATE_BUSY;
2625 
2626       /* Since this is resumption, pInBuffer_tmp and Size_tmp are not set
2627          to the API input parameters but to those saved beforehand by HASH_WriteData()
2628          when the processing was suspended */
2629       pInBuffer_tmp = hhash->pHashInBuffPtr;  /* pInBuffer_tmp is set to the input data address */
2630       Size_tmp = hhash->HashInCount;          /* Size_tmp contains the input data size in bytes */
2631 
2632     }
2633     else
2634     {
2635       /* Change the HASH state */
2636       hhash->State = HAL_HASH_STATE_BUSY;
2637 
2638       /* pInBuffer_tmp and Size_tmp are initialized to be used afterwards as
2639          input parameters of HASH_WriteData() */
2640       pInBuffer_tmp = pInBuffer;    /* pInBuffer_tmp is set to the input data address */
2641       Size_tmp = Size;              /* Size_tmp contains the input data size in bytes */
2642 
2643       /* Check if initialization phase has already be performed */
2644       if (hhash->Phase == HAL_HASH_PHASE_READY)
2645       {
2646         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2647         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2648       }
2649 
2650       /* Set the phase */
2651       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2652 
2653     }
2654 
2655     /* Write input buffer in Data register */
2656     hhash->Status = HASH_WriteData(hhash, pInBuffer_tmp, Size_tmp);
2657     if (hhash->Status != HAL_OK)
2658     {
2659       return hhash->Status;
2660     }
2661 
2662     /* If the process has not been suspended, move the state to Ready */
2663     if (hhash->State != HAL_HASH_STATE_SUSPENDED)
2664     {
2665       /* Change the HASH state */
2666       hhash->State = HAL_HASH_STATE_READY;
2667     }
2668 
2669     /* Process Unlocked */
2670     __HAL_UNLOCK(hhash);
2671 
2672     /* Return function status */
2673     return HAL_OK;
2674 
2675   }
2676   else
2677   {
2678     return HAL_BUSY;
2679   }
2680 
2681 
2682 }
2683 
2684 
2685 /**
2686   * @brief  If not already done, initialize the HASH peripheral then
2687   *         processes pInBuffer in interruption mode.
2688   * @note   Field hhash->Phase of HASH handle is tested to check whether or not
2689   *         the Peripheral has already been initialized.
2690   * @note   The input buffer size (in bytes) must be a multiple of 4 otherwise, the
2691   *         HASH digest computation is corrupted.
2692   * @param  hhash HASH handle.
2693   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2694   * @param  Size length of the input buffer in bytes, must be a multiple of 4.
2695   * @param  Algorithm HASH algorithm.
2696   * @retval HAL status
2697   */
HASH_Accumulate_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2698 HAL_StatusTypeDef HASH_Accumulate_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2699 {
2700   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2701   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2702   uint32_t SizeVar = Size;
2703 
2704   /* Make sure the input buffer size (in bytes) is a multiple of 4 */
2705   if ((Size % 4U) != 0U)
2706   {
2707     return  HAL_ERROR;
2708   }
2709 
2710   /* Initiate HASH processing in case of start or resumption */
2711   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2712   {
2713     /* Check input parameters */
2714     if ((pInBuffer == NULL) || (Size == 0U))
2715     {
2716       hhash->State = HAL_HASH_STATE_READY;
2717       return  HAL_ERROR;
2718     }
2719 
2720     /* Process Locked */
2721     __HAL_LOCK(hhash);
2722 
2723     /* If resuming the HASH processing */
2724     if (hhash->State == HAL_HASH_STATE_SUSPENDED)
2725     {
2726       /* Change the HASH state */
2727       hhash->State = HAL_HASH_STATE_BUSY;
2728     }
2729     else
2730     {
2731       /* Change the HASH state */
2732       hhash->State = HAL_HASH_STATE_BUSY;
2733 
2734       /* Check if initialization phase has already be performed */
2735       if (hhash->Phase == HAL_HASH_PHASE_READY)
2736       {
2737         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2738         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2739         hhash->HashITCounter = 1;
2740       }
2741       else
2742       {
2743         hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2744       }
2745 
2746       /* Set the phase */
2747       hhash->Phase = HAL_HASH_PHASE_PROCESS;
2748 
2749       /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2750        fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2751        Therefore, first words are manually entered until DINIS raises, or until there
2752        is not more data to enter. */
2753       while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 0U))
2754       {
2755 
2756         /* Write input data 4 bytes at a time */
2757         HASH->DIN = *(uint32_t *)inputaddr;
2758         inputaddr += 4U;
2759         SizeVar -= 4U;
2760       }
2761 
2762       /* If DINIS is still not set or if all the data have been fed, stop here */
2763       if ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) || (SizeVar == 0U))
2764       {
2765         /* Change the HASH state */
2766         hhash->State = HAL_HASH_STATE_READY;
2767 
2768         /* Process Unlock */
2769         __HAL_UNLOCK(hhash);
2770 
2771         /* Return function status */
2772         return HAL_OK;
2773       }
2774 
2775       /* otherwise, carry on in interrupt-mode */
2776       hhash->HashInCount = SizeVar;               /* Counter used to keep track of number of data
2777                                                   to be fed to the Peripheral */
2778       hhash->pHashInBuffPtr = (uint8_t *)inputaddr;       /* Points at data which will be fed to the Peripheral at
2779                                                   the next interruption */
2780       /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2781          the information describing where the HASH process is stopped.
2782          These variables are used later on to resume the HASH processing at the
2783          correct location. */
2784 
2785     }
2786 
2787     /* Set multi buffers accumulation flag */
2788     hhash->Accumulation = 1U;
2789 
2790     /* Process Unlock */
2791     __HAL_UNLOCK(hhash);
2792 
2793     /* Enable Data Input interrupt */
2794     __HAL_HASH_ENABLE_IT(HASH_IT_DINI);
2795 
2796     /* Return function status */
2797     return HAL_OK;
2798 
2799   }
2800   else
2801   {
2802     return HAL_BUSY;
2803   }
2804 
2805 }
2806 
2807 
2808 
2809 /**
2810   * @brief  Initialize the HASH peripheral, next process pInBuffer then
2811   *         read the computed digest in interruption mode.
2812   * @note   Digest is available in pOutBuffer.
2813   * @param  hhash HASH handle.
2814   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2815   * @param  Size length of the input buffer in bytes.
2816   * @param  pOutBuffer pointer to the computed digest.
2817   * @param  Algorithm HASH algorithm.
2818   * @retval HAL status
2819   */
HASH_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)2820 HAL_StatusTypeDef HASH_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
2821                                 uint32_t Algorithm)
2822 {
2823   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2824   __IO uint32_t inputaddr = (uint32_t) pInBuffer;
2825   uint32_t polling_step = 0U;
2826   uint32_t initialization_skipped = 0U;
2827   uint32_t SizeVar = Size;
2828 
2829   /* If State is ready or suspended, start or resume IT-based HASH processing */
2830   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
2831   {
2832     /* Check input parameters */
2833     if ((pInBuffer == NULL) || (Size == 0U) || (pOutBuffer == NULL))
2834     {
2835       hhash->State = HAL_HASH_STATE_READY;
2836       return  HAL_ERROR;
2837     }
2838 
2839     /* Process Locked */
2840     __HAL_LOCK(hhash);
2841 
2842     /* Change the HASH state */
2843     hhash->State = HAL_HASH_STATE_BUSY;
2844 
2845     /* Initialize IT counter */
2846     hhash->HashITCounter = 1;
2847 
2848     /* Check if initialization phase has already be performed */
2849     if (hhash->Phase == HAL_HASH_PHASE_READY)
2850     {
2851       /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
2852       MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
2853 
2854       /* Configure the number of valid bits in last word of the message */
2855       __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2856 
2857 
2858       hhash->HashInCount = SizeVar;            /* Counter used to keep track of number of data
2859                                                   to be fed to the Peripheral */
2860       hhash->pHashInBuffPtr = pInBuffer;       /* Points at data which will be fed to the Peripheral at
2861                                                   the next interruption */
2862       /* In case of suspension, hhash->HashInCount and hhash->pHashInBuffPtr contain
2863          the information describing where the HASH process is stopped.
2864          These variables are used later on to resume the HASH processing at the
2865          correct location. */
2866 
2867       hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2868     }
2869     else
2870     {
2871       initialization_skipped = 1; /* info user later on in case of multi-buffer */
2872     }
2873 
2874     /* Set the phase */
2875     hhash->Phase = HAL_HASH_PHASE_PROCESS;
2876 
2877     /* If DINIS is equal to 0 (for example if an incomplete block has been previously
2878       fed to the Peripheral), the DINIE interruption won't be triggered when DINIE is set.
2879       Therefore, first words are manually entered until DINIS raises. */
2880     while ((!(__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))) && (SizeVar > 3U))
2881     {
2882       polling_step = 1U; /* note that some words are entered before enabling the interrupt */
2883 
2884       /* Write input data 4 bytes at a time */
2885       HASH->DIN = *(uint32_t *)inputaddr;
2886       inputaddr += 4U;
2887       SizeVar -= 4U;
2888     }
2889 
2890     if (polling_step == 1U)
2891     {
2892       if (SizeVar == 0U)
2893       {
2894         /* If all the data have been entered at this point, it only remains to
2895          read the digest */
2896         hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2897 
2898         /* Start the Digest calculation */
2899         __HAL_HASH_START_DIGEST();
2900         /* Process Unlock */
2901         __HAL_UNLOCK(hhash);
2902 
2903         /* Enable Interrupts */
2904         __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2905 
2906         /* Return function status */
2907         return HAL_OK;
2908       }
2909       else if (__HAL_HASH_GET_FLAG(HASH_FLAG_DINIS))
2910       {
2911         /* It remains data to enter and the Peripheral is ready to trigger DINIE,
2912            carry on as usual.
2913            Update HashInCount and pHashInBuffPtr accordingly. */
2914         hhash->HashInCount = SizeVar;
2915         hhash->pHashInBuffPtr = (uint8_t *)inputaddr;
2916         __HAL_HASH_SET_NBVALIDBITS(
2917           SizeVar);  /* Update the configuration of the number of valid bits in last word of the message */
2918         hhash->pHashOutBuffPtr = pOutBuffer;  /* Points at the computed digest */
2919         if (initialization_skipped == 1U)
2920         {
2921           hhash->HashITCounter = 3; /* 'cruise-speed' reached during a previous buffer processing */
2922         }
2923       }
2924       else
2925       {
2926         /* DINIS is not set but it remains a few data to enter (not enough for a full word).
2927            Manually enter the last bytes before enabling DCIE. */
2928         __HAL_HASH_SET_NBVALIDBITS(SizeVar);
2929         HASH->DIN = *(uint32_t *)inputaddr;
2930 
2931         /* Start the Digest calculation */
2932         hhash->pHashOutBuffPtr = pOutBuffer;     /* Points at the computed digest */
2933         __HAL_HASH_START_DIGEST();
2934         /* Process Unlock */
2935         __HAL_UNLOCK(hhash);
2936 
2937         /* Enable Interrupts */
2938         __HAL_HASH_ENABLE_IT(HASH_IT_DCI);
2939 
2940         /* Return function status */
2941         return HAL_OK;
2942       }
2943     } /*  if (polling_step == 1) */
2944     else
2945 	{
2946       /* otherwise, carry on in interrupt-mode */
2947       hhash->HashInCount = SizeVar;                   /* Counter used to keep track of number of data
2948                                                          to be fed to the Peripheral */
2949       hhash->pHashInBuffPtr = (uint8_t *)inputaddr;   /* Points at data which will be fed to the Peripheral at
2950                                                          the next interruption */
2951 	}
2952 
2953 
2954     /* Process Unlock */
2955     __HAL_UNLOCK(hhash);
2956 
2957     /* Enable Interrupts */
2958     __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
2959 
2960     /* Return function status */
2961     return HAL_OK;
2962   }
2963   else
2964   {
2965     return HAL_BUSY;
2966   }
2967 
2968 }
2969 
2970 
2971 /**
2972   * @brief  Initialize the HASH peripheral then initiate a DMA transfer
2973   *         to feed the input buffer to the Peripheral.
2974   * @note   If MDMAT bit is set before calling this function (multi-buffer
2975   *          HASH processing case), the input buffer size (in bytes) must be
2976   *          a multiple of 4 otherwise, the HASH digest computation is corrupted.
2977   *          For the processing of the last buffer of the thread, MDMAT bit must
2978   *          be reset and the buffer length (in bytes) doesn't have to be a
2979   *          multiple of 4.
2980   * @param  hhash HASH handle.
2981   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
2982   * @param  Size length of the input buffer in bytes.
2983   * @param  Algorithm HASH algorithm.
2984   * @retval HAL status
2985   */
HASH_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)2986 HAL_StatusTypeDef HASH_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
2987 {
2988   uint32_t inputaddr;
2989   uint32_t inputSize;
2990   HAL_StatusTypeDef status ;
2991   HAL_HASH_StateTypeDef State_tmp = hhash->State;
2992 
2993 
2994   /* Make sure the input buffer size (in bytes) is a multiple of 4 when MDMAT bit is set
2995      (case of multi-buffer HASH processing) */
2996   assert_param(IS_HASH_DMA_MULTIBUFFER_SIZE(Size));
2997 
2998   /* If State is ready or suspended, start or resume polling-based HASH processing */
2999   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3000   {
3001     /* Check input parameters */
3002     if ((pInBuffer == NULL) || (Size == 0U) ||
3003         /* Check phase coherency. Phase must be
3004            either READY (fresh start)
3005            or PROCESS (multi-buffer HASH management) */
3006         ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HASH_PROCESSING(hhash)))))
3007     {
3008       hhash->State = HAL_HASH_STATE_READY;
3009       return  HAL_ERROR;
3010     }
3011 
3012 
3013     /* Process Locked */
3014     __HAL_LOCK(hhash);
3015 
3016     /* If not a resumption case */
3017     if (hhash->State == HAL_HASH_STATE_READY)
3018     {
3019       /* Change the HASH state */
3020       hhash->State = HAL_HASH_STATE_BUSY;
3021 
3022       /* Check if initialization phase has already been performed.
3023          If Phase is already set to HAL_HASH_PHASE_PROCESS, this means the
3024          API is processing a new input data message in case of multi-buffer HASH
3025          computation. */
3026       if (hhash->Phase == HAL_HASH_PHASE_READY)
3027       {
3028         /* Select the HASH algorithm, clear HMAC mode and long key selection bit, reset the HASH processor core */
3029         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT, Algorithm | HASH_CR_INIT);
3030 
3031         /* Set the phase */
3032         hhash->Phase = HAL_HASH_PHASE_PROCESS;
3033       }
3034 
3035       /* Configure the Number of valid bits in last word of the message */
3036       __HAL_HASH_SET_NBVALIDBITS(Size);
3037 
3038       inputaddr = (uint32_t)pInBuffer;     /* DMA transfer start address   */
3039       inputSize = Size;                    /* DMA transfer size (in bytes) */
3040 
3041       /* In case of suspension request, save the starting parameters */
3042       hhash->pHashInBuffPtr =  pInBuffer;  /* DMA transfer start address   */
3043       hhash->HashInCount = Size;           /* DMA transfer size (in bytes) */
3044 
3045     }
3046     /* If resumption case */
3047     else
3048     {
3049       /* Change the HASH state */
3050       hhash->State = HAL_HASH_STATE_BUSY;
3051 
3052       /* Resumption case, inputaddr and inputSize are not set to the API input parameters
3053          but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3054          processing was suspended */
3055       inputaddr = (uint32_t)hhash->pHashInBuffPtr;  /* DMA transfer start address   */
3056       inputSize = hhash->HashInCount;               /* DMA transfer size (in bytes) */
3057 
3058     }
3059 
3060     /* Set the HASH DMA transfer complete callback */
3061     hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3062     /* Set the DMA error callback */
3063     hhash->hdmain->XferErrorCallback = HASH_DMAError;
3064 
3065     /* Store number of words already pushed to manage proper DMA processing suspension */
3066     hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3067 
3068     /* Enable the DMA In DMA channel */
3069     if ((hhash->hdmain->Mode & DMA_LINKEDLIST) == DMA_LINKEDLIST)
3070     {
3071       if ((hhash->hdmain->LinkedListQueue != NULL) && (hhash->hdmain->LinkedListQueue->Head != NULL))
3072       {
3073         /* Enable the DMA channel */
3074         hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CBR1_DEFAULT_OFFSET]\
3075           = (((inputSize % 4U) != 0U) ? (inputSize + (4U - (inputSize % 4U))) : (inputSize)); /* Set DMA data size */
3076         hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CSAR_DEFAULT_OFFSET]\
3077           = inputaddr;  /* Set DMA source address */
3078         hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CDAR_DEFAULT_OFFSET]\
3079           = (uint32_t)&HASH->DIN; /* Set DMA destination address */
3080 
3081         status = HAL_DMAEx_List_Start_IT(hhash->hdmain);
3082       }
3083       else
3084       {
3085         /* Return error status */
3086         status = HAL_ERROR;
3087       }
3088     }
3089     else
3090     {
3091       status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3092                                 (((inputSize % 4U) != 0U) ? (inputSize + (4U - (inputSize % 4U))) : (inputSize)));
3093     }
3094 
3095     if (status != HAL_OK)
3096     {
3097       /* Return error status */
3098       status = HAL_ERROR;
3099     }
3100 
3101     /* Enable DMA requests */
3102     SET_BIT(HASH->CR, HASH_CR_DMAE);
3103 
3104     /* Process Unlock */
3105     __HAL_UNLOCK(hhash);
3106 
3107     /* Return function status */
3108     if (status != HAL_OK)
3109     {
3110       /* Update HASH state machine to error */
3111       hhash->State = HAL_HASH_STATE_ERROR;
3112     }
3113 
3114     return status;
3115   }
3116   else
3117   {
3118     return HAL_BUSY;
3119   }
3120 }
3121 
3122 /**
3123   * @brief  Return the computed digest.
3124   * @note   The API waits for DCIS to be set then reads the computed digest.
3125   * @param  hhash HASH handle.
3126   * @param  pOutBuffer pointer to the computed digest.
3127   * @param  Timeout Timeout value.
3128   * @retval HAL status
3129   */
HASH_Finish(HASH_HandleTypeDef * hhash,uint8_t * pOutBuffer,uint32_t Timeout)3130 HAL_StatusTypeDef HASH_Finish(HASH_HandleTypeDef *hhash, uint8_t *pOutBuffer, uint32_t Timeout)
3131 {
3132 
3133   if (hhash->State == HAL_HASH_STATE_READY)
3134   {
3135     /* Check parameter */
3136     if (pOutBuffer == NULL)
3137     {
3138       return  HAL_ERROR;
3139     }
3140 
3141     /* Process Locked */
3142     __HAL_LOCK(hhash);
3143 
3144     /* Change the HASH state to busy */
3145     hhash->State = HAL_HASH_STATE_BUSY;
3146 
3147     /* Wait for DCIS flag to be set */
3148     if (HASH_WaitOnFlagUntilTimeout(hhash, HASH_FLAG_DCIS, RESET, Timeout) != HAL_OK)
3149     {
3150       return HAL_TIMEOUT;
3151     }
3152 
3153     /* Read the message digest */
3154     HASH_GetDigest(pOutBuffer, HASH_DIGEST_LENGTH());
3155 
3156     /* Change the HASH state to ready */
3157     hhash->State = HAL_HASH_STATE_READY;
3158 
3159     /* Reset HASH state machine */
3160     hhash->Phase = HAL_HASH_PHASE_READY;
3161 
3162     /* Process UnLock */
3163     __HAL_UNLOCK(hhash);
3164 
3165     /* Return function status */
3166     return HAL_OK;
3167 
3168   }
3169   else
3170   {
3171     return HAL_BUSY;
3172   }
3173 
3174 }
3175 
3176 
3177 /**
3178   * @brief  Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3179   *         read the computed digest.
3180   * @note   Digest is available in pOutBuffer.
3181   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3182   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3183   * @param  hhash HASH handle.
3184   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3185   * @param  Size length of the input buffer in bytes.
3186   * @param  pOutBuffer pointer to the computed digest.
3187   * @param  Timeout Timeout value.
3188   * @param  Algorithm HASH algorithm.
3189   * @retval HAL status
3190   */
HMAC_Start(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Timeout,uint32_t Algorithm)3191 HAL_StatusTypeDef HMAC_Start(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3192                              uint32_t Timeout, uint32_t Algorithm)
3193 {
3194   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3195 
3196   /* If State is ready or suspended, start or resume polling-based HASH processing */
3197   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3198   {
3199     /* Check input parameters */
3200     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3201         || (pOutBuffer == NULL))
3202     {
3203       hhash->State = HAL_HASH_STATE_READY;
3204       return  HAL_ERROR;
3205     }
3206 
3207     /* Process Locked */
3208     __HAL_LOCK(hhash);
3209 
3210     /* Change the HASH state */
3211     hhash->State = HAL_HASH_STATE_BUSY;
3212 
3213     /* Check if initialization phase has already be performed */
3214     if (hhash->Phase == HAL_HASH_PHASE_READY)
3215     {
3216       /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3217       if (hhash->Init.KeySize > 64U)
3218       {
3219         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3220                    Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3221       }
3222       else
3223       {
3224         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3225                    Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3226       }
3227       /* Set the phase to Step 1 */
3228       hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3229       /* Resort to hhash internal fields to feed the Peripheral.
3230          Parameters will be updated in case of suspension to contain the proper
3231          information at resumption time. */
3232       hhash->pHashOutBuffPtr  = pOutBuffer;            /* Output digest address    */
3233       hhash->pHashInBuffPtr   = pInBuffer;             /* Input data address, HMAC_Processing input
3234                                                           parameter for Step 2     */
3235       hhash->HashInCount      = Size;                  /* Input data size, HMAC_Processing input
3236                                                           parameter for Step 2        */
3237       hhash->HashBuffSize     = Size;                  /* Store the input buffer size for the whole HMAC process*/
3238       hhash->pHashKeyBuffPtr  = hhash->Init.pKey;      /* Key address, HMAC_Processing input parameter for Step
3239                                                           1 and Step 3 */
3240       hhash->HashKeyCount     = hhash->Init.KeySize;   /* Key size, HMAC_Processing input parameter for Step 1
3241                                                           and Step 3    */
3242     }
3243 
3244     /* Carry out HMAC processing */
3245     return HMAC_Processing(hhash, Timeout);
3246 
3247   }
3248   else
3249   {
3250     return HAL_BUSY;
3251   }
3252 }
3253 
3254 
3255 
3256 /**
3257   * @brief  Initialize the HASH peripheral in HMAC mode, next process pInBuffer then
3258   *         read the computed digest in interruption mode.
3259   * @note   Digest is available in pOutBuffer.
3260   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3261   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3262   * @param  hhash HASH handle.
3263   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3264   * @param  Size length of the input buffer in bytes.
3265   * @param  pOutBuffer pointer to the computed digest.
3266   * @param  Algorithm HASH algorithm.
3267   * @retval HAL status
3268   */
HMAC_Start_IT(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint8_t * pOutBuffer,uint32_t Algorithm)3269 HAL_StatusTypeDef HMAC_Start_IT(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint8_t *pOutBuffer,
3270                                 uint32_t Algorithm)
3271 {
3272   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3273 
3274   /* If State is ready or suspended, start or resume IT-based HASH processing */
3275   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3276   {
3277     /* Check input parameters */
3278     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U)
3279         || (pOutBuffer == NULL))
3280     {
3281       hhash->State = HAL_HASH_STATE_READY;
3282       return  HAL_ERROR;
3283     }
3284 
3285     /* Process Locked */
3286     __HAL_LOCK(hhash);
3287 
3288     /* Change the HASH state */
3289     hhash->State = HAL_HASH_STATE_BUSY;
3290 
3291     /* Initialize IT counter */
3292     hhash->HashITCounter = 1;
3293 
3294     /* Check if initialization phase has already be performed */
3295     if (hhash->Phase == HAL_HASH_PHASE_READY)
3296     {
3297       /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits */
3298       if (hhash->Init.KeySize > 64U)
3299       {
3300         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3301                    Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3302       }
3303       else
3304       {
3305         MODIFY_REG(HASH->CR, HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3306                    Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3307       }
3308 
3309       /* Resort to hhash internal fields hhash->pHashInBuffPtr and hhash->HashInCount
3310          to feed the Peripheral whatever the HMAC step.
3311          Lines below are set to start HMAC Step 1 processing where key is entered first. */
3312       hhash->HashInCount     = hhash->Init.KeySize; /* Key size                      */
3313       hhash->pHashInBuffPtr  = hhash->Init.pKey ;   /* Key address                   */
3314 
3315       /* Store input and output parameters in handle fields to manage steps transition
3316          or possible HMAC suspension/resumption */
3317       hhash->pHashKeyBuffPtr = hhash->Init.pKey;    /* Key address                   */
3318       hhash->pHashMsgBuffPtr = pInBuffer;           /* Input message address         */
3319       hhash->HashBuffSize    = Size;                /* Input message size (in bytes) */
3320       hhash->pHashOutBuffPtr = pOutBuffer;          /* Output digest address         */
3321 
3322       /* Configure the number of valid bits in last word of the key */
3323       __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3324 
3325       /* Set the phase to Step 1 */
3326       hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3327     }
3328     else if ((hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_1) || (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_3))
3329     {
3330       /* Restart IT-based HASH processing after Step 1 or Step 3 suspension */
3331 
3332     }
3333     else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3334     {
3335       /* Restart IT-based HASH processing after Step 2 suspension */
3336 
3337     }
3338     else
3339     {
3340       /* Error report as phase incorrect */
3341       /* Process Unlock */
3342       __HAL_UNLOCK(hhash);
3343       hhash->State = HAL_HASH_STATE_READY;
3344       return HAL_ERROR;
3345     }
3346 
3347     /* Process Unlock */
3348     __HAL_UNLOCK(hhash);
3349 
3350     /* Enable Interrupts */
3351     __HAL_HASH_ENABLE_IT(HASH_IT_DINI | HASH_IT_DCI);
3352 
3353     /* Return function status */
3354     return HAL_OK;
3355   }
3356   else
3357   {
3358     return HAL_BUSY;
3359   }
3360 
3361 }
3362 
3363 
3364 
3365 /**
3366   * @brief  Initialize the HASH peripheral in HMAC mode then initiate the required
3367   *         DMA transfers to feed the key and the input buffer to the Peripheral.
3368   * @note   Same key is used for the inner and the outer hash functions; pointer to key and
3369   *         key size are respectively stored in hhash->Init.pKey and hhash->Init.KeySize.
3370   * @note   In case of multi-buffer HMAC processing, the input buffer size (in bytes) must
3371   *         be a multiple of 4 otherwise, the HASH digest computation is corrupted.
3372   *         Only the length of the last buffer of the thread doesn't have to be a
3373   *         multiple of 4.
3374   * @param  hhash HASH handle.
3375   * @param  pInBuffer pointer to the input buffer (buffer to be hashed).
3376   * @param  Size length of the input buffer in bytes.
3377   * @param  Algorithm HASH algorithm.
3378   * @retval HAL status
3379   */
HMAC_Start_DMA(HASH_HandleTypeDef * hhash,uint8_t * pInBuffer,uint32_t Size,uint32_t Algorithm)3380 HAL_StatusTypeDef HMAC_Start_DMA(HASH_HandleTypeDef *hhash, uint8_t *pInBuffer, uint32_t Size, uint32_t Algorithm)
3381 {
3382   uint32_t inputaddr;
3383   uint32_t inputSize;
3384   HAL_StatusTypeDef status ;
3385   HAL_HASH_StateTypeDef State_tmp = hhash->State;
3386   /* Make sure the input buffer size (in bytes) is a multiple of 4 when digest calculation
3387      is disabled (multi-buffer HMAC processing, MDMAT bit to be set) */
3388   assert_param(IS_HMAC_DMA_MULTIBUFFER_SIZE(hhash, Size));
3389   /* If State is ready or suspended, start or resume DMA-based HASH processing */
3390   if ((State_tmp == HAL_HASH_STATE_READY) || (State_tmp == HAL_HASH_STATE_SUSPENDED))
3391   {
3392     /* Check input parameters */
3393     if ((pInBuffer == NULL) || (Size == 0U) || (hhash->Init.pKey == NULL) || (hhash->Init.KeySize == 0U) ||
3394         /* Check phase coherency. Phase must be
3395             either READY (fresh start)
3396             or one of HMAC PROCESS steps (multi-buffer HASH management) */
3397         ((hhash->Phase != HAL_HASH_PHASE_READY) && (!(IS_HMAC_PROCESSING(hhash)))))
3398     {
3399       hhash->State = HAL_HASH_STATE_READY;
3400       return  HAL_ERROR;
3401     }
3402 
3403 
3404     /* Process Locked */
3405     __HAL_LOCK(hhash);
3406 
3407     /* If not a case of resumption after suspension */
3408     if (hhash->State == HAL_HASH_STATE_READY)
3409     {
3410       /* Check whether or not initialization phase has already be performed */
3411       if (hhash->Phase == HAL_HASH_PHASE_READY)
3412       {
3413         /* Change the HASH state */
3414         hhash->State = HAL_HASH_STATE_BUSY;
3415         /* Check if key size is larger than 64 bytes, accordingly set LKEY and the other setting bits.
3416            At the same time, ensure MDMAT bit is cleared. */
3417         if (hhash->Init.KeySize > 64U)
3418         {
3419           MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3420                      Algorithm | HASH_ALGOMODE_HMAC | HASH_HMAC_KEYTYPE_LONGKEY | HASH_CR_INIT);
3421         }
3422         else
3423         {
3424           MODIFY_REG(HASH->CR, HASH_CR_MDMAT | HASH_CR_LKEY | HASH_CR_ALGO | HASH_CR_MODE | HASH_CR_INIT,
3425                      Algorithm | HASH_ALGOMODE_HMAC | HASH_CR_INIT);
3426         }
3427         /* Store input aparameters in handle fields to manage steps transition
3428            or possible HMAC suspension/resumption */
3429         hhash->HashInCount = hhash->Init.KeySize;   /* Initial size for first DMA transfer (key size)      */
3430         hhash->pHashKeyBuffPtr = hhash->Init.pKey;  /* Key address                                         */
3431         hhash->pHashInBuffPtr  = hhash->Init.pKey ; /* First address passed to DMA (key address at Step 1) */
3432         hhash->pHashMsgBuffPtr = pInBuffer;         /* Input data address                                  */
3433         hhash->HashBuffSize = Size;                 /* input data size (in bytes)                          */
3434 
3435         /* Set DMA input parameters */
3436         inputaddr = (uint32_t)(hhash->Init.pKey);   /* Address passed to DMA (start by entering Key message) */
3437         inputSize = hhash->Init.KeySize;            /* Size for first DMA transfer (in bytes) */
3438 
3439         /* Configure the number of valid bits in last word of the key */
3440         __HAL_HASH_SET_NBVALIDBITS(hhash->Init.KeySize);
3441 
3442         /* Set the phase to Step 1 */
3443         hhash->Phase = HAL_HASH_PHASE_HMAC_STEP_1;
3444 
3445       }
3446       else if (hhash->Phase == HAL_HASH_PHASE_HMAC_STEP_2)
3447       {
3448         /* Process a new input data message in case of multi-buffer HMAC processing
3449           (this is not a resumption case) */
3450 
3451         /* Change the HASH state */
3452         hhash->State = HAL_HASH_STATE_BUSY;
3453 
3454         /* Save input parameters to be able to manage possible suspension/resumption */
3455         hhash->HashInCount = Size;                /* Input message address       */
3456         hhash->pHashInBuffPtr = pInBuffer;        /* Input message size in bytes */
3457 
3458         /* Set DMA input parameters */
3459         inputaddr = (uint32_t)pInBuffer;           /* Input message address       */
3460         inputSize = Size;                          /* Input message size in bytes */
3461 
3462         if (hhash->DigestCalculationDisable == RESET)
3463         {
3464           /* This means this is the last buffer of the multi-buffer sequence: DCAL needs to be set. */
3465           __HAL_HASH_RESET_MDMAT();
3466           __HAL_HASH_SET_NBVALIDBITS(inputSize);
3467         }
3468       }
3469       else
3470       {
3471         /* Phase not aligned with handle READY state */
3472         __HAL_UNLOCK(hhash);
3473         /* Return function status */
3474         return HAL_ERROR;
3475       }
3476     }
3477     else
3478     {
3479       /* Resumption case (phase may be Step 1, 2 or 3) */
3480 
3481       /* Change the HASH state */
3482       hhash->State = HAL_HASH_STATE_BUSY;
3483 
3484       /* Set DMA input parameters at resumption location;
3485          inputaddr and inputSize are not set to the API input parameters
3486          but to those saved beforehand by HAL_HASH_DMAFeed_ProcessSuspend() when the
3487          processing was suspended. */
3488       inputaddr = (uint32_t)(hhash->pHashInBuffPtr);  /* Input message address       */
3489       inputSize = hhash->HashInCount;                 /* Input message size in bytes */
3490     }
3491 
3492 
3493     /* Set the HASH DMA transfer complete callback */
3494     hhash->hdmain->XferCpltCallback = HASH_DMAXferCplt;
3495     /* Set the DMA error callback */
3496     hhash->hdmain->XferErrorCallback = HASH_DMAError;
3497 
3498     /* Store number of words already pushed to manage proper DMA processing suspension */
3499     hhash->NbWordsAlreadyPushed = HASH_NBW_PUSHED();
3500 
3501     /* Enable the DMA In DMA channel */
3502     if ((hhash->hdmain->Mode & DMA_LINKEDLIST) == DMA_LINKEDLIST)
3503     {
3504       if ((hhash->hdmain->LinkedListQueue != NULL) && (hhash->hdmain->LinkedListQueue->Head != NULL))
3505       {
3506         /* Enable the DMA channel */
3507         hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CBR1_DEFAULT_OFFSET]\
3508           = (((inputSize % 4U) != 0U) ? (inputSize + (4U - (inputSize % 4U))) : (inputSize)); /* Set DMA data size */
3509         hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CSAR_DEFAULT_OFFSET]\
3510           = inputaddr; /* Set DMA source address */
3511         hhash->hdmain->LinkedListQueue->Head->LinkRegisters[NODE_CDAR_DEFAULT_OFFSET]\
3512           = (uint32_t)&HASH->DIN; /* Set DMA destination address */
3513 
3514         status = HAL_DMAEx_List_Start_IT(hhash->hdmain);
3515       }
3516       else
3517       {
3518         /* Return error status */
3519         status = HAL_ERROR;
3520       }
3521     }
3522     else
3523     {
3524       status = HAL_DMA_Start_IT(hhash->hdmain, inputaddr, (uint32_t)&HASH->DIN, \
3525                                 (((inputSize % 4U) != 0U) ? (inputSize + (4U - (inputSize % 4U))) : (inputSize)));
3526     }
3527 
3528     if (status != HAL_OK)
3529     {
3530       /* Return error status */
3531       status = HAL_ERROR;
3532     }
3533     /* Enable DMA requests */
3534     SET_BIT(HASH->CR, HASH_CR_DMAE);
3535 
3536     /* Process Unlocked */
3537     __HAL_UNLOCK(hhash);
3538 
3539     /* Return function status */
3540     if (status != HAL_OK)
3541     {
3542       /* Update HASH state machine to error */
3543       hhash->State = HAL_HASH_STATE_ERROR;
3544     }
3545 
3546     /* Return function status */
3547     return status;
3548   }
3549   else
3550   {
3551     return HAL_BUSY;
3552   }
3553 }
3554 /**
3555   * @}
3556   */
3557 
3558 #endif /* HAL_HASH_MODULE_ENABLED */
3559 
3560 /**
3561   * @}
3562   */
3563 #endif /*  HASH*/
3564 /**
3565   * @}
3566   */
3567